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• Independent DOM components were dis-
criminated using PARAFAC.

• Varying composition of DOM compounds
during high-flow events is revealed.

• sPLS yields specific wavelength pairs serv-
ing as proxy parameters.

• Dynamics of water quality parameters
can be predicted via EEM and advanced
statistics.

• Insight into dominance shifts between point
and non-point inputs of organic matter.
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Fluorescence spectroscopy has become a widely used technique to characterize dissolved organic matter (DOM) and or-
ganic hazardousmicro-pollutants in natural and human-influencedwater bodies. Especially in rivers highly impacted by
municipal and industrial wastewater treatment plants' effluents, thefluorescence signal at low-flow ismainly dominated
by these discharges. At river high-flow, their influence decreases due to dilution effects, and at the same time, other com-
pounds of DOM, stemming from diffuse inputs, can increase or even dominate. Therefore, whereas the analysis of DOM
is little informative on the changing sources and pathways of emissions, fluorescence spectroscopy can enhance our un-
derstanding and our possibilities of monitoring such dynamics in river catchments. This paper analyzed samples from
seven high-flow events in an Austrian river. Firstly, independent DOM components were discriminated using a parallel
factor analysis (PARAFAC) to show the varying composition of DOM during different phases of high-flow events. Fur-
thermore, partial least squares (PLS) and sparse PLS (sPLS) regression were applied to identify excitation and emission
wavelengths, serving as proxy parameters for quantifying dissolved organic carbon (DOC) and chloride. The PLSmodels
show the best prediction accuracy but use the entire excitation-emission matrix in exchange. In selecting predictors, the
use of excitation and emission wavelengths adjusted via sPLS is superior to the extracted PARAFAC components. The
sPLS model yields 16 wavelength combinations for DOC (RMSEsPLS = 0.41 mg L-1) and 18 wavelength combinations
for chloride (RMSEsPLS = 2.21 mg L-1). In contrast to other established optical measurement methods, which require
different calibrations for low- and high-flow conditions, thesemodels based on sPLS succeed in quantifying those param-
eters across the entire range of flow conditions and events of various magnitudes with a relative precision of about 5 %.
These results show how the application of multivariate statistical techniques enhances the exploitation of the informa-
tion provided by fluorescence spectroscopy.
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1. Introduction

Fluorescence spectroscopy is an analytical method for water samples
from aquatic systems, which is fast, highly sensitive, requires no reagents
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and no or very little sample preparation, and is an inexpensive option com-
pared to other analytical methods (Carstea et al., 2016). Its current applica-
tions range from detection of contamination events at karst springs (Frank
et al., 2017) to wastewater treatment monitoring (Cohen et al., 2014) and
pollution source tracking (Cawley et al., 2012). In particular, fluorescence
spectroscopy is applicable to characterize dissolved organic matter (DOM)
content and organic hazardous micropollutant content of river water
(Sgroi et al., 2017). DOM refers to a mixture of variable compositions of or-
ganic compounds of different origins. Therefore, if the position and shape
of the peaks in the fluorescence fingerprint change, one may assume that
this reflects a shift in the composition of the dissolved organic compounds.
Especially for the resulting excitation-emission matrix (EEM), different
methods have been proposed to define regions that can be primarily
assigned to certain fluorescence compounds, e.g., peak picking (Coble,
1996), fluorescence regional integration (Chen et al., 2003), and self-
organizing maps (Bieroza et al., 2009). Some recent studies attempt to
describe the origin and dynamic of DOM during diverse flow conditions
in different water bodies (Yamashita et al., 2008; Harjung et al., 2018). In
addition, first approaches to describe the transport dynamics and mixing
of DOM from river water, seawater, and effluent wastewater in coastal
zones are also emerging (EL-Nahhal et al., 2020, 2021). Findings show
that an increase in dissolved organic carbon (DOC) aromaticity accom-
panies an increasing flow and hence an increase in fluorescence intensity
(Vidon et al., 2008; Carstea et al., 2010). It is even possible to observe shifts
in fluorescence peaks during and between rainfall events indicating
changes of DOM sources (Croghan et al., 2021) or to identify diel periodic-
ity for some fluorophores (Khamis et al., 2020). These findings are predom-
inantly based on in-fieldfluorescence spectroscopicmeasurements and thus
rely on the limited information of selected wavelength combinations, such
as the Coble peaks (Coble, 1996). The potential offered by the information
of the whole EEM along with both multivariate and dimension-reducing
statistical methods has not yet been fully exploited in this field. Therefore,
if it is possible to sample high-flow events appropriately to measure the
entire EEM, it might be possible to derive more useful information from it
than has been obtained in previous studies with limited on-site methods
(Khamis et al., 2020; Croghan et al., 2021).

