Bibliographic Metadata

Title
Confinement induced neutron phase / Hartmut Lemmel
AuthorLemmel, Hartmut
CensorRauch, Helmut ; Petrascheck, Dietmar
Published2006
Description99 S. : Ill., graph. Darst.
Institutional NoteWien, Techn. Univ., Diss., 2007
Annotation
Zsfassung in dt. Sprache
LanguageEnglish
Bibl. ReferenceOeBB
Document typeDissertation (PhD)
Keywords (DE)Quantenmechanik / Neutroneninterferometrie / geometrische Phase / einschlussbedingte Phase / Neutronenleiter / Dynamische Beugungstheorie / Beugung am Spalt
Keywords (EN)quantum mechanics / neutron interferometry / geometrical phase / confinement phase / neutron guide / dynamical theory of diffraction / slit diffraction
Keywords (GND)Thermisches Neutron / Kanal / Beugung / Berry-Phase / Neutroneninterferometrie
URNurn:nbn:at:at-ubtuw:1-14457 Persistent Identifier (URN)
Restriction-Information
 The work is publicly available
Files
Confinement induced neutron phase [4.85 mb]
Links
Reference
Classification
Abstract (German)

For neutrons passing through narrow channels it has been predicted by Lévy-Leblond [1] and Greenberger [2] that the quantization of the transverse momentum of the neutron beam changes the longitudinal momentum, resulting in a phase shift that should be measurable by means of neutron interferometry. It is a purely quantum mechanical phenomenon which arises from the wave-like nature of quantum particles.

In this thesis I present the preparation and the results of a series of measurements which have been carried out with a stack of narrow channels in a neutron interferometer. Thermal neutrons with wave lengths of 1.9Å and 2.7Å have been used. The experiments have been performed mostly at the Institut Laue Langevin (ILL) in Grenoble, France, but also at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, USA. First results have been published in [3].

In addition, I present detailed calculations on the experiment. The channel influence on the neutrons is studied by solving the stationary Schrödinger equation. The wave function is calculated in the channel and behind the channel, for incident plane waves and for localized beams. The wave function gives full information on the confinement induced phase, the transmitted amplitude and the diffraction on the channel edges. The effect of the interferometer crystals on the wave function is calculated using the dynamical theory of diffraction. Finally both calculations are put together in order to describe the neutron beam as a stationary wave packet passing the whole system of the interferometer and the channel stack.

The measurements show that there must be additional phase effects superimposed on the confinement phase. The calculations indicate that these additional phase contributions could arise from the diffraction by the channels in combination with the dynamical diffraction in the interferometer crystals.

[1] Daniel M. Greenberger, A New Non-Local Effect in Quantum Mechanics, Physica B 151 (1988), 374.

[2] Jean-Marc Lévy-Leblond, A Geometrical Quantum Phase Effect, Physics Letters A 125 (1987), 441.

[3] Helmut Rauch, Hartmut Lemmel, Matthias Baron, and Rudolf Loidl, Measurement of a Confinement Induced Neutron Phase, nature 417 (2002), 630.

Abstract (English)

Für Neutronen, die durch enge Kanäle fliegen, wurde von Lévy-Leblond [1] und Greenberger [2] vorhergesagt, dass die Quantisierung des transversalen Impulses den longitudinalen Impuls derart verändert, dass es zu einem Phasenschub kommt, der mittels Neutroneninterferometrie gemessen werden kann. Dabei handelt es sich um einen rein quantenmechanischen Effekt, der auf den Welleneigenschaften von Quantenteilchen beruht.

In dieser Dissertation präsentiere ich die Vorbereitung und die Ergebnisse einer Reihe von Messungen, die an einem Stapel enger Kanäle in einem Neutroneninterferometer vorgenommen wurden. Es wurden thermische Neutronen mit den Wellenlängen 1.9Å und 2.7Å verwendet. Die Experimente wurden hauptsächlich am Institut Laue-Langevin (ILL) in Grenoble, Frankreich, durchgeführt, aber auch am National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, USA. Erste Ergebnisse sind in [3] veröffentlicht.

Darüberhinaus zeige ich detaillierte Berechnungen, die das Experiment simulieren. Der Einfluss der Kanäle auf die Neutronen wird durch Lösen der stationären Schrödingergleichung untersucht. Die Wellenfunktion wird im Kanal und hinter dem Kanal berechnet, für eine einfallende ebene Welle und für einen lokalisierten Strahl. Die Wellenfunktion liefert die vollständige Information über die durch den Einschluss erzeugte Phase, über die transmittierte Amplitude und über die Beugung an den Kanalkanten. Der Einfluss der Interferometerkristalle auf die Wellenfunktion wird mit Hilfe der dynamischen Beugungstheorie berechnet.

Zum Schluss werden beide Rechnungen kombiniert, um den Neutronenstrahl als stationäres Wellenpaket zu beschreiben, das das Gesamtsystem aus Interferometer und Kanalsystem durchläuft.

Die Messungen zeigen, dass es zusätzliche Phaseneffekte geben muss, die die einschlussbedingte Phase überlagern. Die Rechnungen deuten darauf hin, dass diese zusätzlichen Beiträge zum Phasenschub aus der Beugung an den Kanälen hervorgehen könnten, in Kombination mit der dynamischen Beugung an den Kristallplatten.

[1] Daniel M. Greenberger, A New Non-Local Effect in Quantum Mechanics, Physica B 151 (1988), 374.

[2] Jean-Marc Lévy-Leblond, A Geometrical Quantum Phase Effect, Physics Letters A 125 (1987), 441.

[3] Helmut Rauch, Hartmut Lemmel, Matthias Baron, and Rudolf Loidl, Measurement of a Confinement Induced Neutron Phase, nature 417 (2002), 630.