Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

DIPLOMARBEIT

Master's Thesis

Berechnung eines Fußgängersteges aus Stahl unter Normalkraft, zweiachsiger Biegung und Wölbkrafttorsion nach zwei Methoden

Teil 1:

Entkoppelte Berechnung unter Berücksichtigung von Schwerpunkt, Hauptachsen und Schubmittelpunkt sowie

Ermittlung der Wölbspannungen nach dem Drillträgerverfahren

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Josef FINK

und

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Francesco AIGNER

Institut für Tragkonstruktionen – Stahlbau

eingereicht an der Technischen Universität Wien,

Fakultät für Bauingenieurwesen,

von

Christina Carin SÖLLNER

Görgengasse 23/8/17 1190 Wien E610 / 9925987

Wien, im Oktober 2008

Kurzfassung

Autor: Christina Söllner

Titel:Berechnung eines Fußgängersteges aus Stahl unter Normalkraft, zweiachsigerBiegung und Wölbkrafttorsion nach zwei Methoden

Teil 1: "Entkoppelte Berechnung" unter Berücksichtigung von Schwerpunkt, Hauptachsen und Schubmittelpunkt sowie Ermittlung der Wölbspannungen nach dem Drillträgerverfahren

der vorliegenden Arbeit sollen die entkoppelten Differentialgleichungen In des Biegetorsionsproblems hergeleitet und am Beispiel eines Fußgängersteges zur Anwendung kommen. Hierfür müssen der Schwerpunkt, der Schubmittelpunkt sowie die Hauptachsen des Querschnitts gefunden werden. Die Querschnittsnormierung gliedert das Biegetorsionsproblem in vier unabhängige Differentialgleichungen. Dies ermöglicht ein separates Berechnen der Normalspannungen für die Beanspruchungen Normalkraft, Biegemomente und Wölbbimoment. Gleiches gilt für die Schubspannungen, die sich aus der Änderung der Normalspannungen über die Stabachse ergeben. Dies hat den Vorteil, dass eine nachträgliche Optimierung des Querschnitts möglich wird und die Zahlenkontrolle während des Rechenvorgangs verhältnismäßig einfach ist.

Die Berechnung nach der "entkoppelten Methode" wird anhand des Musterbeispiels "Fußgängersteg" demonstriert. Es werden die Lastfälle Eigengewicht, Nutzlasten und Windlasten betrachtet. Die Ergebnisse dienen als Grundlage für den Vergleich mit den Ergebnissen der Berechnung nach der "gekoppelten Methode", die in der Diplomarbeit von Mariam Arnaout [8] hergeleitet und vorgeführt wird.

Beide Verfahren liefern exakt dieselben Spannungen. Die Unterschiede der "gekoppelten Berechnung" zur "entkoppelten Berechnung" liegen darin, dass ein beliebiges Koordinatensystem gewählt werden kann und dass die Ergebnisse nicht normiert aus Differentialgleichungen, sondern gekoppelt aus linearen Gleichungssystemen resultieren.

Die exakte Berechnung der Wölbspannungen nach der Theorie der Wölbkrafttorsion ist für die meisten Fälle in der Praxis nicht notwendig. Zur näherungsweisen Ermittlung der Wölbspannungen an einfachsymmetrischen Querschnitten wird das Drillträgerverfahren nach Dr.-Ing. Fritz Resinger [9] angewendet. Bei diesem Verfahren wird die Wölbsteifigkeit des Querschnitts durch die Biegesteifigkeiten zweier getrennter Drillträger ersetzt. So ist es möglich, das Problem der Wölbkrafttorsion durch ein Biegeproblem nach Theorie 2. Ordnung abzubilden.

In der vorliegenden Arbeit wird das Drillträgerverfahren für asymmetrische Profile hergeleitet. Die Ergebnisse der Wölbspannungen nach dem Drillträgerverfahren werden durch Beispiele aufgezeigt und deren Abweichung begründet. Schließlich wird das Drillträgerverfahren am Querschnitt des Musterbeispiels Fußgängersteg angewandt und mit den exakten Werten aus der "entkoppelten Berechnungsmethode" verglichen.

Abstract

Author: Christina Söllner

Title: Analysis of a pedestrian bridge out of steel loaded by normal force, biaxial bending and torsion by two different methods,

> Part 1: "Decoupled form of analysis" with use of centroid, shear centre and principal axis and evaluation of warping stresses by the "twisted-beam-technique"

In this paper the decoupled differential equations of the bending and torsion problem are derived, and applied to the exemplar of a pedestrian bridge. Therefor the centroid, the shear centre and the principal axis have to be calculated. The standardisation divides the bending and torsion problem into four independent differential equations. This allows calculating normal stresses separately for normal load, bending moments and warping moment. The same applies to shear stresses which result from the changing of normal stresses along the axis of beam. This allows a belated optimisation of the cross section and an easy troubleshooting during the calculating process.

The "decoupled form of analysis" is demonstrated by the exemplar of a pedestrian bridge. Three different kinds of loads, scilicet dead load, payload and wind load, are displayed. The final results provide the basis of a comparison with those of the "coupled form of analysis", which are derived and presented in the master's thesis of Mariam Arnaout [8].

The calculated stresses of both analyses are exactly the same. The differences between the "coupled form of analysis" and the "decoupled form of analysis" are that an arbitrary reference system of coordinates can be chosen and that the findings result from linear systems of equations instead of differential equations.

In the majority of cases, the exact calculation of the warping stresses according to warping torsion theory is not necessary. The "twisted-beam-technique" by Dr.-Ing. Fritz Resinger [9] is used in order to estimate the warping stresses at single symmetrical cross sections. Warping stiffness of the cross section is replaced by bending stiffness of two separate twisted-beams. Thereby it is possible to map the problem of warping torsion on the bending problem of the second order theory.

In this paper the "twisted-beam-technique" for asymmetric cross sections is derived. The results of warping stresses are demonstrated by the "twisted-beam-technique" and considered by examples. Finally the "twisted-beam-technique" is applied to the exemplar of the pedestrian bridge, and the warping stresses are compared with the exact values calculated by the "decoupled form of analysis".

Vorwort

Die Diplomarbeit "Berechnung eines Fußgängersteges aus Stahl unter Normalkraft, zweiachsiger Biegung und Wölbkrafttorsion nach zwei Methoden" ist in Zusammenarbeit mit dem Institut für Tragkonstruktionen – Stahlbau und dem Institut für Baustatik entstanden. Der erste Teil "Entkoppelte Berechnung unter Berücksichtigung von Schwerpunkt, Hauptachsen und Schubmittelpunkt sowie Ermittlung der Wölbspannungen nach dem Drillträgerverfahren" wurde von mir, Christina Söllner, am Institut für Tragkonstruktionen – Stahlbau verfasst, der Zweite "Gekoppelte Berechnung ohne Berücksichtigung von Schwerpunkt, Hauptachsen und Schubmittelpunkt" von Mariam Arnaout am Institut für Baustatik.

Herrn Univ.Prof. Dipl.-Ing. Dr.techn. Josef Fink möchte ich für seine Begeisterung für den Stahlbau danken, die mich erst dazu brachte den konstruktiven Ingenieurbau zu vertiefen.

Bei Herrn Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Francesco Aigner möchte ich mich sehr herzlich für die wertvollen Anregungen beim Entstehen meiner Diplomarbeit bedanken. Die zahlreichen Gespräche waren immer sehr hilfreich und positiv.

Weiters geht mein Dank an Herrn O.Prof. Dipl.-Ing. Dr.techn. Helmut Rubin, Vorstand des Instituts für Baustatik, sowie an Herrn Ass. Prof. Dipl.-Ing. Dr.techn. Mehdi Aminbaghai für die vielen und spontanen Besprechungen.

Der größte Dank gebührt meiner Familie.

Besonderer Dank gilt Mariam Arnaout für ihre Freundschaft und die gute Zusammenarbeit, die sich bereits in einer Vielzahl an Projekten und Prüfungen bewährt hat.

Formelzeichen

Materialkenngrößen

E	Elastizitätsmodul - für Stahl 210000000	[kN/m²]
G	Schubmodul $G = E/(2+2\nu)$	[kN/m²]
V	Querdehnzahl (Poisson'sche Zahl) - für Stahl 0,3	[-]
Teilsicher	heitsbeiwerte	
γ_G	Teilsicherheitsbeiwert für ständige Lasten	[-]
γ_Q	Teilsicherheitsbeiwert für Nutzlasten	[-]
$\gamma_{\scriptscriptstyle W}$	Teilsicherheitsbeiwert für Windlasten	[-]
Belastung	en	
g_k	charakteristischer Wert des Eigengewichts	[kN/m ²]
g_d	Bemessungswert des Eigengewichts	[kN/m ²]
$g_{\scriptscriptstyle Ed}$	Bemessungswert des Eigengewichts	[kN/m]
q_k	charakteristischer Wert der Nutzlast	[kN/m ²]
q_d	Bemessungswert der Nutzlast	[kN/m ²]
$q_{\scriptscriptstyle Ed}$	Bemessungswert der Nutzlast	[kN/m]
W _k	charakteristischer Wert der Windlast	[kN/m]
W_{Ed}	Bemessungswert der Windlast	[kN/m]

$p_{\overline{x}}, p_{\overline{y}}, p_{\overline{z}}$	Linienlasten in den jeweiligen Richtungen $\overline{x}, \overline{y}, \overline{z}$	[kN/m]
p_{x}, p_{y}, p_{z}	Linienlasten in den jeweiligen Richtungen 🐰, 🖗	[kN/m]
\overline{p}_{k}	Flächenlast in Richtung 🗴	[kN/m²]
m _d	rechtsdrehend positives Streckentorsionsmoment entlang positiver 🗴 -Richtung	[kNm/m]
$m_{\overline{y}}$	rechtsdrehend positives Streckenbiegemoment um positive \overline{y} -Achse	[kNm/m]
m_{y}	rechtsdrehend positives Streckenbiegemoment um positive 身-Achse	[kNm/m]
$m_{\overline{z}}$	rechtsdrehend positives Streckenbiegemoment um positive \overline{z} -Achse	[kNm/m]

m_{s}	rechtsdrehend positives St	treckenbiegemoment	
	um positive 🖞 -Achse		[kNm/m]
m_{ω}	Streckenwölbbimoment	$m_{\omega} = -p_{x} \cdot \partial \omega$	[kNm²/m]

Koordinatensystem

<i>x</i> , <i>y</i> , <i>z</i>	Achsen des Grundsystems	
$\overline{x}, \overline{y}, \overline{z}$	Achsen des Einheitssystems	
¥0, ¥0, ¥	Achsen des Hauptsystems	
S	Laufkoordinate in der Querschnittsmittellinie	
x_i, y_i, z_i	Koordinaten im Grundsystem eines Querschnittspunkts auf der Skelettlinie	[cm]
$\overline{x}_i, \overline{y}_i, \overline{z}_i$	Koordinaten im Einheitssystem eines Querschnittspunkts auf der Skelettlinie	[cm]
$\mathfrak{K}_i, \mathfrak{K}_i, \mathfrak{K}_i$	Koordinaten im Hauptsystem eines Querschnittspunkts auf der Skelettlinie	[cm]
ω_{i}	Einheitsverwölbung eines Querschnittspunktes im Grundsystem	[cm ²]
$\overline{\omega}_{i}$	Einheitsverwölbung eines Querschnittspunktes im Einheitssystem	[cm ²]
do _i	Einheitsverwölbung eines Querschnittspunktes im Hauptsystem	[cm²]

Querschnittspunkte

В	Bezugspunkt	
D	Drillpunkt	
Р	Querschnittspunkt	
Μ	Schubmittelpunkt	
y_M	y -Koordinate des Schubmittelpunktes im Grundsystem	[cm]
z_M	z -Koordinate des Schubmittelpunktes im Grundsystem	[cm]
S	Schwerpunkt	
y _s	y -Koordinate des Schwerpunkts im Grundsystem	[cm]
z_s	z -Koordinate des Schwerpunkts im Grundsystem	[cm]
ω_{A}	Wölbordinate des Anfangspunkts 0	[cm ²]
$\partial_{P_{\tilde{x}}}$	Einheitsverwölbung im Angriffspunkt der Linienlast p_{x}	[cm ²]

Verformungsgrößen

<i>u</i> ₀	Axialverschiebung in positiver 🖇 -Richtung	[m]
V _M	Verschiebung normal auf die Schubmittelpunktsachse in positiver // -Richtung	[m]
W _M	Verschiebung normal auf die Schubmittelpunktsachse in positiver -Richtung	[m]
$arphi_{2}$	rechtsdrehend positiver Querschnittsdrehwinkel um positive $\mbox{\sc s}$ -Achse im Schubmittelpunkt M	[rad]
$arphi_{rac{s}{2}}$	rechtsdrehend positiver Querschnittsdrehwinkel um positive y -Achse im Schubmittelpunkt M	[rad]
θ	rechtsdrehend positive Verdrehung der Schubmittelpunktachse	[rad]
ϑ'	Verdrillung der Stabachse	[rad/m]
и	gesamte Längsverschiebung in positiver 🗴 -Richtung	[m]
t	Verschiebung tangential zur Querschnittsmittellinie	[m]

Schnittgrößen

Ν	Normalkraft in positiver 🗴 -Richtung	[kN]
Q_y	Querkraft in positiver 🖗-Richtung	[kN]
Q_{\flat}	Querkraft in positiver -Richtung	[kN]
M_{D}	rechtsdrehend positives Torsionsmoment entlang Irchtung	[kNm]
$M_{_{Dp}}$	rechtsdrehend positives St. Venant'sches Torsionsmoment entlang -Richtung	[kNm]
$M_{D\omega}$	rechtsdrehend positives sekundäres Torsionsmoment entlang -Richtung	[kNm]
$M_{\overline{y}}$	rechtsdrehend positives Biegemoment um positive \overline{y} -Achse	[kNm]
$M_{\overline{z}}$	rechtsdrehend positives Biegemoment um positive \overline{z} -Achse	[kNm]
M_{y}	rechtsdrehend positives Biegemoment um positive 🖇 -Achse	[kNm]
M_{z}	rechtsdrehend positives Biegemoment um positive 🖞 -Achse	[kNm]
M _å	Wölbbimoment (positiv entsprechend des positiven $M_{_D}$)	[kNm²]

Querschnittsgeometrie

A_i	Querschnittfläche eines einzelnen Blechs	[cm²]
A_P	Querschnittfläche einer Punktfläche	[cm²]
С	Normalabstand von Blech 2 zur Linienlast	[cm]

l_i	Länge eines einzelnen Blechs	[cm]
r_p	Radius einer Punktfläche	[cm]
t _i	Dicke eines einzelnen Blechs	[cm]

Querschnittswerte

Α	Gesamtquerschnittfläche	[cm ²]
A(s)	Fläche des abgeschnittenen Teils	[cm ²]
I_T	Torsionsträgheitsmoment für St. Venant'sche Torsion	[cm ⁴]
A_{y}	Statisches Moment um die z -Achse am Grundsystem	[cm³]
A_{z}	Statisches Moment um die y-Achse am Grundsystem	[cm ³]
A_{ω}	Wölbfläche am Grundsystem	[cm ⁴]
A_{yz}	Zentrifugalmoment am Grundsystem	[cm ⁴]
$A_{y\omega}$	Wölbflächenmoment am Grundsystem	[cm ⁴]
$A_{z\omega}$	Wölbflächenmoment am Grundsystem	[cm ⁴]
A_{yy}	Trägheitsmoment um die z Achse am Grundsystem	[cm ⁴]
A_{zz}	Trägheitsmoment um die y-Achse am Grundsystem	[cm ⁴]
$A_{\omega\omega}$	Wölbwiderstand am Grundsystem	[cm ⁶]
$A_{\overline{yz}}$	Zentrifugalmoment am Einheitssystem	[cm ⁴]
$A_{\overline{y}\overline{\omega}}$	Wölbflächenmoment am Einheitssystem	[cm ⁴]
$A_{\overline{z}\overline{\omega}}$	Wölbflächenmoment am Einheitssystem	[cm ⁴]
$A_{\overline{yy}}$	Trägheitsmoment um die \overline{z} -Achse am Einheitssystem	[cm ⁴]
$A_{\overline{z}\overline{z}}$	Trägheitsmoment um die \overline{y} -Achse am Einheitssystem	[cm ⁴]
$A_{\overline{\varpi}\overline{\varpi}}$	Wölbwiderstand am Einheitssystem	[cm ⁶]
$A_{y}(s)$	Statisches Moment um die -Achse am Hauptsystem des abgeschnittenen Teiles	[cm³]
$A_{s}(s)$	Statisches Moment um die ∮-Achse am Hauptsystem des abgeschnittenen Teiles	[cm³]
$A_{\check{\omega}}(s)$	Wölbfläche am Hauptsystem des abgeschnittenen Teiles	[cm ⁴]
A_{yy}	Trägheitsmoment um die -Achse am Hauptsystem	[cm ⁴]
A_{zz}	Trägheitsmoment um die ∯-Achse am Hauptsystem	[cm ⁴]

A	Wölbwiderstand am Hauptsystem	[cm ⁶]
α	Neigung der Hauptachse	[°]
Spann	ungen	
σ	Normalspannung	[kN/cm ²]
$ au_{p}$	primäre Schubspannung	[kN/cm ²]
$ au_{_{m}}$	mittlere Schubspannung	[kN/cm ²]

T_{i}	Schubfluss am Knoten <i>i</i> , wobei Knoten	j	der Nachbarpunkt ist	[]	kN/cm]
ι, j		v	•	-	-

Sonstiges

а	Brückenanfang	
е	Brückenende	
r_t	Hebelarm	[cm]
A_{x}	Auflagergröße, entgegen der Stabachse wirkend	[kN]
L	Gesamtlänge der Brücke	[m]
T_0	Integrationskonstante	[kN/cm]

Drillträgerverfahren

a, b	Normalabstand der Stege von der Trägheitsachse des Deckblechs	[cm]
К	Krümmung des Deckblechs	[cm ⁻¹]
$M_{z,OG}$	Biegemoment im Deckblech	[kNcm]
N_{OG}	Normalkraft im Deckblech	[kN]
$A_{yy,OG}$	Biegesteifigkeit des Deckblechs	[cm ⁴]
ε	Dehnung	[-]
p^*	Kräftepaar der Drillträger	[kN/m]
M^*	Biegemoment im Drillträger	[kNcm]
A_{zz}^{*}	Biegesteifigkeit des Drillträgers	[cm ⁴]
N_{OG}^{*}	Normalkraft am Drillträger	[kN]
A_{OG}^{*}	Ersatzfläche pro Drillträger	[cm ²]
* Z	Koordinate des Drillträgers	[cm]
σ^{*}	Wölbspannungen (= Biegespannungen) des Drillträgers	[kN/cm ²]
δ	Anteil der Stege am gesamten Torsionsmoment	[-]

INHALTSVERZEICHNIS

1.	EINLE	ITUNG	1	
	1.1	Berechnungsmethoden		
	1.2	Aufgabenstellung und Zielsetzung	2	
2.	FUSSO	GÄNGERSTEG	3	
	2.1	Querschnitt und statisches System	3	
	2.2	Übersicht der Lastfälle	5	
		2.2.1Lastfall 1: Eigengewicht mit Aufbau	5	
		2.2.2Lastfall 2: Nutzlast	5	
		2.2.2.1 Lastfall 2a: Nutzlast auf dem gesamten Deckblech	5	
		2.2.2.2 Lastfall 2b: Nutzlast über dem niedrigen Steg	5	
		2.2.2.3 Lastfall 2c: Nutzlast über dem hohen Steg	6	
		2.2.3Lastfall 3: Wind	6	
		2.2.3.1 Lastfall 3a: Wind als Druck	6	
		2.2.3.2 Lastfall 3b: Wind als Sog	7	
3.	ENTK	OPPELTE BERECHNUNGSMETHODE	8	
	3.1	Annahmen	8	
	3.2	Verschiebungen	9	
		3.2.1 Verschiebungen in der Querschnittsebene	9	
		3.2.2 Verschiebungen in Stablängsrichtung	11	
	3.3	Spannungen in Abhängigkeit der Verformungen	14	
		3.3.1 Normalspannungen	14	
		3.3.2Schubspannungen	15	
		3.3.2.1 Primäre Schubspannung	15	
		3.3.2.2 Mittlere Schubspannung	15	
	3.4	Differentialgleichungen des Biegetorsionsproblems	18	
		3.4.1 Differentialgleichung der St. Venant'schen Torsion	18	
		3.4.2Allgemeine Differentialgleichungen	19	
		3.4.3Entkoppelte Differentialgleichungen	22	
		3.4.4 Analogiemodell zur Lösung der Differentialgleichung IV	23	
	3.5	Schnittgrößen in Abhängigkeit der Verformungen	24	
	3.6	Übersicht der Differentialbeziehungen	27	
	3.7	Spannungen in Abhängigkeit der Schnittgrößen	28	
		3.7.1 Normalspannungen	28	
		3.7.2Primäre Schubspannung	28	
		3.7.3Mittlere Schubspannungen	29	

4.	BERE	CHNUNG NACH DEM ENTKOPPELTEN VERFAHREN	31
	4.1	Querschnittwerte und Normierung	31
		4.1.1 Allgemeines	31
		4.1.2Das Grundsystem	32
		4.1.3Das Einheitssystem	
		4.1.4Das Hauptsystem	41
	4.2	Einwirkungen und Randbedingungen	48
		4.2.1 Linienlasten	48
		4.2.2Streckenbiegemomente	49
		4.2.3Streckentorsionsmoment	50
		4.2.4 Streckenwölbbimoment	51
		4.2.5Statische Randbedingungen	52
		4.2.6Geometrische Randbedingungen	53
	4.3	LASTFALL 1: Eigengewicht mit Aufbau	55
		4.3.1 Einwirkungen	55
		4.3.2Differentialgleichung $II: EA_{yy}v_M^V = p_y$	56
		4.3.3Differentialgleichung III : $EA_{\frac{33}{23}} w_M^{IV} = p_{\frac{3}{2}}$	60
		4.3.4Differentialgleichung $IV: EA_{\phi\phi} \partial^{IV} - GI_D \partial^{II} = m_d$ (Analogiemodell).	65
		4.3.5Differentialgleichung $I : -EAu_0^{II} = p_{\frac{1}{2}}$	70
		4.3.6Zusammenfassung der Schnittgrößen	73
		4.3.7Normalspannungen	74
		4.3.8Primäre Schubspannungen	75
		4.3.9Schubflüsse	76
	4.4	LASTFALL 2a: Nutzlast auf dem gesamten Deckblech	80
	4.5	LASTFALL 2b: Nutzlast über dem niedrigen Steg	81
		4.5.1 Einflusslinie	81
		4.5.2Einwirkungen	86
		4.5.3Differentialgleichung $II: EA_{yy}v_M^V = p_y$	87
		4.5.4Differentialgleichung III: $EA_{\frac{33}{23}} w_M^{IV} = p_{\frac{3}{2}}$	89
		4.5.5Differentialgleichung $IV: EA_{\phi\phi} \vartheta^{IV} - GI_D \vartheta^{II} = m_d$ (Analogiemodell).	90
		4.5.6Differentialgleichung $I : -EA u_0^{II} = p_{\frac{1}{2}}$	92
		4.5.7Zusammenfassung der Schnittgrößen	93
		4.5.8Normalspannungen	94
		4.5.9Primäre Schubspannungen	95
		4.5.10Schubflüsse	95

	4.6	LASTFALL 2c: Nutzlast über dem hohen Steg	99
		4.6.1 Einflusslinie	99
	4.7	LASTFALL 3a: Wind als Druck	103
		4.7.1 Einwirkungen	103
		4.7.2Differentialgleichung $II: EA_{yy} v_M^{IV} = p_y$	104
		4.7.3Differentialgleichung III : $EA_{_{33}} w_M^{IV} = p_{_{3}}$	105
		4.7.4Differentialgleichung $IV: EA_{aa} \vartheta^{IV} - GI_D \vartheta^{II} = m_d$ (Analogiemodell)	107
		4.7.5Differentialgleichung $I : -EAu_0^{II} = p_{x}$	109
		4.7.6Zusammenfassung der Schnittgrößen	110
		4.7.7Normalspannungen	110
		4.7.8Primäre Schubspannungen	111
		4.7.9Schubflüsse	112
	4.8	LASTFALL 3b: Wind als Sog	115
5.	VERG	LEICH ENTKOPPELTES – GEKOPPELTES VERFAHREN	116
	5.1	Allgemein	116
	5.2	Unterschiede	116
		5.2.1Querschnittswerte	116
		5.2.2Rechenweise	116
		5.2.3Handrechnung	116
		5.2.4Schwerpunkt und Schubmittelpunkt	117
		5.2.5Transparenz	117
	5.3	Fazit	117
6.	DAS D	RILLTRÄGERVERFAHREN	118
	6.1	Allgemeines	118
	6.2	Das Drillträgerverfahren nach Resinger	
		6.2.1Grundgedanke	
		6.2.2Querschnittswerte des Drillträgers	
		6.2.3Beispiel 1: Symmetrischer Hut-Querschnitt	
	6.3	Erweiterung des DTVs für asymmetrische Querschnitte	
		6.3.1Herleitung	127
		6.3.2Beispiel 2: Hut-Querschnitt mit einem dicken Steg	
		6.3.3Beispiel 3: Hut-Querschnitt mit einem langen Steg und Überstand	134
		6.3.4Beispiel 4: Hut-Querschnitt aus Beispiel 3 mit Untergurten	137
	6.4	Anwendung des DTV am Querschnitt des Fußgängersteges	145
	6.5	Zusammenfassung	149
LIT	ERATU	RVERZEICHNIS	150

ABBILDUNGSVERZEICHNIS	151
TABELLENVERZEICHNIS	155
ANHANG A: STUDIENBLÄTTER FÜR BAUSTATIK 2 [6]	I

1. EINLEITUNG

1.1 Berechnungsmethoden

Damit bei der Berechnung von Stäben mit offenem Querschnitt bei Beanspruchung durch Längskraft, zweiachsiger Biegung und Torsion die **entkoppelten Differentialgleichungen des Biegetorsionsproblems** zur Anwendung kommen können, müssen Schwerpunkt, Hauptachsen und Schubmittelpunkt bestimmt werden. Die Normierung gliedert das Biegetorsionsproblems in vier unabhängige Differentialgleichungen. Dadurch können die Normalspannungen separat für die Beanspruchungen Normalkraft, Biegemomente sowie Wölbbimoment bestimmt werden. Gleiches gilt für die Berechnung der Schubspannungen, die sich als Änderung der Normalspannungen über die Stabachse ermitteln lassen.

Die genaue Berechnung der Spannungen nach der Theorie der Wölbkrafttorsion ist für die meisten Fälle in der Praxis nicht notwendig. Für die näherungsweise Berücksichtigung der Wölbspannungen kann das **Drillträgerverfahren** von Dr.-Ing. Fritz Resinger [9] angewendet werden. Dieses Verfahren ersetzt die Wölbsteifigkeit des Querschnitts durch die Biegesteifigkeiten zweier getrennter Drillträger und ermöglicht so die Abbildung des Problems der Wölbkrafttorsion durch ein Biegeproblem nach Theorie 2. Ordnung.

Alternativ zur "entkoppelten Berechnungsmethode" wurde von O.Prof. Dipl.-Ing. Dr.techn. Helmut Rubin, Vorstand des Instituts für Baustatik der Technischen Universität Wien, ein "gekoppeltes Konzept" entwickelt, das in [8] gezeigt wird:

"Für einen allgemeinen beanspruchten, prismatischen Stab wird ein Berechnungskonzept gezeigt, bei dem die Beziehungen zwischen den Schnittgrößen und Verzerrungen des Stabelements nicht normiert, sondern in gekoppelter Form dargestellt werden. Dies bedeutet, dass der gesamten Berechnung ein beliebig wählbares Koordinatensystem y, z im Querschnitt zugrunde gelegt wird und dass Schwerpunkt, Schubmittelpunkt und Hauptachsen mit zugehörigen Querschnittsgrößen nicht bestimmt werden müssen." (vgl. [7], S. 1)

1.2 Aufgabenstellung und Zielsetzung

In vorliegender Diplomarbeit sollen nun die entkoppelten Differentialgleichungen hergeleitet werden und am Beispiel eines Fußgängersteges zur Anwendung kommen. Dabei werden verschiedene Lastfälle wie Eigengewicht mit Aufbau, Nutzlasten und Windlasten betrachtet und ausgewertet. Die Berechnung nach der "entkoppelten Methode" dient als Grundlage für den Vergleich mit der "gekoppelten Methode", die von O.Prof. Dipl.-Ing. Dr.techn. Helmut Rubin entwickelt wurde. Die Herleitung dieser "gekoppelten Methode", sowie die Berechnung desselben Fußgängersteges, werden in der Diplomarbeit [8] demonstriert.

Ziel beider Diplomarbeiten ist es, einen Vergleich beider Berechnungsmethoden zu ermöglichen. Es soll anhand des Musterbeispiels gezeigt werden, dass das "entkoppelte" und das "gekoppelte Berechnungsverfahren" exakt dieselben Spannungen und Schubflüsse liefern.

Ein weiteres Ziel der vorliegenden Diplomarbeit ist es, das Drillträgerverfahren von Dr.-Ing. Fritz Resinger [9] auf den asymmetrischen Querschnitt des gegebenen Fußgängersteges anzuwenden. Bisher wurde das Drillträgerverfahren nur für einfachsymmetrische Profile hergeleitet. Aufgabe ist es nun, dieses Verfahren so zu erweitern, dass es für allgemeine Querschnitte Gültigkeit hat. Die Ergebnisse des Drillträgerverfahrens sollen dann mit den exakten Wölbspannungen aus dem "entkoppelten Verfahren" verglichen werden.

2. FUSSGÄNGERSTEG

2.1 Querschnitt und statisches System

Der vorliegende offene und asymmetrische Querschnitt ist aus 12 einzelnen Blechen zusammengesetzt.

Das Deckblech ist zusätzlich mit T-Steifen ausgesteift. Zur Vereinfachung werden für die Berechnung die Gurte der T-Steifen als Punktflächen idealisiert.

Abbildung 1: Brückenquerschnitt

Das globale Tragsystem des Fußgängersteges ist ein Einfeldbalken (Abbildung 2). Der Anfangspunkt a der Brücke ist in Stablängsachse x verschieblich gelagert.

Abbildung 2: Einfeldbalken

Der Fußgängersteg liegt auf vier Punkten auf. Die Auflager besitzen in Summe sieben Wertigkeiten und sind so angeordnet, dass sie eine zwängungsfreie Lagerung für Horizontalkräfte ergeben (Abbildung 4).

Abbildung 3: Auflagerkräfte

Abbildung 4: Zwängungsfreie Brückenlagerung (Draufsicht)

2.2 Übersicht der Lastfälle

2.2.1 Lastfall 1: Eigengewicht mit Aufbau

Das Eigengewicht mit Aufbau wirkt als ständige Flächenlast auf dem gesamten Deckblech. Ihre resultierende Linienlast greift nicht im Schwerpunkt des Querschnittes an, sondern in Deckblechmitte.

$$g_k = 6,00 \ kN / m^2$$

2.2.2 Lastfall 2: Nutzlast

Das Eigengewicht mit Aufbau wirkt als veränderliche Flächenlast auf dem Deckblech.

$$q_k = 5,00 \ kN / m^2$$

Die Nutzlasten sollen wie folgt auf dem Deckblech verteilt sein:

2.2.2.1 Lastfall 2a: Nutzlast auf dem gesamten Deckblech

Ihre resultierende Linienlast wirkt in Deckblechmitte.

2.2.2.2 Lastfall 2b: Nutzlast über dem niedrigen Steg

In diesem Lastfall ist jene Lasteinflussbreite gesucht, für die die Durchbiegung des niedrigen Steges in *z* -Richtung maximal wird. Dies soll mit Hilfe einer Einflusslinie (q = 1 kN / m) über dem linken Steg ermittelt werden.

2.2.2.3 Lastfall 2c: Nutzlast über dem hohen Steg

In diesem Lastfall ist jene Lasteinleitungsbreite gesucht, für die die Durchbiegung des hohen Steges in *z*-Richtung maximal wird. Dies soll mit Hilfe einer Einflusslinie (q = 1 kN / m) über dem rechten Steg ermittelt werden.

Abbildung 6: Laststellung für die Einflusslinie des Lastfalls 2c

2.2.3 Lastfall 3: Wind

Die Windlast wirkt als resultierende Linienlast in Höhe des Deckblechs.

$$w_k = 3,00 \ kN / m$$

Dabei soll unterschieden werden zwischen:

2.2.3.1 Lastfall 3a: Wind als Druck

Abbildung 7: Laststellung für Lastfall 3a

2.2.3.2 Lastfall 3b: Wind als Sog

Abbildung 8: Laststellung für Lastfall 3b

3. ENTKOPPELTE BERECHNUNGSMETHODE

3.1 Annahmen

Es werden folgende Annahmen getroffen:

- 1. Es wird die Elastizitätstheorie 1. Ordnung angewendet.
- 2. Das Material ist elastisch, isotrop und homogen, es gilt das Hook'sche Gesetz.
- 3. Die Krümmung der Biegelinie darf linearisiert werden: $\kappa_z \cong v_M''$ bzw. $\kappa_v \cong -w_M''$
- 4. Der Querschnitt ist über die Stablänge konstant.
- 5. Der Querschnitt ist offen und besteht aus geraden, dünnwandigen Blechabschnitten; deren Anzahl und die Form der Verzweigungen sind beliebig.
- 6. Querkraft- und Wölbkraftschubverformungen werden vernachlässigt.
- 7. Der Querschnitt bleibt formtreu.
- 8. Es gilt die Hypothese von **Jacob Bernoulli vom Ebenbleiben** der Querschnitte bei Biegebeanspruchung.
- 9. Für Torsionsbeanspruchung wird die Bernoulli-Hypothese durch die Forderung erweitert, dass die Schubverzerrung in der Profilmittellinie Null sein soll. Diese so genannte Wagner-Hypothese führt zu einer Verwölbung offener Querschnitte. Die Einzelbleche eines Querschnittes bleiben aber eben:

$$\gamma = \frac{\partial u}{\partial s} + \frac{\partial t}{\partial x} = 0 \tag{3.1}$$

Abbildung 9: Wagner-Hypothese [1]

3.2 Verschiebungen

3.2.1 Verschiebungen in der Querschnittsebene

Basierend auf der Annahme der **Erhaltung der Querschnittsform** können die Verschiebungen *v* und *w* eines beliebigen Querschnittspunktes *P* durch die Verschiebungen v_B und w_B eines Bezugspunkts *B* und der Querschnittsverdrehung ϑ um diesen Punkt beschrieben werden. Als Bezugspunkt kann jeder beliebige Punkt verwendet werden. Abbildung 10 zeigt eine solche Starrkörperbewegung an einem Beispielquerschnitt.

Abbildung 10: Verschiebungen v und w eines Punktes Pauf der Profilmittellinie [3]

Abbildung 11: Verschiebung eines differentiellen Abschnittes ds [3]

Abbildung 11 zeigt einen Ausschnitt der Profilmittellinie mit der Länge ds. Es können folgende geometrische Zusammenhänge beschrieben werden:

$$dv = d\overline{y} - dy \qquad dw = d\overline{z} - dz$$

$$dy = ds \cdot \cos \beta \qquad dz = ds \cdot \sin \beta \qquad (3.2)$$

$$d\overline{y} = ds \cdot \cos(\beta + \vartheta) \qquad d\overline{z} = ds \cdot \sin(\beta + \vartheta)$$

Daraus ergeben sich:

$$dv = ds \cdot \left[\cos(\beta + \vartheta) - \cos\beta \right]$$

$$dw = ds \cdot \left[\sin(\beta + \vartheta) - \sin\beta \right]$$
(3.3)

Unter Beachtung von (3.2) und Verwendung der trigonometrischen Zusammenhänge

$$\cos(\beta + \vartheta) = \cos\beta \cdot \cos\vartheta - \sin\beta \cdot \sin\vartheta$$
$$\sin(\beta + \vartheta) = \sin\beta \cdot \cos\vartheta + \cos\beta \cdot \sin\vartheta$$

erhält man schließlich:

$$dv = -dz \cdot \sin \vartheta - dy \cdot (1 - \cos \vartheta)$$

$$dw = dy \cdot \sin \vartheta - dz \cdot (1 - \cos \vartheta)$$
(3.4)

Die Verschiebungen v und w können nun durch Integration einfach bestimmt werden. Bezugspunkt ist der frei gewählte Punkt B:

$$\int_{v_B}^{v} dv = v_B - (z - z_B) \cdot \sin \vartheta - (y - y_B) \cdot (1 - \cos \vartheta)$$

$$\int_{w_B}^{w} dw = w_B + (y - y_B) \cdot \sin \vartheta - (z - z_B) \cdot (1 - \cos \vartheta)$$
(3.5)

Unter der Vorraussetzung kleiner Verformungen (lineare Stabtheorie)

$$\sin\vartheta \cong \vartheta$$
$$\cos\vartheta \cong 1$$

vereinfachen sich die Verschiebungen v und w von Gleichung (3.5) zu:

$$v(x) = v_B(x) - (z - z_B) \cdot \vartheta(x)$$

$$w(x) = w_B(x) + (y - y_B) \cdot \vartheta(x)$$
(3.6)

3.2.2 Verschiebungen in Stablängsrichtung

Außer den Verschiebungen v und w in der Querschnittsebene bewegt sich ein Querschnittspunkt P auch aus der Querschnittsebene heraus. Grundlage für die Herleitung dieser Längsverschiebung u ist die **Wagner-Hypothese** (siehe Kapitel 3.1).

Zunächst aber wird die Tangentialverschiebung t in Richtung der Profilordinate bestimmt. Diese ist über eine Koordinatentransformation mit den Verschiebungen v und w bestimmbar:

 $t = v \cdot \cos \beta + w \cdot \sin \beta \tag{3.7}$

Abbildung 12: Koordinatentransformation

Abbildung 13: Hebelarm r_t [3]

Abbildung 14: Ausschnitt aus Abb.13

Aus Abbildung 14 folgt weiter:

$$r_{t} = (y - y_{B}) \cdot \cos(\beta - 90) + (z - z_{B}) \cdot \sin(\beta - 90)$$

$$r_{t} = (y - y_{B}) \cdot \sin\beta - (z - z_{B}) \cdot \cos\beta$$
(3.8)

Durch Einsetzen der Verschiebungen v und w (3.6) in die Tangentialverschiebung t (3.7) und unter Beachtung von (3.8) gilt:

$$t = v_B \cdot \cos\beta + w_B \cdot \sin\beta + r_t \cdot \vartheta \tag{3.9}$$

Der dritte Anteil dieser Gleichung beschreibt jenen Anteil der Tangentialverschiebung t, der aus der Verdrehung des Querschnittes um den Bezugspunkt B resultiert.