Furthermore, there is evidence that parallel factor analysis (PARAFAC)
(Bro, 1997), a multi-way decomposition method to simultaneously deter-
mine and quantify underlying independent fluorescent components
(Murphy et al., 2013), is particularly useful in identifying DOM composi-
tion and dynamics with a focus on long-term seasonal effects (EL-Nahhal
et al., 2021; Retelletti Brogi et al., 2020) or short-term changes during
high-flow events (Hong et al., 2012; Austnes et al., 2010; Fellman et al.,
2009). For instance, this enables to differentiate the counteracting shift
mechanisms in the biodegradability and chemical quality of DOM during
storm events in different watersheds (Fellman et al., 2009). Studies in this
field have so far strongly focused on linking the shift of DOM composition
during storm events to different inputs from terrestrial sources and land
use in the river catchment (Nguyen et al., 2013; Yamashita et al., 2011),
but no attempts have yet been made to explore changes between DOC
from point and diffuse emissions thoroughly. Beyond that, the literature
is somewhat limited to extracting PARAFAC components, classifying
these as protein- or humic-like, and correlating them with DOC. Multivari-
ate statistical methods could incorporate the comprehensive information
offered by multi-parameter monitoring of water quality. Moreover, the
interpretation of PARAFAC results is far from being straightforward. Until
now, it has not been possible to attribute PARAFAC components to specific
chemical compounds, although component scores are assumed to be corre-
lated with actual concentrations (Stedmon and Bro, 2008; Wünsch et al.,
2019). In this regard, a crucial aspect is that the extracted components
are sensitive to the specific analyzed water body. Accordingly, a cautious
choice in modeling is far more important than trying to establish one global
model (Pitta and Zeri, 2021). Furthermore, to interpret the variation of
PARAFAC components over space and time, the influence of the environ-
ment on the fluorescence properties of a compound must first be well-
understood (Ishii and Boyer, 2012).
2

Given current limitations and research gaps, this study aims to investi-
gate the full potential of fluorescence spectroscopy in supporting the iden-
tification and understanding of shifts and dynamics of DOM emitted via
different point sources and diffuse pathways into rivers during high-flow
events. The selected case study, namely a river significantly influenced by
both wastewater treatment plant (WWTP) effluents and diffuse emissions,
provides ideal conditions for this investigation. The emitters are expected
to dominate the signal measured with fluorescence spectroscopy at low
flow in such a river. Their emission loads get diluted at high flow, while a
shift toward greater visibility, if not even dominance of diffuse emissions
in the fluorescence signal, can be expected.

In this paper, the fluorescence properties of DOMduring river high-flow
events are considered from two newly related perspectives. The first objec-
tive is to discriminate PARAFAC components representing the peak shift
and variation of DOM compounds during high-flow events. The novelty
of this publication is that components are analyzed to showhow the compo-
sition varies during different phases of highly dynamic flow events rather
than just focusing on long-term or seasonal variations. Moreover, events
of extremely various magnitudes are compared in terms of components,
and similarities as well as differences are explained. The second objective
is to establish components or excitation and emission wavelengths serving
as proxy parameters for quantifying of water quality parameters such as
DOC and chloride (Cl-). Ordinary least squares (OLS) regression, partial
least squares (PLS) regression, and, to the best of the authors' knowledge,
for the very first time, sparse PLS (sPLS) regression are applied to address
this question. The results are compared regarding their ability to produce
reliable predictions and identify relevant combinations of excitation and
emission wavelengths, which can serve as credible proxy parameters for
quantifying water quality parameters.

