Titelaufnahme

Titel
Elastic and inelastic finite element analysis of tube to tubesheet junction for C2-hydrogenation reactor subject to pressure and temperature actions / Khosrow Behseta
VerfasserBehseta, Khosrow
Begutachter / BegutachterinZeman, Josef ; Troger, Hans
Erschienen2006
Umfang160 Bl. : Ill., graph. Darst.
HochschulschriftWien, Techn. Univ., Diss., 2006
Anmerkung
Zsfassung in dt. Sprache
SpracheEnglisch
Bibl. ReferenzOeBB
DokumenttypDissertation
Schlagwörter (DE)Apparatebau / Wärmeaustauscher / Elastoplastischer Zulässigkeitsnachweis
Schlagwörter (EN)Pressure Vessel Design / Heat Exchanger / Elasto-plastic design check
Schlagwörter (GND)Apparatebau / Wärmeaustauscher / Elastoplastizität / Zuverlässigkeit / Finite-Elemente-Methode
URNurn:nbn:at:at-ubtuw:1-14523 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Elastic and inelastic finite element analysis of tube to tubesheet junction for C2-hydrogenation reactor subject to pressure and temperature actions [4.51 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Deutsch)

In vorliegender Arbeit werden international übliche, "bewährte" Berechnungsverfahren für Rohrbündelwärmeaustauscher an Hand eines ausgeführten C2-Hydrierreaktors miteinander verglichen - ASME Boiler & Pressure Vessel Code, Section VIII, Division 1 & 2, EN 13445-3 Abschnitt 13 und Anhang J, TEMA - und den Ergebnissen mit Finite Element Modellen mit elastisch-plastischen Werkstoffgesetzen nach dem Direkten Verfahren des analytischen Zulässigkeitsnachweisen, EN 13445-3 Anhang B, gegenübergestellt. Da auf der Grenztragfähigkeitstheorie basierende Verfahren nach EN 13445-3 Anhang J ergibt weitaus günstigere Resultate als die anderen "klassischen", auf technischer Elastizitätstheorie beruhenden Zulässigkeitsnachweise. Die Nachweise nach dem Direkten Verfahren des analytischen Zulässigkeitsnachweises, EN 13445-3 Anhang B, bestätigen die Ergebnisse nach Anhang J, sind noch (geringfügiger) günstiger, geben aber noch zusätzlich direkte Hinweise auf Schwachstellen und Anforderungen für spezifische wiederkehrende Untersuchungen, hinsichtlich der Gefahr von Ermüdungsrissen.

Zusammenfassung (Englisch)

Elastic and inelastic finite element analyses have been carried out for the shell to tubesheet junction of a C2- Hydrogenation reactor subject to pressure and temperature actions.

Three geometrically different models have been tested to select the most efficient one for applying the analysis. These models are symmetrical and differ from each other by the amount of tube to tubesheet perforations and the type of the supporting tubes. It has been shown that a tubesheet FE model with full perforation supported by combination of the link and three- dimensional elements produces quite reasonable results as compared to other proposed models.

FE elastic analysis was carried out for tubesheet thickness as per datasheet, and also for reduced tubesheet and shell thicknesses. Results indicate that the lower thickness can be employed and additional thickening of the tubesheet and adjacent shells is not required.

Inelastic analyses for the gross plastic deformation and progressive plastic deformation design checks have been carried out for the data sheet original thickness as well as the reduced thicknesses. Results indicate that in either case larger pressure in comparison with data sheet values can be carried safely by tubesheet and adjacent shells.

Moreover, employing Melaln's shakedown theorem, it is shown that the residual stress field created during a loading and unloading cycle will not grow during successive load and unload cycles once the tube sheet is subject to cyclic actions and, hence, the tubesheet shakes down to completely elastic behavior.

Fatigue analysis for both welded and unwelded region of tubesheet and shell junction at the groove location have indicated that the number of life cycles for this reactor is much larger than the number of operating cycles anticipated to occur during the reactor life.

Radii effect analysis was performed in order to study the effect of radii size on the magnitude of the stresses. Results of analysis indicate that small radii result in larger stresses, that increase of this transition radius results in decrease of stresses down to a minimum, and further increase leads to an increase of stresses. The optimum radius size has been reported.

A manual calculation according to ASME Sec. VIII and EN 13445-3 Appendix 13 and Annex J was performed to show the difference in results obtained according to these codes.