Laut Wagner-Hypothese fehlen die Schubverzerrungen in der Profilmittellinie (3.1):

$$\frac{\partial u}{\partial s} + \frac{\partial t}{\partial x} = 0$$

Nach Integration über *s* erhält man die Längsverschiebung u(x,s) zu:

$$u(x,s) = u_0(x) - \int_{s=0}^{s} \frac{\partial t}{\partial x} ds$$
(3.10)

Setzt man nun Gleichung (3.9) in (3.10) ein

 $\cos\beta ds = dy$

 $\sin\beta\,ds = dz$

 $r_t ds = d\omega$

$$u(x,s) = u_0(x) - \int_{s=0}^{s} v'_B \cdot \cos\beta \, ds - \int_{s=0}^{s} w'_B \cdot \sin\beta \, ds - \int_{s=0}^{s} \vartheta' \cdot r_t \, ds$$

 $B = \frac{1}{2} d\omega$

Z

und berücksichtigt

so führt dies zur Längsverschiebung u(x,s):

$$u(x,s) = u_0(x) - v'_B(x) \cdot y(s) - w'_B(x) \cdot z(s) - \vartheta'(x) \cdot \omega(s)$$
(3.11)

wobei gilt:

$$v'_{B}(x) = \varphi_{z}$$
 und $w'_{B}(x) = -\varphi_{y}$

Mit Gleichung (3.11) ist die Gesamtlängsverschiebung u(x,s) für jeden beliebigen Punkt P des Querschnitts eindeutig definiert. Der Anteil $u_0(x)$ ist die Axialverschiebung des Querschnitts, die Anteile $v'_B(x) \cdot y(s)$ und $w'_B(x) \cdot z(s)$ entsprechen den Verschiebungen durch Biegung (Bernoulli-Hypothese) und der letzte Term beschreibt die Abweichung vom Ebenbleiben der Querschnitte (Wagner-Hypothese).

3.3 Spannungen in Abhängigkeit der Verformungen

Da hier von formtreuen **dünnwandigen Querschnitten** ausgegangen wird, können die Normalspannungen in der Querschnittsebene und die Schubspannungen senkrecht zur Profilmittellinie vernachlässigt werden. Für die Einheitsverwölbung ω wird angenommen, dass sie über die Profildicke *t* konstant ist.

3.3.1 Normalspannungen

Abbildung 16: konstante Normalspannung σ [5]

Für den einachsigen Spannungszustand gilt nach dem Hooke'schen Gesetz:

$$\sigma(x,s) = E \cdot \varepsilon(x,s) = E \cdot \frac{\partial u(x,s)}{\partial x}$$

Durch Einsetzen von Gleichung (3.11) erhält man die Normalspannung $\sigma(x, s)$ zu:

$$\sigma(x,s) = E \cdot \left[u'_0(x) - v''_B(x) \cdot y(s) - w''_B(x) \cdot z(s) - \vartheta''(x) \cdot \omega(s) \right]$$
(3.12)

3.3.2 Schubspannungen

Abbildung 17: Schubspannung τ [5]

Die Schubspannung verteilt sich linear über die Profildicke *t*. Sie lässt sich in einen linearen Anteil, der primären Schubspannung τ_p , und in einen konstanten Anteil, der mittleren Schubspannung τ_m , aufteilen.

Abbildung 18: [5]

Primäre Schubspannung au_p

Mittlere Schubspannung au_m

3.3.2.1 Primäre Schubspannung

Die primären Schubspannungen τ_p aus **Saint Venant'scher Torsion** M_{Dp} werden in Kapitel 3.7.2 näher behandelt.

3.3.2.2 Mittlere Schubspannung

Laut Wagner-Hypothese ist die Schubverzerrung in der Profilmittellinie Null. Daher kann bei der Ermittlung der Schubspannungen nicht vom Hooke'schen Gesetz ausgegangen werden, sondern sie müssen wie in der elementaren Biegelehre aus der Änderung der Normal-

spannungen über die Längsachse berechnet werden. Hierfür wird ein Flächenelement herausgeschnitten und das Kräftegleichgewicht gebildet:

$$\frac{\partial(\sigma t)}{\partial x}dx\,ds + \frac{\partial(\tau t)}{\partial s}ds\,dx + \overline{p}_x\,ds\,dx = 0$$
(3.13)

 $\overline{p}_x = \overline{p}(x, s)$... äußere Flächenbelastung in Richtung x

Integriert man (3.13) über die Bogenlänge s so folgt:

$$\tau_m(x,s) = \frac{1}{t} \cdot \left[T_0(x) - \int_{s=0}^s \overline{p}_x \, ds - \int_{s=0}^s \frac{\partial(\sigma t)}{\partial x} \, ds \right]$$
(3.14)

Lässt man die Laufkoordinate *s* an einem freien Ende anfangen, so ist die Integrationskonstante $T_0(x) = 0$ oder sie entspricht einer am freien Ende eingeleiteten Kraft.

Durch Einsetzen von Gleichung (3.12) in (3.14) wird die Schubspannung $\tau_m(x,s)$ zu:

$$\tau_{m}(x,s) = \frac{1}{t} \cdot \left[T_{0} - \int_{s=0}^{s} \overline{p}_{x} \, ds - E \cdot \left(u_{0}'' \int_{0}^{s} dA - v_{B}''' \int_{0}^{s} y(s) \, dA - w_{B}''' \int_{0}^{s} z(s) \, dA - \vartheta''' \int_{0}^{s} \omega(s) \, dA \right) \right] \quad (3.15)$$

Mit Einführung der Querschnittswerte (nicht normiert)

$$A(s) = \int_{0}^{s} dA, \quad A_{y}(s) = \int_{0}^{s} y \, dA, \quad A_{z}(s) = \int_{0}^{s} z \, dA, \quad A_{\omega}(s) = \int_{0}^{s} \omega \, dA$$

geht (3.15) in folgende Form über:

$$\tau_{m}(x,s) = \frac{1}{t} \cdot \left[T_{0} - \int_{s=0}^{s} \overline{p}_{x} \, ds - E \cdot \left(u_{0}^{"} A(s) - v_{B}^{""} A_{y}(s) - w_{B}^{""} A_{z}(s) - \vartheta^{""} A_{\omega}(s) \right) \right]$$
(3.16)

3.4 Differentialgleichungen des Biegetorsionsproblems

3.4.1 Differentialgleichung der St. Venant'schen Torsion

Zur Herleitung der Differentialgleichungen der St. Venant'schen Torsion wird ein Stab nur durch Torsionsmomente beansprucht. Die Verwölbung des Querschnitts sei dabei nicht behindert. Dabei entstehen ausschließlich primäre Schubspannungen τ_p .

Abbildung 20: Verformung einer Mantellinie [1]

Bei der Deformation des Stabes gehen die Mantellinien in Schraubenlinien über, die aber aufgrund der sehr kleinen Drehwinkel weiterhin als Geraden betrachtet werden können.

 $\tau_p = G \gamma$

 $\tau_p = G \frac{d\vartheta}{dr} r$

$$\gamma = \frac{d\vartheta}{dx}r, \qquad \frac{d\vartheta}{dx} = const.$$
 (3.17)

Mit dem Hook'schen Gesetz

Aus der Gleichgewichtsbedingung

$$M_{Dp} = \int \tau_p \, r \, dA$$

erhält man die Differentialgleichung der St.Venant'schen Torsion:

$$M_{Dp} = G \frac{d\vartheta}{dx} \int r^2 dA = GI_D \frac{d\vartheta}{dx} \qquad (3.18)$$

Abbildung 21: Gleichgewicht [1]

3.4.2 Allgemeine Differentialgleichungen

Zur Herleitung der allgemeinen Differentialgleichungen werden ein Stabelement herausgeschnitten und die Gleichgewichtsbedingungen formuliert.

Abbildung 22: Schnittlasten am Stabelement [1]

Das Koordinatensystem ist zunächst ein beliebiges Rechtssystem mit der Stabachse als *x*-Achse. Die Verwölbungen ω beziehen sich auf einen frei gewählten Anfangspunkt *A* und einen ebenso beliebigen Bezugspunkt *B*. Die Belastungen $p_x(x)$, $p_y(x)$ und $p_z(x)$ sind Linienlasten in Richtung der Achsen *x*, *y*, *z*. Die Torsionsbelastung m_d bezieht sich auf die Achse durch den Bezugspunkt *B*. Das Gleichgewicht lautet:

$$\sum P_x = 0: \qquad \int_s \frac{\partial(\sigma t)}{\partial x} dx ds + p_x dx = 0$$

$$\sum P_y = 0: \qquad \int_s \frac{\partial(\tau t)}{\partial x} \cos \alpha \, dx \, ds + p_y \, dx = 0$$

$$\sum P_z = 0: \qquad \int_s \frac{\partial(\tau t)}{\partial x} \sin \alpha \, dx \, ds + p_z \, dx = 0$$

$$\sum M_x = 0: \qquad \int_s \frac{\partial(\tau t)}{\partial x} r_t \, dx \, ds + \frac{\partial M_{Dp}}{\partial x} dx + m_d \, dx = 0$$
(3.19)

$$\cos \alpha \, ds = dy$$
, $\sin \alpha \, ds = dz$ und $r_t \, ds = d\omega$

folgt aus (3.19):

Mit

$$\int_{s} \frac{\partial (\sigma t)}{\partial x} ds + p_{x} = 0$$
$$\int_{s} \frac{\partial (\tau t)}{\partial x} dy + p_{y} = 0$$
$$\int_{s} \frac{\partial (\tau t)}{\partial x} dz + p_{z} = 0$$
$$\int_{s} \frac{\partial (\tau t)}{\partial x} d\omega + \frac{\partial M_{Dp}}{\partial x} + m_{d} = 0$$

Mit t ds = dA und nach partieller Integration der drei unteren Gleichungen ergeben sich:

$$\int_{A} \frac{\partial \sigma}{\partial x} dA + p_{x} = 0$$

$$\left[\frac{\partial (\tau t)}{\partial x} y\right]_{s=0}^{s=s_{E}} - \int_{s} y \frac{\partial}{\partial s} \left[\frac{\partial (\tau t)}{\partial x}\right] ds + p_{y} = 0$$

$$\left[\frac{\partial (\tau t)}{\partial x} z\right]_{s=0}^{s=s_{E}} - \int_{s} z \frac{\partial}{\partial s} \left[\frac{\partial (\tau t)}{\partial x}\right] ds + p_{z} = 0$$

$$\left[\frac{\partial (\tau t)}{\partial x} \omega\right]_{s=0}^{s=s_{E}} - \int_{s} \omega \frac{\partial}{\partial s} \left[\frac{\partial (\tau t)}{\partial x}\right] ds + \frac{\partial M_{Dp}}{\partial x} + m_{d} = 0$$
(3.20)

Die ersten Terme der letzten drei Gleichungen ergeben sich zu Null, sofern am betrachteten Rand kein p_x angreift.

Durch Einsetzen von (3.12) und (3.13) sowie unter Beachtung von (3.18) wird (3.20) zu:

$$u_{0}^{"}E \int_{A} dA - v_{B}^{"}E \int_{A} y \, dA - w_{B}^{"}E \int_{A} z \, dA - \vartheta^{"}E \int_{A} \omega \, dA + p_{x} = 0$$

$$u_{0}^{"'}E \int_{A} y \, dA - v_{B}^{V}E \int_{A} y^{2} \, dA - w_{B}^{V}E \int_{A} yz \, dA - \vartheta^{V}E \int_{A} y\omega \, dA + \int_{s} \frac{\partial p_{x}}{\partial x} y \, ds + p_{y} = 0$$

$$u_{0}^{"'}E \int_{A} z \, dA - v_{B}^{V}E \int_{A} yz \, dA - w_{B}^{V}E \int_{A} z^{2} \, dA - \vartheta^{V}E \int_{A} z\omega \, dA + \int_{s} \frac{\partial p_{x}}{\partial x} z \, ds + p_{z} = 0$$

$$u_{0}^{"'}E \int_{A} \omega \, dA - v_{B}^{V}E \int_{A} y\omega \, dA - w_{B}^{V}E \int_{A} z\omega \, dA - \vartheta^{V}E \int_{A} \omega \, dA + \int_{s} \frac{\partial p_{x}}{\partial x} \omega \, ds + p_{z} = 0$$

$$(3.21)$$

Die Integralkoeffizienten stellen reine Querschnittswerte (nicht normiert) dar und werden wie folgt abgekürzt:

$$A = \int_{A} dA \qquad A_{y} = \int_{A} y \, dA \qquad A_{yz} = \int_{A} yz \, dA \qquad A_{yy} = \int_{A} y^{2} \, dA$$
$$A_{z} = \int_{A} z \, dA \qquad A_{y\omega} = \int_{A} y\omega \, dA \qquad A_{zz} = \int_{A} z^{2} \, dA \qquad (3.22)$$
$$A_{\omega} = \int_{A} \omega \, dA \qquad A_{z\omega} = \int_{A} z\omega \, dA \qquad A_{\omega\omega} = \int_{A} \omega^{2} \, dA$$

Für den Fall, dass in den Rändern keine Schubkraft eingeleitet wird und dass die Belastungen über die Stabachse konstant sind, gehen die allgemeinen Differentialgleichungen unter Berücksichtigung von (3.22) in folgende Form über:

$$-EA u_{0}'' + EA_{y} v_{B}''' + EA_{z} w_{B}''' + EA_{\omega} \vartheta''' = p_{x}$$

$$-EA_{y} u_{0}''' + EA_{yy} v_{B}^{IV} + EA_{yz} w_{B}^{IV} + EA_{y\omega} \vartheta^{IV} = p_{y}$$

$$-EA_{z} u_{0}''' + EA_{yz} v_{B}^{IV} + EA_{zz} w_{B}^{IV} + EA_{z\omega} \vartheta^{IV} = p_{z}$$

$$-EA_{\omega} u_{0}''' + EA_{y\omega} v_{B}^{IV} + EA_{z\omega} w_{B}^{IV} + EA_{\omega\omega} \vartheta^{IV} - GI_{D} \vartheta'' = m_{d}$$
(3.23)

3.4.3 Entkoppelte Differentialgleichungen

Die gekoppelten Differentialgleichungen sind für die praktische Anwendung oder die Handrechnung wenig geeignet. Die Lösung des Differentialgleichungssystems wird wesentlich einfacher, wenn man ein Bezugssystem findet. in dem die nämlich die Querschnittsintegrale über Produkte zweier verschiedener Grundkoordinaten zu Null:

$$A_{ij} = A_{jj} = A_{jj} = A_{ijj} = A_{ijj} = A_{ijj} = 0$$
(3.24)

Die allgemeinen Differentialgleichungen nach Gleichung (3.23) werden so zu entkoppelten Differentialgleichungen in folgender Form:

$$-EA u_{0}'' = p_{x} \qquad (I)$$

$$EA_{yy} v_{M}^{IV} = p_{y} \qquad (II)$$

$$EA_{xx} w_{M}^{IV} = p_{x} \qquad (III)$$

$$EA_{xx} w_{M}^{IV} = p_{x} \qquad (III)$$

$$EA_{yy} \partial_{M}^{IV} - GI_{D} \partial'' = m_{d} \qquad (IV)$$

In diesem neuen Bezugssystem ist die $\frac{1}{2}$ -Achse die Stabachse durch den Schwerpunkt S, die $\frac{1}{2}$ -Achse und die $\frac{1}{2}$ -Achse sind Hauptträgheitsachsen und die Verwölbung $\frac{1}{2}$ ist auf den Schubmittelpunkt M bezogen. Die Bezugsachse der Streckentorsionsmoments geht durch M.

Wie man das Bezugssystem findet, welches die Forderung der Gleichung (3.24) erfüllt, wird im Kapitel 4.1 am Musterbeispiel ausführlich vorgeführt.

3.4.4 Analogiemodell zur Lösung der Differentialgleichung *IV*

Die Differentialgleichung der Wölbkrafttorsion

$$EA_{aaa} \vartheta_M^{IV} - GI_D \vartheta'' = m_d$$

hat die gleiche Form wie die Differentialgleichung des Biegeträgers mit Zugkraft (Theorie 2. Ordnung)

$$EA_{\underline{w}} w_M^{IV} - N w'' = p_{\underline{w}}$$

Dadurch kann folgendes Analogiemodell betrachtet werden:

Abbildung 23: Analogiemodell

Wölbkrafttorsion:		Biegetheorie 2. Ordnung:	
θ	Verdrehung	W	Durchbiegung
GI_D	Torsionssteifigkeit	Ν	Zugkraft
EA	Wölbsteifigkeit	EA_{35}	Biegesteifigkeit
m_d	Streckentorsionsmoment	p_{s}	Streckenlast
т _ѽ	Streckenwölbbimoment	m_{y_i}	Streckenbiegemoment
M _å	Einzelwölbbimoment	M_{y}	Einzelbiegemoment
$M_{_{D\omega}}$	Wölbtorsionsmoment	$Q_{ m s}$	Querkraft

Zur Berechnung der Schnittgrößen $M_{\dot{\omega}}$, $M_{D\omega}$, M_{Dp} und ϑ können die "Studienblätter für Baustatik 2" nach [6] im Anhang A verwendet werden. Die Herleitung dieser Formeln beruht auf der Biegetheorie 2. Ordnung, wobei hier von Hyperbelfunktionen statt von trigonometrischen Funktionen ausgegangen wird.
3.5 Schnittgrößen in Abhängigkeit der Verformungen

Bei der linearen Stabtheorie können die Auswirkungen der Verformungen auf das Gleichgewicht vernachlässigt werden, das heißt es kann am unverformten System formuliert werden. Die Resultierenden der Spannungen bilden die Schnittgrößen. Der Abstand zwischen den beiden Schnittufern in Abbildung 24 wird als sehr klein angenommen ($dx \rightarrow 0$).

Abbildung 24: Zur Ermittlung von Schnittgrößen

$$\sum F_{\frac{x}{2}} = 0: \qquad N = \int_{A} \sigma \, dA$$

$$\sum M_{\frac{x}{2}} = 0: \qquad M_{\frac{x}{2}} = -\int_{A} \sigma \, \frac{y}{2} \, dA \qquad (3.26)$$

$$\sum M_{\frac{x}{2}} = 0: \qquad M_{\frac{x}{2}} = \int_{A} \sigma \, \frac{y}{2} \, dA$$

Die Resultierenden der Spannungen durch Biegung bilden eine Längskraft-Gleichgewichtsgruppe, ebenso die der Spannungen aus der Verwölbung des Querschnitts (Abbildung 25). Wie die Biegemomente $M_{\frac{1}{2}}$ und $M_{\frac{1}{2}}$ können sie zu einer Schnittgröße, dem Wölbbimoment $M_{\frac{1}{2}}$, zusammengefasst werden.

$$M_{\dot{\omega}} = \int_{A} \sigma \, \dot{\omega} \, dA \tag{3.27}$$

Abbildung 25: Längskräfte [1]

Durch Einsetzen von Gleichung (3.12)

$$\sigma(x,s) = E \cdot \left[u'_0(x) - v''_M(x) \cdot \mathscr{Y}(s) - w''_M(x) \cdot \mathscr{Y}(s) - \vartheta''(x) \cdot \mathscr{Y}(s) \right]$$
(3.28)

und unter Berücksichtigung der teilweise zu Null werdenden Flächenintegrale (3.24)

$$A_{\mathbf{y}} = A_{\mathbf{z}} = A_{\mathbf{z}} = A_{\mathbf{y}\mathbf{z}} = A_{\mathbf{y}\mathbf{z}} = A_{\mathbf{y}\mathbf{z}} = 0$$

erhält man aus (3.26) und (3.27) folgende vier Schnittlasten in Abhängigkeit der Verformungen:

$$N = EA u'_{0}$$

$$M_{\frac{3}{2}} = EA_{\frac{3}{2}\frac{3}{2}} v_{M}^{II}$$

$$M_{\frac{3}{2}} = -EA_{\frac{3}{2}\frac{3}{2}} w_{M}^{II}$$

$$M_{\frac{3}{2}} = -EA_{\frac{3}{2}\frac{3}{2}} \vartheta^{II}$$
(3.29)

Bildet man das Gleichgewicht an einem Stab mit der Länge dx so lassen sich auch die Querkräfte und das sekundäre Torsionsmoment in Abhängigkeit der Verformungen formulieren:

$$(3.30)$$

$$\sum M_{y} = 0:$$

$$M_{y} + \frac{dM_{y}}{dx} dx + m_{y} dx + p_{z} \frac{dx^{z'}}{2}^{0} - Q_{z} dx - M_{y} = 0$$

$$M_{y} + \frac{dM_{y}}{dx} dx + m_{y} dx + p_{z} \frac{dx^{z'}}{2}^{0} - Q_{z} dx - M_{y} = 0$$

$$\frac{dM_{y}}{dx} = Q_{z} - m_{y}$$

$$Q_{z} = -EA_{zz} w_{M}^{II} + m_{y}$$

$$\sum M_{\frac{5}{2}} = 0:$$

$$M_{\frac{5}{2}} = 0:$$

$$M_{\frac{5}{2}} = 0:$$

$$M_{\frac{5}{2}} = 0:$$

$$M_{\frac{5}{2}} = \frac{dM_{\frac{5}{2}}}{dx} dx + m_{\frac{5}{2}} dx - p_{\frac{5}{2}} dx^{-0} + Q_{\frac{5}{2}} dx - M_{\frac{5}{2}} = 0$$

$$\frac{dM_{\frac{5}{2}}}{dx} = -Q_{\frac{5}{2}} - m_{\frac{5}{2}}$$

$$Q_{\frac{5}{2}} = -EA_{\frac{5}{2}} v_{M}^{H} - m_{\frac{5}{2}}$$

(3.31)

3.6 Übersicht der Differentialbeziehungen

Axialverschiebung $u_0(x)$:

$$N = EAu'_0 \tag{3.33}$$

$$p_{\frac{1}{2}} = -EA \, u_0'' \tag{3.34}$$

Verschiebung $v_{_{M}}\left(x
ight)$ in Richtung der $\, rac{v}{2}$ -Achse:

$$\varphi_{\frac{\mu}{2}} = v'_M \tag{3.35}$$

$$M_{\frac{s}{2}} = EA_{\frac{s}{2}} v_M^{II}$$
(3.36)

$$Q_{y} = -EA_{yy} v_{M}^{III} - m_{y}$$
(3.37)

$$p_{y} = EA_{yy} v_M^{IV}$$
(3.38)

Verschiebung $w_{_{\!M}}\left(x\right)$ in Richtung der $\frac{w}{a}$ -Achse:

$$\varphi_{y} = -w'_{M} \tag{3.39}$$

$$M_{y} = -EA_{y} w_{M}^{II}$$
(3.40)

$$Q_{y} = -EA_{y} W_{M}^{III} + m_{y}$$
(3.41)

$$p_{\frac{k}{2}} = EA_{\frac{k}{2}} w_M^{IV}$$
(3.42)

Torsionsdrehwinkel $\vartheta(x)$:

$$M_{\dot{\omega}} = -EA_{\dot{\omega}\dot{\omega}} \,\vartheta^{II}$$

$$M_{Dp} = GI_D \,\vartheta'$$

$$M_{D\omega} = -EA_{\dot{\omega}\dot{\omega}} \,\vartheta^{III} - m_{\dot{\omega}}$$

$$M_D = M_{Dp} + M_{D\omega} \qquad (3.43)$$

3.7 Spannungen in Abhängigkeit der Schnittgrößen

3.7.1 Normalspannungen

Durch Einsetzen von (3.29) in (3.28) erhält man die Normalspannungen in Abhängigkeit der Schnittgrößen zu:

$$\sigma(x,s) = \frac{N(x)}{A} - \frac{M_{\frac{s}{2}}(x)}{A_{\frac{s}{2}}} \cdot \frac{y}{y}(s) + \frac{M_{\frac{s}{2}}(x)}{A_{\frac{s}{2}}} \cdot \frac{y}{z}(s) + \frac{M_{\frac{s}{2}}(x)}{A_{\frac{s}{2}}} \cdot \frac{w}{z}(s)$$
(3.44)

3.7.2 Primäre Schubspannung

Die primären Schubspannungen τ_p entstehen ausschließlich durch **Saint Venant'sche Torsion** M_{Dp} . In offenen Querschnitten entsteht durch sie kein Schubfluss *T* (Abbildung 26).

Für schmale Rechteckquerschnitte lautet die Schubspannungsverteilung:

$$\tau_p(r) = \frac{2\tau_{p,\max}}{t}r$$

Abbildung 26: Spannungsverteilung in schmalen Rechteckquerschnitten [1]

Stellt man sich vor, der Rechteckquerschnitt wäre aus vielen dünnwandigen Rohren aufgebaut, so erlaubt dies die Anwendung der Bredt'schen Formeln für geschlossene Querschnitte.

Durch Einsetzen von τ_p in die 1. Bredt'sche Formel erhält man:

$$dM_{Dp} = \tau_p \, dr \cdot 2 F_m = \tau_p \, dr \cdot 4 \, rh = 8 \frac{\tau_{p,\text{max}}}{t} r^2 h \, dr$$

Für den (beliebigen) Drehpunkt D gilt:

$$\sum M_T = 0:$$

$$M_T = \oint r_t \cdot T ds = T \oint r_t ds$$

$$\oint r_t ds = 2 \cdot F_m$$

$$M_T = T \cdot 2 \cdot F_m$$

Vom Schubfluss eingeschlossene Fläche Fm

Abbildung 27: Zur Herleitung der 1. Bredt'schen Formel [2]

Nach Integration folgt für den Gesamtquerschnitt:

$$M_{Dp} = 8 \frac{\tau_{p,\text{max}}}{t} h \int_{0}^{\frac{t}{2}} r^2 dr = \frac{1}{3} \tau_{p,\text{max}} h t^2$$

Mit $I_D = \frac{1}{3}ht^3$ erhält man die **maximale primäre Schubspannung** $\tau_{p,\text{max}}$ zufolge St. Venant'scher Torsion M_{Dp} in dünnwandigen rechteckigen Querschnitten zu:

$$\tau_{p,\max} = \frac{M_{Dp}}{I_D}t \tag{3.45}$$

3.7.3 Mittlere Schubspannungen

Die Schubspannung in Abhängigkeit der Verformungen lautet nach Gleichung (3.16):

$$\tau_{s}(x,s) = \frac{1}{t} \cdot \left[T_{0} - \int_{s=0}^{s} \overline{p}_{x} ds - E \cdot \left(u_{0}'' A(s) - v_{M}''' A_{y}(s) - w_{M}''' A_{z}(s) - \vartheta''' A_{\omega}(s) \right) \right]$$

Unter Berücksichtigung der Differentialgleichung I (3.25) und der Schnittgrößen (3.29)

$$T(x,s) = \tau_{s} \cdot t = T_{0} - \int_{s=0}^{s} \overline{p}_{x} \, ds - \left(-p_{x} \frac{A(s)}{A} - \frac{dM_{\frac{s}{2}}}{dx} \frac{A_{\frac{s}{2}}(s)}{A_{\frac{s}{2}}} + \frac{dM_{\frac{s}{2}}}{dx} \frac{A_{\frac{s}{2}}(s)}{A_{\frac{s}{2}}} + \frac{dM_{\frac{s}{2}}}{dx} \frac{A_{\frac{s}{2}}(s)}{A_{\frac{s}{2}}} + \frac{dM_{\frac{s}{2}}}{dx} \frac{A_{\frac{s}{2}}(s)}{A_{\frac{s}{2}}} \right)$$

geht der **Schubfluss** T nach Einsetzen der Differentialbeziehungen (3.30) bis (3.32) in folgende Form über:

$$T(x,s) = T_0 - \int_{s=0}^{s} \overline{p}_{\frac{x}{2}} \, ds + \frac{p_{\frac{x}{2}}}{A} A(s) - \frac{Q_{\frac{y}{2}} + m_{\frac{x}{2}}}{A_{\frac{y}{2}}} A_{\frac{y}{2}}(s) - \frac{Q_{\frac{z}{2}} - m_{\frac{y}{2}}}{A_{\frac{z}{2}}} A_{\frac{z}{2}}(s) - \frac{M_{D\omega} + m_{\tilde{\omega}}}{A_{\tilde{\omega}\tilde{\omega}}} A_{\tilde{\omega}}(s)$$
(3.46)

 \overline{p}_{*} ... äußere Flächenlast in Richtung der Stabachse *

 p_{i} ... resultierende Linienlast der äußere Flächenlast \overline{p}_{i}

4. BERECHNUNG NACH DEM ENTKOPPELTEN VERFAHREN

4.1 Querschnittwerte und Normierung

4.1.1 Allgemeines

Für die Entkopplung der allgemeinen Differentialgleichungen ist es notwendig die Biegebeanspruchung auf die Hauptachsen , , und die Torsionsbeanspruchung auf den Schubmittelpunkt M zu beziehen. Hierfür müssen die Querschnittwerte und die Beanspruchung auf das Hauptachsensystem bzw. auf den Schubmittelpunkt transformiert werden. Ausgehend vom Grundsystem erfolgt die Normierung der Querschnittskoordinaten in zwei Schritten: $M = A = A_{-} \equiv 0$ (Einheitssystem)

2. Normierung: $A_{\overline{y}} = A_{\overline{z}} = A_{\overline{w}} \equiv 0$ (Einheitssystem) (Hauptsystem)

Zu Beginn wird ein rechtsdrehendes, rechtwinkeliges Koordinatensystem in einen beliebig gewählten Bezugspunkt *B* gelegt (Grundsystem). Nach der ersten Normierung wandert das System in den Schwerpunkt *S* (Einheitssystem). Danach werden die Achsen um den Winkel α in das Hauptsystem gedreht.

Abbildung 28: Koordinatensysteme bei der Normierung

4.1.2 Das Grundsystem

Im Grundsystem werden gewählt:

- ein beliebiges rechtsdrehendes, rechtwinkeliges Koordinatensystem (y, z)
- eine beliebige Drillachse D
- ein beliebiger Anfangspunkt A, für den $\omega = 0$ angenommen wird

Abbildung 29: Grundsystem

Blech i	1	2	3	4	5	6	7	8	9	10	11	12
t _i [cm]	1,2	1,2	3,0	3,0	1,2	1,0	1,2	1,2	4,0	4,0	1,2	1,0
l _i [cm]	10	50	20	20	80	10	80	100	30	30	80	10
A _i [cm ²]	12	60	60	60	96	10	96	120	120	120	96	10

Punktflächen an den Querschnittspunkten 6 und 12:

Flächen der Punktflächen: $A_p = A_{P6} = A_{P12} = 5 \ cm^2$

Radius der Punktflächen: $r_p = r_{P6} = r_{P12} = 1,262 \ cm$

Abbildung 31: Grundfunktion y [cm]

Abbildung 32: Grundfunktion *z* [cm]

Die Wölbordinate ω wird auch als Einheitsverwölbung bezeichnet, da sie der Verwölbung bei einer Verdrillung von $\vartheta' = -1$ entspricht. Geometrisch kann sie als doppelte Fläche gedeutet werden, die vom Fahrstrahl DA nach DP überstrichen wird (Abbildung 15). Die Vorzeichendefinition der Wölbordinate ω entspricht jener des Torsionsmomentes M_T .

Abbildung 33: Grundfunktion ω [cm²]

Punkt i	0	1	2	3	4	5	6	7	8	9	10	11	12
y_i [cm]	0	-10	0	-20	20	80	80	160	160	130	190	240	240
<i>z</i> , [cm]	0	0	50	50	50	0	10	0	100	100	100	0	10
ω_{i} [cm ²]	0	0	0	1000	-1000	0	800	0	16000	19000	13000	0	2400

Tabelle 2: Grundfunktionen im Grundsystem

Querschnittsfläche

$$A = \int dA = \sum_{i=1}^{12} A_i + 2 \cdot A_p = 870 \ cm^2$$

Torsionswiderstand
$$I_D = \frac{1}{3} \cdot \sum_{i=1}^{12} l_i \cdot t_i^3 + \frac{r_p^2}{2} \cdot 2A_p = 1.885,02 \ cm^4$$

Flächenintegrale 1. Ordnung des Grundsystems

<u>Statisches Moment</u> um die *z*-Achse: A_{y}

$$\begin{aligned} A_y &= \int_A y(s) \, dA \\ A_y &= \frac{1}{2} \cdot (y_1 + y_{11}) \cdot (A_1 + A_5 + A_7 + A_{11}) + y_6 \cdot (A_6 + A_P) + y_7 \cdot (A_8 + A_9 + A_{10}) + y_{12} \cdot (A_{12} + A_P) \\ A_y &= \frac{1}{2} \cdot (-10 + 240) \cdot (12 + 96 + 96 + 96) + 80 \cdot (10 + 5) + 160 \cdot (120 + 120 + 120) + 240 \cdot (10 + 5) \\ A_y &= 96.900 \ cm^3 \end{aligned}$$

<u>Statisches Moment</u> um die y-Achse: A_z

$$A_z = \int_A z(s) \, dA$$

$$A_{z} = \frac{1}{2} \cdot (z_{0} + z_{2}) \cdot A_{2} + z_{2} \cdot (A_{3} + A_{4}) + z_{6} \cdot (A_{6} / 2 + A_{p}) + \frac{1}{2} \cdot (z_{7} + z_{8}) \cdot A_{8} + z_{8} \cdot (A_{9} + A_{10}) + z_{12} \cdot (A_{12} / 2 + A_{p})$$

 $\begin{aligned} A_z = & \frac{1}{2} \cdot 50 \cdot 60 + 50 \cdot (60 + 60) + 10 \cdot (10 / 2 + 5) + \frac{1}{2} \cdot 100 \cdot 120 + \\ & 100 \cdot (120 + 120) + 10 \cdot (10 / 2 + 5) \end{aligned}$

 $A_v = 37.700 \ cm^3$

Wölbfläche: A

$$A_{\omega} = \int_{A} \omega(s) dA$$

$$A_{\omega} = \frac{1}{2} \cdot (\omega_{5} + \omega_{6}) \cdot A_{6} + \omega_{6} \cdot A_{p} + \frac{1}{2} \cdot (\omega_{7} + \omega_{8}) \cdot A_{8} + \omega_{8} \cdot (A_{9} + A_{10}) + \frac{1}{2} \cdot (\omega_{11} + \omega_{12}) \cdot A_{12} + \omega_{12} \cdot A_{p}$$

$$A_{\omega} = \frac{1}{2} \cdot 800 \cdot 10 + 800 \cdot 5 + \frac{1}{2} \cdot 16000 \cdot 120 + 16000 \cdot (120 + 120) + \frac{1}{2} \cdot 2400 \cdot 10 + 2400 \cdot 5$$

$$A_{y} = 4.832.000 \ cm^{4}$$

Flächenintegrale 2. Ordnung des Grundsystems

Zentrifugalmoment: A_{yz}

$$A_{yz} = \int_{A} y(s) \, z(s) \, dA$$

$$A_{y_{2}} = \frac{1}{2} \cdot y_{6} \cdot (z_{5} + z_{6}) \cdot A_{6} + y_{6} \cdot z_{6} \cdot A_{P} + \frac{1}{2} \cdot y_{12} \cdot (z_{11} + z_{12}) \cdot A_{12} + y_{12} \cdot z_{12} \cdot A_{P} + \frac{1}{2} \cdot y_{8} \cdot (z_{7} + z_{8}) \cdot A_{8} + y_{8} \cdot z_{8} \cdot (A_{9} + A_{10})$$

$$A_{yz} = \frac{1}{2} \cdot 80 \cdot 10 \cdot 10 + 80 \cdot 10 \cdot 5 + \frac{1}{2} \cdot 240 \cdot 10 \cdot 10 + 240 \cdot 10 \cdot 5 + \frac{1}{2} \cdot 160 \cdot 100 \cdot 120 + 160 \cdot 100 \cdot (120 + 120)$$

$$A_{yz} = 4.832.000 \ cm^4$$

Wölbflächenmoment: A_{vw}

$$A_{y\omega} = \int_{A} y(s) \,\omega(s) \,dA$$

$$A_{y\omega} = \frac{1}{3} \cdot y_3 \cdot \omega_3 \cdot A_3 + \frac{1}{3} \cdot y_4 \cdot \omega_4 \cdot A_4 + \frac{1}{2} \cdot y_6 \cdot (\omega_5 + \omega_6) \cdot A_6 + y_6 \cdot \omega_6 \cdot A_P + \frac{1}{2} \cdot y_{12} \cdot (\omega_{11} + \omega_{12}) \cdot A_{12} + y_{12} \cdot \omega_{12} \cdot A_P + \frac{1}{2} \cdot y_8 \cdot (\omega_7 + \omega_8) \cdot A_8 + \frac{1}{6} \cdot (y_9 \cdot (2 \cdot \omega_9 + \omega_{10}) + y_{10} \cdot (\omega_9 + 2 \cdot \omega_{10})) \cdot (A_9 + A_{10})$$

$$\begin{split} A_{y\omega} = & \frac{1}{3} \cdot (-20) \cdot 1000 \cdot 60 + \frac{1}{3} \cdot 20 \cdot (-1000) \cdot 60 + \frac{1}{2} \cdot 80 \cdot 800 \cdot 10 + 80 \cdot 800 \cdot 5 + \\ & \frac{1}{2} \cdot 240 \cdot 2400 \cdot 10 + 240 \cdot 2400 \cdot 5 + \frac{1}{2} \cdot 160 \cdot 16000 \cdot 120 + \\ & \frac{1}{6} \cdot (130 \cdot (2 \cdot 19000 + 13000) + 190 \cdot (19000 + 2 \cdot 13000)) \cdot (120 + 120) \end{split}$$

 $A_{v\omega} = 766.400.000 \ cm^5$

Wölbflächenmoment: A_{zw}

$$A_{z\omega} = \int_{A} z(s) \,\omega(s) \,dA$$

$$A_{z\omega} = \frac{1}{3} \cdot z_6 \cdot \omega_6 \cdot A_6 + z_6 \cdot \omega_6 \cdot A_P + \frac{1}{3} \cdot z_{12} \cdot \omega_{12} \cdot A_{12} + z_{12} \cdot \omega_{12} \cdot A_P + \frac{1}{3} \cdot z_8 \cdot \omega_8 \cdot A_8 + z_8 \cdot \omega_8 \cdot (A_9 + A_{10})$$

 $\begin{aligned} A_{z\omega} = & \frac{1}{3} \cdot 10 \cdot 800 \cdot 10 + 10 \cdot 800 \cdot 5 + \frac{1}{3} \cdot 10 \cdot 2400 \cdot 10 + 10 \cdot 2400 \cdot 5 + \\ & \frac{1}{3} \cdot 100 \cdot 16000 \cdot 120 + 100 \cdot 16000 \cdot (120 + 120) \end{aligned}$

$$A_{y\omega} = 448.267.000 \ cm^5$$

<u>Trägheitsmoment</u> um die z -Achse: A_{yy}

$$\begin{split} A_{yy} &= \int_{A} y^{2}(s) dA \\ A_{yy} &= \frac{1}{3} \cdot (y_{1}^{2} \cdot A_{1} + y_{11}^{2} \cdot (A_{5} + A_{7} + A_{11}) + y_{3}^{2} \cdot A_{3} + y_{4}^{2} \cdot A_{4}) + y_{6}^{2} \cdot (A_{6} + A_{P}) + \\ &y_{12}^{2} \cdot (A_{12} + A_{P}) + y_{8}^{2} \cdot A_{8} + \frac{1}{6} \cdot (y_{9} \cdot (2 \cdot y_{9} + y_{10}) + y_{10} \cdot (y_{9} + 2 \cdot y_{10})) \cdot (A_{9} + A_{10}) \\ A_{yy} &= \frac{1}{3} \cdot ((-10)^{2} \cdot 12 + 240^{2} \cdot (96 + 96 + 96) + (-20)^{2} \cdot 60 + 20^{2} \cdot 60) + 80^{2} \cdot (10 + 5) + \\ &240^{2} \cdot (10 + 5) + 160^{2} \cdot 120 + \frac{1}{6} \cdot (130 \cdot (2 \cdot 130 + 190) + 190 \cdot (130 + 2 \cdot 190)) \cdot (120 + 120) \\ A_{yy} &= 15.794.000 \ cm^{4} \end{split}$$

<u>Trägheitsmoment</u> um die y-Achse: A_{zz}

$$A_{zz} = \int_{A} z^{2}(s) dA$$

$$A_{zz} = \frac{1}{3} \cdot (z_{2}^{2} \cdot A_{2} + z_{6}^{2} \cdot A_{6} + z_{8}^{2} \cdot A_{8} + z_{12}^{2} \cdot A_{12}) + z_{3}^{2} \cdot (A_{3} + A_{4}) + z_{6}^{2} \cdot A_{p} + z_{8}^{2} \cdot (A_{9} + A_{10}) + z_{12}^{2} \cdot A_{p}$$

$$A_{zz} = \frac{1}{3} \cdot (50^{2} \cdot 60 + 10^{2} \cdot 10 + 100^{2} \cdot 120 + 10^{2} \cdot 10) + 50^{2} \cdot (60 + 60) + 10^{2} \cdot 5 + 100^{2} \cdot (120 + 120) + 10^{2} \cdot 5$$

 $A_{zz} = 3.151.670 \ cm^4$

Wölbwiderstand: A_{ma}

$$\begin{aligned} A_{\omega\omega} &= \int_{A} \omega^{2}(s) \, dA \\ A_{\omega\omega} &= \frac{1}{3} \cdot (\omega_{3}^{2} \cdot A_{3} + \omega_{4}^{2} \cdot A_{4} + \omega_{6}^{2} \cdot A_{6} + \omega_{8}^{2} \cdot A_{8} + \omega_{12}^{2} \cdot A_{12}) + \omega_{6}^{2} \cdot A_{p} + \omega_{12}^{2} \cdot A_{p} + \frac{1}{6} \cdot (\omega_{9} \cdot (2 \cdot \omega_{9} + \omega_{10}) + \omega_{10} \cdot (\omega_{9} + 2 \cdot \omega_{10})) \cdot (A_{9} + A_{10}) \\ A_{\omega\omega} &= \frac{1}{3} \cdot (1000^{2} \cdot 60 + (-1000)^{2} \cdot 60 + 800^{2} \cdot 10 + 16000^{2} \cdot 120 + 2400^{2} \cdot 10) + 800^{2} \cdot 5 + 2400^{2} \cdot 5 + \frac{1}{6} \cdot (19000 \cdot (2 \cdot 19000 + 13000) + 13000 \cdot (19000 + 2 \cdot 13000)) \cdot (120 + 120) \end{aligned}$$

 $A_{\omega\omega} = 72.493.300.000 \ cm^6$

4.1.3 Das Einheitssystem

Durch die 1. Normierung verschwinden die Flächenintegrale 1. Ordnung:

$$A_{\overline{y}} = A_{\overline{z}} = A_{\overline{\omega}} \equiv 0$$

Hierfür wird:

- das Koordinatensystem (y, z) des Grundsystems in den Schwerpunkt *S* parallel verschoben.
- der Anfangspunkt A der Integration so verändert, dass $A_{\overline{\omega}} = 0$ wird.