2. Materials and methods

2.1. Sampling site and sampling strategy

All samples were taken at the online-monitoring station (N46°55′48′′,
E16°9′12′′) of the project “Sustainable water quality management Rába -
Online Monitoring” (NaWas) at the Austrian lowland river Rába (German:
Raab). The river has its origin at the foot of the mountain Osser in the
municipality of Passail (N47°20′43′′, E15°30′55′′). It enters the Mosoni
Duna, a right-bank tributary of the Danube, in Győr (N47°41′25′′, E17°37′
49′′), Hungary. The catchment of the Rába river, located in the southeast
of Austria and characterized by average precipitation of 833mm y-1, covers
an area of 1009 km2 (Zoboli et al., 2019). It has a mixed land use, with
approximately 42 % of the area dedicated to agriculture (25 % arable
land and 17 % grassland) and 52 % and 3 % covered by forest and urban
areas, respectively. Municipal and industrial wastewater treatment plants
(especially three tanneries) contribute with their effluents to ca. 3 % of
the total mean flow of the river, which is 9.9 m3 s-1 (Zoboli et al., 2019).
The purpose of the NaWas project is the long-term high-resolutionmonitor-
ing of water quality for supervision of municipal and industrial discharges
and the development and testing of new measurement techniques. The
river water is constantly pumped into a flow-through tub located in a
container at the river bank and equipped with numerous single- and
multi-parameter probes for online monitoring, e.g., a turbidity immersion
probe measuring total suspended solids (TSS) and a UV–Vis spectrometer
measuring total organic carbon (TOC), DOC and nitrate (NO3-N).

To specifically sample high-flow events in-situ, a commercially avail-
able portable sampling device (Bühler 2000) with 24 bottles of 1 L and a
cooled sample compartment (~4 °C) takes water samples out of the previ-
ously described tub. All components of the sampling device are routinely
thoroughly cleaned and rinsed with sample medium before and after each
triggering to prevent contamination. The sampling compartment is stocked
with cleanedHDPE bottles approved for organic carbon analysis. In the lab-
oratory, the samples are handled in glass bottles. To limit other confound-
ing influences, the exact same sampling site and same methodology were
consistently used throughout the study. The sampling device is triggered



Table 1
Overview of sampling periods, duration, number of samples (n) and, range of dis-
charge and DOC for each river high-flow event.

Event Start (UTC) Duration [h] n Q [m3s-1] DOC [mg L-1]

A 2020-06-29 14:30 3.5 8 11.8–127 4.8–7.9
B 2020-07-11 21:55 20.5 14 5.7–32.6 3.5–7.4
C 2020-10-12 02:00 34 14 21.8–92.1 5.6–9.4
D 2020-12-09 09:20 20 10 10–29.1 5.1–6.8
E 2021-01-03 13:20 163.5 10 6–19.6 2.5–3.4
F 2021-02-07 17:30 63.5 9 3.3–24.5 2.7–4.8
G 2021-05-17 05:50 21 9 4.7–18.5 3.5–4
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remotely either manually or automatically based on complex sampling
algorithms derived from online signals to ensure the optimal coverage of
increasing and decreasing parts of the hydrograph in real-time. In addition
to standard time and volume-based triggering of the auto-sampler, the im-
plemented measurement control software iTUWmon (Winkelbauer et al.,
2014) enables the configuration of advanced control strategies. Flow and
turbidity are typical parameters influencing the triggering operation.
After fine-tuning of triggering conditions, the control strategy is activated,
and sampling of recognized events, together with the measurement
data of the examined river section, is logged into a central measurement
database.