Abbildung 34: Einheitssystem

 y_s, z_s ... Koordinaten des Schwerpunkts S

 ω_A ... Wölbordinate am Anfangspunkt A

Mit der geometrischen Beziehung:

$$\overline{y} = y - y_s$$

$$\overline{z} = z - z_s$$

$$\overline{\omega} = \omega - \omega_A$$
(4.1)

werden die Flächenmomente 1. Ordnung des Einheitssystem zu:

$$A_{\overline{y}} = \int \overline{y} \, dA = \int (y - y_s) \, dA = A_y - y_s \cdot A = 0$$
$$A_{\overline{z}} = \int \overline{z} \, dA = \int (z - z_s) \, dA = A_z - z_s \cdot A = 0$$
$$A_{\overline{\omega}} = \int \overline{\omega} \, dA = \int (\omega - \omega_A) \, dA = A_\omega - \omega_A \cdot A = 0$$

Daraus ergeben sich die Koordinaten y_s und z_s und die Integrationskonstante ω_A :

$$y_s = \frac{A_y}{A} = 111,38 \ cm$$
 und $z_s = \frac{A_z}{A} = 43,33 \ cm$
 $\omega_A = \frac{A_{\omega}}{A} = 5554,02 \ cm^2$

Die Drillachse *D* bleibt bei dieser Normierung noch unverändert an seiner Position.

Flächenintegrale 2. Ordnung des Einheitssystems

Die Flächenintegrale 2. Ordnung des Einheitssystems lassen sich aus den Querschnittswerten des Grundsystems berechen:

$$A_{\overline{y}\overline{z}} = A_{yz} - \frac{A_{y}A_{z}}{A} \qquad A_{\overline{y}\overline{y}} = A_{yy} - \frac{A_{y}^{2}}{A}$$

$$A_{\overline{y}\overline{\omega}} = A_{y\omega} - \frac{A_{y}A_{\omega}}{A} \qquad A_{\overline{z}\overline{z}} = A_{zz} - \frac{A_{z}^{2}}{A}$$

$$A_{\overline{z}\overline{\omega}} = A_{z\omega} - \frac{A_{z}A_{\omega}}{A} \qquad A_{\overline{\omega}\overline{\omega}} = A_{\omega\omega} - \frac{A_{\omega}^{2}}{A}$$
(4.2)

Herleitung von (4.2) am Beispiel des Zentrifugalmoments:

$$A_{\overline{yz}} = \int \overline{y} \,\overline{z} \, dA$$

= $\int (y - y_s)(z - z_s) \, dA$
= $\int y \, z \, dA - y_s \int z \, dA - z_s \int y \, dA + y_s \, z_s \int dA$
= $A_{yz} - \frac{A_y}{A} A_z - \frac{A_z}{A} A_y + \frac{A_y}{A} \frac{A_z}{A} A$
= $A_{yz} - \frac{A_y A_z}{A}$

Die Herleitung der weiteren Flächenintegrale 2. Ordnung funktioniert analog.

Zentrifugalmoment: $A_{\overline{yz}}$

$$A_{\overline{yz}} = A_{yz} - \frac{A_y A_z}{A} = 4.832.000 - \frac{96.900 \cdot 37.700}{870} = 633.000 \ cm^4$$

<u>Wölbflächenmoment</u>: $A_{\overline{y}\overline{o}}$

$$A_{\overline{y}\overline{\omega}} = A_{y\omega} - \frac{A_y A_{\omega}}{A} = 766.400.000 - \frac{96.900 \cdot 4.832.000}{870} = 228.215.000 \ cm^5$$

<u>Wölbflächenmoment</u>: $A_{\overline{z}\overline{\omega}}$

$$A_{\overline{z}\overline{\omega}} = A_{z\omega} - \frac{A_{z}A_{\omega}}{A} = 448.267.000 - \frac{37.700 \cdot 4.832.000}{870} = 238.880.000 \ cm^{5}$$

<u>Trägheitsmoment</u> um die \overline{z} -Achse: $A_{\overline{yy}}$

$$A_{\overline{yy}} = A_{yy} - \frac{A_y^2}{A} = 15.794.000 - \frac{96.900^2}{870} = 5.001.340 \ cm^4$$

<u>Trägheitsmoment</u> um die \overline{y} -Achse: $A_{\overline{zz}}$

$$A_{\overline{zz}} = A_{zz} - \frac{A_z^2}{A} = 3.151.670 - \frac{37.700^2}{870} = 1.518.000 \ cm^4$$

Wölbwiderstand: A_{aa}

$$A_{\bar{\omega}\bar{\omega}} = A_{\omega\omega} - \frac{A_{\omega}^2}{A} = 72.493.300.000 - \frac{4.832.000^2}{870} = 45.656.300.000 \ cm^6$$

Die Grundfunktionen $(\overline{y}, \overline{z}, \overline{\omega})$ des Einheitssystems errechnen sich nach Gleichung (4.1) zu:

Tabelle 3: Grundfunktionen im Einheitssystem

Punkt i	0	1	2	3	4	5	6	7	8	9	10	11	12
\overline{y}_i [cm]	-111,4	-121,4	-111,4	-131,4	-91,4	-31,4	-31,4	48,6	48,6	18,6	78,6	128,6	128,6
$\overline{z_i}$ [cm]	-43,3	-43,3	6,7	6,7	6,7	-43,3	-33,3	-43,3	56,7	56,7	56,7	-43,3	-33,3
$\overline{\omega}_{i}$ [cm ²]	-5554	-5554	-5554	-4554	-6554	-5554	-4754	-5554	10446	13446	7446	-5554	-3154

4.1.4 Das Hauptsystem

Durch die 2. Normierung verschwinden die gemischten Flächenintegrale 2. Ordnung:

$$A_{yz} = A_{yz} = A_{yz} = 0$$

Hierfür wird:

- die Drillachse *D* in den Schubmittelpunkt verschoben.

Abbildung 35: Hauptsystem

Es gelten folgende Transformationsbeziehungen:

Unter Berücksichtigung von (4.3) erhält man aus der Bedingung $A_{yz} = 0$ den Winkel α , den die Achsen y und \overline{y} bzw. z miteinander einschließen:

$$\Rightarrow \tan 2\alpha = \frac{2A_{\overline{yz}}}{A_{\overline{yy}} - A_{\overline{zz}}}$$
(4.4)

Aus der Forderung $A_{i\phi} = A_{i\phi} = 0$ folgt nach Umformung:

$$y_{M} = \frac{A_{\overline{z}\overline{\omega}}A_{\overline{y}\overline{y}} - A_{\overline{y}\overline{\omega}}A_{\overline{y}\overline{z}}}{A_{\overline{y}\overline{y}}A_{\overline{z}\overline{z}} - A_{\overline{y}\overline{z}}^{2}}$$

$$z_{M} = \frac{A_{\overline{z}\overline{\omega}}A_{\overline{y}\overline{z}} - A_{\overline{y}\overline{\omega}}A_{\overline{z}\overline{z}}}{A_{\overline{y}\overline{y}}A_{\overline{z}\overline{z}} - A_{\overline{y}\overline{\omega}}^{2}}$$
(4.5)

 y_M , z_M ...Abstände des Schubmittelpunktes M von der Drehachse D in Richtung der Koordinaten (y, z) des Grundsystems

Durch Einsetzen von (4.3) und (4.4) in $A_{yy} = \int_{A} y^2(s) dA$ bzw. $A_{yy} = \int_{A} y^2(s) dA$ und unter der Beachtung trigonometrischer Funktionen ergeben sich die Flächenträgheitsmomente 2. Ordnung zu:

$$A_{\overline{y}\overline{y}} = \frac{1}{2} \cdot \left[\left(A_{\overline{y}\overline{y}} + A_{\overline{z}\overline{z}} \right) + \sqrt{\left(A_{\overline{y}\overline{y}} + A_{\overline{z}\overline{z}} \right)^2 + 4A_{\overline{y}\overline{z}}^2} \right]$$

$$A_{\overline{y}\overline{z}} = \frac{1}{2} \cdot \left[\left(A_{\overline{y}\overline{y}} + A_{\overline{z}\overline{z}} \right) - \sqrt{\left(A_{\overline{y}\overline{y}} + A_{\overline{z}\overline{z}} \right)^2 + 4A_{\overline{y}\overline{z}}^2} \right]$$
(4.6)

Bei A_{yy} und A_{yy} handelt es sich um Hauptträgheitsmomente, die Extremwerte der Flächenmomente 2. Ordnung.

Der Wölbwiderstand $A_{\phi\phi} = \int_{A} \phi^2(s) dA$ wird bei dieser 2. Normierung zum Minimum und ergibt sich nach Berücksichtigung von (4.3) und (4.5) zu:

$$A_{\bar{\omega}\bar{\omega}} = A_{\bar{\omega}\bar{\omega}} + z_M \cdot A_{\bar{y}\bar{\omega}} - y_M \cdot A_{\bar{z}\bar{\omega}}$$
(4.7)

Die Gleichungen (4.4) bis (4.7) liefern nun folgende Ergebnisse:

Neigung der Hauptachse:	$\alpha = 9,9867^{\circ}$
Schubmittelpunkt:	$y_M = 146,045 \ cm$ $z_M = -27,146 \ cm$
Trägheitsmoment um die z-Achse:	$A_{yy} = 5.112.810 \ cm^4$
Trägheitsmoment um die y-Achse:	$A_{\rm st} = 1.406.540 \ cm^4$
Wölbwiderstand:	$A_{\phi\phi} = 4.573.840.000 \ cm^6$

Die Grundfunktionen (), 3, 3) des Hauptsystems errechnen sich nach Gleichung (4.3) zu:

Punkt i	0	1	2	3	4	5	6	7	8	9	10	11	12
∮ _i [cm]	-117,2	-127,1	-108,5	-128,2	-88,8	-38,4	-36,7	40,4	57,7	28,2	87,3	119,2	120,9
∄ _i [cm]	-23,4	-21,6	25,9	29,3	22,4	-37,2	-27,4	-51,1	47,4	52,6	42,2	-65,0	-55,1
<i>@</i> [cm²]	3798	4070	-3504	-1961	-5047	1626	966	-545	850	4665	-2964	-2717	-1777

Tabelle 4: Grundfunktionen im Hauptsystem

Abbildung 37: Grundfunktion [cm]

Abbildung 38: Grundfunktion & [cm²]

Flächenmomente 1. Ordnung des Hauptsystems

Die Verteilung der Flächenmomente 1. Ordnung über den Querschnitt wird für die Ermittlung der Schubflüsse benötigt.

 $A_{ij}(s)$ steht für das Flächenmoment 1. Ordnung des zwischen s = 0 und der Stelle s gelegenen Querschnittsteils. Dabei ist s eine frei gewählte Laufkoordinate entlang des Querschnitts. Analoges gilt für $A_{ij}(s)$ und $A_{ij}(s)$.

$$A_{\frac{s}{2}}(s) = \int_{A(s)} \frac{y}{y}(s) dA \qquad A_{\frac{s}{2}}(s) = \int_{A(s)} \frac{y}{z}(s) dA \qquad A_{\frac{s}{2}}(s) = \int_{A(s)} \frac{dy}{ds}(s) dA \qquad (4.8)$$

Die Grundkoordinaten sind lineare Funktionen. Betrachtet man Gleichung (4.8) erkennt man, dass $A_{\frac{1}{2}}(s)$, $A_{\frac{1}{2}}(s)$ und $A_{\frac{1}{2}}(s)$ einen parabelförmigen Verlauf aufweisen müssen. 4 BERECHNUNG NACH DEM ENTKOPPELTEN VERFAHREN

4.1 Querschnittwerte und Normierung

Abbildung 39: Statisches Moment $A_{ij}(s)$ [cm³]

Abbildung 40: Statisches Moment $A_{\frac{1}{2}}(s)$ [cm³]

Abbildung 41: Wölbfläche $A_{\check{\omega}}(s)$ [cm⁴]

4.2 Einwirkungen und Randbedingungen

Für das Rechnen mit den entkoppelten Differentialgleichungen müssen die Einwirkungen auf das Hauptachsensystem bezogen werden. Hierfür werden sie zuerst in die Komponenten des Einheitssystems gedreht und anschließend auf das Hauptsystem transformiert.

4.2.1 Linienlasten

Abbildung 42: Wirkungsrichtung von g_{Ed} bzw. q_{Ed}

Belastung bezogen auf die Achsen des Einheitssystems $(\overline{x}, \overline{y}, \overline{z})$:

$$p_{\overline{x}} = g_{Ed} \cdot \sin \delta, \ q_{Ed} \cdot \sin \delta$$

$$p_{\overline{y}} = w_{Ed} \quad (Windbelastung) \qquad (4.9)$$

$$p_{\overline{y}} = g_{Ed} \cdot \cos \delta, \ q_{Ed} \cdot \cos \delta$$

Im Folgenden wird auf das separate Anschreiben von $q_{\rm Ed}$ verzichtet.

Abbildung 43: Linienlasten in Richtungen \overline{x} , \overline{y} , \overline{z}

Transformation vom Einheitssystem auf das Hauptsystem:

$$p_{\frac{x}{2}} = p_{\overline{x}}$$

$$p_{\frac{y}{2}} = p_{\overline{y}} \cdot \cos \alpha + p_{\overline{z}} \cdot \sin \alpha \qquad (4.10)$$

$$p_{\frac{x}{2}} = p_{\overline{z}} \cdot \cos \alpha - p_{\overline{y}} \cdot \sin \alpha$$

Einsetzen von (4.9) in (4.10) liefert:

$$p_{\frac{1}{2}} = g_{Ed} \cdot \sin \delta$$

$$p_{\frac{1}{2}} = w_{Ed} \cdot \cos \alpha + g_{Ed} \cdot \cos \delta \cdot \sin \alpha \qquad (4.11)$$

$$p_{\frac{1}{2}} = g_{Ed} \cdot \cos \delta \cdot \cos \alpha - w_{Ed} \cdot \sin \alpha$$

4.2.2 Streckenbiegemomente

Bilden der Streckenbiegemomente um die Achsen des Einheitssystems ($\overline{y}, \overline{z}$):

$$m_{\overline{y}} = -p_{\overline{x}} \cdot z_{S} = -g_{Ed} \cdot \sin \delta \cdot z_{S}$$

$$m_{\overline{z}} = -p_{\overline{x}} \cdot (c - y_{S}) = -g_{Ed} \cdot \sin \delta \cdot (c - y_{S})$$
(4.12)

Transformation vom Einheitssystem auf das Hauptsystem:

$$m_{y} = m_{\overline{y}} \cdot \cos \alpha + m_{\overline{z}} \cdot \sin \alpha$$

$$m_{y} = m_{\overline{z}} \cdot \cos \alpha - m_{\overline{y}} \cdot \sin \alpha$$
(4.13)

Einsetzen von (4.12) in (4.13) liefert:

$$m_{y} = -g_{Ed} \cdot \sin \delta \cdot z_{S} \cdot \cos \alpha - g_{Ed} \cdot \sin \delta \cdot (c - y_{S}) \cdot \sin \alpha$$

$$m_{y} = -g_{Ed} \cdot \sin \delta \cdot (c - y_{S}) \cdot \cos \alpha + g_{Ed} \cdot \sin \delta \cdot z_{S} \cdot \sin \alpha$$
(4.14)

Abbildung 45: Streckenbiegemomente m_{i} und m_{i}

4.2.3 Streckentorsionsmoment

Die Bezugsachse der Torsionsmomente ist Schubmittelpunktsachse.

$$m_d = p_{\overline{y}} \cdot (z_M) - p_{\overline{z}} \cdot (y_M - c) = w_{Ed} \cdot (z_M) - g_{Ed} \cdot \cos \delta \cdot (y_M - c)$$
(4.15)

4.2.4 Streckenwölbbimoment

Die Definition eines Wölbbimoments lautet: Zugkraft mal Wölbordinate. Schneidet man einen 1 m breiten Streifen aus der Brücke heraus und bildet die Resultierende R (Zugkraft),

Abbildung 47: 1 m Streifen zur Herleitung von m_{ϕ}

so ist folgende Formel ersichtlich:

$$M_{\dot{\omega}} = R \cdot \partial_{p_{k}} = -p_{k} \cdot l \cdot \partial_{p_{k}}$$

$$(4.16)$$

$$m_{\check{\omega}} = \frac{M_{\check{\omega}}}{l} = -p_{\check{x}} \cdot \partial_{p_{\check{x}}}$$
(4.17)

Die Wölbordinate $\mathcal{B}_{p_{\tilde{x}}}$ im Angriffspunkt der Linienlast $p_{\tilde{x}}$ ergibt sich aus der linearen Grundfunktion \mathcal{B} (Abbildung 38) zu:

$$\boldsymbol{\mathcal{B}}_{p_{\tilde{x}}} = \frac{\boldsymbol{\mathcal{B}}_{7} - \boldsymbol{\mathcal{B}}_{0}}{l_{5} + l_{7}} \cdot c + \boldsymbol{\mathcal{B}}_{0}$$

$$\tag{4.18}$$

c ... Normalabstand von Blech 2 zur Linienlast p_{x} (Abbildung 44)

4.2.5 Statische Randbedingungen

Der Fußgängersteg ist in Längsrichtung ausschließlich im Auflager A gehalten, das heißt die Belastung in $\frac{1}{2}$ -Richtung wird nur von diesem Lager aufgenommen.

$$A_x = L \cdot p_{x}$$

Da sich dieses Auflager *A* nicht im Schwerpunkt *S* befindet (Abbildung 3), verursacht die Auflagerkraft A_x Biegemomente und ein Wölbbimoment im Endquerschnitt *e* der Brücke. Der Brückenanfang *a* bleibt momentenfrei und frei von Normalkräften:

$$M_{\tilde{y},a} = 0$$
 $M_{\tilde{z},a} = 0$ $M_{\tilde{\omega},a} = 0$ $N_a = 0$ (4.19)

Biegemomente und Wölbbimoment am Brückenende e:

Auch hier wird zuerst das Einheitssystem als Bezugsystem gewählt:

Aufriss:

$$\sum M_{\overline{y}} = 0: M_{\overline{y},e} + A_x \cdot (l_2 - z_s) = 0 \qquad (4.20)$$

$$M_{\overline{y},e} = -p_{\underline{x}} \cdot L \cdot (l_2 - z_s)$$

Grundriss:

$$\sum M_{\bar{z}} = 0: M_{\bar{z},e} - A_x \cdot (l_5 + l_7 - y_s) = 0$$
(4.21)
$$M_{\bar{z},e} = p_{\underline{x}} \cdot L \cdot (l_5 + l_7 - y_s)$$

Transformation vom Einheitssystem auf das Hauptsystem:

$$M_{\underline{y},e} = M_{\overline{y},e} \cdot \cos \alpha + M_{\overline{z},e} \cdot \sin \alpha$$

$$M_{\underline{y},e} = M_{\overline{z},e} \cdot \cos \alpha - M_{\overline{y},e} \cdot \sin \alpha$$
(4.22)

Einsetzen von (4.20) und (4.21) in (4.22) liefert:

$$M_{\frac{y}{p},e} = -p_{\frac{x}{2}} \cdot L \cdot (l_2 - z_s) \cdot \cos \alpha + p_{\frac{x}{2}} \cdot L \cdot (l_5 + l_7 - y_s) \cdot \sin \alpha$$

$$M_{\frac{y}{2},e} = p_{\frac{x}{2}} \cdot L \cdot (l_5 + l_7 - y_s) \cdot \cos \alpha + p_{\frac{x}{2}} \cdot L \cdot (l_2 - z_s) \cdot \sin \alpha$$
(4.23)

Das Endwölbbimoment errechnet sich entsprechend wie das Streckenwölbmoment aus Gleichung (4.16) zu:

$$M_{\phi,e} = -A_x \cdot \omega_8 = -p_x \cdot L \cdot \omega_8 \tag{4.24}$$

4.2.6 Geometrische Randbedingungen

Aus der zwängungsfreien Brückenlagerung nach Abbildung 3 und Abbildung 4 lassen sich folgende sechs geometrische Randbedingungen einfach formulieren:

Anfangspunkt a:	Endpunkt e:
w(x=0)=0	w(x=L)=0
v(x=0)=0	v(x=L)=0
$\vartheta(x=0)=0$	$\vartheta(x=L)=0$

Außerdem ist die Gesamtverschiebung u in Stablängsachse im Auflagerpunkt A (Punkt 8) verhindert:

$$u_8(x=L) = 0 (4.25)$$

Die allgemeine Gesamtverschiebung $u_i(x)$ im Punkt *i* setzt sich nach Gleichung (3.11) wie folgt zusammen:

$$u_{i}(x) = u_{0}(x) + \varphi_{y}(x) \cdot \mathcal{Y}_{iM} - \varphi_{y}(x) \cdot \mathcal{Y}_{iM} - \vartheta'(x) \cdot \mathcal{O}_{i}$$

$$(4.26)$$

 $y_{i,M}, z_{i,M}$... Koordinaten zum Punkt *i* im Hauptsystem mit dem

Schubmittelpunkt *M* als Bezugspunkt

Formuliert man nun Gleichung (4.26) für den Punkt 8 und berücksichtigt die Forderung (4.25), so kann die siebte geometrische Randbedingung folgendermaßen definiert werden:

$$u_0(x=L) = -\varphi_{\frac{1}{2}}(x=L) \cdot \underbrace{\mathbb{I}}_{8,M} + \varphi_{\frac{1}{2}}(x=L) \cdot \underbrace{\mathbb{I}}_{8,M} + \vartheta'(x=L) \cdot \underbrace{\mathbb{I}}_{8}$$
(4.27)

Aus Gleichung (4.27) lässt sich erkennen, dass die Querschnittsdrehwinkel $\varphi_{y}(x=L)$ und $\varphi_{y}(x=L)$ sowie die Verdrillung $\vartheta'(x=L)$ bereits bekannt sein müssen, um die siebte Randbedingung überhaupt verwenden zu können. Bei der späteren Berechnung werden daher zuerst die Differentialgleichungen *II*, *III*, *IV* gelöst und als letztes die Differentialgleichung *I*.

4.3 LASTFALL 1: Eigengewicht mit Aufbau

Es wird angenommen, dass das Eigengewicht mit Aufbau auf dem gesamten Deckblech wirkt. Ihre resultierende Linienlast befindet sich in Deckblechmitte.

Abbildung 48: Wirkungsrichtung des Eigengewichts

4.3.1 Einwirkungen

Teilsicherheitsbeiwert:	$\gamma_G = 1,35$
charakteristischer Wert des Eigengewichts:	$g_k = 6,00 \ kN / m^2$
Bemessungswert des Eigengewichts:	$g_d = \gamma_G \cdot g_k = 8,10 \ kN / m^2$
Einflussbreite:	$b = 250 \ cm$
Linienlast:	$g_{Ed} = \gamma_G \cdot g_k \cdot b = 20,25 \ kN / m$
Normalabstand von Blech 2 zur Linienlast:	$c = 115 \ cm$

Linienlasten in Hauptachsenrichtungen nach Gleichung (4.11):

$$p_{\frac{1}{2}} = 2,015 \ kN / m$$

 $p_{\frac{1}{2}} = 3,494 \ kN / m$
 $p_{\frac{1}{2}} = 19,844 \ kN / m$

Streckenmomente um die Hauptachsen nach Gleichung (4.14) und (4.15):

$$m_{y} = -0,873 \text{ kNm}/\text{m}$$
$$m_{y} = 0.080 \text{ kNm}/\text{m}$$

$$m_{\rm s} = 0,080 \ kNm / m$$

$$m_d = -6,255 \ kNm / m$$

Streckenwölbbimoment bezogen auf das Hauptsystem nach Gleichungen (4.18) und (4.17):

$$m_{\omega} = -0,136 \ kNm^2 \ / \ m$$

Stabendmomente nach Gleichungen (4.19), (4.23) und (4.24):

$$M_{\bar{y},a} = 0 \ kNm \qquad M_{\bar{y},e} = -28,64 \ kNm \\ M_{\bar{y},a} = 0 \ kNm \qquad M_{\bar{y},e} = 34,89 \ kNm \\ M_{\bar{y},a} = 0 \ kNm^2 \qquad M_{\bar{y},e} = -5,139 \ kNm^2$$

4.3.2 Differentialgleichung II : $EA_{yy} v_M^{IV} = p_y$

Durch Einsetzen von $p_{\frac{1}{2}}$ in (3.25) erhält man:

$$\Rightarrow EA_{yy} \cdot \frac{d^4 v_M(x)}{dx^4} = 3,494$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$EA_{yy} \cdot \frac{d^{3}v_{M}(x)}{dx^{3}} = 3,494 \cdot x + C_{1}$$

$$EA_{yy} \cdot \frac{d^{2}v_{M}(x)}{dx^{2}} = 3,494 \cdot \frac{x^{2}}{2} + C_{1} \cdot x + C_{2}$$

$$EA_{yy} \cdot \frac{dv_{M}(x)}{dx} = 3,494 \cdot \frac{x^{3}}{6} + C_{1} \cdot \frac{x^{2}}{2} + C_{2} \cdot x + C_{3}$$

$$EA_{yy} \cdot v_{M}(x) = 3,494 \cdot \frac{x^{4}}{24} + C_{1} \cdot \frac{x^{3}}{6} + C_{2} \cdot \frac{x^{2}}{2} + C_{3} \cdot x + C_{4}$$

Die Integrationskonstanten C_1 , C_2 , C_3 und C_4 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2). Diese lauten:

$$v_M(x=0) = 0 \qquad \qquad \Rightarrow \qquad C_4 = 0$$

$$M_{\frac{1}{2}}(x=0) = EA_{\frac{1}{2}} \cdot \frac{d^2 v_M}{dx^2}(x=0) = 0 \qquad \Rightarrow \qquad C_2 = 0$$

$$M_{\frac{1}{2}}(x=L) = EA_{\frac{1}{2}} \cdot \frac{d^2 v_M}{dx^2}(x=L) = 34,89 \qquad \Rightarrow \qquad C_1 = -51,252$$
$$v_M(x=L) = 0 \qquad \Rightarrow \qquad C_3 = 3756,67$$

Die Gleichung für die **Biegelinie** $v_M(x)$ im Schubmittelpunkt M ergibt sich somit zu:

$$v_{M}(x) = 3,49884 \cdot 10^{-4} \cdot x - 7,95572 \cdot 10^{-7} \cdot x^{3} + 1,35604 \cdot 10^{-8} \cdot x^{4}$$

Abbildung 49: Verlauf von $v_{M}(x)$ [m] über die Brückenlänge im LF1

Tabelle 5: Werte der Biegelinie $v_{M}(x)$ im LF1 in m

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
v _M [m]	0,000000	0,001658	0,002839	0,003250	0,002803	0,001613	0,000000

Über die Differentialbeziehungen nach Kapitel 3.6 können nun die Funktionen der Verformungsgrößen und der Schnittgrößen hergeleitet werden:

Die erste Ableitung der Funktion der Biegelinie $v_M(x)$ ergibt die Funktion des **Quer**schnittsdrehwinkels $\varphi_{\frac{1}{2}}(x)$ um die $\frac{1}{2}$ - Achse im Schubmittelpunkt M (3.35):

$$\frac{dv_M(x)}{dx} = \varphi_{\frac{\pi}{3}}(x) = 3,49884 \cdot 10^{-4} - 2,38671 \cdot 10^{-6} \cdot x^2 + 5,42415 \cdot 10^{-8} \cdot x^3$$

Abbildung 50: Verlauf von $\varphi_{\rm s}(x)$ [rad] über die Brückenlänge im LF1

Tabelle 6: Werte des Querschnittsdrehwi	vinkels $\varphi_{s}(x)$ im LF1 in rad
---	--

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
$arphi_{rac{1}{2}}$ [rad]	0,000350	0,000297	0,000165	-0,000004	-0,000171	-0,000294	-0,000334

Die zweite Ableitung der Biegelinie $v_M(x)$ multipliziert mit der Biegesteifigkeit EA_{yy} liefert die **Momentenfunktion** $M_{\frac{1}{2}}(x)$ (3.36):

$$\frac{d^{2}v_{M}(x)}{dx^{2}} \cdot EA_{yy} = M_{z}(x) = -51,2518 \cdot x + 1,7472 \cdot x^{2}$$

Abbildung 51: Verlauf von $M_{\sharp}(x)$ [kNm] über die Brückenlänge im LF1

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
$M_{\sharp}[kNm]$	0	-212,58	-337,80	-375,67	-326,17	-189,32	34,88

Tabelle 7: Werte des	Biegemoments	$M_{\frac{\pi}{2}}(x)$) im LF1 in kN/m
----------------------	--------------	------------------------	------------------

Das Biegemoment am Brückenende $M_{\frac{1}{2}}(x=30)$ resultiert aus der exzentrischen Lagerung des Auflagers *A*.

Wird die Biegelinie $v_M(x)$ dreimal nach x differenziert, mit der Biegesteifigkeit EA_{yy} multipliziert und das Streckenbiegemoment m_y addiert, so erhält man die negative Funktion der **Querkraft** $Q_y(x)$ (3.37):

$$-\frac{d^{3}v_{M}(x)}{dx^{3}} \cdot EA_{yy} - m_{z} = Q_{y}(x) = 51,1722 - 3,49431 \cdot x$$

Abbildung 52: Verlauf von $Q_y(x)$ [kN] über die Brückenlänge im LF1

Tabelle 8: Werte der Querkraft $Q_{y}(x)$ im LF1 in kN

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
$Q_{ m y}$ [kN]	51,17	33,70	16,23	-1,24	-18,71	-36,19	-53,66
Die Differentialgleichung 4. Ordnung führt schließlich zur Funktion der **äußeren Linienlast** $p_{\frac{1}{2}}(x)$, die in Hauptachsenrichtung $\frac{1}{2}$ wirkt und in diesem Beispiel konstant ist. Sie kann als Kontrolle herangezogen werden (3.38):

$$\frac{d^{4}v_{M}(x)}{dx^{4}} \cdot EA_{yy} = p_{y}(x) = 3,49431$$

Abbildung 53: Verlauf von $p_{ij}(x)$ [kN/m] über die Brückenlänge im LF1

4.3.3 Differentialgleichung *III*: EA_{35} $W_M^{IV} = p_{35}$

Durch Einsetzen von $p_{\frac{1}{2}}$ in (3.25) erhält man:

$$\Rightarrow EA_{\frac{3}{3}} \cdot \frac{d^4 w_M(x)}{dx^4} = 19,844$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$EA_{\frac{3}{2}} \cdot \frac{d^{3}w_{M}(x)}{dx^{3}} = 19,844 \cdot x + C_{1}$$

$$EA_{\frac{3}{2}} \cdot \frac{d^{2}w_{M}(x)}{dx^{2}} = 19,844 \cdot \frac{x^{2}}{2} + C_{1} \cdot x + C_{2}$$

$$EA_{\frac{3}{2}} \cdot \frac{dw_{M}(x)}{dx} = 19,844 \cdot \frac{x^{3}}{6} + C_{1} \cdot \frac{x^{2}}{2} + C_{2} \cdot x + C_{3}$$
$$EA_{\frac{3}{2}} \cdot w_{M}(x) = 19,844 \cdot \frac{x^{4}}{24} + C_{1} \cdot \frac{x^{3}}{6} + C_{2} \cdot \frac{x^{2}}{2} + C_{3} \cdot x + C_{4}$$

Die Integrationskonstanten C_1 , C_2 , C_3 und C_4 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2). Diese lauten:

$$w_{M}(x=0) = 0 \qquad \Rightarrow \qquad C_{4} = 0$$

$$M_{y}(x=0) = -EA_{xx} \cdot \frac{d^{2}w_{M}}{dx^{2}}(x=0) = 0 \qquad \Rightarrow \qquad C_{2} = 0$$

$$M_{y}(x=L) = -EA_{xx} \cdot \frac{d^{2}w_{M}}{dx^{2}}(x=L) = -28,64 \qquad \Rightarrow \qquad C_{1} = -296,71$$

$$w_M(x=L)=0 \qquad \Rightarrow \qquad C_3=22181,6$$

Die Gleichung für die **Biegelinie** $w_M(x)$ im Schubmittelpunkt *M* ergibt sich somit zu:

$$w_M(x) = 7,50968 \cdot 10^{-3} \cdot x - 1,6742 \cdot 10^{-5} \cdot x^3 + 2,79932 \cdot 10^{-7} \cdot x^4$$

Abbildung 54: Verlauf von $w_{M}(x)$ [m] über die Brückenlänge im LF1

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
w _м [m]	0,000000	0,035631	0,061154	0,070312	0,061046	0,035496	0,000000

Tabelle 9: Werte der	Biegelinie W_M	(x)) im LF1 in m
----------------------	------------------	-----	---------------

Über die Differentialbeziehungen nach Kapitel 3.6 können nun die Funktionen der Verformungsgrößen und der Schnittgrößen hergeleitet werden:

Die negative erste Ableitung der Funktion der Biegelinie $w_M(x)$ ergibt die Funktion des Querschnittsdrehwinkels $\varphi_{\psi}(x)$ um die $\frac{1}{2}$ - Achse im Schubmittelpunkt M (3.39):

Abbildung 55: Verlauf von $\varphi_{i}(x)$ [rad] über die Brückenlänge im LF1

Tabelle 10: Werte des Querschnittsdrehwinkels $\varphi_{ij}(x)$ im LF1 in rad

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
$arphi_{\mathfrak{y}}$ [rad]	-0,007510	-0,006394	-0,003607	0,000012	0,003623	0,006386	0,007461

Die negative zweite Ableitung der Biegelinie $w_M(x)$ multipliziert mit der Biegesteifigkeit $EA_{\frac{3}{5}}$ liefert die **Momentenfunktion** $M_{\frac{5}{5}}(x)$ (3.40):

Abbildung 56: Verlauf von $M_{\,_{\!\!\!\!\!\!\!\!\!\!\!}}\left(x
ight)$ [kNm] über die Brückenlänge im LF1

Tabelle 11: Werte des Biegemoments	M_{*}	(x))im LF1 in kN/m
------------------------------------	---------	-----	-----------------

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
M_{y} [kNm]	0	1235,49	1974,87	2218,15	1965,33	1216,40	-28,64

Das Biegemoment am Brückenende $M_{y}(x=30)$ resultiert aus der exzentrischen Lagerung des Auflagers *A*.