This setup allowed to aim for the sampling of different phases,
i.e., increasing and decreasing river high-flow, as well as different magni-
tudes, i.e., medium-high to annual river high-flow, throughout the seasonal
variations of one year. Event A was captured using a time-proportional al-
gorithm. In contrast, a customized algorithm captured events B through D
and F based on turbidity and riverflow. Events E and Gweremanually sam-
pled by triggering the sampling device remotely. Fig. 1 shows the river flow
of the seven analyzed events and the sampling period within each event.
Not all events could be covered entirely and the length of the sampling pe-
riods varied noticeably due to the limited number of bottles in the sampling
device, sedimentation in the flow-through tub, or server connection failure.
Nevertheless, the total of 74 samples covers a wide variety of different con-
figurations of high-flow events. Table 1 specifies the sampling periods, the
number of samples per event, river flow and DOC concentration ranges in
more detail.
Fig. 1. River-flow time series of analyzed high-flow events
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2.2. Analytical methods

Standard water quality analysis of the samples comprised DOC (DIN EN
1484), Cl- (HPIC according to DIN EN ISO 10304-1), PO4-P (DIN EN ISO
6878), NH4-N (DIN EN ISO 11732), and TSS concentrations (DIN 38409-2).

Throughout each event, the samples were cooled in the sampling com-
partment, retrieved in a timely manner, including in-between collection at
more extended events, and filtered with a 0.45 membrane filter upon
arrival at the lab. Immediately before the spectroscopic measurement, sam-
ples were diluted four-fold with Milli-Q and allowed to warm up to room
temperature (~20 °C). Excitation-emission matrices (EEM) have been
recorded using the HORIBA Scientific Aqualog® spectrofluorometer
equipped with a Xenon lamp. The measurements were performed in a
A to G with sampling periods highlighted in light-gray.
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quartz cell with a 1 cmoptical path length for an excitation range of 220 nm
600 nm in 3 nm steps, an emission range of 246 nm 824 nm, a slit width of
5 nm and an integration time of 2 s. Absorbance for each sample has been
measured with the same equipment and measurement settings for the
same wavelengths as for the fluorescence spectroscopy. Those absorbance
spectra were used to correct for inner filter effects following the method
proposed by Lakowicz (2006).

Several correction steps have been applied to the raw EEM data. Sub-
traction of dark signal, spectral correction, scaling to reference detector,
and blank subtractionwas done inside the Aqualog software. For blank sub-
traction, EEMofMilli-Q have beenmeasured on the same day as the sample
EEM. The results were then exported and further corrected with the statis-
tical software package R (R Core Team, 2021). Customized functions
adapted from the packages eemR (Massicotte, 2019) and staRdom (Pucher
et al., 2019) were applied to import the data and to correct for Rayleigh-
masking, Raman-masking and inner filter effects. Furthermore, data were
numerically corrected to represent undiluted samples at an integration
time of 1 s. Finally, fluorescence intensities of the corrected EEM were
converted into Raman Units [R.U.] by normalizing by the daily Raman
peak area obtained from Milli-Q 2D-spectrum measured at Ex/Em
350 nm/383-410 nm with the same spectrofluorometer. This step ensures
comparability between the sampled events regardless of the measurement
settings and changes in lamp intensity due to the temporal distance
between measurements.

2.3. Statistical methods

All analyses have been carried outwith the statistical software R (R Core
Team, 2021). To reduce the dimensionality of its trilinear multi-way data
structure, the 74 EEMwere decomposed into 2 to 6 underlying components
using PARAFAC models with non-negativity constraints following the pro-
cedure outlined in the package staRdom (Pucher et al., 2019) and validated
as described in Stedmon and Bro (2008). Multiple random initializations
(Harshman and Lundy, 1994) as well as a split-half and a residual analysis
(Murphy et al., 2013) verified the stability of the final four-component
model. For the split-half analysis, the 74 samples were randomly divided
into four sub-samples and then each pair was combined and analyzed for
comparison. The extracted PARAFAC component scores were transformed
to Raman Units by compensating for former normalisation in the amount
of each component in every sample as described by Pucher et al. (2019)
to allow straightforward interpretation, and hence those represent the rela-
tive concentration of DOM compounds with similar fluorescent properties.