Wird die Biegelinie $w_M(x)$ dreimal nach x differenziert und das Streckenbiegemoment m_{y} subtrahiert, so erhält man die negative Funktion der **Querkraft** $Q_{y}(x)$ (3.41):

$$-\frac{d^{3}w_{M}(x)}{dx^{3}} \cdot EA_{yy} + m_{y} = Q_{z}(x) = 295,836 - 19,8442 \cdot x$$

Abbildung 57: Verlauf von $Q_{s}(x)$ [kN] über die Brückenlänge im LF1

Tabelle 12: Werte der Querkraft $Q_{s}(x)$ im LF1 in kN

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
$Q_{rac{1}{2}}$ [kN]	295,84	196,62	97,39	-1,83	-101,05	-200,27	-299,49

Die Differentialgleichung 4. Ordnung führt schließlich zur Funktion der **äußeren Linienlast** $p_{\frac{1}{3}}(x)$, die in Hauptachsenrichtung $\frac{1}{3}$ wirkt und in diesem Beispiel konstant ist. Sie kann als Kontrolle herangezogen werden (3.42):

$$\frac{d^4 v_M(x)}{dx^4} \cdot EA_{yy} = p_{\frac{x}{2}}(x) = 19,8442$$

4.3.4 Differentialgleichung *IV*: $EA_{aa} \vartheta^{IV} - GI_D \vartheta^{II} = m_d$ (Analogiemodell)

Die Differentialgleichung der Wölbkrafttorsion entspricht der Differentialgleichung des Biegeträgers mit Zugkraft (Theorie 2. Ordnung). Näheres zur Lösung der Differentialgleichung der Wölbkrafttorsion in Kapitel 3.4.4. Zur Berechnung werden die "Studienblätter für Baustatik 2" aus Anhang A herangezogen.

Abbildung 59: Analogiemodell

mit
$$\xi = \frac{x}{l}$$
 und $\overline{\xi} = 1 - \frac{x}{l}$

Stabkennzahl ε (Abklinggrad):

$$\varepsilon = l \sqrt{\frac{N}{EA_{\frac{1}{23}}}} = l \sqrt{\frac{GI_{D}}{EA_{\frac{1}{200}}}} = 3000 \cdot \sqrt{\frac{8076,92 \cdot 1892,98}{21000 \cdot 4,57384 \cdot 10^{9}}} = 1,194$$

Primäres Torsionsmoment $M_{Dp}(\xi)$ nach Tabelle 14 im Anhang A:

$$M_{Dp}(\xi) = GI_{D} \cdot \vartheta'(\xi) \land N \cdot \Delta \varphi(\xi) = \left(1 - \frac{\varepsilon \cosh \varepsilon \xi}{\sinh \varepsilon}\right) \cdot \frac{M_{\check{a},e}}{l} + \left[\frac{1}{2} - \xi - \frac{\sinh \varepsilon (0, 5 - \xi)}{\varepsilon \cosh (\varepsilon/2)} - 1\right] \cdot m_{d} \cdot l$$

$$M_{Dp}(\xi) = \left(1 - \frac{1,194 \cdot \cosh(1,194 \cdot \xi)}{\sinh(1,194)}\right) \cdot \frac{-5,139}{30} + \left[\frac{1}{2} - \xi - \frac{\sinh(1,194(0,5-\xi))}{1,194 \cdot \cosh(1,194/2)} - 1\right] \cdot (-6,255) \cdot 30$$

 $M_{Dp}(\xi) = -94,0025 + 187,662 \cdot \xi + 84,203 \cosh(1,194 \cdot \xi) - 157,117 \sinh(1,194 \cdot \xi)$

Abbildung 60: Verlauf von $M_{_{D_{P}}}(\xi)$ [kNm] über die Brückenlänge im LF1

Tabelle 13: Werte des primären Torsionsmoments	$M_{Dp}(\xi$) im LF1 in kNm
--	--------------	-----------------

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
M _{Dp} [kNm]	-9,80	-8,33	-4,70	-0,01	4,69	8,34	9,84

Sekundäres Torsionsmoment $M_{_{D\omega}}(\xi)$ nach Tabelle 12 im Anhang A:

$$M_{D\omega}(\xi) \wedge Q_{\sharp}(\xi) = \frac{\varepsilon \cosh \varepsilon \xi}{\sinh \varepsilon} \cdot \frac{M_{\check{\omega},e}}{l} + \frac{\sinh \varepsilon (0,5-\xi)}{\varepsilon \cosh (\varepsilon/2)} \cdot m_d \cdot l - m_{\check{\omega}}$$

$$M_{D\omega}(\xi) = \frac{1,194 \cdot \cosh(1,194 \cdot \xi)}{\sinh(1,194)} \cdot \frac{-5,139}{30} + \frac{\sinh(1,194 \cdot (0,5-\xi))}{1,194 \cdot \cosh(1,197/2)} \cdot (-6,255) \cdot 30 + 0,136$$

 $M_{D\omega}(\xi) = 0.1363 - 84.203 \cdot \cosh(1.194 \cdot \xi) + 157.117 \cdot \sinh(1.194 \cdot \xi)$

Abbildung 61: Verlauf von $M_{_{D\omega}}(\xi)$ [kNm] über die Brückenlänge im LF1

Fabelle 14: Werte des sekundärer	Torsionsmoments	$M_{D\omega}$	(ξ)	im LF1 in kNm
----------------------------------	-----------------	---------------	---------	---------------

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
$M_{D\omega}$ [kNm]	-84,07	-54,26	-26,61	-0,03	26,55	54,18	83,96

gesamtes Torsionsmoment $M_{D}(\xi)$ nach Gleichung (3.43):

$$M_{D}(\xi) = M_{Dp}(\xi) + M_{D\omega}(\xi) = -93,866 + 187,662 \cdot \xi$$

Abbildung 62: Verlauf von $M_{_D}(\xi)$ [kNm] über die Brückenlänge im LF1

Fabelle 15: Werte des gesamten Torsionsmoments	M_L	(ξ)	im LF1 in kNm
--	-------	---------	---------------

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
M _D [kNm]	-93,87	-62,59	-31,31	-0,04	31,24	62,52	93,80

$$M_{\dot{\omega}}(\xi) \land M_{\dot{y}}(\xi) = \frac{\sinh \varepsilon \xi}{\sinh \varepsilon} \cdot M_{\dot{\omega},\varepsilon} + \frac{1}{\varepsilon^2} \left(1 - \frac{\cosh \varepsilon (0, 5 - \xi)}{\cosh (\varepsilon / 2)} \right) \cdot m_d \cdot l^2$$
$$M_{\dot{\omega}}(\xi) = \frac{\sinh (1, 194 \cdot \xi)}{\sinh (1, 194)} \cdot (-5, 139) + \frac{1}{1, 194^2} \left(1 - \frac{\cosh (1, 194 \cdot (0, 5 - \xi))}{\cosh (1, 194 / 2)} \right) \cdot (-6, 255) \cdot 30^2$$

 $M_{\breve{\omega}}(\xi) = -3946,33 + 3946,33 \cdot \cosh(1,194 \cdot \xi) - 2114,94 \cdot \sinh(1,194 \cdot \xi)$

Abbildung 63: Verlauf von $M_{\omega}(\xi)$ [kNm²] über die Brückenlänge im LF1

Tabelle 16: Werte des Wölbbimoments $M_{_{\omega}}(\xi)$ im LF1 in kNm²

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
$M_{{}_{\ddot{\omega}}}[{ m kNm^2}]$	0	-345,35	-547,53	-614,58	-549,16	-348,67	-5,14

Das Wölbbimoment am Brückenende $M_{\omega}(x=30)$ resultiert aus der exzentrischen Lagerung des Auflagers *A*. Torsionsdrehwinkel $\vartheta(\xi)$ nach Tabelle 13 im Anhang A:

$$GI_{D} \cdot \vartheta(\xi) \wedge N \cdot \Delta w(\xi) = \left(\xi - \frac{\sinh \varepsilon \xi}{\sinh \varepsilon}\right) \cdot M_{\check{\omega},\varepsilon} + \left[\frac{1}{\varepsilon^{2}} \cdot \left(\frac{\cosh \varepsilon (0, 5 - \xi)}{\cosh (\varepsilon / 2)} - 1\right) + \frac{\xi \overline{\xi}}{2}\right] \cdot m_{d} \cdot l^{2}$$

$$GI_{D} \cdot \vartheta(\xi) = \left(\xi - \frac{\sinh (1, 194 \cdot \xi)}{\sinh (1, 194)}\right) \cdot (-5, 139)$$

$$+ \left[\frac{1}{1, 194^{2}} \cdot \left(\frac{\cosh (1, 194 (0, 5 - \xi))}{\cosh (1, 194 / 2)} - 1\right) + \frac{\xi \overline{\xi}}{2}\right] \cdot (-6, 255) \cdot 30^{2}$$

 $\vartheta(\xi) = 2,5919 - 1,8522 \cdot \xi + 1,8489 \cdot \xi^2 - 2,592 \cdot \cosh(1,194 \cdot \xi) + 1,389 \cdot \sinh(1,194 \cdot \xi)$

Abbildung 64: Verlauf von $\vartheta(\xi)$ [rad] über die Brückenlänge im LF1

Tabelle 17: Werte des	Torsionsdrehwinkels	$\vartheta(\xi$,;) im	LF1	in Rad	iant
-----------------------	---------------------	-----------------	--------	-----	--------	------

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
q [rad]	0	-0,03052	-0,05236	-0,06025	-0,05242	-0,03059	0

Die erste Ableitung des Torsionsdrehwinkels $\vartheta(\xi)$ nach x ist die Verdrillung $\vartheta'(x)$:

Umformen der Funktion $\vartheta(\xi)$ auf $\vartheta(x)$:

$$\vartheta(x) = 2,592 - 6,1741 \cdot 10^{-2} \cdot x + 2,0543 \cdot 10^{-3} \cdot x^{2}$$

-2,592 \cosh(0,0398 \cdot x) + 1,3891 \cdot sinh(0,0398 \cdot \xample)

Bilden der ersten Ableitung nach x liefert die Verdrillung $\vartheta'(x)$:

$$\frac{d\vartheta(x)}{dx} = \vartheta'(x) = -6,1741 \cdot 10^{-2} + 4,109 \cdot 10^{-3} \cdot x$$
$$-0,1032 \cdot \sinh(0,0398 \cdot x) + 0,0553 \cdot \cosh(0,0398 \cdot x)$$

Abbildung 65: Verlauf von $\vartheta'(x)$ [rad/m] über die Brückenlänge im LF1

Tabelle 18: Werte der Verdrillung $\vartheta'(x)$ im LF1 in rad/m

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
q' [rad/m]	-0,006436	-0,005473	-0,003089	-0,000007	0,003080	0,005476	0,006462

4.3.5 Differentialgleichung $I: -EAu_0^{II} = p_{\frac{1}{2}}$

Durch Einsetzen von $p_{\frac{1}{2}}$ in (3.25) erhält man:

$$\Rightarrow -EA \cdot \frac{d^2 u_0(x)}{dx^2} = 2,015$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$-EA \cdot \frac{du_0(x)}{dx} = 2,015 \cdot x + C_1$$
$$-EA \cdot u_0(x) = 2,015 \cdot \frac{x^2}{2} + C_1 \cdot x + C_2$$

Die Integrationskonstanten C_1 und C_2 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2):

Erste Randbedingung:

Am Brückenanfang sind beide Auflager (C und D) in Richtung der x-Achse verschieblich. Das heißt hier kann keine Normalkraft übertragen werden. Die Randbedingung lautet daher:

$$N(x=0) = EA \cdot \frac{du_0}{dx}(x=0) = 0 \qquad \Rightarrow \qquad C_1 = 0$$

Zweite Randbedingung:

Der Fußgängersteg ist im Auflagerpunkt A in Stablängsachse gehalten. Nach Gleichung (4.27) ist:

$$u_0(x=L) = -\varphi_{\frac{1}{2}}(x=L) \cdot 122, 8 \cdot 10^{-2} + \varphi_{\frac{1}{2}}(x=L) \cdot 35, 793 \cdot 10^{-2} + \vartheta'(x=L) \cdot 850, 22 \cdot 10^{-4}$$

Die Verschiebung der Brücke am Endquerschnitt $u_0(x = L)$ lässt sich also aus den bereits bekannten Querschnittsdrehwinkeln und der Verdrillung berechnen und als Randbedingung definieren:

$$u_0(x = L) = -7,461 \cdot 10^{-3} \cdot 122,8 \cdot 10^{-2} + 3,334 \cdot 10^{-4} \cdot 35,793 \cdot 10^{-2} + 6,462 \cdot 10^{-3} \cdot 850,22 \cdot 10^{-4}$$
$$u_0(x = L) = -8,7323 \cdot 10^{-3} \implies C_2 = 158632,74$$

Die Gleichung für die **Verschiebung** $u_0(x)$ ergibt sich somit zu:

$$u_0(x) = -8,6827 \cdot 10^{-3} - 5,51437 \cdot 10^{-8} x^2$$

Abbildung 66: Verlauf von $u_0(x)$ [m] über die Brückenlänge im LF1

Tabelle 19: Werte der Biegelinie $u_0(x)$ im LF1 in m

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
u ₀ [m]	-0,008683	-0,008684	-0,008688	-0,008695	-0,008705	-0,008717	-0,008732

Die erste Ableitung der Funktion der Verschiebung $u_0(x)$ multipliziert mit der Dehnsteifigkeit *EA* ergibt die Funktion der **Normalkraft** N(x) (3.33):

$$EA \cdot \frac{du_0(x)}{dx} = N(x) = -2,01495 \cdot x$$

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
N [kN]	0,00	-10,07	-20,15	-30,22	-40,30	-50,37	-60,45

Tabelle 20: Werte der Normalkraft N(x) im LF1 in kN

4.3.6 Zusammenfassung der Schnittgrößen

Tabelle 21: Zusammenfassung der Schnittgrößen im LF1

So	chnitt				Stelle x [m]			
größen		0,0	5,0	10,0	15,0	20,0	25,0	30,0
N	[kN]	0	-10,07	-20,15	-30,22	-40,30	-50,37	-60,45
M_{y}	[kNm]	0	1235,49	1974,87	2218,15	1965,33	1216,40	-28,64
M_{s}	[kNm]	0	-212,58	-337,80	-375,67	-326,17	-189,32	34,88
M	[kNm ²]	0	-345,35	-547,53	-614,58	-549,16	-348,67	-5,14
Q_y	[kN]	51,17	33,70	16,23	-1,24	-18,71	-36,19	53,66
Q_{a}	[kN]	295,84	196,62	97,39	-1,83	-101,05	-200,27	-299,49
$M_{D\omega}$	[kNm]	-84,07	-54,26	-26,61	-0,03	26,55	54,18	83,96
\overline{M}_{Dp}	[kNm]	-9,80	-8,33	-4,70	-0,01	4,69	8,34	9,84

4.3.7 Normalspannungen

Die Normalspannungen werden nach Gleichung (3.44) berechnet:

$$\sigma_{i}(x) = \frac{N(x)}{A} + \frac{M_{y}(x)}{A_{yy}} \cdot \mathcal{Y}_{i} - \frac{M_{z}(x)}{A_{yy}} \cdot \mathcal{Y}_{i} + \frac{M_{o}(x)}{A_{ooo}} \cdot \mathcal{O}_{i}$$

Tabelle 22: Normalspannungen [kN/cm²] im LF1

σί	(x)				Stelle x [m]			
[kN/	cm²]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
	0	0	-5,419	-8,624	-9,684	-8,619	-5,408	0,01538
	1	0	-5,512	-8,771	-9,847	-8,765	-5,501	0,01552
	2	0	4,456	7,088	7,958	7,085	4,450	-0,00875
	3	0	3,514	5,598	6,287	5,591	3,500	-0,01971
	4	0	5,399	8,579	9,629	8,578	5,399	0,00221
	5	0	-4,670	-7,452	-8,375	-7,447	-4,660	0,01427
nnk	6	0	-3,299	-5,267	-5,921	-5,267	-3,299	0,00046
ā	7	0	-3,921	-6,280	-7,065	-6,275	-3,913	0,01316
	8	0	3,748	5,992	6,718	5,921	3,605	-0,21487
	9	0	1,202	1,961	2,196	1,880	1,038	-0,24817
	10	0	6,294	10,023	11,240	9,962	6,172	-0,18158
	11	0	-3,173	-5,107	-5,756	-5,104	-3,165	0,01205
	12	0	-3,010	-4,838	-5,453	-4,845	-3,023	-0,01974

Durch die exzentrische Lagerung des Fußgängersteges: $\sigma_i (x = 30) \neq 0$

Abbildung 68: Graphische Darstellung der Normalspannung im LF1 an der Stelle x = 15 m

4.3.8 Primäre Schubspannungen

Die primären Schubspannungen τ_p aus St. Venant'scher Torsion sind über die Profildicke *t* antimetrisch verteilt und berechnen sich nach Gleichung (3.45):

$$\tau_{p,\max,i} = \pm \frac{M_{Dp}}{I_D} t_i$$

Je nach Profildicke *t* ergeben sich folgende Maximalwerte der primären Schubspannungen.

T _{p,max}	_x (x)	Blocho		Stelle x [m]								
[kN/cm ²]		Dicerie	0,0	5,0	10,0	15,0	20,0	25,0	30,0			
e	1,0	6, 12	0,5198	0,4420	0,2495	0,0005	0,2488	0,4424	0,5220			
in dick	1,2	1, 2, 5, 7, 11	0,6238	0,5304	0,2994	0,0006	0,2985	0,5308	0,6263			
tofil t [o	3,0	3, 4	1,5595	1,3261	0,7484	0,0016	0,7463	1,3271	1,5659			
₽.	4,0	9, 10	2,0794	1,7681	0,9979	0,0021	0,9951	1,7695	2,0878			

Tabelle 23: Beträge der primären Schubspannungen [kN/cm²] im LF1

4.3.9 Schubflüsse

Die mittleren Schubspannungen τ_m aus den Querkräfte und der Wölbkrafttorsion erzeugen im Gegensatz zu den primären Schubspannungen Schubflüsse in den Profilmittellinien $(T = \tau_m \cdot t)$. Sie lassen sich durch Gleichung (3.46) ermitteln:

$$T_{i,j} = T_0 - \int_{s=0}^{s} \overline{p}_{\frac{s}{2}} \, ds + \frac{p_{\frac{s}{2}}}{A} A(s) - \frac{Q_{\frac{s}{2}} + m_{\frac{s}{2}}}{A_{\frac{s}{2}}} A_{\frac{s}{2}}(s) - \frac{Q_{\frac{s}{2}} - m_{\frac{s}{2}}}{A_{\frac{s}{2}}} A_{\frac{s}{2}}(s) - \frac{M_{D\omega} + m_{\frac{s}{2}}}{A_{\frac{s}{2}}} A_{\frac{s}{2}}(s)$$

 \overline{p}_{*} ...äußere Flächenlast in Richtung der Stabachse *

 p_{i} ... resultierende Linienlast der äußere Flächenlast \overline{p}_{i}

 $T_0 = 0$, da die Laufkoordinate *s* an einem freien Ende beginnt.

Abbildung 69: gewählte Richtung der Laufkoordinate s

 $T_{i,j}$... Wert des Schubflusses am Knoten i, wobei j der Nachbarpunkt ist

Beispielrechnung für den Schubfluss $T_{7,5}$ für x = 5 m:

$$T_{i,j}(x=5) = T_0 - \int_{s=0}^{s} \overline{p}_{x} \, ds + \frac{p_{x}}{A} A(s) - \frac{Q_{y} + m_{z}}{A_{yy}} A_{y}(s) - \frac{Q_{z} - m_{y}}{A_{zz}} A_{z}(s) - \frac{M_{D\omega} + m_{\omega}}{A_{\omega\omega}} A_{\omega}(s)$$

Man stelle sich vor, man trennt den Querschnitt links von Knoten 7 ab und betrachtet diesen Teil. Dann gilt:

$$\int_{s=0}^{s} \overline{p}_{\frac{x}{b}} ds = \frac{p_{\frac{x}{b}}}{b} \cdot (l_1 + l_5 + l_7) = \frac{2,015}{2,5} \cdot (0,1 + 0,8 + 0,8) = 1,3702 \ kN \ / \ m$$
$$A(s) = A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 + A_P = 399 \ cm^2$$

Die Werte der Flächenmomente 1. Ordnung können den Abbildungen 39 bis 41 entnommen werden:

$$A_{\frac{1}{8}}(s) = -29.197 \ cm^3$$
 $A_{\frac{1}{8}}(s) = -4.698 \ cm^3$ $A_{\frac{1}{6}}(s) = -34.398 \ cm^4$

Die Schnittgrößen werden aus Tabelle 21 und die Streckenmomente aus Kapitel 4.3.1 abgelesen.

$$T_{7,5}(x=5) = -\frac{1,3702}{100} + \frac{2,015}{100} \cdot \frac{399}{870} + \frac{33,7+0,08}{5.112.810} \cdot 29.197 + \frac{196,62+0,873}{1.406.540} \cdot 4.698 - \frac{5426+13,6}{4.573.840.000} \cdot 34.398 = 0,80714 \text{ kN / cm}$$

Negative Schubflüsse bedeuten, dass sie in der umgekehrten Richtung wirken als in Abbildung 69 dargestellt.

	T _{i,j} (x	.)				Stelle x [m]			
	[kN/ci	m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
		T _{0,1}	0,1580	0,1032	0,0506	-0,000878	-0,0524	-0,1049	-0,1597
	0	T _{0,2}	-1,2264	-0,8013	-0,3957	0,000372	0,3964	0,8018	1,2266
		T _{0,5}	-1,0684	-0,6981	-0,3451	-0,000506	0,3440	0,6969	1,0669
	1	T _{1,0}	0	0	0	0	0	0	0
		T _{2,0}	-1,2959	-0,8473	-0,4185	0,000440	0,4194	0,8479	1,2963
	2	T _{2,3}	-0,5788	-0,3793	-0,1876	0,000320	0,1882	0,3799	0,5792
		T _{2,4}	-0,7172	-0,4680	-0,2310	0,000120	0,2312	0,4681	0,7171
	3	T _{3,2}	0	0	0	0	0	0	0
	4	T _{4,2}	0	0	0	0	0	0	0
		T _{5,0}	0,0952	0,0651	0,0300	-0,007484	-0,0450	-0,0801	-0,1103
kt i	5	T _{5,6}	0,1358	0,0898	0,0447	-0,000029	-0,0447	-0,0898	-0,1358
lun		T _{5,7}	0,2310	0,1549	0,0747	-0,007513	-0,0897	-0,1700	-0,2461
ш	6	T ₆	0,0397	0,0263	0,0131	0,000000	-0,0131	-0,0263	-0,0397
		T _{7,5}	1,2159	0,8071	0,3968	-0,014411	-0,4256	-0,8360	-1,2448
	7	T _{7,8}	2,1315	1,4227	0,7033	-0,021177	-0,7457	-1,4651	-2,1741
		T _{7,11}	0,9156	0,6155	0,3066	-0,006765	-0,3201	-0,6292	-0,9294
		T _{8,7}	2,1562	1,4398	0,7137	-0,017146	-0,7480	-1,4742	-2,1908
	8	T _{8,9}	-0,7048	-0,4798	-0,2392	0,009190	0,2576	0,4984	0,7237
		T _{8,10}	-1,4514	-0,9599	-0,4745	0,007956	0,4904	0,9758	1,4671
	9	T _{9,8}	0	0	0	0	0	0	0
	10	T _{10,8}	0	0	0	0	0	0	0
	11	T ₁₁	0,1094	0,0742	0,0375	0,000052	-0,0374	-0,0741	-0,1093
	12	T ₁₂	0,0358	0,0243	0,0123	0,000035	-0,0122	-0,0242	-0,0358

Tabelle 24: Schubflüsse [kN/cm] im LF1

Kontrollen an den Knoten 0, 2, 5, 7 und 8:

- Knoten 0: $T_{0,1} + T_{0,2} T_{0,5} = 0$
- Knoten 2: $T_{2,3} + T_{2,4} T_{2,0} = 0$
- Knoten 5: $T_{5,0} + T_{5,6} T_{5,7} = 0$
- Knoten 7: $T_{7,5} + T_{7,11} T_{7,8} = 0$
- Knoten 8: $T_{8,7} + T_{8,9} + T_{8,10} = 0$

4.3 LASTFALL 1: Eigengewicht mit Aufbau

Abbildung 70: Graphische Darstellung der mittleren Schubspannung τ_m im LF1 an der Stelle x = 5 m

4.4 LASTFALL 2a: Nutzlast auf dem gesamten Deckblech

Es wird angenommen, dass die Nutzlast auf dem gesamten Deckblech wirkt. Ihre resultierende Linienlast befindet sich in Deckblechmitte.

Abbildung 71: Wirkungsrichtung der Nutzlast

Teilsicherheitsbeiwert:	$\gamma_{\mathcal{Q}} = 1,35$
charakteristischer Wert des Eigengewichts:	$q_k = 5,00 \ kN / m^2$
Bemessungswert des Eigengewichts:	$q_d = \gamma_Q \cdot q_k = 6,75 \ kN / m^2$
Einflussbreite:	$b = 250 \ cm$
Linienlast:	$q_{Ed} = \gamma_Q \cdot q_k \cdot b = 16,875 \ kN / m$
Normalabstand von Blech 2 zur Linienlast:	$c = 115 \ cm$

Da die Nutzlast über dem gesamten Deckblech wirkt und dieselbe Wirkungsrichtung hat wie das Eigengewicht in Lastfall 1, können die Ergebnisse aus diesem entnommen und mit dem Faktor ψ multipliziert werden. Die separate Berechnung kann somit entfallen.

$$\psi = \frac{q_{Ed, LF2a}}{g_{Ed, LF1}} = \frac{5}{6}$$

4.5 LASTFALL 2b: Nutzlast über dem niedrigen Steg

In diesem Lastfall ist jene Lasteinflussbreite der Nutzlast gesucht, für die die Durchbiegung des niedrigen Steges in z-Richtung maximal wird. Diese soll mit Hilfe einer Einflusslinie ermittelt werden.

Abbildung 72: Wirkungsrichtung der Nutzlast

4.5.1 Einflusslinie

Abbildung 73: Laststellung für die Einflusslinie von LF2b

Linienlast:

 $q = 1,00 \ kN / m$

Normalabstand von Blech 2 zur Linienlast: $c = 0 \ cm$

Linienlasten in Hauptachsenrichtungen nach Gleichung (4.11):

$$p_{\frac{1}{2}} = 0,09950 \ kN \ / m$$

 $p_{\frac{1}{2}} = 0,17256 \ kN \ / m$

$$p_{\mu} = 0,97996 \ kN / m$$

Streckenmomente um die Hauptachsen nach Gleichung (4.14) und (4.15):

$$m_y = -0,02325 \ kNm / m$$

 $m_z = 0,11663 \ kNm / m$
 $m_d = -1,4532 \ kNm / m$

Streckenwölbbimoment bezogen auf das Hauptsystem nach Gleichungen (4.18) und (4.17):

$$m_{\omega} = -0,03779 \ kNm^2 / m$$

Stabendmomente nach Gleichungen (4.19), (4.23) und (4.24):

 $M_{\tilde{y},a} = 0 \ kNm \qquad M_{\tilde{y},e} = -1,4142 \ kNm \\ M_{\tilde{y},a} = 0 \ kNm \qquad M_{\tilde{y},e} = 1,7227 \ kNm \\ M_{\tilde{w},a} = 0 \ kNm^2 \qquad M_{\tilde{w},e} = -0,2538 \ kNm^2$

Differentialgleichung $II: EA_{yy} v_M^{IV} = p_{y}$

Durch Einsetzen von $p_{\frac{1}{2}}$ in (3.25) erhält man:

$$\Rightarrow \quad EA_{yy} \cdot \frac{d^4 v_M(x)}{dx^4} = 0,17256$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$EA_{yy} \cdot \frac{d^{3}v_{M}(x)}{dx^{3}} = 0,17256 \cdot x + C_{1}$$

$$EA_{yy} \cdot \frac{d^{2}v_{M}(x)}{dx^{2}} = 0,17256 \cdot \frac{x^{2}}{2} + C_{1} \cdot x + C_{2}$$

$$EA_{yy} \cdot \frac{dv_{M}(x)}{dx} = 0,17256 \cdot \frac{x^{3}}{6} + C_{1} \cdot \frac{x^{2}}{2} + C_{2} \cdot x + C_{3}$$

$$EA_{yy} \cdot v_{M}(x) = 0,17256 \cdot \frac{x^{4}}{24} + C_{1} \cdot \frac{x^{3}}{6} + C_{2} \cdot \frac{x^{2}}{2} + C_{3} \cdot x + C_{4}$$

Die Integrationskonstanten C_1 , C_2 , C_3 und C_4 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2). Diese lauten:

$$v_M(x=0)=0 \qquad \Rightarrow \qquad C_4=0$$

$$M_{\frac{x}{2}}(x=0) = EA_{\frac{y}{2}} \cdot \frac{d^2 v_M}{dx^2}(x=0) = 0 \qquad \Rightarrow \qquad C_2 = 0$$

$$M_{\frac{3}{2}}(x=L) = EA_{\frac{3}{2}} \cdot \frac{d^2 v_M}{dx^2}(x=L) = 1,7227 \qquad \Rightarrow \qquad C_1 = -2,531$$
$$v_M(x=L) = 0 \qquad \Rightarrow \qquad C_3 = 185,515$$

Die Gleichung für die **Biegelinie** $v_{M}(x)$ im Schubmittelpunkt M ergibt sich somit zu:

$$v_M(x) = 1,72782 \cdot 10^{-5} \cdot x - 3,92875 \cdot 10^{-8} \cdot x^3 + 6,69648 \cdot 10^{-10} \cdot x^4$$

Tabelle 25: Werte der Biegelinie $v_M(x)$ im LF2b in m

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
v _M [m]	0	8,190E-05	1,402E-04	1,605E-04	1,384E-04	7,967E-05	0

Differentialgleichung III : $EA_{33} w_M^{IV} = p_{3}$

Durch Einsetzen von $p_{\frac{1}{2}}$ in (3.25) erhält man:

$$\Rightarrow EA_{33} \cdot \frac{d^4 w_M(x)}{dx^4} = 0,97996$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$EA_{\frac{3}{20}} \cdot \frac{d^{3}w_{M}(x)}{dx^{3}} = 0,97996 \cdot x + C_{1}$$

$$EA_{\frac{3}{20}} \cdot \frac{d^{2}w_{M}(x)}{dx^{2}} = 0,97996 \cdot \frac{x^{2}}{2} + C_{1} \cdot x + C_{2}$$

$$EA_{\frac{3}{20}} \cdot \frac{dw_{M}(x)}{dx} = 0,97996 \cdot \frac{x^{3}}{6} + C_{1} \cdot \frac{x^{2}}{2} + C_{2} \cdot x + C_{3}$$

$$EA_{\frac{3}{20}} \cdot w_{M}(x) = 0,97996 \cdot \frac{x^{4}}{24} + C_{1} \cdot \frac{x^{3}}{6} + C_{2} \cdot \frac{x^{2}}{2} + C_{3} \cdot x + C_{4}$$

Die Integrationskonstanten C_1 , C_2 , C_3 und C_4 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2). Diese lauten:

$$w_{M}(x=0) = 0 \qquad \qquad \Rightarrow \qquad C_{4} = 0$$

$$M_{\frac{n}{2}}(x=0) = -EA_{\frac{n}{2}} \cdot \frac{d^2 w_M}{dx^2}(x=0) = 0 \qquad \Rightarrow \qquad C_2 = 0$$

$$M_{\frac{1}{9}}(x=L) = -EA_{\frac{11}{20}} \cdot \frac{d^2 w_M}{dx^2}(x=L) = -1,4142 \implies C_1 = -14,652$$

$$w_M(x=L)=0 \qquad \Rightarrow \qquad C_3=1095,384$$

Die Gleichung für die **Biegelinie** $w_M(x)$ im Schubmittelpunkt *M* ergibt sich somit zu:

$$W_M(x) = 3,70848 \cdot 10^{-4} \cdot x - 8,26767 \cdot 10^{-7} \cdot x^3 + 1,38238 \cdot 10^{-8} \cdot x^4$$

Tabelle 26: Werte der Biegelinie $w_{M}(x)$ im LF2b in m

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
w [m]	0	1,760E-03	3,020E-03	3,472E-03	3,015E-03	1,753E-03	0

<u>Differentialgleichung</u> $IV: EA_{\phi\phi} \vartheta^{IV} - GI_D \vartheta^{II} = m_d$ (Analogiemodell)

Zur Berechnung des Torsionsdrehwinkels werden die "Studienblätter für Baustatik 2" aus Anhang A herangezogen.

$$\xi = \frac{x}{l}$$
 und $\overline{\xi} = 1 - \frac{x}{l}$

Stabkennzahl: $\varepsilon = 1,194$

Torsionsdrehwinkel $\vartheta(\xi)$ nach Tabelle 13 im Anhang A:

$$GI_{D} \cdot \vartheta(\xi) \land N \cdot \Delta w(\xi) = \left(\xi - \frac{\sinh \varepsilon \xi}{\sinh \varepsilon}\right) \cdot M_{\omega,e} + \left[\frac{1}{\varepsilon^{2}} \cdot \left(\frac{\cosh \varepsilon (0, 5 - \xi)}{\cosh (\varepsilon/2)} - 1\right) + \frac{\xi \overline{\xi}}{2}\right] \cdot m_{d} \cdot l^{2}$$

$$GI_{D} \cdot \vartheta(\xi) = \left(\xi - \frac{\sinh(1,194 \cdot \xi)}{\sinh(1,194)}\right) \cdot (-0,2538) \\ + \left[\frac{1}{1,194^{2}} \cdot \left(\frac{\cosh(1,194(0,5-\xi))}{\cosh(1,194/2)} - 1\right) + \frac{\xi\overline{\xi}}{2}\right] \cdot (-1,4532) \cdot 30^{2} \\ \vartheta(\xi) = 0,60214 - 0,429678 \cdot \xi + 0,42951 \cdot \xi^{2} \\ -0,60214 \cdot \cosh(1,194 \cdot \xi) + 0,3223 \cdot \sinh(1,194 \cdot \xi)$$

Tabelle 27: Werte des Torsionsdrehwinkels $\vartheta(\xi)$ im LF2b in Radiant

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
q [rad]	0	-7,070E-03	-1,213E-02	-1,395E-02	-1,213E-02	-7,073E-03	0

Die Linienlast $(q = 1 \ kN \ m)$ verursacht Verschiebungen in Richtung der Hauptachsen, sowie eine Verdrehung des Querschnitts. Aus dem Verschiebungszustand (Abbildung 74) kann der Nulldurchgang des Deckbleches über die Brückenlänge ermittelt werden. Dadurch wird jene Lasteinflussbreite gefunden, die die größte Durchbiegung des niedrigen Steges in *z*-Richtung hervorruft. Bedingt die Lagerung kann sich der Querschnitt am Brückenanfang und –ende in der Querschnittsebene nicht verschieben und nicht verdrehen. Die Lasteinflussbreite ist dort daher Null. Für die weitere Berechnung wird nun die maximale Lasteinflussbreite in Brückenmitte ($x = 15 \ m$) herangezogen.

Abbildung 74: schematischer Verschiebungszustand in Brückenmitte

Für die gesuchte Lasteinleitungsbreite b muss nun die Verschiebung ζ des Deckblechs in z-Richtung berechnet werden.

$$\varsigma_i = v_M \left(x = 15 \right) \cdot \sin \alpha + w_M \left(x = 15 \right) \cdot \cos \alpha + \vartheta \left(x = 15 \right) \cdot \left(y_i - y_M \right)$$

 y_i, y_M ... Koordinaten des Grundsystems

Tabelle 28: Verschiebung ζ_i des Deckblechs im LF2b

Punkt i	1	0	5	7	11
ς [cm]	2,521	2,382	1,266	0,150	-0,966

Wie aus Tabelle 28 ersichtlich, befindet sich der Nulldurchgang des Deckblechs zwischen Punkt 7 und 11. Die Lasteinflussbreite b beträgt also:

$$b = l_1 + l_5 + l_7 + \frac{\delta_7}{\left|\delta_7\right| + \left|\delta_{11}\right|} \cdot l_{11} = 10 + 80 + 80 + \frac{0.15}{\left|0.15\right| + \left|-0.966\right|} \cdot 80 = 180,761 \ cm$$

Somit kann nun der Lastfall 2b berechnet werden:

4.5.2 Einwirkungen

Teilsicherheitsbeiwert:	$\gamma_Q = 1,35$
charakteristischer Wert der Nutzlast:	$q_k = 5,00 \ kN / m^2$
Bemessungswert der Nutzlast:	$q_d = \gamma_Q \cdot q_k = 6,75 \ kN / m^2$
Einflussbreite:	<i>b</i> = 180,761 <i>cm</i>
Linienlast:	$q_{Ed} = \gamma_Q \cdot q_k \cdot b = 12,20 \ kN / m$
Normalabstand von Blech 2 zur Linienlast:	c = 80,381 cm

Linienlasten in Hauptachsenrichtungen nach Gleichung (4.11):

$$p_{\frac{1}{2}} = 1,214 \ kN / m$$

 $p_{\frac{1}{2}} = 2,106 \ kN / m$
 $p_{\frac{1}{2}} = 11,957 \ kN / m$

Streckenmomente um die Hauptachsen nach Gleichung (4.14) und (4.15):

$$m_{y} = -0,453 \ kNm / m$$

 $m_{z} = 0,462 \ kNm / m$
 $m_{d} = -7,972 \ kNm / m$

Streckenwölbmoment bezogen auf das Hauptsystem nach Gleichungen (4.18) und (4.17):

$$m_{\phi} = -0,196 \ kNm^2 / m$$

Stabendmomente nach Gleichungen (4.19), (4.23) und (4.24):

 $M_{\frac{1}{9},a} = 0 \ kNm \qquad M_{\frac{1}{9},e} = -17,26 \ kNm \qquad M_{\frac{1}{9},e} = 21,02 \ kNm \qquad M_{\frac{1}{9},e} = 21,02 \ kNm \qquad M_{\frac{1}{9},e} = 0 \ kNm^2 \qquad M_{\frac{1}{9},e} = -3,097 \ kNm^2$

4.5.3 Differentialgleichung *II*: $EA_{\psi} v_M^{IV} = p_{\psi}$

Durch Einsetzen von p_{ij} in (3.25) erhält man:

$$\Rightarrow EA_{yy} \cdot \frac{d^4 v_M(x)}{dx^4} = 2,106$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$EA_{yy} \cdot \frac{d^{3}v_{M}(x)}{dx^{3}} = 2,106 \cdot x + C_{1}$$

$$EA_{yy} \cdot \frac{d^{2}v_{M}(x)}{dx^{2}} = 2,106 \cdot \frac{x^{2}}{2} + C_{1} \cdot x + C_{2}$$

$$EA_{yy} \cdot \frac{dv_{M}(x)}{dx} = 2,106 \cdot \frac{x^{3}}{6} + C_{1} \cdot \frac{x^{2}}{2} + C_{2} \cdot x + C_{3}$$

$$EA_{yy} \cdot v_{M}(x) = 2,106 \cdot \frac{x^{4}}{24} + C_{1} \cdot \frac{x^{3}}{6} + C_{2} \cdot \frac{x^{2}}{2} + C_{3} \cdot x + C_{4}$$

Die Integrationskonstanten C_1 , C_2 , C_3 und C_4 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2). Diese lauten:

$$v_M(x=0)=0 \qquad \qquad \Rightarrow \qquad C_4=0$$

$$M_{\frac{1}{2}}(x=0) = EA_{\frac{1}{2}} \cdot \frac{d^2 v_M}{dx^2}(x=0) = 0 \qquad \Rightarrow \qquad C_2 = 0$$

$$M_{\frac{1}{2}}(x=L) = EA_{\frac{1}{2}} \cdot \frac{d^2 v_M}{dx^2}(x=L) = 21,02 \implies C_1 = -30,881$$

$$v_M(x=L) = 0 \qquad \Rightarrow \qquad C_3 = 2263,542$$

Die Gleichung für die **Biegelinie** $v_M(x)$ im Schubmittelpunkt M ergibt sich somit zu:

$$v_M(x) = 2,10819 \cdot 10^{-4} \cdot x - 4,79362 \cdot 10^{-7} \cdot x^3 + 8,17064 \cdot 10^{-9} \cdot x^4$$

Über die Differentialbeziehungen nach Kapitel 3.6 können nun die Funktionen der Verformungsgrößen und der Schnittgrößen hergeleitet werden:

Querschnittsdrehwinkel $\varphi_{s}(x)$ (3.35):

$$\frac{dv_{M}(x)}{dx} = \varphi_{\frac{5}{2}}(x) = 2,10819 \cdot 10^{-4} - 1,43809 \cdot 10^{-6} \cdot x^{2} + 3,2683 \cdot 10^{-8} \cdot x^{3}$$

Moment $M_{\frac{1}{2}}(x)$ (3.36):

$$\frac{d^{2}v_{M}(x)}{dx^{2}} \cdot EA_{yy} = M_{y}(x) = -30,881 \cdot x + 1,05273 \cdot x^{2}$$

Querkraft $Q_{\psi}(x)$ (3.37):

$$-\frac{d^{3}v_{M}(x)}{dx^{3}} \cdot EA_{yy} - m_{z} = Q_{y}(x) = 30,4193 - 2,10546 \cdot x$$

0

Differential gleichung III : $EA_{ss} w_M^{IV} = p_s$ 4.5.4

Durch Einsetzen von p_{\sharp} in (3.25) erhält man:

$$\Rightarrow EA_{\frac{8}{50}} \cdot \frac{d^4 w_M(x)}{dx^4} = 11,958$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$EA_{\frac{55}{56}} \cdot \frac{d^{3}w_{M}(x)}{dx^{3}} = 11,958 \cdot x + C_{1}$$

$$EA_{\frac{55}{56}} \cdot \frac{d^{2}w_{M}(x)}{dx^{2}} = 11,958 \cdot \frac{x^{2}}{2} + C_{1} \cdot x + C_{2}$$

$$EA_{\frac{55}{56}} \cdot \frac{dw_{M}(x)}{dx} = 11,958 \cdot \frac{x^{3}}{6} + C_{1} \cdot \frac{x^{2}}{2} + C_{2} \cdot x + C_{3}$$

$$EA_{\frac{55}{56}} \cdot w_{M}(x) = 11,958 \cdot \frac{x^{4}}{24} + C_{1} \cdot \frac{x^{3}}{6} + C_{2} \cdot \frac{x^{2}}{2} + C_{3} \cdot x + C_{4}$$

Die Integrationskonstanten C_1, C_2, C_3 und C_4 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2). Diese lauten:

$$w_M(x=0) = 0 \qquad \Rightarrow \qquad C_4 = 0$$
$$M_{\frac{1}{2}}(x=0) = -EA_{\frac{1}{2}} \cdot \frac{d^2 w_M}{dx^2}(x=0) = 0 \qquad \Rightarrow \qquad C_2 = 0$$

$$M_{\frac{1}{9}}(x=L) = -EA_{\frac{1}{33}} \cdot \frac{d^2 w_M}{dx^2}(x=L) = -17,26 \implies C_1 = -178,778$$

$$w_M(x=L) = 0 \qquad \Rightarrow \qquad C_3 = 13365,33$$

Die Gleichung für die **Biegelinie** $w_M(x)$ im Schubmittelpunkt *M* ergibt sich somit zu:

$$w_M(x) = 4,5249 \cdot 10^{-3} \cdot x - 1,00877 \cdot 10^{-5} \cdot x^3 + 1,6867 \cdot 10^{-7} \cdot x^4$$

Über die Differentialbeziehungen nach Kapitel 3.6 können nun die Funktionen der Verformungsgrößen und der Schnittgrößen hergeleitet werden:

Querschnittsdrehwinkel $\varphi_{\psi}(x)$ (3.39):

$$-\frac{dw_{M}(x)}{dx} = \varphi_{\frac{1}{2}}(x) = -4,5249 \cdot 10^{-3} + 3,02631 \cdot 10^{-5} \cdot x^{2} - 6,74678 \cdot 10^{-7} \cdot x^{3}$$

Moment $M_{y}(x)$ (3.40):

$$-\frac{d^{2}w_{M}(x)}{dx^{2}} \cdot EA_{x} = M_{y}(x) = 178,778 \cdot x - 5,9785 \cdot x^{2}$$

Querkraft $Q_{\frac{1}{2}}(x)$ (3.41):

$$-\frac{d^{3}w_{M}(x)}{dx^{3}} \cdot EA_{yy} + m_{y} = Q_{z}(x) = 178,325 - 11,957 \cdot x$$

4.5.5 Differentialgleichung *IV*: $EA_{\phi\phi} \vartheta^{IV} - GI_D \vartheta^{II} = m_d$ (Analogiemodell)

Zur Berechnung der Differentialgleichung der Wölbkrafttorsion werden die "Studienblätter für Baustatik 2" aus Anhang A herangezogen.

mit $\xi = \frac{x}{l}$ und $\overline{\xi} = 1 - \frac{x}{l}$

Stabkennzahl: $\varepsilon = 1,194$

Primäres Torsionsmoment $M_{_{Dp}}(\xi)$ nach Tabelle 14 im Anhang A:

$$M_{Dp}(\xi) = GI_{D} \cdot \vartheta'(\xi) \land N \cdot \Delta \varphi(\xi) = \left(1 - \frac{\varepsilon \cosh \varepsilon \xi}{\sinh \varepsilon}\right) \cdot \frac{M_{\phi,\varepsilon}}{l} + \left[\frac{1}{2} - \xi - \frac{\sinh \varepsilon (0, 5 - \xi)}{\varepsilon \cosh (\varepsilon / 2)} - 1\right] \cdot m_{d} \cdot l$$

$$M_{Dp}\left(\xi\right) = \left(1 - \frac{1,194 \cdot \cosh\left(1,194 \cdot \xi\right)}{\sinh\left(1,194\right)}\right) \cdot \frac{-3,097}{30} + \left[\frac{1}{2} - \xi - \frac{\sinh\left(1,194\left(0,5-\xi\right)\right)}{1,194 \cdot \cosh\left(1,194/2\right)} - 1\right] \cdot \left(-7,972\right) \cdot 30$$

 $M_{Dp}(\xi) = -119,686 + 239,17 \cdot \xi + 107,221 \cdot \cosh(1,194 \cdot \xi) - 200,238 \cdot \sinh(1,194 \cdot \xi)$

Sekundäres Torsionsmoment $M_{_{D\omega}}(\xi)$ nach Tabelle 12 im Anhang A:

$$M_{D\omega}(\xi) \land Q_{\sharp}(\xi) = \frac{\varepsilon \cosh \varepsilon \xi}{\sinh \varepsilon} \cdot \frac{M_{\check{\omega},e}}{l} + \frac{\sinh \varepsilon (0, 5 - \xi)}{\varepsilon \cosh (\varepsilon/2)} \cdot m_d \cdot l - m_{\check{\omega}}$$

$$M_{D\omega}(\xi) = \frac{1,194 \cdot \cosh(1,194 \cdot \xi)}{\sinh(1,194)} \cdot \frac{-3,097}{30} + \frac{\sinh(1,194 \cdot (0,5-\xi))}{1,194 \cdot \cosh(1,194/2)} \cdot (-7,972) \cdot 30 + 0,1962$$

 $M_{D\omega}(\xi) = 0.1962 - 107,221 \cdot \cosh(1.194 \cdot \xi) + 200,238 \cdot \sinh(1.194 \cdot \xi)$

Wölbbimoment $M_{\phi}(\xi)$ nach Tabelle 11 im Anhang A:

$$M_{\dot{w}}(\xi) \land M_{\dot{y}}(\xi) = \frac{\sinh \varepsilon \xi}{\sinh \varepsilon} \cdot M_{\dot{w},\varepsilon} + \frac{1}{\varepsilon^2} \left(1 - \frac{\cosh \varepsilon (0, 5 - \xi)}{\cosh (\varepsilon / 2)} \right) \cdot m_d \cdot l^2$$
$$M_{\dot{w}}(\xi) = \frac{\sinh (1, 194 \cdot \xi)}{\sinh (1, 194)} \cdot (-3, 094) + \frac{1}{1, 194^2} \left(1 - \frac{\cosh (1, 194 \cdot (0, 5 - \xi))}{\cosh (1, 194 / 2)} \right) \cdot (-7, 972) \cdot 30^2$$
$$M_{\dot{w}}(\xi) = -5029, 39 + 5029, 39 \cdot \cosh (1, 194 \cdot \xi) - 2693, 07 \cdot \sinh (1, 194 \cdot \xi)$$

Torsionsdrehwinkel $\vartheta(\xi)$ nach Tabelle 13 im Anhang A:

$$GI_{D} \cdot \vartheta(\xi) \land N \cdot \Delta w(\xi) = \left(\xi - \frac{\sinh \varepsilon \xi}{\sinh \varepsilon}\right) \cdot M_{\omega,e} + \left[\frac{1}{\varepsilon^{2}} \cdot \left(\frac{\cosh \varepsilon (0, 5 - \xi)}{\cosh (\varepsilon/2)} - 1\right) + \frac{\xi \overline{\xi}}{2}\right] \cdot m_{d} \cdot l^{2}$$

$$GI_{D} \cdot \vartheta(\xi) = \left(\xi - \frac{\sinh(1, 194 \cdot \xi)}{\sinh(1, 194)}\right) \cdot (-3, 097) \\ + \left[\frac{1}{1, 194^{2}} \cdot \left(\frac{\cosh(1, 194(0, 5 - \xi))}{\cosh(1, 194/2)} - 1\right) + \frac{\xi\overline{\xi}}{2}\right] \cdot (-7, 972) \cdot 30^{2} \\ \vartheta(\xi) = 3,3033 - 2,3583 \cdot \xi + 2,3563 \cdot \xi^{2} - 3,3033 \cdot \cosh(1, 194 \cdot \xi) + 1,7688 \cdot \sinh(1, 194 \cdot \xi)$$

Die erste Ableitung des Torsionsdrehwinkels $\vartheta(\xi)$ nach x ist die Verdrillung $\vartheta'(x)$:

Umformen der Funktion $\vartheta(\xi)$ auf $\vartheta(x)$:

$$\vartheta(x) = 3,3033 - 0,07861 \cdot x + 2,6181 \cdot 10^{-3} \cdot x^{2} -3,3033 \cdot \cosh(0,0398 \cdot x) + 1,7688 \cdot \sinh(0,0398 \cdot \xi)$$

Bilden der ersten Ableitung nach x liefert die Verdrillung $\vartheta'(x)$:

$$\frac{d\vartheta(x)}{dx} = \vartheta'(x) = -7,861 \cdot 10^{-2} + 5,236 \cdot 10^{-3} \cdot x$$
$$-0,13152 \cdot \sinh(0,0398 \cdot x) + 0,07042 \cdot \cosh(0,0398 \cdot x)$$

4.5.6 Differentialgleichung $I: -EAu_0^{II} = p_{\frac{1}{2}}$

Durch Einsetzen von $p_{\frac{1}{2}}$ in (3.25) erhält man:

$$\Rightarrow -EA \cdot \frac{d^2 u_0(x)}{dx^2} = 1,214$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$-EA \cdot \frac{du_0(x)}{dx} = 1,214 \cdot x + C_1$$
$$-EA \cdot u_0(x) = 1,214 \cdot \frac{x^2}{2} + C_1 \cdot x + C_2$$

Die Integrationskonstanten C_1 und C_2 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2):

$$N(x=0) = EA \cdot \frac{du_0}{dx}(x=0) = 0 \qquad \Rightarrow \qquad C_1 = 0$$

$$u_{0}(x = L) = -\varphi_{\frac{1}{2}}(x = L) \cdot 122, 8 \cdot 10^{-2} + \varphi_{\frac{1}{2}}(x = L) \cdot 35, 793 \cdot 10^{-2} + \vartheta'(x = L) \cdot 850, 22 \cdot 10^{-4}$$
$$u_{0}(x = L) = -4, 496 \cdot 10^{-3} \cdot 122, 8 \cdot 10^{-2} - 2,0105 \cdot 10^{-4} \cdot 35,793 \cdot 10^{-2} + 8,203 \cdot 10^{-3} \cdot 850, 22 \cdot 10^{-4}$$
$$u_{0}(x = L) = -4,895 \cdot 10^{-3} \implies C_{2} = 88889,03$$

Die Gleichung für die **Verschiebung** $u_0(x)$ ergibt sich somit zu:

$$u_0(x) = -4,8653 \cdot 10^{-3} - 3,3226 \cdot 10^{-8} x^2$$

Normalkraft N(x) (3.33):

$$EA \cdot \frac{du_0(x)}{dx} = N(x) = -1,214 \cdot x$$

4.5.7 Zusammenfassung der Schnittgrößen

Tabelle 29: Zusammenfassung der Schnittgrößen im LF2b

Schnitt größen		Stelle x [m]						
		0,0	5,0	15,0	30,0			
N	[kN]	0	-6,07	-18,21	-36,42			
M_{i}	[kNm]	0	744,43	1336,52	-17,26			
$M_{_{k}}$	[kNm]	0	-128,09	-226,35	21,02			
M _ð	[kNm²]	0	-439,67	-781,79	-3,10			
Q_{y}	[kN]	30,42	19,89	-1,16	-32,74			
Q_{3}	[kN]	178,33	118,54	-1,03	-180,38			
$\overline{M}_{D\omega}$	[kNm]	-107,03	-69,03	0,10	107,19			
\overline{M}_{Dp}	[kNm]	-12,47	-10,60	-0,01	12,49			

4.5.8 Normalspannungen

Die Normalspannungen werden nach Gleichung (3.44) berechnet:

$$\sigma_{i}(x) = \frac{N(x)}{A} + \frac{M_{\frac{y}{y}}(x)}{A_{\frac{y}{z}}} \cdot \overset{w}{\gg}_{i} - \frac{M_{\frac{y}{z}}(x)}{A_{\frac{y}{y}}} \cdot \overset{w}{\gg}_{i} + \frac{M_{\overset{w}{\omega}}(x)}{A_{\frac{\omega}{\omega}}} \cdot \overset{w}{\gg}_{i}$$

Tabelle 30: Normalspannungen [kN/cm²] im LF2b

σ _i (x) [kN/cm²]			Stelle	x [m]	
		0,0	5,0	15,0	30,0
	0	0	-5,188	-9,252	0,00927
	1	0	-5,382	-9,595	0,00935
	2	0	4,459	7,947	-0,00527
	3	0	3,110	5,552	-0,01187
	4	0	5,808	10,342	0,00133
t i	5	0	-3,637	-6,509	0,00860
unk	6	0	-2,477	-4,437	0,00027
ē.	7	0	-2,087	-3,767	0,00793
	8	0	1,828	3,283	-0,12947
	9	0	-1,638	-2,873	-0,14953
	10	0	5,293	9,439	-0,10941
	11	0	-0,536	-1,024	0,00726
	12	0	-0,914	-1,687	-0,01189

Abbildung 75: Graphische Darstellung der Normalspannung im LF2b an der Stelle x = 15 m

4.5.9 Primäre Schubspannungen

Die primären Schubspannungen τ_p aus St. Venant'scher Torsion sind über die Profildicke *t* antimetrisch verteilt und berechnen sich nach Gleichung (3.45):

$$\tau_{p,\max,i} = \pm \frac{M_{Dp}}{I_D} t_i$$

Je nach Profildicke *t* ergeben sich folgende Maximalwerte der primären Schubspannungen.

Tabelle 31: Beträge der primären Schubspannungen [kN/cm²] im LF2b

τ _{p,max} (x) [kN/cm²]		Blocho	Stelle x [m]					
		Dieche	0,0	5,0	15,0	30,0		
e	1,0	6, 12	0,6613	0,5622	0,000312	0,6625		
dick m]	1,2	1, 2, 5, 7, 11	0,7935	0,6746	0,000375	0,7951		
t [c	3,0	3, 4	1,9838	1,6866	0,000937	1,9876		
Ē	4,0	9, 10	2,6451	2,2488	0,001250	2,6502		

4.5.10 Schubflüsse

Die mittleren Schubspannungen τ_m aus den Querkräften und der Wölbkrafttorsion erzeugen im Gegensatz zu den primären Schubspannungen Schubflüsse in den Profilmittellinien $(T = \tau_m \cdot t)$. Sie lassen sich durch Gleichung (3.46) ermitteln:

$$T_{i,j} = T_0 - \int_{s=0}^{s} \overline{p}_{\frac{s}{2}} \, ds + \frac{p_{\frac{s}{2}}}{A} A(s) - \frac{Q_{\frac{s}{2}} + m_{\frac{s}{2}}}{A_{\frac{s}{2}}} A_{\frac{s}{2}}(s) - \frac{Q_{\frac{s}{2}} - m_{\frac{s}{2}}}{A_{\frac{s}{2}}} A_{\frac{s}{2}}(s) - \frac{M_{D\omega} + m_{\tilde{\omega}}}{A_{\tilde{\omega}\tilde{\omega}}} A_{\tilde{\omega}}(s)$$

 \overline{p}_{*} ...äußere Flächenlast in Richtung der Stabachse *

 p_{x} ... resultierende Linienlast der äußere Flächenlast \overline{p}_{x}

 $T_0 = 0$, da die Laufkoordinate *s* an einem freien Ende beginnt.

Abbildung 76: gewählte Richtung der Laufkoordinate s

 $T_{i,i}$ Wert des Schubflusses am Knoten *i*, wobei *j* der Nachbarpunkt ist

Beispielrechnung für den Schubfluss $T_{7,5}$ für x = 5 m:

Man stelle sich vor, man trennt den Querschnitt links von Knoten 7 ab und betrachtet diesen Teil. Dann gilt:

$$\int_{s=0}^{s} \overline{p}_{\frac{x}{b}} ds = \frac{p_{\frac{x}{b}}}{b} \cdot (l_1 + l_5 + l_7) = \frac{1,214}{1,808} \cdot (0,1+0,8+0,8) = 1,1415 \ kN \ / m$$
$$A(s) = A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 + A_P = 399 \ cm^2$$

Die Werte der Flächenmomente 1. Ordnung können den Abbildungen 39 bis 41 entnommen werden:

$$A_{ij}(s) = -29.197 \ cm^3$$
 $A_{ij}(s) = -4.698 \ cm^3$ $A_{ij}(s) = -34.398 \ cm^4$

Die Schnittgrößen werden aus Tabelle 29 und die Streckenmomente aus der Liste in Kapitel 4.5.2 abgelesen.

$$T_{7,5}(x=5) = -\frac{1,1415}{100} + \frac{1,214}{100} \cdot \frac{399}{870} + \frac{19,89+0,462}{5.112.810} \cdot 29.197 + \frac{118,54+0,453}{1.406.540} \cdot 4.698 - \frac{6903+19,62}{4.573.840.000} \cdot 34.398 = 0,4558 \text{ kN / cm}$$

Negative Schubflüsse bedeuten, dass sie in der umgekehrten Richtung wirken als in Abbildung 76 dargestellt.

T _{i,j} (x)		:)		Stelle	x [m]	
[kN/cm]			0,0	5,0	15,0	30,0
		T _{0,1}	0,1533	0,0996	-0,000715	-0,1547
	0	T _{0,2}	-1,2473	-0,8109	0,000224	1,2475
		T _{0,5}	-1,0940	-0,7113	-0,000491	1,0927
	1	T _{1,0}	0	0	0	0
		T _{2,0}	-1,3001	-0,8457	0,000265	1,3003
	2	T _{2,3}	-0,5512	-0,3592	0,000193	0,5515
		T _{2,4}	-0,7489	-0,4864	0,000072	0,7489
	3	T _{3,2}	0	0	0	0
	4	T _{4,2}	0	0	0	0
	5	T _{5,0}	-0,0728	-0,0454	-0,006184	0,0604
ct i		T _{5,6}	0,1038	0,0683	-0,000018	-0,1038
lun		T _{5,7}	0,0309	0,0229	-0,006201	-0,0434
ш	6	T_6	0,0299	0,0197	-0,000001	-0,0299
	7	T _{7,5}	0,6870	0,4558	-0,011846	-0,7107
		T _{7,8}	1,0097	0,6800	-0,012760	-1,0354
		T _{7,11}	0,3227	0,2242	-0,000914	-0,3247
		T _{8,7}	1,0472	0,7049	-0,010331	-1,0680
	8	T _{8,9}	-0,0161	-0,0254	0,005537	0,0274
		T _{8,10}	-1,0311	-0,6795	0,004794	1,0406
	9	T _{9,8}	0	0	0	0
	10	T _{10,8}	0	0	0	0
	11	T ₁₁	0,0272	0,0197	0,000032	-0,0271
	12	T ₁₂	0,0106	0,0075	0,000021	-0,0106

Tabelle 32: Schubflüsse [kN/cm] im LF2b

Kontrollen an den Knoten 0, 2, 5, 7 und 8:

- Knoten 0: $T_{0.1} + T_{0.2} T_{0.5} = 0$
- Knoten 2: $T_{2,3} + T_{2,4} T_{2,0} = 0$
- Knoten 5: $T_{5,0} + T_{5,6} T_{5,7} = 0$
- Knoten 7: $T_{7,5} + T_{7,11} T_{7,8} = 0$
- Knoten 8: $T_{8,7} + T_{8,9} + T_{8,10} = 0$

Abbildung 77: Graphische Darstellung der mittleren Schubspannung τ_m im LF2b an der Stelle x = 5 m

4.6 LASTFALL 2c: Nutzlast über dem hohen Steg

In diesem Lastfall ist jene Lasteinflussbreite der Nutzlast gesucht, für die die Durchbiegung des hohen Steges in z-Richtung maximal wird. Diese soll mit Hilfe einer Einflusslinie ermittelt werden.

Abbildung 78: Wirkungsrichtung der Nutzlast

4.6.1 Einflusslinie

Abbildung 79: Laststellung für die Einflusslinie von LF2c

Linienlast:

 $q = 1,00 \ kN / m$

Normalabstand von Blech 2 zur Linienlast: $c = 160 \ cm$

Linienlasten in Hauptachsenrichtungen nach Gleichung (4.11):

 $p_{x} = 0,09950 \ kN \ / m$ $p_{y} = 0,17256 \ kN \ / m$ $p_{x} = 0,97996 \ kN \ / m$

Streckenmomente um die Hauptachsen nach Gleichung (4.14) und (4.15):

$$m_{y} = -0,05085 \ kNm / m$$

 $m_{z} = -0,04017 \ kNm / m$
 $m_{d} = 0,13886 \ kNm / m$

Streckenwölbbimoment bezogen auf das Hauptsystem nach Gleichungen (4.18) und (4.17):

$$m_{\phi} = -0,00543 \ kNm^2 / m$$

Stabendmomente nach Gleichungen (4.19), (4.23) und (4.24):

$M_{y,a} = 0 \ kNm$	$M_{y,e} = -1,4142 \ kNm$
$M_{\frac{\kappa}{\delta,a}} = 0 \ kNm$	$M_{\frac{n}{2},e} = 1,7227 \ kNm$
$M_{\check{a},a} = 0 \ kNm^2$	$M_{\check{a},e} = -0,2538 \ kNm^2$

Die Stabendmomente und Linienlasten dieser Einflusslinie sind identisch mit der aus Lastfall 2b, die Biegelinien $v_M(x)$ und $w_M(x)$ können daher aus Kapitel 4.5.1 entnommen werden. Es unterscheidet sich nur die 4. Differentialgleichung:

<u>Differentialgleichung</u> *IV* : $EA_{\phi\phi} \vartheta^{IV} - GI_D \vartheta^{II} = m_d$ (Analogiemodell)

Zur Berechnung des Torsionsdrehwinkels werden die "Studienblätter für Baustatik 2" aus Anhang A herangezogen.

$$\xi = \frac{x}{l}$$
 und $\overline{\xi} = 1 - \frac{x}{l}$

Stabkennzahl: $\varepsilon = 1,194$

Torsionsdrehwinkel $\vartheta(\xi)$ nach Tabelle 13 im Anhang A:

$$GI_{D} \cdot \vartheta(\xi) \land N \cdot \Delta w(\xi) = \left(\xi - \frac{\sinh \varepsilon \xi}{\sinh \varepsilon}\right) \cdot M_{\omega,\varepsilon} + \left[\frac{1}{\varepsilon^{2}} \cdot \left(\frac{\cosh \varepsilon (0, 5 - \xi)}{\cosh (\varepsilon/2)} - 1\right) + \frac{\xi \overline{\xi}}{2}\right] \cdot m_{d} \cdot \ell^{2}$$

$$GI_{D} \cdot \vartheta(\xi) = \left(\xi - \frac{\sinh(1,194 \cdot \xi)}{\sinh(1,194)}\right) \cdot (-0,2538) + \left[\frac{1}{1,194^{2}} \cdot \left(\frac{\cosh(1,194(0,5-\xi))}{\cosh(1,194/2)} - 1\right) + \frac{\xi\overline{\xi}}{2}\right] \cdot 0,13886 \cdot 30^{2}$$

$$\vartheta(\xi) = -0,57537 + 0,040874 \cdot \xi - 0,04104 \cdot \xi^{2} + 0,05737 \cdot \cosh(1,194 \cdot \xi) - 0,03067 \cdot \sinh(1,194 \cdot \xi)$$

x [m]	0,0	5,0	10,0	15,0	20,0	25,0	30,0
q [rad]	0	6,695E-04	1,148E-03	1,319E-03	1,145E-03	6,660E-04	0

Tabelle 33: Werte des T	Forsionsdrehwinkels $artheta(artheta)$	ξ) i	m LF2c in Radiant
-------------------------	--	-----------	-------------------

Die Linienlast $(q = 1 \ kN \ m)$ verursacht Verschiebungen in Richtung der Hauptachsen, sowie eine Verdrehung des Querschnitts. Aus dem Verschiebungszustand (Abbildung 80) kann der Nulldurchgang des Deckbleches über die Brückenlänge ermittelt werden. Dadurch wird jene Lasteinflussbreite gefunden, die die größte Durchbiegung des hohen Steges in *z*-Richtung hervorruft. Bedingt die Lagerung kann sich der Querschnitt am Brückenanfang und –ende in der Querschnittsebene nicht verschieben und nicht verdrehen. Die Lasteinflussbreite ist dort daher Null. Für die weitere Berechnung wird nun die maximale Lasteinflussbreite in Brückenmitte $(x = 15 \ m)$ herangezogen.

Abbildung 80: schematischer Verschiebungszustand in Brückenmitte

Für die gesuchte Lasteinleitungsbreite *b* muss nun die Verschiebung ς des Deckblechs in *z*-Richtung berechnet werden.

$$\varsigma_i = v_M \left(x = 15 \right) \cdot \sin \alpha + w_M \left(x = 15 \right) \cdot \cos \alpha + \vartheta \left(x = 15 \right) \cdot \left(y_i - y_M \right)$$

 y_i, y_M ... Koordinaten des Grundsystems

Tabelle 34: Verschiebung	ζ_i	des Deckblechs im LF2c
--------------------------	-----------	------------------------

Punkt i	1	0	5	7	11
ς [cm]	0,139	0,152	0,258	0,363	0,469

Wie aus Tabelle 34 ersichtlich befindet sich der Nulldurchgang des Deckblechs nicht im Bereich des Querschnitts. Die Lasteinflussbreite b ist also das gesamte Deckblech.

Dieser Lastfall entspricht somit dem Lastfall 2a (siehe Kapitel 4.4).

4.7 LASTFALL 3a: Wind als Druck

4.7.1 Einwirkungen

Der Wind wirkt als Linienlast *w* in Deckblechhöhe.

Abbildung 81: Wirkungsrichtung des Lastfalls 3a

Teilsicherheitsbeiwert:	$\gamma_w = 1,00$
charakteristischer Wert des Windes:	$w_k = -3,00 \ kN / m$
Bemessungswert des Windes:	$w_{Ed} = \gamma_W \cdot w_k = -6,75 \ kN / m$

Linienlasten in Hauptachsenrichtungen nach Gleichung (4.11):

$$p_{\frac{1}{2}} = 0$$

 $p_{\frac{1}{2}} = -2,955 \ kN \ / m$
 $p_{\frac{1}{2}} = 0,520 \ kN \ / m$

Streckenmomente um die Hauptachsen nach Gleichung (4.14) und (4.15):

$$m_{y} = 0$$

$$m_{s} = 0$$

 $m_d = 0,8144 \ kNm / m$

Streckenwölbmoment bezogen auf das Hauptsystem nach Gleichungen (4.18) und (4.17):

$$m_{\omega} = 0$$

Stabendmomente nach Gleichungen (4.19), (4.23) und (4.24):

$$M_{\underline{y},a} = 0 \qquad M_{\underline{y},e} = 0$$
$$M_{\underline{z},a} = 0 \qquad M_{\underline{z},e} = 0$$
$$M_{\underline{z},e} = 0 \qquad M_{\underline{z},e} = 0$$

4.7.2 Differentialgleichung *II*: $EA_{yy}v_M^{IV} = p_y$

Durch Einsetzen von $p_{\frac{1}{2}}$ in (3.25) erhält man:

$$\Rightarrow EA_{yy} \cdot \frac{d^4 v_M(x)}{dx^4} = -2,955$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$EA_{yy} \cdot \frac{d^{3}v_{M}(x)}{dx^{3}} = -2,955 \cdot x + C_{1}$$

$$EA_{yy} \cdot \frac{d^{2}v_{M}(x)}{dx^{2}} = -2,955 \cdot \frac{x^{2}}{2} + C_{1} \cdot x + C_{2}$$

$$EA_{yy} \cdot \frac{dv_{M}(x)}{dx} = -2,955 \cdot \frac{x^{3}}{6} + C_{1} \cdot \frac{x^{2}}{2} + C_{2} \cdot x + C_{3}$$

$$EA_{yy} \cdot v_{M}(x) = -2,955 \cdot \frac{x^{4}}{24} + C_{1} \cdot \frac{x^{3}}{6} + C_{2} \cdot \frac{x^{2}}{2} + C_{3} \cdot x + C_{4}$$

Die Integrationskonstanten C_1 , C_2 , C_3 und C_4 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2). Diese lauten:

$$v_M(x=0) = 0 \qquad \qquad \Rightarrow \qquad C_4 = 0$$

$$M_{ij}(x=0) = EA_{ijj} \cdot \frac{d^2 v_M}{dx^2}(x=0) = 0 \qquad \Rightarrow \qquad C_2 = 0$$

$$M_{\sharp}(x=L) = EA_{\sharp\sharp} \cdot \frac{d^2 v_M}{dx^2}(x=L) = 0 \qquad \Rightarrow \qquad C_1 = 44,318$$

$$v_M(x=L) = 0 \qquad \Rightarrow \qquad C_3 = -3323,865$$

Die Gleichung für die **Biegelinie** $v_M(x)$ im Schubmittelpunkt M ergibt sich somit zu:

$$v_M(x) = -3,0957 \cdot 10^{-4} \cdot x + 6,8794 \cdot 10^{-7} \cdot x^3 - 1,1466 \cdot 10^{-8} \cdot x^4$$

Über die Differentialbeziehungen nach Kapitel 3.6 können nun die Funktionen der Verformungsgrößen und der Schnittgrößen hergeleitet werden:

Querschnittsdrehwinkel $\varphi_{\frac{1}{2}}(x)$ (3.35):

$$\frac{dv_M(x)}{dx} = \varphi_{\frac{5}{2}}(x) = -3,0957 \cdot 10^{-4} + 2,0638 \cdot 10^{-6} \cdot x^2 - 4,5863 \cdot 10^{-8} \cdot x^3$$

Moment $M_{\frac{1}{2}}(x)$ (3.36):

$$\frac{d^2 v_M(x)}{dx^2} \cdot EA_{yy} = M_{y}(x) = 44,318 \cdot x - 1,4773 \cdot x^2$$

Querkraft $Q_{y}(x)$ (3.37):

$$-\frac{d^{3}v_{M}(x)}{dx^{3}} \cdot EA_{yy} - m_{z} = Q_{y}(x) = -44,318 + 2,9545 \cdot x$$

4.7.3 Differentialgleichung *III*: EA_{33} $w_M^{IV} = p_{3}$

Durch Einsetzen von $p_{\frac{1}{2}}$ in (3.25) erhält man:

$$\Rightarrow EA_{\frac{88}{88}} \cdot \frac{d^4 w_M(x)}{dx^4} = 0,520$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$EA_{\frac{35}{35}} \cdot \frac{d^3 w_M(x)}{dx^3} = 0,520 \cdot x + C_1$$

$$EA_{\frac{35}{35}} \cdot \frac{d^2 w_M(x)}{dx^2} = 0,520 \cdot \frac{x^2}{2} C_1 \cdot x + C_2$$

$$EA_{\frac{35}{35}} \cdot \frac{dw_M(x)}{dx} = 0,520 \cdot \frac{x^3}{6} + C_1 \cdot \frac{x^2}{2} + C_2 \cdot x + C_3$$

$$EA_{\frac{35}{35}} \cdot w_M(x) = 0,520 \cdot \frac{x^4}{24} + C_1 \cdot \frac{x^3}{6} + C_2 \cdot \frac{x^2}{2} + C_3 \cdot x + C_4$$

Die Integrationskonstanten C_1 , C_2 , C_3 und C_4 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2). Diese lauten:

$$w_{M}(x=0) = 0 \qquad \Rightarrow \qquad C_{4} = 0$$

$$M_{\frac{1}{2}}(x=0) = -EA_{\frac{1}{2}} \cdot \frac{d^{2}w_{M}}{dx^{2}}(x=0) = 0 \qquad \Rightarrow \qquad C_{2} = 0$$

$$M_{\frac{1}{2}}(x=L) = -EA_{\frac{1}{2}} \cdot \frac{d^{2}w_{M}}{dx^{2}}(x=L) = 0 \qquad \Rightarrow \qquad C_{1} = -7,804$$

$$w_M(x=L)=0 \qquad \Rightarrow \qquad C_3=585,29$$

Die Gleichung für die **Biegelinie** $w_M(x)$ im Schubmittelpunkt *M* ergibt sich somit zu:

$$w_M(x) = 1,9815 \cdot 10^{-4} \cdot x - 4,4034 \cdot 10^{-7} \cdot x^3 + 7,339 \cdot 10^{-9} \cdot x^4$$

Über die Differentialbeziehungen nach Kapitel 3.6 können nun die Funktionen der Verformungsgrößen und der Schnittgrößen hergeleitet werden:

Querschnittsdrehwinkel $\varphi_{i}(x)$ (3.39):

$$-\frac{dw_{M}(x)}{dx} = \varphi_{\frac{1}{2}}(x) = -1,9815 \cdot 10^{-4} + 1.3210 \cdot 10^{-6} \cdot x^{2} - 2,9356 \cdot 10^{-8} \cdot x^{3}$$

Moment $M_{y}(x)$ (3.40):

$$-\frac{d^{2}w_{M}(x)}{dx^{2}} \cdot EA_{xx} = M_{y}(x) = 7,8039 \cdot x - 0,2601 \cdot x^{2}$$

Querkraft $Q_{s}(x)$ (3.41):

$$-\frac{d^{3}w_{M}(x)}{dx^{3}} \cdot EA_{yy} + m_{y} = Q_{z}(x) = 7,8039 - 0,5203 \cdot x$$

4.7.4 Differential gleichung *IV*: $EA_{\phi\phi} \partial^{IV} - GI_D \partial^{II} = m_d$ (Analogie modell)

Zur Berechnung der Differentialgleichung der Wölbkrafttorsion werden die "Studienblätter für Baustatik 2" aus Anhang A herangezogen.

mit $\xi = \frac{x}{l}$ und $\overline{\xi} = 1 - \frac{x}{l}$

Stabkennzahl: $\varepsilon = 1,197$

Primäres Torsionsmoment $M_{Dp}(\xi)$ nach Tabelle 14 im Anhang A:

$$M_{Dp}(\xi) = GI_{D} \cdot \vartheta'(\xi) \land N \cdot \Delta \varphi(\xi) = \left[\frac{1}{2} - \xi - \frac{\sinh \varepsilon (0, 5 - \xi)}{\varepsilon \cosh (\varepsilon / 2)} - 1\right] \cdot m_{d} \cdot l$$
$$M_{Dp}(\xi) = \left[\frac{1}{2} - \xi - \frac{\sinh (1, 194(0, 5 - \xi))}{1, 194 \cdot \cosh (1, 194 / 2)} - 1\right] \cdot 0,8144 \cdot 30$$
$$M_{Dp}(\xi) = 12,2159 - 24,432 \cdot \xi - 17,281 \cdot \sinh (0,5972 - 1,194 \cdot \xi)$$