Spearman correlation was conducted to identify bivariate linear
relationships between PARAFAC components and water quality parame-
ters. In the next step, OLS regression (Lai et al., 1979) was used to establish
the multivariate relation between PARAFAC components and water quality
parameters with log-transformed total suspended solids (TSS) as a covariate
to account for the varying magnitude of the events and for the potentially
delayed dynamics between changing hydrograph and shifts in DOM
emissions. Regression coefficients with P< .05were considered statistically
significant.

In order to apply multivariate regression models to the EEM data di-
rectly, the data was unfolded into a two-way array, scaled, centered, and
wavelength combinations with a sample variance of fluorescence intensity
lower than 0.1 were excluded due to their potential to cause numerical
problems and non-converging models (Kuhn, 2008). Quantification of
water quality parameters was established using two different approaches,
whereby the models were compared utilizing the root mean square error
(RMSE), which represents the model's error, i.e., the difference between
the measured and the predicted concentration in the units of measurement
(here mg L-1). Firstly, a kernel PLS regression (Wold, 1985) was conducted
with the package caret (Kuhn, 2021). The number of components in the PLS
modelwas chosen between 1 and 10 via bootstrap, i.e., fitting themodel re-
peatedly to data randomly sampled with replacement from the original
data. The number of components minimizing the RMSE in this validation
process was then used to fit the final PLS model. Secondly, an sPLS
4

regression using the SIMPLS algorithm was calculated with the package
spls (Chung et al., 2019). It is important to note that the PLS includes all var-
iables in the model, even if many contribute only slightly to the prediction,
i.e., have regression coefficients close to zero. In contrast, sPLS incorporates
a variable selection step. Depending on the choice of the sparsity parame-
ter, a certain number of variables is selected by setting the regression coef-
ficients of non-selected variables to zero. The result is a set of selected
variables that contains the wavelength combinations best suited to predict
the target water quality parameter. The number of components (1 to 10)
and the sparsity parameter (0.95 to 0.995 in 0.005 steps) were chosen by
10-fold cross-validation, i.e., the data is split into ten parts, and each is
held out once, in turn, to serve as the validation set. Moreover, expert judg-
ment was used to further reduce the number of variables whilemaintaining
an acceptable RMSE.

3. Results and discussion

3.1. Characteristic peaks and PARAFAC components

A suitable way to visualize the EEM despite its high-dimensional struc-
ture is through contour plots. The ranges of excitation and emission wave-
lengths are plotted on the X and Y axes, respectively, resulting in a grid
structure that includes all combinations of excitation and emission wave-
lengths. The EEM contains the corresponding measured fluorescence inten-
sity in RamanUnits (R.U.) for each of these combinations, displayed using a
color scale. The darker the shade, the higher the fluorescence intensity in
that region. Fig. 2 (a) shows contour plots for two representative EEM of
the Rába River at different flow conditions. The quite distinctive position
of the highest fluorescence signal for the Rába river is typically located at
an excitation of about 228 mn and an emission between 330 mn and
345 mn at low-flow conditions, whereas at high-flow conditions it is still
found at the same excitation, but at an emission between 400 nm and
450 nm. The entire fluorescence signal covers an emission range of
250 nm to 550 nm at low-flow and 300 nm to 600 nm at high-flow. Addi-
tional contour plots of several samples of all events with separate color
scales can be found in Fig. S1 and Fig. S2 in the Supplementary Material
to illustrate the variety of the fluorescence signal at different flow condi-
tions more comprehensively.