Sekundäres Torsionsmoment $M_{D\omega}(\xi)$ nach Tabelle 12 im Anhang A:

$$M_{D\omega}(\xi) \wedge Q_{\xi}(\xi) = \frac{\sinh \varepsilon (0, 5-\xi)}{\varepsilon \cosh (\varepsilon/2)} \cdot m_d \cdot l = \frac{\sinh (1, 197 \cdot (0, 5-\xi))}{1, 197 \cdot \cosh (1, 197/2)} \cdot 0,8144 \cdot 30$$
$$M_{D\omega}(\xi) = 17,281 \cdot \sinh (0,5972 - 1,194 \cdot \xi)$$

$$M_{\dot{\omega}}(\xi) \land M_{\dot{y}}(\xi) = \frac{1}{\varepsilon^{2}} \left(1 - \frac{\cosh \varepsilon (0, 5 - \xi)}{\cosh (\varepsilon / 2)} \right) \cdot m_{d} \cdot l^{2}$$
$$M_{\dot{\omega}}(\xi) = \frac{1}{1,194^{2}} \left(1 - \frac{\cosh \left(1,194 \cdot (0, 5 - \xi) \right)}{\cosh \left(1,194 / 2 \right)} \right) \cdot 0,8144 \cdot 30^{2}$$
$$M_{\dot{\omega}}(\xi) = 513,773 - 434,043 \cdot \cosh \left(0,5972 - 1,194 \cdot \xi \right)$$

Torsionsdrehwinkel $\vartheta(\xi)$ nach Tabelle 13 im Anhang A:

$$GI_{D} \cdot \vartheta(\xi) \wedge N \cdot \Delta w(\xi) = \left[\frac{1}{\varepsilon^{2}} \cdot \left(\frac{\cosh \varepsilon (0, 5-\xi)}{\cosh (\varepsilon/2)} - 1\right) + \frac{\xi \overline{\xi}}{2}\right] \cdot m_{d} \cdot l^{2}$$

$$GI_{D} \cdot \vartheta(\xi) = \left[\frac{1}{1,194^{2}} \cdot \left(\frac{\cosh \left(1,194(0, 5-\xi)\right)}{\cosh (1,194/2)} - 1\right) + \frac{\xi \overline{\xi}}{2}\right] \cdot 0,1844 \cdot 30^{2}$$

$$\vartheta(\xi) = -0,33745 + 0,2407 \cdot \xi - 0,2407 \cdot \xi^{2} + 0,2851 \cdot \cosh \left(0,5972 - 1,194 \cdot \xi\right)$$

Die erste Ableitung des Torsionsdrehwinkels $\vartheta(\xi)$ nach x ist die Verdrillung $\vartheta'(x)$:

Umformen der Funktion $\vartheta(\xi)$ auf $\vartheta(x)$:

$$\vartheta(x) = -0.33745 + 8.0235 \cdot 10^{-3} \cdot x + 2.6745 \cdot 10^{-4} \cdot x^{2}$$

0.2851 \cosh (0.5972 - 0.0398 \cdot x)

Bilden der ersten Ableitung nach x liefert die Verdrillung $\vartheta'(x)$:

$$\frac{d\vartheta(x)}{dx} = \vartheta'(x) = 8,0235 \cdot 10^{-3} - 5,349 \cdot 10^{-4} \cdot x - 0,0114 \cdot \sinh(0,5972 - 0,0398 \cdot x)$$

4.7.5 Differentialgleichung $I: -EAu_0^{II} = p_{k}$

Durch Einsetzen von p_{i} in (3.25) erhält man:

$$\Rightarrow -EA \cdot \frac{d^2 u_0(x)}{dx^2} = 0$$

Integration dieser Differentialgleichung führt zu folgenden Ausdrücken:

$$-EA \cdot \frac{du_0(x)}{dx} = C_1$$
$$-EA \cdot u_0(x) = C_1 \cdot x + C_2$$

Die Integrationskonstanten C_1 und C_2 dienen zum Anpassen der allgemeinen Lösung an die Randbedingungen (Kapitel 4.2):

$$N(x=0) = EA \cdot \frac{du_0}{dx}(x=0) = 0 \quad \Rightarrow \quad C_1 = 0$$

$$u_{0}(x = L) = -\varphi_{\frac{1}{2}}(x = L) \cdot 122, 8 \cdot 10^{-2} + \varphi_{\frac{1}{2}}(x = L) \cdot 35, 793 \cdot 10^{-2} + \vartheta'(x = L) \cdot 850, 22 \cdot 10^{-4}$$
$$u_{0}(x = L) = -1,982 \cdot 10^{-4} \cdot 122, 8 \cdot 10^{-2} + 3,096 \cdot 10^{-4} \cdot 35,793 \cdot 10^{-2} - 8,331 \cdot 10^{-4} \cdot 850, 22 \cdot 10^{-4}$$
$$u_{0}(x = L) = -2,035 \cdot 10^{-4} \implies C_{2} = 3717,52$$

Die Gleichung für die **Verschiebung** $u_0(x)$ ergibt sich somit zu:

$$u_0(x) = -2,035 \cdot 10^{-4}$$

Normalkraft N(x) (3.33):

$$EA \cdot \frac{du_0(x)}{dx} = N(x) = 0$$

4.7.6 Zusammenfassung der Schnittgrößen

Schnitt		Stelle x [m]					
gr	ößen	0,0	5,0	15,0	30,0		
N	[kN]	0	0	0	0		
M_{y}	[kNm]	0	32,52	58,53	0		
M_{k}	[kNm]	0	184,66	332,39	0		
M	[kNm²]	0	44,87	79,73	0		
Q_y	[kN]	-44,32	-29,55	0	44,32		
$Q_{\mathfrak{z}}$	[kN]	7,80	5,20	0	-7,80		
$M_{D\omega}$	[kNm]	10,94	7,06	0	-10,94		
M_{Dp}	[kNm]	1,27	1,08	0	-1,27		

Tabelle 35: Zusammenfassung der Schnittgrößen im LF3a

4.7.7 Normalspannungen

Die Normalspannungen werden nach Gleichung (3.44) berechnet:

$$\sigma_{i}(x) = \frac{N(x)}{A} + \frac{M_{y}(x)}{A_{yy}} \cdot \underbrace{\mathbb{I}}_{i} - \frac{M_{y}(x)}{A_{yy}} \cdot \underbrace{\mathbb{I}}_{i} + \frac{M_{\omega}(x)}{A_{\omega\omega}} \cdot \underbrace{\mathbb{I}}_{i}$$

Tabelle 36: Normalspannungen [kN/cm²] im LF3a

σ _i (x) [kN/cm²]			Stelle	x [m]	
		0,0	5,0	15,0	30,0
	0	0	0,7419	1,3268	0
	1	0	0,8081	1,4454	0
	2	0	0,1081	0,2025	0
	3	0	0,3386	0,6139	0
	4	0	-0,1225	-0,2090	0
Ţ.	5	0	0,2122	0,3783	0
huk	6	0	0,1640	0,2929	0
ā	7	0	-0,3174	-0,5702	0
	8	0	-0,0155	-0,0298	0
	9	0	0,4775	0,8488	0
	10	0	-0,5085	-0,9085	0
	11	0	-0,8471	-1,5187	0
	12	0	-0,7385	-1,3252	0

Abbildung 82: Graphische Darstellung der Normalspannung im LF3a an der Stelle x = 15 m

4.7.8 Primäre Schubspannungen

Die primären Schubspannungen τ_p aus St. Venant'scher Torsion sind über die Profildicke *t* antimetrisch verteilt und berechnen sich nach Gleichung (3.45):

$$\tau_{p,\max,i} = \pm \frac{M_{Dp}}{I_D} t_i$$

Je nach Profildicke *t* ergeben sich folgende Maximalwerte der primären Schubspannungen.

τ _{p,max} (x) [kN/cm²]		Blocho	Stelle x [m]					
		Dieche	0,0	5,0	15,0	30,0		
e	1,0	6, 12	0,06744	0,05733	0	0,06744		
in dick	1,2	1, 2, 5, 7, 11	0,08093	0,06879	0	0,08093		
t [c	3,0	3, 4	0,20232	0,17198	0	0,20232		
٩	4,0	9, 10	0,26975	0,22930	0	0,26975		

Tabelle 37: Beträge der primären Schubspannungen [kN/cm²] im LF3a

4.7.9 Schubflüsse

Die mittleren Schubspannungen τ_m aus den Querkräften und der Wölbkrafttorsion erzeugen im Gegensatz zu den primären Schubspannungen Schubflüsse in den Profilmittellinien $(T = \tau_m \cdot t)$. Sie lassen sich durch Gleichung (3.46) ermitteln:

$$T_{i,j} = T_0 - \int_{s=0}^{s} \overline{p}_{\frac{x}{2}} \, ds + \frac{p_{\frac{x}{2}}}{A} A(s) - \frac{Q_{\frac{y}{2}} + m_{\frac{x}{2}}}{A_{\frac{yy}{2}}} A_{\frac{y}{2}}(s) - \frac{Q_{\frac{z}{2}} - m_{\frac{y}{2}}}{A_{\frac{zz}{2}}} A_{\frac{z}{2}}(s) - \frac{M_{D\omega} + m_{\omega}}{A_{\omega\omega}} A_{\omega}(s)$$

- \overline{p}_{k} ...äußere Flächenlast in Richtung
- p_{*} ...resultierende Linienlast der äußere Flächenlast \overline{p}_{*}
- $T_0 = 0$, da die Laufkoordinate *s* an einem freien Ende beginnt.

Abbildung 83: gewählte Richtung der Laufkoordinate s

 $T_{i,i}$... Wert des Schubflusses am Knoten *i*, wobei *j* der Nachbarpunkt ist

Beispielrechnung für den Schubfluss $T_{7.5}$ für x = 5 m:

Man stelle sich vor, man trenne den Querschnitt links von Knoten 7 ab und betrachtet diesen Teil. Dann gilt:

$$\int_{s=0}^{s} \overline{p}_{\frac{x}{2}} \, ds = \frac{p_{\frac{x}{2}}}{b} \cdot \left(l_1 + l_5 + l_7\right) = 0$$

Die Werte der Flächenmomente 1. Ordnung können den Abbildungen 28 bis 30 entnommen werden:

$$A_{\frac{1}{2}}(s) = -29.197 \ cm^3$$
 $A_{\frac{1}{2}}(s) = -4.698 \ cm^3$ $A_{\frac{1}{2}}(s) = -34.398 \ cm^4$

Die Schnittgrößen werden aus Tabelle 29 und die Streckenmomente aus der Liste in Kapitel 4.5.2 abgelesen.

$$T_{7,5}(x=5) = -\frac{29,55}{5.112.810} \cdot 29.197 + \frac{5,20}{1.406.540} \cdot 4.698 + \frac{706,33}{4.573.840.000} \cdot 34.398$$
$$T_{7,5}(x=5) = 0,14604 \text{ kN / cm}$$

Negative Schubflüsse bedeuten, dass sie in der umgekehrten Richtung wirken als in Abbildung 83 dargestellt.

Tabelle 38: Schubflüsse [kN/cm] im LF3a

T _{i,j} (x)		.)	Stelle x [m]					
[kN/cm]			0,0	5,0	15,0	30,0		
	0	T _{0,1}	-0,022502	-0,014761	0	0,022502		
		T _{0,2}	-0,090740	-0,062592	0	0,090740		
		T _{0,5}	-0,113242	-0,077352	0	0,113242		
	1	T _{1,0}	0	0	0	0		
		T _{2,0}	-0,029508	-0,021815	0	0,029508		
	2	T _{2,3}	-0,031529	-0,021855	0	0,031529		
		T _{2,4}	0,002022	0,000040	0	-0,002022		
	3	T _{3,2}	0	0	0	0		
	4	T _{4,2}	0	0	0	0		
	5	T _{5,0}	-0,224161	-0,149971	0	0,224161		
kt i		T _{5,6}	-0,006550	-0,004276	0	0,006550		
lun		T _{5,7}	-0,230711	-0,154247	0	0,230711		
ш	6	T_6	-0,001986	-0,001299	0	0,001986		
		T _{7,5}	-0,218789	-0,146035	0	0,218789		
	7	T _{7,8}	-0,056020	-0,038480	0	0,056020		
		T _{7,11}	0,162770	0,107555	0	-0,162770		
		T _{8,7}	-0,008145	-0,006470	0	0,008145		
	8	T _{8,9}	-0,067790	-0,043507	0	0,067790		
		T _{8,10}	0,075935	0,049977	0	-0,075935		
	9	T _{9,8}	0	0	0	0		
	10	T _{10,8}	0	0	0	0		
	11	T ₁₁	0,028009	0,018513	0	-0,028009		
	12	T ₁₂	0,008896	0,005885	0	-0,008896		

Kontrollen an den Knoten 0, 2, 5, 7 und 8:

- Knoten 0: $T_{0,1} + T_{0,2} T_{0,5} = 0$ Knoten 2: $T_{2,3} + T_{2,4} - T_{2,0} = 0$
- Knoten 5: $T_{5,0} + T_{5,6} T_{5,7} = 0$
- Knoten 7: $T_{7,5} + T_{7,11} T_{7,8} = 0$

Knoten 8: $T_{8,7} + T_{8,9} + T_{8,10} = 0$

Abbildung 84: Graphische Darstellung der mittleren Schubspannung τ_m im LF3a an der Stelle x = 5 m

4.8 LASTFALL 3b: Wind als Sog

Der Wind wirkt als Linienlast *w* in Deckblechhöhe.

Abbildung 85: Wirkungsrichtung des Lastfalls 3b

Teilsicherheitsbeiwert:	$\gamma_w = 1,00$
charakteristischer Wert des Windes:	$w_k = +3,00 \ kN / m$
Bemessungswert des Windes:	$w_{Ed} = \gamma_W \cdot w_k = +6,75 \ kN / m$

Da dieser Lastfall in der Art der Einwirkung identisch mit Lastfall 3a ist und sich nur durch das Vorzeichen unterscheidet, können die Ergebnisse aus diesem entnommen und mit dem Faktor ψ multipliziert werden. Die separate Berechnung kann somit entfallen.

$$\psi = \frac{w_{Ed, LF3b}}{w_{Ed, LF3a}} = \frac{+6, 75}{-6, 75} = -1$$

5. VERGLEICH ENTKOPPELTES – GEKOPPELTES VERFAHREN

5.1 Allgemein

Die Berechnung nach dem "gekoppelten Verfahren" ist in [8] gezeigt. Sie liefert exakt dieselben Spannungen sowie Schubflüsse, wie die vorliegende Arbeit. Für den Vergleich werden die Unterschiede bei der Anwendung des jeweiligen Verfahrens erfasst und anschließend ein persönliches Fazit gezogen.

5.2 Unterschiede

5.2.1 Querschnittswerte

Zu Beginn der Berechnung nach dem "entkoppelten Verfahren" muss das Hauptachsensystem für vorliegenden Querschnitt ermittelt werden (Schwerpunkt, Schubmittelpunkt und Hauptachsen). Dies kann beim "gekoppelten Verfahren" entfallen.

5.2.2 Rechenweise

Für die "entkoppelte Methode" werden lineare, gewöhnliche Differentialgleichungen 4. Ordnung bzw. 2. Ordnung aufgestellt und gelöst. Die Lösungen liefern unmittelbar die Funktionen der Biegelinien für alle Schnittstellen. Aus den Biegelinien können dann über die Differentialbeziehungen alle Zustandsgrößen bestimmt werden.

Bei der "gekoppelten Methode" resultieren die Ergebnisse aus linearen Gleichungssystemen. Die Matrixglieder der Gleichungssysteme sind allerdings von der Schnittstelle x abhängig, daher ist es notwendig, für jedes x ein neues Gleichungssystem aufzustellen.

5.2.3 Handrechnung

Da für jede unbekannte Verschiebung jeweils eine eigene Differentialgleichung vorhanden ist, kann das "entkoppelte Verfahren" leicht händisch angewandt werden.

Das "gekoppelte Verfahren" kann mit etwas größerer Mühe ebenfalls per Hand gerechnet werden, da ein zeilenweises Lösen des Gleichungssystems möglich ist. Eine händische

Rechnung empfiehlt sich allerdings nur, wenn wenige Schnittstellen gefragt sind, da für jedes x alle Matrixglieder (bei Linienlasten höchstens 57) neu berechnet werden müssen. Die Ermittlung von Einflusslinien wird dadurch sehr umfangreich.

5.2.4 Schwerpunkt und Schubmittelpunkt

Bei der Anwendung der "gekoppelten Methode" muss die Schwerpunktslage sowie die Lage des Schubmittelpunkts nicht explizit berechnet werden. Dies stellt eine erhebliche Erleichterung dar. Falls der Lastfall Eigengewicht jedoch nicht idealisiert wird, indem ein Lastangriffspunkt außerhalb der Stabachse festgelegt wird, muss der Schwerpunkt mit einem geringen Mehraufwand trotzdem bestimmt werden.

5.2.5 Transparenz

Beim "entkoppelten Verfahren" können die Spannungen für jede Schnittgröße separat ausgerechnet werden, sodass parallel zur Berechnung eine Querschnittsoptimierung erfolgen kann. Zudem ist die Zahlenkontrolle während des Rechenvorgangs verhältnismäßig einfach.

5.3 Fazit

Die bequeme Anwendung des "gekoppelten Verfahrens" ist somit eher auf Sonderfälle beschränkt.

Die entkoppelten Differentialgleichungen überzeugen durch die klare Gliederung des Biegetorsionsproblems in vier Teilprobleme. Die Berechnung ist dadurch gut strukturiert und besser nachvollziehbar. Die vier einzelnen Teilprobleme lassen sich außerdem nacheinander lösen, was die Fehleranfälligkeit reduziert.

Diese Vorteile sind bei der "gekoppelten Methode" nicht gegeben. Die Berechnung ist dadurch weniger transparent. Außerdem ist der Rechenaufwand eher größer als bei der herkömmlichen Methode, denn die Übertragungsbeziehung liefert keine Funktionen für die Zustandsgrößen, sondern muss für jede Schnittstelle neu aufgestellt werden.

6. DAS DRILLTRÄGERVERFAHREN

6.1 Allgemeines

Die exakte Ermittlung der Wölbspannungen σ_{ω} in offenen Profilen nach der Theorie der Wölbkrafttorsion ist bereits in den Kapiteln 3 und 4 gezeigt worden. Für die meisten Fälle in der Praxis wird es jedoch genügen, den Einfluss der Wölbkrafttorsion auf den gesamten Spannungszustand abzuschätzen. Im Folgenden wird ein Näherungsverfahren, das Drillträgerverfahren nach Dr.-Ing. Fritz Resinger [9], demonstriert. Bisher wurde das Drillträgerverfahren nur für einfachsymmetrische Profile hergeleitet und angewendet. Ziel dieser Diplomarbeit ist es nun, dieses Verfahren so zu erweitern, dass es für allgemeine Querschnitte Gültigkeit hat und auf das Musterbeispiel anwendbar ist.

6.2 Das Drillträgerverfahren nach Resinger

6.2.1 Grundgedanke

Die Grundidee des Drillträgerverfahrens nach Resinger [9] ist es, ein Torsionsproblem an einfachsymmetrischen offenen Profilen durch ein einfaches Biegeproblem zu beschreiben.

Die Differentialgleichung der Wölbkrafttorsion lautet:

$$EA_{\breve{a}\breve{a}\breve{a}} \vartheta^{\prime\prime} - GI_D \vartheta^{\prime\prime} = m_d \tag{6.1}$$

Ersetzt man nun das Steckentorsionsmoment durch ein Kräftepaar mit dem Hebelarm b

$$m_d = p^* \cdot b$$

Abbildung 86: Drillträgermodell

und den Torsionsdrehwinkel ϑ durch die gegenseitige Verschiebung zweier Träger im Abstand *b* (Abbildung 86)

$$\vartheta = \frac{2w^*}{b}$$

so geht die Differentialgleichung (6.1) in folgende Form über:

$$\frac{2 E A_{\breve{b}\check{b}}}{b^2} \cdot w^{*_{IV}} - \frac{2 G I_D}{b^2} \cdot w^{*_{II}} = p^*$$

Führt man nun noch die Abkürzungen

$$A_{zz}^{*} = \frac{2A_{bbb}}{b^{2}} \text{ und } N^{*} = \frac{2GI_{D}}{b^{2}}$$
 (6.2)

ein, so erhält man die Differentialgleichung des Biegeträgers mit Zugkraft (Theorie 2. Ordnung):

$$EA_{zz}^* w^{*IV} - N^* w^{*II} = p^*$$

 A_{zz}^* mit der Dimension cm^4 kommt tatsächlich die Bedeutung eines Biegeträgheitsmoments zu und N^* mit der Einheit kN entspricht wirklich einer Kraft.

Somit kann die Wölbsteifigkeit des Gesamtquerschnitts durch die Biegesteifigkeiten zweier losgelöster Drillträger ersetzt werden und das Problem der Wölbkrafttorsion durch ein Biegeproblem 2. Ordnung abgebildet werden (Abbildung 87).

Abbildung 87: Verlauf der Wölbspannungen

6.2.2 Querschnittswerte des Drillträgers

Im Spannungsbild in Abbildung 87 ist zu erkennen, dass bei einfachsymmetrischen Querschnitten das Deckblech zur einen Hälfte gestaucht und zur anderen gezogen wird. Die Resultierende dieser Spannungsverteilung ist ein Biegemoment ($M_{z,OG}$) bezogen auf die Trägheitsachse des Deckblechs. Man schneidet nun ein Stück Deckblech mit der Länge dxheraus und betrachtet es losgelöst vom Rest des Querschnitts.

Abbildung 88: Verformung des Deckblechs (Draufsicht) [10]

Das Deckblech soll durch einen 2-Punkt-Querschnitt ersetzt werden, der dasselbe Verformungsbild erzeugt. Das Biegemoment $M_{z,OG}$ wird als Kräftepaar an diesem angesetzt (Abbildung 88). Gesucht ist nun die Fläche A_{OG}^* pro Ersatzquerschnitt, damit die Forderung der Wirkungsäquivalenz erfüllt wird. Die Krümmung κ des Deckblech errechnet sich zu:

$$\kappa = \frac{M_{z,OG}}{EA_{yy,OG}} \tag{6.3}$$

Der 2-Punkt-Querschnitt erfährt durch die Normalkräfte N_{OG}^* eine Dehnung bzw. eine Stauchung ε :

$$\varepsilon = \frac{N_{OG}^*}{EA_{OG}^*} = \frac{M_{z,OG}}{b \cdot EA_{OG}^*}$$
(6.4)

 A^*_{OG} ...Obergurtfläche pro Drillträger

Durch die Forderung, dass sich der 2-Punkt-Querschnitt wirkungsäquivalent zum Deckblech verhält, muss gelten:

$$\kappa = \frac{2\varepsilon}{b} \tag{6.5}$$

Einsetzen von (6.3) und (6.4) in (6.5) ergibt die Obergurtfläche A_{OG}^* pro Drillträger:

$$A_{OG}^* = \frac{2A_{yy,OG}}{b^2}$$
(6.6)

Die Geometrie des Drillträgers ist somit bekannt.

Nach Berechnung der Biegesteifigkeit A_{zz}^* des Drillträgers und der Ermittlung des Biegemoments M^* lassen sich die Wölbspannungen (= Biegespannungen) einfach bestimmen:

$$\sigma^* = \frac{M^*}{A_{zz}^*} \cdot z^*$$

Mittels des Drillträgerverfahrens für einfachsymmetrische Querschnitte ist es also möglich, die Wölbspannungen näherungsweise zu ermitteln, ohne dass man den Wölbwiderstand $A_{\omega\omega}$ und die Einheitsverwölbung ω des Querschnitts kennen muss.

6.2.3 Beispiel 1: Symmetrischer Hut-Querschnitt

Einwirkung:	$m_d = 2,0 \ kNm / m$	Abstände der Stege:	b = 200 mm
Länge:	$l = 500 \ cm$	Statisches System: G	abelgelagerter Einfeldbalken

Es wird der Lastfall m_d untersucht, das Eigengewicht wird vernachlässigt.

Abbildung 90: Einheitsverwölbung ω [cm²] zu Bsp. 1

Exakte Berechnung nach der Wölbkrafttorsion

Torsionsträgheitsmoment:

$$I_D = \frac{1}{3} \cdot \sum_{i=1}^{3} l_i \cdot t_i^3 = 22,67 \ cm^4$$

 $A_{\phi\phi} = 180.606 \ cm^6$

 $\varepsilon = l \sqrt{\frac{GI_D}{EA_{**}}} = 3,47$

Stabkennzahl:

Wölbbimoment
$$M_{\omega}\left(x=\frac{l}{2}\right)$$
 nach Tabelle 11 im Anhang A:

$$M_{\omega}(\xi=0,5) = \frac{1}{\varepsilon^2} \left(1 - \frac{\cosh \varepsilon (0,5-\xi)}{\cosh (\varepsilon/2)} \right) \cdot m_d \cdot l^2 = 27280,0 \ kNcm^2$$

Wölbspannungen:

$$\sigma_{\omega} = \frac{M_{\omega}}{A_{\omega\omega}} \cdot \omega$$

Tabelle 39: exakte Wölbspannungen in den Stegen [kN/cm²]

linker Steg	ω [cm²]	σ_{ω} [kN/cm ²]		rechter Steg	ω [cm²]	σ_{ω} [kN/cm ²]
oben	36,09	5,450		oben	-36,09	-5,450
unten	-123,91	-18,720		unten	123,91	18,720

Berechnung nach dem Drillträgerverfahren

Wie in der Herleitung gezeigt, basieren das Analogiemodell der Wölbkrafttorsion und die Herleitung des Drillträgerverfahrens auf der Theorie 2. Ordnung. In diesem Beispiel wird der Drillträger auch nach Theorie 1. Ordnung berechnet, um die Abweichungen der Ergebnisse aufzuzeigen.

Kräftepaar:

$$p^* = \pm \frac{m_d}{b} = \pm 10 \ kN \ / m$$

Biegeträgheitsmoment des Obergurtes:

$$A_{yy,OG} = \frac{36^3 \cdot 1}{12} = 3888 \ cm^4$$

Aus Gleichung (6.6):

$$A_{OG}^* = \frac{2A_{yy,OG}}{b^2} = 19,44 \ cm^2$$

 $r_{OG}^* = 2,49 \ cm$

Schwerpunktlage des Drillträgers:

$$z_s^* = \frac{\sum (A \cdot z^*)}{\sum A} = \frac{16 \cdot 8}{16 + 19,44} = 3,612 \ cm$$

Biegesteifigkeit des Drillträgers:

$$A_{zz}^{*} = \sum A_{zz,eigen}^{*} + \sum (A \cdot z^{*2}) - z_{s}^{*2} \cdot \sum A$$

= $\frac{2,49^{4}\pi}{4} + \frac{16^{3} \cdot 1}{12} + 16 \cdot 8^{2} - 3,612^{2} \cdot (19,44+16)$
= 933,1 cm⁴

Die Stabkennzahl lässt sich unter Berücksichtigung von (6.2) auch ohne Kenntnis des Wölbwiderstands $A_{\phi\phi}$ berechnen:

$$\varepsilon = l \sqrt{\frac{GI_D}{EA_{dot}}} = l \sqrt{\frac{2GI_D}{EA_{zz}^* b^2}} = 3,47$$

Berechnung des Biegemoments in Stabmitte nach Theorie 1. Ordnung:

$$M_I^* = \pm \frac{p^* l^2}{8} = \pm 3125,0 \ kNcm$$

Berechnung des Biegemoments in Stabmitte nach Theorie 2. Ordnung:

$$M_{II}^{*} = \pm \frac{1}{\varepsilon^{2}} \left(1 - \frac{\cosh \varepsilon (0, 5 - \xi)}{\cosh (\varepsilon / 2)} \right) \cdot p^{*} \cdot l^{2} = \pm 1364, 0 \text{ kNcm}$$

Verhältnis des Biegemoments nach Th. 1. O. zu dem nach Th. 2. O.:

$$\frac{M_{I}^{*}}{M_{II}^{*}} = 2,291$$

Spannungen nach dem Drillträgerverfahren: σ^{*}

$$\sigma^* = \frac{M^*}{A_{zz}^*} \cdot z^*$$

linkor Stog	7 * [cm]	σ* [kN/cm²]			
lilikel Steg	z [cm]	Th. 1. O.	Th. 2. O.		
oben	-3,61	12,096	5,281		
unten	19,61	-41,489	-18,113		

rochtor Stog	7 * [cm]	σ* [kN/cm ²]			
Techier Sleg	z [cm]	Th. 1. O.	Th. 2. O.		
oben	-3,61	-12,096	-5,281		
unten	19,61	41,489	18,113		

Tabelle 40: Wölbspannungen in den Stegen nach dem DTV [kN/cm²]

Gegenüberstellung Wölbkrafttorsion – Drillträgerverfahren

	WKT	DTV					
linker Steg	VVIXI	Th. ´	1. 0.	Th. 2. O.			
	σ_{ω}	σ* σ*/σ _ω		σ*	σ^*/σ_ω		
oben	5,45	12,096	221,9%	5,281	96,9%		
unten	-18,72	-41,489 221,6 9		-18,113	96,8%		

	WKT	DTV					
rechter Steg	VVIXI	Th. ´	1. 0.	Th. 2. O.			
	σ_{ω}	σ*	σ^*/σ_ω	σ*	σ^*/σ_ω		
oben	-5,45	-12,096	221,9%	-5,281	96,9%		
unten	18,72	41,489 221,		18,113	96,8%		

Tabelle 41 zeigt, dass das Drillträgerverfahren, berechnet nach Theorie 2. Ordnung, eine sehr gute Abschätzung der Wölbspannungen liefert. Die Theorie 1. Ordnung liefert dagegen in diesem Beispiel mehr als doppelt so große Werte.

Das Verhältnis der Spannungen nach Theorie 1. Ordnung zu denen nach Theorie 2. Ordnung ändert sich allerdings, wenn man andere Stablängen *l* betrachtet. Um eine Aussage über ihren Einfluss treffen zu können, werden nun die Spannungen aus unterschiedlichen Stablängen bei gleich bleibender Einwirkung und demselben Querschnitt in nachfolgender Tabelle zusammengefasst. Durch die Symmetrie des Querschnitts sind die Spannungen antimetrisch verteilt. Für das Analysieren der folgenden Ergebnisse wird nur mehr der linke Steg betrachtet.

1	akor S	tog		т	DTV					
	ikei 3	leg			Th. 1. O. Th. 2. O.					
l [m]	ε [-]		M _ω [kNcm²]	σ_{ω}	M* [kNcm]	σ*	σ*/σ ω	M* [kNcm]	σ*	σ */σ _ω
1.0	0 60	oben	2380.2	0,48	-125.0	0,48	101,7%	-110.0	0,46	96,9%
1,0	0,03	unten	2300,2	-1,63	-125,0	-1,66	101,6%	-119,0	-1,58	96,8%
1.5	1.04	oben	5051.8	1,01	-281,3	1,09	107,8%	-252,6	0,98	96,9%
1,5	1,04	unten	5051,6	-3,47		-3,73	107,7%		-3,35	96,8%
2.5	1 74	oben	11967.6	2,37	2,37	3,02	127,5%	-593,4	2,30	96,9%
2,5	1,74	unten	11007,0	-8,14	-701,3	-10,37	127,4%		-7,88	96,8%
7.5	5 21	oben	25240.6	7,06	7021.2	27,22	385,4%	4707.0	6,84	96,9%
7,5	5,21	unten	30340,0	-24,25	-7031,3	-93,35	385,0%	-1767,0	-23,46	96,8%
10.0	6.05	oben	20061.0	7,77	-12500,0	48,38	623,0%	4040.4	7,52	96,9%
10,0	0,95	unten	30001,9	-26,66		-12500,0	5,66 -12500,0 -165,95 622,4% -194	-1943,1	-25,80	96,8%

Tabelle 42: Gegenüberstellung der Spannungen [kN/cm²] in Stabmitte
für verschiedene Stablängen

Aus Tabelle 42 kann man erkennen, dass die Ermittlung der Spannungen mit dem Drillträgerverfahren nach Theorie 1. Ordnung bei "kleinen" Stabkennzahlen ($\varepsilon \le 1,0$) bereits eine gute Näherung darstellt. Bei "größeren" ($\varepsilon > 1,0$) muss der Drillträger allerdings nach Theorie 2. Ordnung berechnet werden. Unterbleibt dies, liegt man zwar auf der sicheren Seite, die Abschätzung der Wölbspannungen liefert aber keine brauchbaren Werte.

6.3 Erweiterung des DTVs für asymmetrische Querschnitte

6.3.1 Herleitung

Die Herleitung erfolgt auf Basis der unveröffentlichten "Studie zur Erweiterung des Drillträgerverfahrens auf asymmetrische Querschnitte" von Univ.Prof. Dipl.-Ing. Dr.techn. Josef Fink [11]:

Bei einfachsymmetrischen Querschnitten sind die Wölbspannungen bzw. Wölbordinaten antimetrisch verteilt. Ihr Nulldurchgang fällt genau mit der Trägheitsachse des Deckblechs zusammen. Bei asymmetrischen Querschnitten ist dies nicht mehr gegeben (Abbildung 92).

Abbildung 92: Qualitative Wölbspannungsverteilung eines asymmetrischen Querschnitt

Die Spannungsverteilung im Deckblech wird also nicht mehr nur durch ein Moment erzeugt, sondern zusätzlich auch durch eine Normalkraft (Abbildung 93).

Abbildung 93: Verformung des Deckblechs (Draufsicht)

Aus der Krümmung des Deckblechs

$$\kappa = \frac{\varepsilon_{li} - \varepsilon_{re}}{a + b} = \frac{M_{z,OG}}{EA_{yy,OG}}$$

ergibt sich zu das Biegemoment $M_{_{z,OG}}$ zu:

$$M_{z,OG} = \frac{EA_{yy,OG}}{a+b} \cdot \left(\varepsilon_{li} - \varepsilon_{re}\right)$$
(6.7)

Durch Anschreiben der Dehnung $\varepsilon_{_{li}}$ über dem linken Steg

$$\varepsilon_{li} = \frac{N_{OG}}{EA_{OG}} + \frac{M_{z,OG}}{EA_{yy,OG}} \cdot a = \frac{N_{OG}}{EA_{OG}} + \frac{\varepsilon_{li} - \varepsilon_{re}}{a + b} \cdot a$$

ergibt sich nach Umformung die Normalkraft $N_{\rm OG}$ zu:

$$N_{OG} = \frac{EA_{OG}}{a+b} \cdot \left(\varepsilon_{li} \, b - \varepsilon_{re} \, a\right) \tag{6.8}$$

Für die Aufteilung der Normalkraft N_{OG} und des Biegemoments $M_{z,OG}$ auf die beiden Drillträger gelten folgende zwei Bedingungen:

1.
$$N_{OG} = N_{li}^* - N_{re}^*$$
 (6.9)
2. $M_{z,OG} = N_{li}^* \cdot a + N_{re}^* \cdot b$ (6.10)

Einsetzen von (6.9) in (6.10) ergibt:

$$N_{li}^{*} = \frac{M_{z,OG} + N_{OG} b}{a + b} \qquad bzw. \qquad N_{re}^{*} = \frac{M_{z,OG} - N_{OG} a}{a + b}$$

Formuliert man nun die Dehnungen am 2-Punkt-Querschnitt, so lassen sich die Ersatzflächen $(A_{OG,li}^*, A_{OG,re}^*)$ des Obergurtes ausdrücken:

$$\varepsilon_{li} = \frac{N_{li}^*}{EA_{OG,li}^*} = \frac{M_{z,OG} + N_{OG}b}{EA_{OG,li}(a+b)} \implies A_{OG,li}^* = \frac{N_{OG}b + M_{z,OG}}{\varepsilon_{li}E(a+b)}$$
$$\varepsilon_{re} = -\frac{N_{re}^*}{EA_{OG,re}^*} = -\frac{M_{z,OG} - N_{OG}a}{EA_{OG,re}^*(a+b)} \implies A_{OG,re}^* = \frac{N_{OG}a - M_{z,OG}}{\varepsilon_{re}E(a+b)}$$

Ersetzt man das Biegemoment $M_{z,OG}$ und die Normalkraft N_{OG} durch die Gleichungen (6.7) und (6.8), können die Obergurtflächen der Drillträger $A_{OG,li}^*$ und $A_{OG,re}^*$ allein durch die Dehnungen ε_{li} und ε_{re} beschrieben werden:

$$A_{OG,li}^{*} = \frac{A_{OG} b \left(\varepsilon_{li} b + \varepsilon_{re} a\right) + A_{yy,OG} \left(\varepsilon_{li} - \varepsilon_{re}\right)}{\varepsilon_{li} \left(a + b\right)^{2}}$$
(6.11)

$$A_{OG,re}^{*} = \frac{A_{OG} a \left(\varepsilon_{li} b + \varepsilon_{re} a\right) - A_{yy,OG} \left(\varepsilon_{li} - \varepsilon_{re}\right)}{\varepsilon_{re} \left(a + b\right)^{2}}$$
(6.12)

Aus den Gleichungen (6.11) und (6.12) ist zu erkennen, dass für die Berechnung der Drillträgerpunktflächen für asymmetrische Querschnitte die Dehnungen des Obergurtes an den Stellen der Stege bekannt sein müssen. Dies ist bei einfachsymmetrischen Querschnitten nicht erforderlich. Die Größe der Dehnungen ist nicht von Relevanz. Es können daher die Wölbordinaten im Sinne eines Einheitszustandes verwendet werden ($\varepsilon = \omega$).

In den nachfolgenden Beispielen werden die Querschnittswerte aus dem Querschnittsprogramm DUENQ [12] entnommen.

6.3.2 Beispiel 2: Hut-Querschnitt mit einem dicken Steg

Einwirkung: $m_d = 2,0 \ kNm / m$ Statisches System: Gabelgelagerter EinfeldbalkenLänge: $l = 1000 \ cm$

Es wird der Lastfall m_d untersucht, das Eigengewicht wird vernachlässigt.

Abbildung 94: Hut-Querschnitt mit einem dicken Steg

Abbildung 95: Einheitsverwölbung ω [cm²] zu Bsp. 2

Querschnittswerte aus [12]: $I_D = 322,67 \ cm^4$ $A_{aab} = 18.111.100 \ cm^6$

Stabkennzahl:

$$\varepsilon = l_{\sqrt{\frac{GI_D}{EA_{\dot{\omega}\dot{\omega}}}}} = 2,66$$
Exakte Berechnung nach der Wölbkrafttorsion

Wölbbimoment
$$M_{\omega}\left(x=\frac{l}{2}\right)$$
 nach Tabelle 11 im Anhang A:
 $M_{\omega}\left(\xi=0,5\right) = \frac{1}{\varepsilon^{2}}\left(1-\frac{\cosh\varepsilon\left(0,5-\xi\right)}{\cosh\left(\varepsilon/2\right)}\right) \cdot m_{d} \cdot l^{2} = 143016, 6 \ kNcm^{2}$
Wölbspannungen: $\sigma_{\omega} = \frac{M_{\omega}}{A_{\omega\omega}} \cdot \omega$

Tabelle 43: exakte Wölbspannungen in den Stegen [kN/cm²]

linker Steg	ω [cm²]	σ_{ω} [kN/cm ²]	rechter Steg	ω [cm²]	σ_{ω} [kN/d
oben	507,81	4,010	oben	-372,39	-2
unten	-991,68	-7,831	unten	432,12	3

Berechnung nach dem Drillträgerverfahren

Abstände der Stege von der Trägheitsachse des OG: a = b = 360 mm

Kräftepaar:

Fläche des Obergurtes:

 $A_{OG} = 72 \ cm^2$

Biegeträgheitsmoment des Obergurtes:

Dehnungen (Wölbordinaten):

Aus Gleichungen (6.11) und (6.12):

$$72^3 \cdot 1$$

$$A_{yy,OG} = \frac{72^{5} \cdot 1}{12} = 31104 \ cm^4$$

 $p^* = \pm \frac{m_d}{a+b} = \pm 2,78 \text{ kN} / m$

 $\varepsilon_{li} = 507,81$ $\varepsilon_{re} = -372,39$

 $A_{OG,li}^* = 15,2 \ cm^2$ $A_{OG,re}^* = 7,64 \ cm^2$

Tabelle 44: Querschnittswerte der Drillträger

Querschnittswerte	linker DT	rechter DT
Schwerpunktlage z _s * [cm]	10,85	14,82
Biegesteifigkeit Azz* [cm ⁴]	5387,17	10007,47

Abbildung 96: Drillträger

Berechnung des Biegemoments in Stabmitte nach Theorie 2. Ordnung:

$$M^* = \pm \frac{1}{\varepsilon^2} \left(1 - \frac{\cosh \varepsilon \left(0, 5 - \xi \right)}{\cosh \left(\varepsilon / 2 \right)} \right) \cdot p^* \cdot l^2 = \pm 1986,34 \ kNcm$$

Spannungen nach dem Drillträgerverfahren: $\sigma^* = \frac{M^*}{A_{zz}^*} \cdot z^*$

Tabelle 45: Wölbspannungen in den Stegen nach dem DTV [kN/cm²]

linker Steg	z* [cm]	σ* [kN/cm ²]	rech
oben	-10,85	4,000	c
unten	21,15	-7,799	u

rechter Steg	z* [cm]	σ* [kN/cm²]
oben	-14,82	-2,942
unten	17,18	3,410

Gegenüberstellung Wölbkrafttorsion – Drillträgerverfahren

Tabelle 46: Vergleich der Wölbspannungen in Stabmitte [kN/cm²]

linker Steg	WKT	DTV		rechter Steg	WKT	D	ΓV
	σ_{ω}	σ*	σ^*/σ_ω		σ_{ω}	σ*	σ^*/σ_ω
oben	4,010	4,000	99,7%	oben	-2,941	-2,942	100,0%
unten	-7,831	-7,799	99,6%	unten	3,412	3,410	99,9%

6.3.3 Beispiel 3: Hut-Querschnitt mit einem langen Steg und Überstand

Einwirkung: $m_d = 2,0 \ kNm \ / m$ Statisches System: Gabelgelagerter EinfeldbalkenLänge: $l = 1000 \ cm$

Es wird der Lastfall m_d untersucht, das Eigengewicht wird vernachlässigt.

Abbildung 97: Hut-Querschnitt mit einem langen Steg und Überstand

Abbildung 98: Einheitsverwölbung ω [cm²] zu Bsp. 3

Querschnittswerte aus [12]: $I_D = 65,33 \ cm^4$ $A_{aa} = 28.707.600 \ cm^6$

Stabkennzahl: $\varepsilon = l \sqrt{\frac{GI_D}{EA_{\dot{b}\dot{b}}}} = 0,94$

Exakte Berechnung nach der Wölbkrafttorsion

Wölbbimoment $M_{\omega}\left(x=\frac{l}{2}\right)$ nach Tabelle 11 im Anhang A: $M_{\omega}\left(\xi=0,5\right) = \frac{1}{\varepsilon^{2}}\left(1-\frac{\cosh\varepsilon\left(0,5-\xi\right)}{\cosh\left(\varepsilon/2\right)}\right) \cdot m_{d} \cdot l^{2} = 229069,5 \ kNcm^{2}$

Wölbspannungen:

$$\sigma_{\omega} = \frac{M_{\omega}}{A_{\omega}} \cdot \omega$$

Tabelle 47: exakte Wölbspannungen in den Stegen [kN/cm²]

linker Steg	ω [cm²]	σ_{ω} [kN/cm ²]	rechter Steg	ω [cm²]	$\sigma_{\omega} [kN/cm^2]$
oben	582,99	4,652	oben	-153,73	-1,227
unten	-1459,65	-11,647	unten	368,99	2,944

Berechnung nach dem Drillträgerverfahren

Abstände der Stege von der Trägheitsachse des OG: a = 500 mm b = 220 mm

Kräftepaar:

Fläche des Obergurtes:

Biegeträgheitsmoment des Obergurtes:

 $A_{OG} = 100 \ cm^2$ $A_{yy,OG} = \frac{100^3 \cdot 1}{12} = 83333,33 \ cm^4$ $\varepsilon_{li} = 582,99 \qquad \varepsilon_{re} = -153,73$

 $A_{OG \ li}^* = 24,06 \ cm^2$ $A_{OG \ re}^* = 44,79 \ cm^2$

 $p^* = \pm \frac{m_d}{a+b} = \pm 2,78 \ kN \ / m$

Dehnungen (Wölbordinaten):

Aus Gleichungen (6.11) und (6.12):

Tabelle 48: Querschnittswerte der Drillträger

Querschnittswerte	linker DT	rechter DT
Schwerpunktlage z _s * [cm]	9,13	18,83
Biegesteifigkeit Azz* [cm ⁴]	6292,17	48987,82

Abbildung 99: Drillträger

Berechnung des Biegemoments in Stabmitte nach Theorie 2. Ordnung:

$$M^* = \pm \frac{1}{\varepsilon^2} \left(1 - \frac{\cosh \varepsilon \left(0, 5 - \xi \right)}{\cosh \left(\varepsilon / 2 \right)} \right) \cdot p^* \cdot l^2 = \pm 3181,52 \text{ kNcm}$$

Spannungen nach dem Drillträgerverfahren: $\sigma^* = \frac{M^*}{A_{-*}^*} \cdot z^*$

Tabelle 49: Wölbspannungen in den Stegen nach dem DTV [kN/cm²]

linker Steg	z* [cm]	σ* [kN/cm²]
oben	-9,13	4,618
unten	22,87	-11,562

rechter Steg	z* [cm]	σ* [kN/cm²]
oben	-18,83	-1,223
unten	13,18	2,934

Gegenüberstellung Wölbkrafttorsion – Drillträgerverfahren

Tabelle 50: Vergleich der Wölbspannungen in Stabmitte [kN/cm²]

linker Steg	WKT	DTV	
	σ_{ω}	σ*	σ^*/σ_ω
oben	4,652	4,618	99,3%
unten	-11,647	-11,562	99,3%

rechter Steg	WKT	DT	۲V
	σω	σ*	σ^*/σ_ω
oben	-1,227	-1,223	99,7%
unten	2,944	2,934	99,6%

6.3.4 Beispiel 4: Hut-Querschnitt aus Beispiel 3 mit Untergurten

Einwirkung: $m_d = 2,0 \ kNm / m$

Länge: $l = 1000 \ cm$

Statisches System: Gabelgelagerter Einfeldbalken

Es wird der Lastfall m_d untersucht, das Eigengewicht wird vernachlässigt.

Abbildung 100: Hut-Querschnitt aus Beispiel 3 mit Untergurten

Querschnittswerte aus [12]: $I_D = 80,00 \ cm^4$ $A_{\check{\omega}\check{\omega}} = 70.575.600 \ cm^6$ Stabkennzahl: $\varepsilon = l \sqrt{\frac{GI_D}{EA_{\check{\omega}\check{\omega}}}} = 0,66$

Exakte Berechnung nach der Wölbkrafttorsion

Wölbbimoment $M_{\omega}\left(x=\frac{l}{2}\right)$ nach Tabelle 11 im Anhang A: $M_{\omega}\left(\xi=0,5\right) = \frac{1}{\varepsilon^{2}}\left(1-\frac{\cosh\varepsilon\left(0,5-\xi\right)}{\cosh\left(\varepsilon/2\right)}\right) \cdot m_{d} \cdot l^{2} = 239128,4 \ kNcm^{2}$

Wölbspannungen:

$$\sigma_{\omega} = \frac{M_{\omega}}{A_{\phi\phi}} \cdot \omega$$

linker Steg	ω [cm²]	σ_{ω} [kN/cm ²]	rechter S
oben	872,69	2,957	ober
unten	-1164,02	-3,944	unter

Tabelle 51: exakte Wölbspannungen i	n den	Stegen	[kN/cm ²]
-------------------------------------	-------	--------	-----------------------

rechter Steg	ω [cm²]	σ_{ω} [kN/cm ²]
oben	-219,61	-0,744
unten	314,97	1,067

Berechnung nach dem Drillträgerverfahren

Abstände der Stege von der Trägheitsachse des OG: $a = 500 \ mm$ $b = 220 \ mm$ Kräftepaar: $p^* = \pm \frac{m_d}{a+b} = \pm 2,78 \ kN \ /m$ Fläche des Obergurtes: $A_{oG} = 100 \ cm^2$ Biegeträgheitsmoment des Obergurtes: $A_{yy,OG} = \frac{100^3 \cdot 1}{12} = 83333,33 \ cm^4$ Dehnungen (Wölbordinaten): $\varepsilon_{li} = 872,69$ Aus Gleichungen (6.11) und (6.12): $A_{oG,li}^* = 24,12 \ cm^2$

Tabelle 52: Querschnittswerte der Drillträger

Querschnittswerte	linker DT	rechter DT
Schwerpunktlage z _s * [cm]	14,20	28,26
Biegesteifigkeit Azz* [cm ⁴]	12814,36	93688,66

Abbildung 102: Drillträger

Berechnung des Biegemoments in Stabmitte nach Theorie 2. Ordnung:

$$M^* = \pm \frac{1}{\varepsilon^2} \left(1 - \frac{\cosh \varepsilon \left(0, 5 - \xi \right)}{\cosh \left(\varepsilon / 2 \right)} \right) \cdot p^* \cdot l^2 = \pm 3321, 23 \text{ kNcm}$$

Spannungen nach dem Drillträgerverfahren: $\sigma^* = \frac{M^*}{A^*} \cdot z^*$

linker Steg	z* [cm]	σ* [kN/cm²]
oben	-14,20	3,680
unten	17.80	-4.614

rechter Steg	z* [cm]	σ* [kN/cm²]
oben	-28,26	-1,002
unten	35.74	1.267

Tabelle 53: Wölbspannungen in den Stegen nach dem DTV [kN/cm²]

Gegenüberstellung Wölbkrafttorsion – Drillträgerverfahren

|--|

linker Steg	WKT	DTV		DTV		rechter Steg	WKT	D	ΓV
	σ_{ω}	σ*	σ^*/σ_ω		σ_{ω}	σ*	σ^*/σ_ω		
oben	2,957	3,680	124,5%	oben	-0,744	-1,002	134,7%		
unten	-3,944	-4,614	117,0%	unten	1,067	1,267	118,7%		

Wie in Tabelle 54 ersichtlich, werden die Wölbspannungen nach dem Drillträgerverfahren überschätzt, wenn Untergurte vorhanden sind. Das liegt daran, dass ein Teil des zu übertragenden Torsionsmoments durch das zwischen den Untergurten und dem Deckblech bestehende Kräftepaar aufgenommen wird. Im Näherungsverfahren werden die zwei Drillträger also stärker belastet, als es tatsächlich der Fall ist. Man liegt somit stets auf der sicheren Seite.

Berücksichtigt man die Entlastung der Drillträger durch die Gurte, so lassen sich die Abweichungen der Wölbspannungen reduzieren. Hierfür werden die Schubflüsse im Querschnitt ermittelt und der Beitrag der Stege am Torsionsmoment berechnet:

$$T(x,s) = -\frac{M_{D\omega}}{A_{\breve{\omega}\breve{\omega}}} A_{\breve{\omega}}(s) \qquad \text{wobei } \frac{M_{D\omega}}{A_{\breve{\omega}\breve{\omega}}} = const.$$

Annahme: $M_{D\omega} = 10.000 \ kNcm$

Abbildung 104: Schubkräfte T [kN/cm]

Kräftegleichgewicht:
$$\sum V = 0: 119,65 - 119,65 = 0$$

 $\sum H = 0: 4,14 - 6,42 - 14,63 - 5,89 + 50,77 - 27,93 = 0$

Anteil der Stege am Torsionsmoment:

$$M_{D\omega,Stege} = 119,65 \cdot 72 = 8614,8 \ kNcm$$

Anteil der Gurte am Torsionsmoment:

$$\begin{split} M_{D\omega,Gurte} &= (27,84-50,77) \cdot 15,17 + (6,42-4,14) \cdot (32+15,17) \\ &+ (5,89+14,63) \cdot (64+15,17) = 1385,75 \ kNcm \end{split}$$

gesamtes Torsionsmoment:

$$M_{D\omega} = M_{D\omega,Stege} + M_{D\omega,Gurte} = 10000 \ kNcm$$

Faktor:

$$\delta = \frac{M_{D\omega,Stege}}{M_{D\omega}} = \frac{8614,25}{10000} = 0,8615$$

Tabelle 55: Vergleich der Wölbs	pannungen in Stabmitte	[kN/cm ²] mit Faktor δ

linker Steg	WKT	D	ΓV
	σ_{ω}	σ*·δ	$\sigma^* \cdot \delta / \sigma_\omega$
oben	2,957	3,170	107,2%
unten	-3,944	-3,975	100,8%

rechter Steg	WKT	D	ΓV
	σ_{ω}	σ*·δ	$\sigma^{*} \cdot \delta / \sigma_{\omega}$
oben	-0,744	-0,863	116,0%
unten	1,067	1,091	102,3%

Im Folgenden wird der Querschnitt aus Beipspiel 4 leicht variiert, um mögliche Zusammenhänge aus den unterschiedlich großen Abweichungen in den Querschnittspunkten herauszufinden. Einwirkungen und statisches System bleiben identisch wie in Beispiel 4, die Berechnung erfolgt analog wie oben. Die Ergebnisse sind in Tabelle 56 zusammengefasst:

Variationen:

1. Basisquerschnitt: Beispiel 4, alle Bleche t = 10 mm

2. Deckblech t = 25 mm, alle anderen Bleche t = 10 mm

3. rechter Untergurt t = 5 mm, alle anderen Bleche t = 10 mm

4. Deckblech t = 25 mm, rechter Untergurt t = 5 mm, alle anderen Bleche t = 10 mm

							-										
								WKT		DTV							
	09	Ι _D	$A_{\omega\omega}$	3		Stor	Mω	ω	σω	M*	Z*	۱*	σ*	δ	σ*·δ	σ*·δ/σ _ω	Δ
	QS	$\rm cm^4$	cm ⁶	-		Sleg	kNcm ²	cm ²	kN/cm ²	kNcm	cm	cm ⁴	kN/cm ²	-	kN/cm ²	%	%
	. 6				ks	oben		872,7	2,96		-14,20	100144	3,68		3,17	107,2%	
1	10mi	00	5600	60	lin	unten	28,4	-1164,0	-3,94	1,2	17,80	12014,4	-4,61	61	-3,97	100,8%	2%
ľ	3eisp le t=	80,	057	0,6	hts	oben	2391	-219,6	-0,74	332	-28,26	02699.7	-1,00	0,8	-0,86	116,0%	15,
	all				rec	unten		315,0	1,07		35,74	93000,7	1,27		1,09	102,3%	
	_				ks	oben		581,6	1,28		-9,46	17005 4	1,47		1,32	103,5%	
	olech mm	,50	5360	48	lin	unten	41,2	-1450,3	-3,18	5,6	22,54	17905,4	-3,49	8	-3,14	98,9%	%6
2	eckt t=25	567	9111	1,5	hts	oben	1998	-150,5	-0,33	277	-18,91	120426 4	-0,40	0,9	-0,36	109,7%	10,9
			0,		rec	unten	Ì	393,7	0,86		45,09	130430,4	0,96		0,86	100,0%	
	(1)				ks	oben		859,5	3,26		-14,22	12790.0	3,69		3,39	103,9%	
	er UG	83	7800	62	linl	unten	60,6	-1112,8	-4,23	0,3	17,78	12769,0	-4,62	18	-4,24	100,3%	%
3	schte t=5r	71,	295	0,6	nts	oben	2390	-236,9	-0,90	332	-23,81	74790.2	-1,06	0,9	-0,97	107,9%	7,6
	Le		Ű		rec	unten		426,6	1,62		40,19	14169,3	1,78		1,64	101,1%	
	۶۶				Ś	oben		570,3	1,35		-9,49	47000.0	1,45		1,37	101,3%	
	=5mr 25mr	,33	4480	08	linl	unten	76,9	-1389,4	-3,29	1,6	22,51	17880,8	-3,44	43	-3,24	98,7%	%
4	G _{re} t≞ Bt≡2	559	3317.	1,6	hts	oben	1966	-158,6	-0,37	273	-15,29	100744.9	-0,41	0,9	-0,39	104,3%	5,6
			ω		rec	unten	1	529,9	1,25	1	48,71	100744,8	1,32		1,25	99,4%	1

Tabelle 56: Variationen des Querschnitts aus Beispiel 4

Schwankungsbreite Δ : Differenz zwischen der maximalen und minimalen Abweichung

Aus Tabelle 56 ist zu folgendes zu erkennen:

Je mehr die Stege vom Torsionsmoment (Faktor δ) aufnehmen, desto weniger variieren die Abweichungen der Wölbspannungen, die Schwankungsbreite Δ wird kleiner.

Die unterschiedlich großen Beteiligungen der Stege bzw. Gurte bei der Aufnahme des Torsionsmoments lassen sich wie folgt begründen:

Für den Anteil der Gurte am Torsionsmoment leistet der Untergurt mit dem größten Normalabstand zum Schubmittelpunkt den größten Beitrag. Je nach Steifigkeitsverhältnis von Obergurt zu Untergurt, kommt dem Untergurt mehr oder weniger Einfluss zu:

Ist der Untergurt dominierend, so vergrößert sich der Anteil der Gurte am Torsionsmoment wesentlich.

Hat dagegen der Obergurt eine hohe Steifigkeit, wird dem Untergurt "Macht" entzogen, die Schubkraft im Untergurt wird kleiner. Durch das Kräftegleichgewicht $\sum H = 0$ nimmt dann auch der Obergurt weniger vom Torsionsmoment auf. Somit tragen die Stege mehr an der Aufnahme des Torsionsmoments bei, der Faktor δ steigt.

6.4 Anwendung des DTV am Querschnitt des Fußgängersteges

Die Anwendung des Drillträgerverfahrens am Querschnitt des Fußgängersteges wird anhand des Lastfalls 3a demonstriert.

Einwirkung: $m_d = 0,8144 \ kNm/m$ Statisches System: siehe Kapitel 2.1

Länge: $l = 3000 \ cm$

Es wird der Lastfall m_d untersucht, das Eigengewicht wird vernachlässigt.

Abbildung 105: Querschnitt des Fußgängersteges

Einheitsverwölbungen siehe Abbildung 38.

Querschnittswerte aus Kapitel 4.1: $I_D = 1893,85 \ cm^4$ $A_{\phi\phi} = 4.573.840.000 \ cm^6$

Stabkennzahl: $\varepsilon = l \sqrt{\frac{GI_D}{EA_{\ddot{\omega}\dot{\omega}}}} = 1,194$

Exakte Berechnung nach der Wölbkrafttorsion

Wölbbimoment
$$M_{\omega}\left(x=\frac{l}{2}\right)$$
 nach Tabelle 11 im Anhang A:
 $M_{\omega}\left(\xi=0,5\right) = \frac{1}{\varepsilon^{2}}\left(1-\frac{\cosh\varepsilon(0,5-\xi)}{\cosh(\varepsilon/2)}\right) \cdot m_{d} \cdot l^{2} = 797300,7 \ kNcm^{2}$

Wölbspannungen:
$$\sigma_{\omega} = \frac{M_{\omega}}{A_{\phi\phi}} \cdot \omega$$

Tabelle 57: exakte Wölbspannungen in den Stegen [kN/cm²]

linker Steg	ω [cm²]	σ_{ω} [kN/cm ²]
oben	3798,10	0,6621
unten	-3504,10	-0,6108

rechter Steg	ω [cm²]	σ_{ω} [kN/cm ²]
oben	-545,30	-0,095
unten	850,20	0,148

Berechnung nach dem Drillträgerverfahren

Kräftepaar:

Fläche des Obergurtes:

 $A_{OG} = 330 \ cm^2$

 $p^* = \pm \frac{m_d}{a+b} = \pm 0,509 \ kN / m$

Querschnittswerte des Obergurtes inkl. Steifen und Punktflächen aus [12]:

Abstände der Stege von der Trägheitsachse des OG: $a = 119,09 \ cm$ $b = 40,91 \ cm$

Biegeträgheitsmoment des Obergurtes: $A_{yy,OG} = 1810020 \ cm^4$

Dehnungen (Wölbordinaten): $\varepsilon_{li} = 3798,1$ $\varepsilon_{re} = -545,3$

Aus Gleichungen (6.11) und (6.12): $A_{OG,li}^* = 93,37 \ cm^2$ $A_{OG,re}^* = 308,24 \ cm^2$

Tabelle 58: Querschnittswerte der Drillträger

Querschnittswerte	linker DT	rechter DT
Schwerpunktlage z _s * [cm]	27,44	44,89
Biegesteifigkeit Azz* [cm ⁴]	145016,24	1461058,50

Abbildung 106: Drillträger

Berechnung des Biegemoments in Stabmitte nach Theorie 2. Ordnung:

$$M^* = \pm \frac{1}{\varepsilon^2} \left(1 - \frac{\cosh \varepsilon (0, 5 - \xi)}{\cosh (\varepsilon / 2)} \right) \cdot p^* \cdot l^2 = \pm 4983, 13 \text{ kNcm}$$

Spannungen nach dem Drillträgerverfahren: $\sigma^* = \frac{M^*}{A_{zz}^*} \cdot z^*$

Tabelle 59: Wölbspannungen in den Stegen nach dem DTV [kN/cm²]

linker Steg	z* [cm]	σ* [kN/cm²]
oben	-27,44	0,943
unten	22,56	-0,775

rechter Steg	z* [cm]	σ* [kN/cm²]
oben	-44,89	-0,153
unten	55,11	0,188

Gegenüberstellung Wölbkrafttorsion – Drillträgerverfahren

Tabelle 60: Vergleich der Wölbspannungen in Stabmitte [kN/cm²]

linker Steg	WKT	DTV		rechter St
	σ_{ω}	σ*	σ^*/σ_ω	
oben	0,662	0,943	142,4%	oben
unten	-0,611	-0,775	126,9%	unten

rechter Steg	WKT	DTV	
	σ_{ω}	σ*	σ^*/σ_ω
oben	-0,095	-0,153	161,1%
unten	0,148	0,188	126,8%

Berechnung der Entlastung der Drillträger durch die Gurte:

$$T(x,s) = -\frac{M_{D\omega}}{A_{\phi\phi}} A_{\phi}(s) \qquad \text{wobei } \frac{M_{D\omega}}{A_{\phi\phi}} = const.$$

Annahme: $M_{D\omega} = 10.000 \ kNcm$

Werte der Wölbfläche $A_{\check{\omega}}(s)$ werden aus Abbildung 41 entnommen. Daraus ergeben sich folgende Schubkräfte in den Stegen:

 $T_{li} = 49,476 \ kN \ / \ cm$ und $T_{re} = 49,664 \ kN \ / \ cm$

Anteil der Stege am Torsionsmoment:

$$M_{D\omega,Stege} = 49,476 \cdot 146,045 + 49,664 \cdot 13,955 = 7918,83 \ kNcm$$

Faktor:

$$\delta = \frac{M_{D\omega,Stege}}{M_{D\omega}} = \frac{7918,83}{10000} = 0,7919$$

linker Steg	WKT	D	ΓV	rechter Steg	WKT	D	ΓV
	σ_{ω}	σ*·δ	$\sigma^* \cdot \delta / \sigma_\omega$		σ_{ω}	σ*·δ	$σ^* \cdot \delta / \sigma_ω$
oben	0,662	0,747	112,8%	oben	-0,095	-0,121	127,6%
unten	-0,611	-0,614	100,5%	unten	0,148	0,149	100,4%

6.5 Zusammenfassung

- Für den Fall eines asymmetrischen Querschnitts kann das Drillträgerverfahren angewendet werden, allerdings müssen die Einheitsverwölbungen bekannt sein.
- Bei "kleinen" Stabkennzahlen (ε≤1) liefert das Drillträgerverfahren nach Theorie 1. Ordnung bereits eine gute Näherung. Ab ε>1 werden die Wölbspannungen erheblich überschätzt, der Drillträger muss dann nach Theorie 2. Ordnung berechnet werden, auf der auch die Theorie der Wölbkrafttorsion basiert.
- Sind Untergurte vorhanden, wird ein Teil des zu übertragenden Torsionsmoments durch das Kräftepaar zwischen den Gurten und dem Deckblech aufgenommen, d.h. die Stege werden entlastet. Wird dies nicht berücksichtigt, werden die Spannungen im Drillträger überschätzt, man liegt auf der sicheren Seite.
- Die Abweichungen der Wölbspannungen nach dem Drillträgerverfahren sind in den Querschnittspunkten verschieden groß. Je mehr die Gurte vom Torsionsmoment aufnehmen, desto größer sind diese Schwankungen.

LITERATURVERZEICHNIS

- [1] *FINK, Josef:* Besondere Stabilitätsprobleme im Stahlbau; Skriptum zur gleichnamigen Vorlesung, Institut für Tragkonstruktionen – Stahlbau, TU Wien, 2007
- [2] *FINK, Josef:* Studienblätter zur Vorlesung Stahlbau 1; Skriptum zur gleichnamigen Vorlesung, Institut für Tragkonstruktionen – Stahlbau, TU Wien, 2004
- [3] *KINDMANN, Rolf:* Elastische und plastische Querschnittstragfähigkeit; 1. Auflage Berlin, Verlag Ernst & Sohn, 2002
- [4] KOLLBRUNNER, Curt: Wölbkrafttorsion dünnwandiger Stäbe mit offenem Profil, Teil 1; Heft 29
 Zürich, Mitteilungen der Technischen Kommission der Schweizer Stahlbau-Vereinigung, 1964
- [5] *WLASSOW, Wassili Sacharowitsch:* Dünnwandige elastische Stäbe, Band 1; 2. Auflage Berlin, Verlag für Bauwesen, 1964
- [6] *RUBIN, Helmut:* Studienblätter für Baustatik 2; Studienblätter zur gleichnamigen Vorlesung, Institut für Baustatik, TU Wien, 2008
- [7] RUBIN, Helmut: Berechnung dünnwandiger Stäbe mit offenem Querschnitt bei Beanspruchung durch Längskraft, zweiachsige Biegung und Torsion ohne Bestimmung von Schwerpunkt, Schubmittelpunkt und Hauptachsen; Institut für Baustatik, TU Wien, 2008
- [8] ARNAOUT, Mariam: Berechnung eines Fußgängersteges aus Stahl unter Normalkraft, zweiachsiger Biegung und Wölbkrafttorsion nach zwei Methoden, Teil 2: Gekoppelte Berechnung ohne Berücksichtigung von Schwerpunkt, Hauptachsen und Schubmittelpunkt; Diplomarbeit am Institut für Baustatik, TU Wien, 2008
- [9] *RESINGER, Fritz:* Ermittlung der Wölbspannungen an einfachsymmetrischen Profilen nach dem Drillträgerverfahren; Der Stahlbau, 26. Jahrgang Heft 11 November, Verlag Ernst & Sohn, 1957
- [10] FINK, Josef: Stahlbau 3; Mitschrift zur gleichnamigen Vorlesung, Institut f
 ür Tragkonstruktionen
 Stahlbau, TU Wien, 2007
- [11] *FINK, Josef:* unveröffentlichte Studie zur Erweiterung des Drillträgerverfahrens auf asymmetrische Querschnitte; Institut für Tragkonstruktionen – Stahlbau, TU Wien, 2008
- [12] DUENQ Version 6.00.002: Software zur Berechnung und Bemessung beliebiger dünnwandiger Querschnitte; Copyright © 2000 Ing.-Software Dlubal GmbH

ABBILDUNGSVERZEICHNIS

Abbildung 1: Brückenquerschnitt	3
Abbildung 2: Einfeldbalken	3
Abbildung 3: Auflagerkräfte	4
Abbildung 4: Zwängungsfreie Brückenlagerung (Draufsicht)	4
Abbildung 5: Laststellung für die Einflusslinie des Lastfalls 2b	5
Abbildung 6: Laststellung für die Einflusslinie des Lastfalls 2c	6
Abbildung 7: Laststellung für Lastfall 3a	6
Abbildung 8: Laststellung für Lastfall 3b	7
Abbildung 9: Wagner-Hypothese [1]	8
Abbildung 10: Verschiebungen v und w eines Punktes P auf der Profilmittellinie [3]	9
Abbildung 11: Verschiebung eines differentiellen Abschnittes ds [3]	9
Abbildung 12: Koordinatentransformation	11
Abbildung 13: Hebelarm r_t [3]	11
Abbildung 14: Ausschnitt aus Abb.13	11
Abbildung 15: Einheitsverwölbung [1]	12
Abbildung 16: konstante Normalspannung σ [5]	14
Abbildung 17: Schubspannung $ au$ [5]	15
Abbildung 18: [5] Primäre Schubspannung $ au_p$ - Mittlere Schubspannung $ au_m$	15
Abbildung 19: Kräfte am Flächenelement [1]	16
Abbildung 20: Verformung einer Mantellinie [1]	18
Abbildung 21: Gleichgewicht [1]	18
Abbildung 22: Schnittlasten am Stabelement [1]	19
Abbildung 23: Analogiemodell	23
Abbildung 24: Zur Ermittlung von Schnittgrößen	24
Abbildung 25: Längskräfte [1]	25
Abbildung 26: Spannungsverteilung in schmalen Rechteckquerschnitten [1]	28
Abbildung 27: Zur Herleitung der 1. Bredt'schen Formel [2]	29
Abbildung 28: Koordinatensysteme bei der Normierung	31
Abbildung 29: Grundsystem	32
Abbildung 30: Grundfunktion 1 [-]	33
Abbildung 31: Grundfunktion y [cm]	33
Abbildung 32: Grundfunktion z [cm]	34
Abbildung 33: Grundfunktion ω [cm ²]	34
Abbildung 34: Einheitssystem	38

Abbildung 35: Hauptsystem	42
Abbildung 36: Grundfunktion 💃 [cm]	44
Abbildung 37: Grundfunktion [cm]	44
Abbildung 38: Grundfunktion 💩 [cm ²]	45
Abbildung 39: Statisches Moment $A_{ij}(s)$ [cm ³]	46
Abbildung 40: Statisches Moment $A_{i}(s)$ [cm ³]	46
Abbildung 41: Wölbfläche $A_{ab}(s)$ [cm ⁴]	47
Abbildung 42: Wirkungsrichtung von $g_{\it Ed}$ bzw. $q_{\it Ed}$	48
Abbildung 43: Linienlasten in Richtungen \overline{x} , \overline{y} , \overline{z}	48
Abbildung 44: Zur Ermittlung der Streckenbiegemomente	49
Abbildung 45: Streckenbiegemomente m_{y} und m_{z}	50
Abbildung 46: Zur Ermittlung des Streckentorsionsmoments	50
Abbildung 47: 1 m Streifen zur Herleitung von m_{a}	51
Abbildung 48: Wirkungsrichtung des Eigengewichts	55
Abbildung 49: Verlauf von $v_M(x)$ [m] über die Brückenlänge im LF1	57
Abbildung 50: Verlauf von $arphi_{rac{1}{2}}(x)$ [rad] über die Brückenlänge im LF1	58
Abbildung 51: Verlauf von $M_{rac{5}{2}}(x)$ [kNm] über die Brückenlänge im LF1	58
Abbildung 52: Verlauf von $Q_{rak{F}}(x)$ [kN] über die Brückenlänge im LF1	59
Abbildung 53: Verlauf von $p_{y}(x)$ [kN/m] über die Brückenlänge im LF1	60
Abbildung 54: Verlauf von $w_M(x)$ [m] über die Brückenlänge im LF1	61
Abbildung 55: Verlauf von $arphi_{rac{y}{2}}(x)$ [rad] über die Brückenlänge im LF1	62
Abbildung 56: Verlauf von $M_{\frac{1}{2}}(x)$ [kNm] über die Brückenlänge im LF1	63
Abbildung 57: Verlauf von $Q_{s}(x)$ [kN] über die Brückenlänge im LF1	64
Abbildung 58: Verlauf von $p_{\frac{\pi}{2}}(x)$ [kN/m] über die Brückenlänge im LF1	64
Abbildung 59: Analogiemodell	65
Abbildung 60: Verlauf von $M_{_{Dp}}(\xi)$ [kNm] über die Brückenlänge im LF1	66
Abbildung 61: Verlauf von $M_{_{D\omega}}(\xi)$ [kNm] über die Brückenlänge im LF1	67
Abbildung 62: Verlauf von $M_{_D}(\xi)$ [kNm] über die Brückenlänge im LF1	67

Abbildung 63: Verlauf von $M_{\omega}(\xi)$ [kNm ²] über die Brückenlänge im LF1	68
Abbildung 64: Verlauf von $artheta(\xi)$ [rad] über die Brückenlänge im LF1	69
Abbildung 65: Verlauf von $\vartheta'(x)$ [rad/m] über die Brückenlänge im LF1	70
Abbildung 66: Verlauf von $u_0(x)$ [m] über die Brückenlänge im LF1	72
Abbildung 67: Verlauf von $N(x)$ [kN] über die Brückenlänge im LF1	72
Abbildung 68: Graphische Darstellung der Normalspannung im LF1 an der Stelle $x = 15 m$	75
Abbildung 69: gewählte Richtung der Laufkoordinate s	76
Abbildung 70: Graphische Darstellung der mittleren Schubspannung τ_m im LF1 an der Stelle r = 5 m	70
Abbildung 71: Wirkungsrichtung der Nutzlast	۰۰
Abbildung 71. Wirkungsrichtung der Nutzlast	81
Abbildung 73: Laststellung für die Einflusslinie von LE2b	
Abbildung 74: schematischer Verschiebungszustand in Brückenmitte	85
Abbildung 75: Graphische Darstellung der Normalspannung im LF2b an der Stelle $x = 15 m \dots$	94
Abbildung 76: gewählte Richtung der Laufkoordinate s	96
Abbildung 77: Graphische Darstellung der mittleren Schubspannung $ au_{m}$ im LF2b an der	
Stelle $x = 5 m$	98
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast	98 99
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c	98 99 99
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c. Abbildung 80: schematischer Verschiebungszustand in Brückenmitte	98 99 99
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c Abbildung 80: schematischer Verschiebungszustand in Brückenmitte Abbildung 81: Wirkungsrichtung des Lastfalls 3a.	98 99 99 101 103
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c Abbildung 80: schematischer Verschiebungszustand in Brückenmitte Abbildung 81: Wirkungsrichtung des Lastfalls 3a Abbildung 82: Graphische Darstellung der Normalspannung im LF3a an der Stelle $x = 15 m$	98 99 99 101 103 111
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c Abbildung 80: schematischer Verschiebungszustand in Brückenmitte Abbildung 81: Wirkungsrichtung des Lastfalls 3a Abbildung 82: Graphische Darstellung der Normalspannung im LF3a an der Stelle $x = 15 m$ Abbildung 83: gewählte Richtung der Laufkoordinate s	98 99 101 103 111 112
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c Abbildung 80: schematischer Verschiebungszustand in Brückenmitte Abbildung 81: Wirkungsrichtung des Lastfalls 3a Abbildung 82: Graphische Darstellung der Normalspannung im LF3a an der Stelle $x = 15 m$ Abbildung 83: gewählte Richtung der Laufkoordinate s Abbildung 84: Graphische Darstellung der mittleren Schubspannung τ_m im LF3a an der	98 99 101 103 111 112
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c Abbildung 80: schematischer Verschiebungszustand in Brückenmitte Abbildung 81: Wirkungsrichtung des Lastfalls 3a Abbildung 82: Graphische Darstellung der Normalspannung im LF3a an der Stelle $x = 15 m$ Abbildung 83: gewählte Richtung der Laufkoordinate s Abbildung 84: Graphische Darstellung der mittleren Schubspannung τ_m im LF3a an der Stelle $x = 5 m$	98 99 101 103 111 112 114
Stelle $x = 5 m$	98 99 101 103 111 112 114 115
Stelle $x = 5 m$	98 99 101 103 111 112 114 115 118
Stelle $x = 5 m$	98 99 101 103 111 112 114 115 118 119
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c. Abbildung 80: schematischer Verschiebungszustand in Brückenmitte Abbildung 81: Wirkungsrichtung des Lastfalls 3a. Abbildung 82: Graphische Darstellung der Normalspannung im LF3a an der Stelle $x = 15 m$ Abbildung 83: gewählte Richtung der Laufkoordinate s Abbildung 84: Graphische Darstellung der mittleren Schubspannung τ_m im LF3a an der Stelle $x = 5 m$ Abbildung 85: Wirkungsrichtung des Lastfalls 3b. Abbildung 86: Drillträgermodell Abbildung 87: Verlauf der Wölbspannungen Abbildung 88: Verformung des Deckblechs (Draufsicht) [10]	98 99 101 103 111 112 114 115 118 119 120
Stelle $x = 5 m$	98 99 101 103 111 112 114 115 118 119 120 122
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c. Abbildung 80: schematischer Verschiebungszustand in Brückenmitte Abbildung 81: Wirkungsrichtung des Lastfalls 3a. Abbildung 82: Graphische Darstellung der Normalspannung im LF3a an der Stelle $x = 15 m$ Abbildung 83: gewählte Richtung der Laufkoordinate s Abbildung 84: Graphische Darstellung der mittleren Schubspannung τ_m im LF3a an der Stelle $x = 5 m$ Abbildung 85: Wirkungsrichtung des Lastfalls 3b. Abbildung 86: Drillträgermodell Abbildung 87: Verlauf der Wölbspannungen Abbildung 88: Verformung des Deckblechs (Draufsicht) [10] Abbildung 89: Symmetrischer Hut-Querschnitt Abbildung 90: Einheitsverwölbung ω [cm ²] zu Bsp. 1	98 99 99 101 103 111 112 114 115 118 119 120 122 122
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c. Abbildung 80: schematischer Verschiebungszustand in Brückenmitte Abbildung 81: Wirkungsrichtung des Lastfalls 3a. Abbildung 82: Graphische Darstellung der Normalspannung im LF3a an der Stelle $x = 15 m$ Abbildung 83: gewählte Richtung der Laufkoordinate s Abbildung 84: Graphische Darstellung der mittleren Schubspannung τ_m im LF3a an der Stelle $x = 5 m$ Abbildung 85: Wirkungsrichtung des Lastfalls 3b. Abbildung 86: Drillträgermodell Abbildung 87: Verlauf der Wölbspannungen Abbildung 88: Verformung des Deckblechs (Draufsicht) [10] Abbildung 89: Symmetrischer Hut-Querschnitt Abbildung 90: Einheitsverwölbung ω [cm ²] zu Bsp. 1	98 99 101 103 111 112 114 115 118 119 120 122 122 124
Stelle $x = 5 m$ Abbildung 78: Wirkungsrichtung der Nutzlast Abbildung 79: Laststellung für die Einflusslinie von LF2c. Abbildung 80: schematischer Verschiebungszustand in Brückenmitte Abbildung 81: Wirkungsrichtung des Lastfalls 3a. Abbildung 82: Graphische Darstellung der Normalspannung im LF3a an der Stelle $x = 15 m$ Abbildung 83: gewählte Richtung der Laufkoordinate s Abbildung 84: Graphische Darstellung der mittleren Schubspannung τ_m im LF3a an der Stelle $x = 5 m$ Abbildung 85: Wirkungsrichtung des Lastfalls 3b. Abbildung 85: Wirkungsrichtung des Lastfalls 3b. Abbildung 86: Drillträgermodell Abbildung 87: Verlauf der Wölbspannungen Abbildung 88: Verformung des Deckblechs (Draufsicht) [10] Abbildung 89: Symmetrischer Hut-Querschnitt Abbildung 90: Einheitsverwölbung ω [cm ²] zu Bsp. 1 Abbildung 91: Drillträger Abbildung 92: Qualitative Wölbspannungsverteilung eines asymmetrischen Querschnitt.	98 99 101 103 111 112 114 115 118 119 120 122 122 122 124 127

Abbildung 94: Hut-Querschnitt mit einem dicken Steg	.131
Abbildung 95: Einheitsverwölbung $ arnow $ [cm²] zu Bsp. 2	.131
Abbildung 96: Drillträger	132
Abbildung 97: Hut-Querschnitt mit einem langen Steg und Überstand	134
Abbildung 98: Einheitsverwölbung $ arnow $ [cm²] zu Bsp. 3	.134
Abbildung 99: Drillträger	136
Abbildung 100: Hut-Querschnitt aus Beispiel 3 mit Untergurten	137
Abbildung 101: Einheitsverwölbung $ arnow $ [cm²] zu Bsp. 4	.138
Abbildung 102: Drillträger	139
Abbildung 103: Wölbfläche $A_{\check{a}}(s)$ [cm 4] aus [12]	141
Abbildung 104: Schubkräfte T [kN/cm]	141
Abbildung 105: Querschnitt des Fußgängersteges	145
Abbildung 106: Drillträger	

TABELLENVERZEICHNIS

Tabelle 1: Geometrische Größen des Querschnitts	32
Tabelle 2: Grundfunktionen im Grundsystem	35
Tabelle 3: Grundfunktionen im Einheitssystem	41
Tabelle 4: Grundfunktionen im Hauptsystem	43
Tabelle 5: Werte der Biegelinie $v_{M}(x)$ im LF1 in m	57
Tabelle 6: Werte des Querschnittsdrehwinkels $\varphi_{rac{1}{2}}(x)$ im LF1 in rad	
Tabelle 7: Werte des Biegemoments $M_{\frac{1}{2}}(x)$ im LF1 in kN/m	
Tabelle 8: Werte der Querkraft $Q_{ij}(x)$ im LF1 in kN	59
Tabelle 9: Werte der Biegelinie $w_M(x)$ im LF1 in m	62
Tabelle 10: Werte des Querschnittsdrehwinkels $arphi_{rac{s}{2}}(x)$ im LF1 in rad	62
Tabelle 11: Werte des Biegemoments $M_{ m y}(x)$ im LF1 in kN/m	63
Tabelle 12: Werte der Querkraft $Q_{rac{1}{2}}(x)$ im LF1 in kN	64
Tabelle 13: Werte des primären Torsionsmoments $M_{_{Dp}}(\xi)$ im LF1 in kNm	66
Tabelle 14: Werte des sekundären Torsionsmoments $M_{_{D\omega}}(\xi)$ im LF1 in kNm	67
Tabelle 15: Werte des gesamten Torsionsmoments $M_{_D}(\xi)$ im LF1 in kNm	68
Tabelle 16: Werte des Wölbbimoments $M_{_{arnotheta}}(\xi)$ im LF1 in kNm²	68
Tabelle 17: Werte des Torsionsdrehwinkels $artheta(\xi)$ im LF1 in Radiant	69
Tabelle 18: Werte der Verdrillung $\vartheta'(x)$ im LF1 in rad/m	70
Tabelle 19: Werte der Biegelinie $u_0(x)$ im LF1 in m	72
Tabelle 20: Werte der Normalkraft $N(x)$ im LF1 in kN	73
Tabelle 21: Zusammenfassung der Schnittgrößen im LF1	73
Tabelle 22: Normalspannungen [kN/cm ²] im LF1	74
Tabelle 23: Beträge der primären Schubspannungen [kN/cm²] im LF1	75
Tabelle 24: Schubflüsse [kN/cm] im LF1	78
Tabelle 25: Werte der Biegelinie $v_M(x)$ im LF2b in m	83
Tabelle 26: Werte der Biegelinie $w_M(x)$ im LF2b in m	

Tabelle 27: Werte des Torsionsdrehwinkels $artheta(\xi)$ im LF2b in Radiant	85
Tabelle 28: Verschiebung $\boldsymbol{\zeta}_i$ des Deckblechs im LF2b	86
Tabelle 29: Zusammenfassung der Schnittgrößen im LF2b	93
Tabelle 30: Normalspannungen [kN/cm ²] im LF2b	94
Tabelle 31: Beträge der primären Schubspannungen [kN/cm ²] im LF2b	95
Tabelle 32: Schubflüsse [kN/cm] im LF2b	97
Tabelle 33: Werte des Torsionsdrehwinkels $artheta(\xi)$ im LF2c in Radiant	101
Tabelle 34: Verschiebung $\boldsymbol{\zeta}_i$ des Deckblechs im LF2c	102
Tabelle 35: Zusammenfassung der Schnittgrößen im LF3a	110
Tabelle 36: Normalspannungen [kN/cm ²] im LF3a	110
Tabelle 37: Beträge der primären Schubspannungen [kN/cm²] im LF3a	111
Tabelle 38: Schubflüsse [kN/cm] im LF3a	113
Tabelle 39: exakte Wölbspannungen in den Stegen [kN/cm ²]	123
Tabelle 40: Wölbspannungen in den Stegen nach dem DTV [kN/cm ²]	125
Tabelle 41: Vergleich der Wölbspannungen in Stabmitte [kN/cm ²]	125
Tabelle 42: Gegenüberstellung der Spannungen [kN/cm ²] in Stabmitte	126
Tabelle 43: exakte Wölbspannungen in den Stegen [kN/cm ²]	132
Tabelle 44: Querschnittswerte der Drillträger	132
Tabelle 45: Wölbspannungen in den Stegen nach dem DTV [kN/cm ²]	133
Tabelle 46: Vergleich der Wölbspannungen in Stabmitte [kN/cm ²]	133
Tabelle 47: exakte Wölbspannungen in den Stegen [kN/cm ²]	135
Tabelle 48: Querschnittswerte der Drillträger	136
Tabelle 49: Wölbspannungen in den Stegen nach dem DTV [kN/cm ²]	136
Tabelle 50: Vergleich der Wölbspannungen in Stabmitte [kN/cm ²]	136
Tabelle 51: exakte Wölbspannungen in den Stegen [kN/cm²]	139
Tabelle 52: Querschnittswerte der Drillträger	139
Tabelle 53: Wölbspannungen in den Stegen nach dem DTV [kN/cm ²]	140
Tabelle 54: Vergleich der Wölbspannungen in Stabmitte [kN/cm ²]	140
Tabelle 55: Vergleich der Wölbspannungen in Stabmitte [kN/cm²] mit Faktor δ	142
Tabelle 56: Variationen des Querschnitts aus Beispiel 4	144
Tabelle 57: exakte Wölbspannungen in den Stegen [kN/cm ²]	146
Tabelle 58: Querschnittswerte der Drillträger	147
Tabelle 59: Wölbspannungen in den Stegen nach dem DTV [kN/cm ²]	147
Tabelle 60: Vergleich der Wölbspannungen in Stabmitte [kN/cm ²]	147
Tabelle 61: Vergleich der Wölbspannungen in Stabmitte [kN/cm²] mit Faktor δ	148

ANHANG A: STUDIENBLÄTTER FÜR BAUSTATIK 2 [6]

Im Folgenden sind die Tabellen 11 bis 14 aus dem Anhang zu den Studienblättern für die Vorlesung "Baustatik 2" wiedergegeben.

Anhang

zu den Studienblättern von Baustatik 2

Alle Formeln in konventioneller Schreibweise, das heißt, mit den Fallunterscheidungen:

Theorie I. Ordnung,

Theorie II. Ordnung mit Längsdruckkraft D,

Theorie II. Ordnung mit Längszugkraft Z

Bezeichnungen, Abkürzungen

EI Biegesteifigkeit $G\widetilde{A}$ Schubsteifigkeit

für Theorie I. und II. Ordnung: $\rho = \frac{EI}{l^2 G \widetilde{A}}$ ohne Q-Verformungen: $\rho = 0$

für Theorie II. Ordnung, Druck:

$$\gamma = \frac{1}{1 - \frac{D}{G\widetilde{A}}}$$
 ohne *Q*-Verformungen: $\gamma = 1$
 $\varepsilon = l\sqrt{\frac{\gamma D}{EI}}$

für Theorie II. Ordnung, Zug:

$$\gamma = \frac{1}{1 + \frac{Z}{G\widetilde{A}}}$$
 ohne Q-Verformungen: $\gamma = 1$
 $\varepsilon = l\sqrt{\frac{\gamma Z}{EI}}$

ik	Be-	Theorie I. Ordnung	Theorie II. Ordnung, Druck	Theorie II. Ordnung, Zug
$ \begin{array}{c c} & \downarrow & \xi \\ & \downarrow & \downarrow \\ & \downarrow & & \downarrow \\ & \downarrow & & \downarrow \\ \end{array} $			· ····	
(<u>M</u> i		$\xi' M_{\rm i}$	$\frac{\frac{\sin \varepsilon \xi'}{\sin \varepsilon} M_{\rm i}}{\sin \varepsilon}$	${{{\rm sh} {\cal E}\xi'\over { m sh} {\cal E}}}M_{ m i}$
<u>M_k</u>)		ξM_k	$\frac{\sin\varepsilon\xi}{\sin\varepsilon}M_{\rm k}$	$\frac{\operatorname{sh} \varepsilon \xi}{\operatorname{sh} \varepsilon} M_{\mathbf{k}}$
Vorverformung, quadrat. Parabel		$\frac{1}{2}\xi\xi'ql^2$	$\frac{\gamma}{\varepsilon^2} \left(\frac{\cos \varepsilon (0.5 - \xi)}{\cos \varepsilon / 2} - 1 \right) \left(q l^2 + 8 D w^0 \right)$	$\frac{\gamma}{\varepsilon^2} \left(1 - \frac{\operatorname{ch} \varepsilon(0, 5 - \xi)}{\operatorname{ch} \varepsilon/2} \right) \left(q l^2 - 8Z w^0 \right)$
$ \begin{array}{c} \textcircled{1} & \textcircled{2} & \textcircled{3} \\ \hline & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \end{array} $	1	$\frac{\xi}{2} \left(\alpha'^2 - \beta^2 \right) q l^2$	$\frac{\gamma \sin \varepsilon \xi}{\varepsilon^2 \sin \varepsilon} (\cos \varepsilon \beta - \cos \varepsilon \alpha') q l^2$	$\frac{\gamma \operatorname{sh} \varepsilon \xi}{\varepsilon^2 \operatorname{sh} \varepsilon} (\operatorname{ch} \varepsilon \alpha' - \operatorname{ch} \varepsilon \beta) q l^2$
	2	$\frac{1}{2}(\xi\xi'-\xi\beta^2-\xi'\alpha^2)ql^2$	$\frac{\gamma}{\varepsilon^2} \left(\frac{\cos \varepsilon \beta \sin \varepsilon \xi + \cos \varepsilon \alpha \sin \varepsilon \xi'}{\sin \varepsilon} - 1 \right) q l^2$	$\frac{\gamma}{\varepsilon^2} \left(1 - \frac{\operatorname{ch} \varepsilon\beta \operatorname{sh} \varepsilon\xi + \operatorname{ch} \varepsilon\alpha \operatorname{sh} \varepsilon\xi'}{\operatorname{sh} \varepsilon} \right) q l^2$
	3	$\frac{\xi'}{2}(\beta'^2 - \alpha^2)ql^2$	$\frac{\gamma \sin \varepsilon \xi'}{\varepsilon^2 \sin \varepsilon} (\cos \varepsilon \alpha - \cos \varepsilon \beta') q l^2$	$\frac{\gamma \operatorname{sh} \varepsilon \xi'}{\varepsilon^2 \operatorname{sh} \varepsilon} (\operatorname{ch} \varepsilon \beta' - \operatorname{ch} \varepsilon \alpha) q l^2$
qi		$\frac{1}{6}(\xi'-\xi'^3)q_{\rm i}l^2$	$\frac{\gamma}{\varepsilon^2} \left(\frac{\sin \varepsilon \xi'}{\sin \varepsilon} - \xi' \right) q_i l^2$	$\frac{\gamma}{\varepsilon^2} \left(\xi' - \frac{\operatorname{sh} \varepsilon \xi'}{\operatorname{sh} \varepsilon} \right) q_i l^2$
q _k		$\frac{1}{6}(\xi-\xi^3)q_{\mathbf{k}}l^2$	$\frac{\gamma}{\varepsilon^2} \left(\frac{\sin \varepsilon \xi}{\sin \varepsilon} - \xi \right) q_{\mathbf{k}} l^2$	$\frac{\gamma}{\varepsilon^2} \bigg(\xi - \frac{\operatorname{sh} \varepsilon \xi}{\operatorname{sh} \varepsilon} \bigg) q_{\mathbf{k}} l^2$
quadrat. Parabel		$\frac{1}{3}\xi\xi'(1+\xi\xi')ql^2$	$\frac{4\gamma}{\varepsilon^2} \bigg[\frac{2}{\varepsilon^2} \bigg(\frac{\cos \varepsilon (0.5 - \xi)}{\cos \varepsilon / 2} - 1 \bigg) - \xi \xi' \bigg] q l^2$	$\frac{4\gamma}{\varepsilon^2} \bigg[\xi \xi' - \frac{2}{\varepsilon^2} \bigg(1 - \frac{\operatorname{ch} \varepsilon(0, 5 - \xi)}{\operatorname{ch} \varepsilon/2} \bigg) \bigg] q l^2$
 <i>P</i> ² 	1	α΄ξPl	$\frac{\gamma \sin \varepsilon \alpha' \sin \varepsilon \xi}{\varepsilon \sin \varepsilon} Pl$	$\frac{\gamma \operatorname{sh} \varepsilon \alpha' \operatorname{sh} \varepsilon \xi}{\varepsilon \operatorname{sh} \varepsilon} Pl$
$\frac{\mathbf{v}}{\mathbf{w}\alpha l \mathbf{w} - \alpha' l - \mathbf{w}}$	2	$\alpha \xi' Pl$	$\frac{\gamma \sin \varepsilon \alpha \sin \varepsilon \xi'}{\varepsilon \sin \varepsilon} Pl$	$\frac{\gamma \operatorname{sh} \varepsilon \alpha \operatorname{sh} \varepsilon \xi'}{\varepsilon \operatorname{sh} \varepsilon} Pl$
$\mathbb{D}_{M^{\mathrm{e}}}$	1	$-\xi M^{ m e}$	$-\frac{\cos\varepsilon\alpha'\sin\varepsilon\xi}{\sin\varepsilon}M^{\rm e}$	$-\frac{\operatorname{ch}\varepsilon\alpha'\operatorname{sh}\varepsilon\xi}{\operatorname{sh}\varepsilon}M^{\operatorname{e}}$
	2	ζ'M ^e	$\frac{\cos \varepsilon \alpha \sin \varepsilon \xi'}{\sin \varepsilon} M^{\rm e}$	$\frac{\operatorname{ch}\varepsilon\alpha\operatorname{sh}\varepsilon\xi'}{\operatorname{sh}\varepsilon}M^{\operatorname{e}}$
$\overrightarrow{\text{Temperatur}}_{\Delta T} \xrightarrow{\dagger d}_{\dagger}$		0	$\frac{\gamma}{\varepsilon^2} \left(\frac{\cos \varepsilon (0.5 - \xi)}{\cos \varepsilon / 2} - 1 \right) D l^2 \frac{\Delta T}{d} \alpha_{\rm T}$	$-\frac{\gamma}{\varepsilon^2} \left(1 - \frac{\operatorname{ch} \varepsilon(0, 5 - \zeta)}{\operatorname{ch} \varepsilon/2}\right) Z l^2 \frac{\Delta T}{d} \alpha_{\mathrm{T}}$
	1	0	$\frac{\gamma \sin \varepsilon \alpha' \sin \varepsilon \xi}{\varepsilon \sin \varepsilon} Dl \phi^{e}$	$-\frac{\gamma \operatorname{sh} \varepsilon \alpha' \operatorname{sh} \varepsilon \xi}{\varepsilon \operatorname{sh} \varepsilon} Z l \phi^{e}$
$\overset{\wedge}{\vdash} \alpha' l \longrightarrow$	2		$\frac{\gamma \sin \varepsilon \alpha \sin \varepsilon \xi'}{\varepsilon \sin \varepsilon} Dl \phi^{\rm e}$	$-\frac{\gamma \operatorname{sh} \varepsilon \alpha \operatorname{sh} \varepsilon \xi'}{\varepsilon \operatorname{sh} \varepsilon} Z l \phi^{\mathrm{e}}$
	1	0	$-\frac{\cos\varepsilon\alpha'\sin\varepsilon\xi}{\sin\varepsilon}DW^{\rm e}$	$\frac{\operatorname{ch}\varepsilon\alpha'\operatorname{sh}\varepsilon\xi}{\operatorname{sh}\varepsilon}ZW^{e}$
W^{e} $H \alpha l H \alpha \alpha' l \to 0$	2		$\frac{\cos\varepsilon\alpha\sin\varepsilon\xi'}{\sin\varepsilon}DW^{e}$	$-\frac{\operatorname{ch}\varepsilon\alpha\operatorname{sh}\varepsilon\xi'}{\operatorname{sh}\varepsilon}ZW^{\mathrm{e}}$
$\gamma \gamma \gamma \gamma m$		0	0	0

Tabelle 11. Funktion des Biegemoments $M(\xi)$ in Abhängigkeit der Stabendmomente M_i , M_k und der Querlast für beliebig gelagerten Stab

i—k	Be- reich	Theorie I. Ordnung	Theorie II. Ordnung, Druck	Theorie II. Ordnung, Zug
$ = \zeta l \rightarrow = \zeta l \rightarrow = l$		$Q(\xi) =$		I
(<u>M</u> i		$-\frac{M_{i}}{l}$	$-\frac{\varepsilon\cos\varepsilon\xi'}{\sin\varepsilon}\frac{M_{\rm i}}{l}$	$-\frac{\varepsilon \operatorname{ch} \varepsilon \xi'}{\operatorname{sh} \varepsilon} \frac{M_{\mathrm{i}}}{l}$
<u>M_k</u>)		$\frac{M_{\rm k}}{l}$	$\frac{\varepsilon \cos \varepsilon \xi}{\sin \varepsilon} \frac{M_{\rm k}}{l}$	$\frac{\varepsilon \operatorname{ch} \varepsilon \xi}{\operatorname{sh} \varepsilon} \frac{M_{\mathbf{k}}}{l}$
Vorverformung, quadrat. Parabel		$\left(\frac{1}{2}-\xi\right)ql$	$\frac{\gamma \sin \varepsilon (0,5-\xi)}{\varepsilon \cos \varepsilon/2} \left(ql + 8D \frac{w^0}{l} \right)$	$\frac{\gamma \operatorname{sh} \varepsilon(0,5-\xi)}{\varepsilon \operatorname{ch} \varepsilon/2} \left(ql - 8Z \frac{w^0}{l} \right)$
123	1	$\frac{a^{\prime 2}-\beta^2}{2}ql$	$\frac{\gamma\cos\varepsilon\xi}{\varepsilon\sin\varepsilon}(\cos\varepsilon\beta-\cos\varepsilon\alpha')ql$	$\frac{\gamma \operatorname{ch} \varepsilon \xi}{\varepsilon \operatorname{sh} \varepsilon} (\operatorname{ch} \varepsilon \alpha' - \operatorname{ch} \varepsilon \beta) q l$
$\begin{array}{c} & & & \\ \hline \\ H \\ H$	2	$\left(\frac{1+\alpha^2-\beta^2}{2}-\xi\right)ql$	$\gamma \frac{\cos \varepsilon \beta \cos \varepsilon \xi - \cos \varepsilon \alpha \cos \varepsilon \xi'}{\varepsilon \sin \varepsilon} ql$	$\gamma \frac{\operatorname{ch} \varepsilon \alpha \operatorname{ch} \varepsilon \xi' - \operatorname{ch} \varepsilon \beta \operatorname{ch} \varepsilon \xi}{\varepsilon \operatorname{sh} \varepsilon} ql$
	3	$-rac{eta'^2-lpha^2}{2}ql$	$-\frac{\gamma\cos\varepsilon\xi'}{\varepsilon\sin\varepsilon}(\cos\varepsilon\alpha-\cos\varepsilon\beta')ql$	$-\frac{\gamma \operatorname{ch} \varepsilon \xi'}{\varepsilon \operatorname{sh} \varepsilon} (\operatorname{ch} \varepsilon \beta' - \operatorname{ch} \varepsilon \alpha) q l$
qi		$\frac{3\xi'^2-1}{6}q_{\rm i}l$	$\frac{\gamma}{\varepsilon^2} \left(1 - \frac{\varepsilon \cos \varepsilon \xi'}{\sin \varepsilon} \right) q_i l$	$\frac{\gamma}{\varepsilon^2} \left(\frac{\varepsilon \operatorname{ch} \varepsilon \xi'}{\operatorname{sh} \varepsilon} - 1 \right) q_i l$
q _k		$\frac{1-3\xi^2}{6}q_{\mathbf{k}}l$	$\frac{\gamma}{\varepsilon^2} \left(\frac{\varepsilon \cos \varepsilon \xi}{\sin \varepsilon} - 1 \right) q_{\mathbf{k}} l$	$\frac{\gamma}{\varepsilon^2} \left(1 - \frac{\varepsilon \operatorname{ch} \varepsilon \xi}{\operatorname{sh} \varepsilon} \right) q$
quadrat. Parabel		$\frac{1}{3}(\xi'-\xi)(1+2\xi\xi')ql$	$\frac{4\gamma}{\varepsilon^2} \left(\frac{2\sin\varepsilon(0.5-\xi)}{\varepsilon\cos\varepsilon/2} + \xi - \xi' \right) ql$	$\frac{4\gamma}{\varepsilon^2} \bigg(\xi' - \xi - \frac{2 \operatorname{sh} \varepsilon (0, 5 - \xi)}{\varepsilon \operatorname{ch} \varepsilon / 2} \bigg) q l$
1 P 2	1	α΄ Ρ	$\frac{\gamma \sin \varepsilon \alpha' \cos \varepsilon \xi}{\sin \varepsilon} P$	$\frac{\gamma \operatorname{sh} \varepsilon \alpha' \operatorname{ch} \varepsilon \xi}{\operatorname{sh} \varepsilon} P$
	2	-α P	$-\frac{\gamma\sin\varepsilon\alpha\cos\varepsilon\xi'}{\sin\varepsilon}P$	$-\frac{\gamma \operatorname{sh} \varepsilon \alpha \operatorname{ch} \varepsilon \xi'}{\operatorname{sh} \varepsilon} P$
$\mathbb{D}_{M^{\mathrm{e}}}$ 2	1	$-\frac{M^{e}}{l}$	$-\frac{\varepsilon \cos \varepsilon \alpha' \cos \varepsilon \xi}{\sin \varepsilon} \frac{M^{e}}{l}$	$-\frac{\varepsilon \operatorname{ch} \varepsilon \alpha' \operatorname{ch} \varepsilon \xi}{\operatorname{sh} \varepsilon} \frac{M^{\mathrm{e}}}{l}$
⊷α <i>l</i> ►iৰ—α'l—►i	2		$-\frac{\varepsilon\cos\varepsilon\alpha\cos\varepsilon\xi'}{\sin\varepsilon}\frac{M^{e}}{l}$	$-\frac{\varepsilon \operatorname{ch} \varepsilon \alpha \operatorname{ch} \varepsilon \xi'}{\operatorname{sh} \varepsilon} \frac{M^{\mathrm{e}}}{l}$
$\begin{array}{c} \overset{\dagger d}{\text{Temperatur-}\Delta T} \\ \overset{\bullet}{\text{ander.}} \overset{\bullet}{} \overset{\bullet}{} \overset{\bullet}{} \end{array}$		0	$\frac{\gamma \sin \varepsilon (0,5-\xi)}{\varepsilon \cos \varepsilon/2} D l \frac{\Delta T}{d} \alpha_{\rm T}$	$-\frac{\gamma \operatorname{sh} \varepsilon(0.5-\xi)}{\varepsilon \operatorname{ch} \varepsilon/2} Z l \frac{\Delta T}{d} \alpha_{\mathrm{T}}$
<u>.</u>	1	0	$\frac{\gamma \sin \varepsilon \alpha' \cos \varepsilon \xi}{\sin \varepsilon} D \phi^{\rm e}$	$-\frac{\gamma \operatorname{sh} \varepsilon \alpha' \operatorname{ch} \varepsilon \xi}{\operatorname{sh} \varepsilon} Z \phi^{\mathrm{e}}$
$\overbrace{\mathbf{A}}^{\Phi^{e}}_{\Phi^{e}} \alpha' l \longrightarrow \mathbf{A}$	2		$-\frac{\gamma\sin\varepsilon\alpha\cos\varepsilon\xi'}{\sin\varepsilon}D\ \phi^{\rm e}$	$\frac{\gamma \operatorname{sh} \varepsilon \alpha \operatorname{ch} \varepsilon \xi'}{\operatorname{sh} \varepsilon} Z \phi^{\mathrm{e}}$
	1	0	$-\frac{\varepsilon\cos\varepsilon\alpha'\cos\varepsilon\xi}{\sin\varepsilon}D\frac{W^{e}}{l}$	$\frac{\varepsilon \operatorname{ch} \varepsilon \alpha' \operatorname{ch} \varepsilon \xi}{\operatorname{sh} \varepsilon} Z \frac{W^{\mathrm{e}}}{l}$
W^{e}	2		$-\frac{\varepsilon\cos\varepsilon\alpha\cos\varepsilon\xi'}{\sin\varepsilon}D\frac{W^{e}}{l}$	$\frac{\varepsilon \operatorname{ch} \varepsilon \alpha \operatorname{ch} \varepsilon \xi'}{\operatorname{sh} \varepsilon} Z \frac{W^{e}}{l}$
$\gamma \gamma \gamma \gamma m$		-m	-m	-m

Tabelle 12. Funktion der Querkraft $Q(\xi)$ in Abhängigkeit der Stabendmomente M_i , M_k und der Querlast für beliebig gelagerten Stab

	¥.	$\Psi \downarrow w_k$ Absolute Biegeordinate u	$w(\xi) = w_i + \xi(w_k - w_i) +$	$\Delta w(\xi) \downarrow +$
$\vdash \overset{\bullet}{\xi l} \Delta$	w(ξ)			
i—k	Be-	Theorie I. Ordnung	Th. II. Ordnung, Druck	Th. II. Ordnung, Zug
$ \begin{array}{c} \mathbf{H} \xi l \rightarrow \mathbf{H} - \xi' l \rightarrow \mathbf{H} \\ \mathbf{H} - l \rightarrow \mathbf{H} \end{array} $	reich	$\Delta w(\xi) =$		
(<u>M</u> i		$\frac{1}{6}(\xi'-\xi'^3)\frac{M_{\rm i}l^2}{EI}$		
<u>M_k</u>)		$\frac{1}{6}(\xi-\xi^3)\frac{M_{\rm k}l^2}{EI}$		
Vorverformung, quadrat. Parabel		$\frac{\xi\xi'}{24}(1+\xi\xi'+12\rho)\frac{ql^4}{EI}$		$\Delta w(\xi) =$
123	1	$\left \frac{1}{24}(\alpha^{'2}-\beta^2)\xi(2-\alpha^{'2}-\beta^2-2\xi^2+12\rho)\frac{ql^4}{EI}\right $		
$ \begin{array}{c} & & & \\ \hline \bullet & & \\ \hline \\ \hline$	2	$\frac{1}{24} \Big[(\alpha'^2 - \beta^2) \xi (2 - \alpha'^2 - \beta^2 - 2\xi^2 + 12\rho) \\ + (\xi - \alpha)^4 - 12(\xi - \alpha)^2 \rho \Big] \frac{ql^4}{EI}$		
	3	$\frac{1}{24}(\beta^{'2}-\alpha^2)\xi^{'}(2-\beta^{'2}-\alpha^2-2\xi^{'2}+12\rho)\frac{ql^4}{EI}$	$\Delta w(\xi) =$	
qi		$\frac{\xi^{'}-\xi^{'3}}{360}(7-3\xi^{'2}+60\rho)\frac{q_{i}l^{4}}{EI}$		
qk		$\frac{\xi-\xi^3}{360}(7-3\xi^2+60\rho)\frac{q_{\rm k}l^4}{EI}$	$\frac{M^{\mathrm{II}}(\xi) - M^{\mathrm{I}}(\xi)}{D} - \Delta w^{\mathrm{V}}$	$\frac{M^{\mathrm{I}}(\xi) - M^{\mathrm{II}}(\xi)}{Z} - \Delta w^{\mathrm{V}}$
quadrat. Parabel		$\frac{1}{90} \Big[(1 + \xi\xi')^3 - 1 + 30\xi\xi'(1 + \xi\xi')\rho \Big] \frac{ql^4}{EI}$	$M^{\Lambda}(\xi)$ nach Spalte Theorie I. Ordnung, $M^{II}(\xi)$ nach Spalte	$M^{I}(\zeta)$ nach Spalte Theorie I. Ordnung, $M^{II}(\zeta)$ nach Spalte
	1	$\frac{\alpha'\xi}{6}(1-\alpha'^2-\xi^2+6\rho)\frac{Pl^3}{EI}$	Th. II. Ordnung, Druck aus Tabelle 11. $\Delta w^{V} = 4\xi\xi' w^{0}$ (Vorverformungsanteil)	Th. II. Ordnung, Zug aus Tabelle 11. $\Delta w^{\rm V} = 4\xi\xi' w^0$ (Vorverformungsanteil)
⊷α <i>l</i> ► ⊷ α′ <i>l</i> — ► •	2	$\frac{\alpha\xi'}{6}(1-\alpha^2-\xi'^2+6\rho)\frac{Pl^3}{EI}$		
1 _M ^e 2	1	$-\frac{\xi}{6}(1-3\alpha'^2-\xi^2)\frac{M^{\rm e}l^2}{EI}$		
	2	$\frac{\xi'}{6}(1-3\alpha^2-\xi'^2)\frac{M^{e}l^2}{EI}$		
$\frac{d}{\frac{d}{d}}$		$rac{1}{2} \xi \xi' l^2 rac{\Delta T}{d} lpha_{ m T}$		
	1	$\alpha'\xi l\phi^{\rm e}$		
$\Delta_{\Phi^{e}}$	2	$\alpha \xi' l \phi^{\rm e}$		
	1	$-\xi W^e$		
W^{e}	2	ξ'W ^e		
$\gamma \gamma \gamma \gamma m$		0	0	0

Tabelle 13. Funktion der Biegeordinate $\Delta w(\xi)$ relativ zur Stabsehne in Abhängigkeit der Stabendmomente M_i , M_k und der Querlast für beliebig gelagerten Stab w_i^{i}

i	er St	abendmomente M_{i} , M_{k} und k	der Querlast für beliebig	gelagerten Stab
wi		$\psi \psi w_k$ Absoluter Quersc	chnittsdrehwinkel $\varphi(\xi)$ =	$=\psi + \Delta \varphi(\xi)$ (+)
$\Delta \phi(\xi)$		mit Stabdrehwin	kel $\psi = (w_k - w_i)/l$	
<u></u>	Be-			
$ \begin{array}{c} 1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	reich	Theorie I. Ordnung	Theorie II. Ordnung, Druck $A \alpha(\xi) =$	Theorie II. Ordnung, Zug
		$(3\xi^{\prime 2}-1)M_{i}l$		
($\left[\frac{-1}{6}+\rho\right]\overline{EI}$		
<u>M_k</u>)		$\left(\frac{1-3\xi^2}{6}-\rho\right)\frac{M_{\rm k}l}{EI}$		
Vorverformung, quadrat. Parabel		$\frac{1}{24} \left(1 - 6\xi^2 + 4\xi^3\right) \frac{ql^3}{EI}$		
	1	$\frac{1}{24} (\alpha^{'2} - \beta^2) (2 - \alpha^{'2} - \beta^2 - 6\xi^2) \frac{ql^3}{EI}$		
	2	$\frac{1}{24} \left[(\alpha'^2 - \beta^2) (2 - \alpha'^2 - \beta^2 - 6\xi^2) \right]$		
$\mathbf{H} = \beta' l \longrightarrow \beta l \mathbf{H}$		$+4(\xi-\alpha)^3\Big]\frac{ql^3}{EI}$	-	
	3	$\frac{1}{24}(\alpha^2 - \beta'^2)(2 - \beta'^2 - \alpha^2 - 6\xi'^2)\frac{ql^3}{EI}$		
qi		$-\frac{1}{360}(7-30\xi^{\prime2}+15\xi^{\prime4})\frac{q_{\rm i}l^3}{EI}$	$\Delta \varphi(\xi) = \frac{\frac{Q^{\mathrm{II}}(\xi)}{\gamma} - Q^{\mathrm{I}}(\xi)}{D} - \Delta \varphi^{\mathrm{V}}$	$\Delta \varphi(\xi) = \frac{Q^{\mathrm{I}}(\xi) - \frac{Q^{\mathrm{II}}(\xi)}{\gamma}}{Z} - \Delta \varphi^{\mathrm{V}}$
q _k		$\frac{1}{360}(7-30\xi^2+15\xi^4)\frac{q_{\rm k}l^3}{EI}$	$Q^{I}(\xi)$ nach Spalte Theorie I. Ordnung,	$Q^{\mathrm{I}}(\xi)$ nach Spalte Theorie I. Ordnung,
quadrat. Parabel		$\frac{1}{30}(\xi'-\xi)(1+\xi\xi')^2 \frac{ql^3}{EI}$	$Q^{II}(\xi)$ nach Spalte Theorie II. Ordnung, Druck	$Q^{II}(\xi)$ nach Spalte Theorie II. Ordnung, Zug
1) p 2	1	$\frac{\alpha^{'}}{6}(1-\alpha^{'2}-3\xi^2)\frac{Pl^2}{EI}$	$\Delta \varphi^{\rm V} = 4(\xi' - \xi) w^0 / l$	$\Delta \varphi^{\rm V} = 4(\xi' - \xi) w^0 / l$
$\frac{1}{ \alpha l \alpha - \alpha' l - \alpha }$	2	$-\frac{lpha}{6}(1-lpha^2-3\xi'^2)\frac{Pl^2}{EI}$	(Vorverformungsanteil)	(Vorverformungsanteil)
$1_{\underline{M}^{\mathrm{e}}}$	1	$\left(\frac{3(\alpha'^2+\xi^2)-1}{6}+\rho\right)\frac{M^e l}{EI}$		
	2	$\left(\frac{3(\alpha^2+\xi'^2)-1}{6}+\rho\right)\frac{M^e l}{EI}$		
$\frac{d}{\frac{d}{1}}$		$\left(rac{1}{2}\!-\!arsigma ight) lrac{\Delta T}{d}lpha_{ m T}$		
<u>()</u> (2)	1	α΄φ ^e		
$ \overset{\Delta \Phi^{e}}{\vdash \leftarrow} \alpha' l \longrightarrow $	2	$-\alpha \phi^{\rm e}$		
1 2	1	W ^e		
W^{e} $H \alpha l H \alpha \alpha' l \to H$	2	<u>l</u>		
$\gamma \gamma \gamma \gamma m$		$\frac{m}{G\tilde{A}}$	$\frac{m}{G\tilde{A}}$	$\frac{m}{G\tilde{A}}$

Tabelle 14. Funktion des Querschnittsdrehwinkels $\Delta \varphi(\xi)$ relativ zur Stabsehne in Abhängigkeit