PARAFAC analysis of all 74 samples resulted in a final model with four
mutually independent areas of the fluorescence signal (components) that
reflect the events' variability in terms of flow and seasonality. Leverage
was under 0.25 for all samples. The results of the split-half analysis regard-
ing the validity and stability of the established model can be found in
the supplementary material (Fig. S3). Fig. 2 (b) provides a graphical
overview of the four components of the final PARAFAC model, and
Table 2 summarizes the exact peak location of the components and their
common interpretation.

Hereafter, the extracted components (C1-C4) of the final PARAFAC
model are described according to published models in the OpenFluor data-
base (Murphy et al., 2014) specifically focusing on surface waters as well as
variations or deviations in the extracted components. Components C1 and
C3 lie within the area of Coble peak A, which is predominantly attributed
to humified material (Coble, 1996). Both are universal components that
have been described in numerous PARAFAC models. The primary and sec-
ondary peaks of C1 have both been described as a fulvic-like compound
with terrestrial sources (Retelletti Brogi et al., 2020; Hong et al., 2012;
Yamashita et al., 2011; Austnes et al., 2010). C3 also originates from terres-
trial sources but resembles a humic-like compound (Retelletti Brogi et al.,
2020; Nguyen et al., 2013; Hong et al., 2012; Austnes et al., 2010), for
which it is suggested that these arise from older soil organic matter than
fulvic-like compounds (Yamashita et al., 2011). Despite its large dimension,
the primary peak of C4 falls into the region of Coble peak C, indicating the
presence of humified material (Nguyen et al., 2013) possibly of biological,
microbial, or terrestrial origin (Hong et al., 2012; Yamashita et al., 2008).
However, it should be mentioned that C4 partially extends into the region
of Coble peak T2. Unfortunately, the initial expectation that the very large



Fig. 2. (a) Representative contour plots of river water EEM at low-flow (3.3 m3 s−1) and high-flow (92.1 m3 s−1) conditions. The color scale indicates the fluorescence
intensity [R.U.]. (b) Contour plots of the four PARAFAC components C1, C2, C3, and C4 normalized to the maximum fluorescence intensity of each component.
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component C4 could be further decomposed into narrower, clearly sepa-
rated components proved disappointing, even with more components in
the PARAFAC model. Still, since this only applies to a minor peak, the pre-
sented PARAFAC model shall stick to the attribution of the unambiguous
primary peak of C4 as humic-like. Component C2 is located within the re-
gion of Coble peak T2, which is indicative of the presence of protein-
associated dissolved organic compounds (Coble, 1996). The interpretation
of C2 as protein-associated is somewhat controversial since this mainly ap-
plies to its secondary peak (λex: 275/λem: 341) (Retelletti Brogi et al., 2020;
Hong et al., 2012), whereas no clear association has yet been confirmed for
Table 2
Overview of PARAFAC components found in the samples of river high-flow events.
Peak labels and descriptions follow the convention of Coble (2007) and Hudson
et al. (2007). A comparison to components of PARAFAC models published on
OpenFluor (Murphy et al., 2014) is given in the description.

Component λex/λem [nm] Peak Description

C1 222/429 A Humic-like
C2 225/341 T2 Tryptophan-like
C3 249/489 A Humic-like
C4 231/387 C Humic-like

5

the primary peak of C2. Most studies nevertheless suggest the characteriza-
tion of component C2 as tryptophan-like (Harjung et al., 2018; Yamashita
et al., 2011), whereby no clear distinction regarding the origin either
from autochthonous or anthropogenic production is possible (Hong et al.,
2012; Hudson et al., 2007) and requires to be inferred in the present
samples via additional background information. Due to the regional prox-
imity, C2 is nevertheless tentatively classified as such here. Considering
the characteristics of the catchment and specifically the discharging indus-
trial WWTPs, the findings subsequently presented suggest that C2might be
a component particularly influenced by industrial treated wastewater and
thus representative of synthetic compounds emitted into the Rába
(Fig. 4). The overall appearance of our PARAFAC model closely resembles
those reported by Pitta and Zeri (2021), who studied the influence of sam-
ple augmentation on the resulting global PARAFACmodel and therein also
reported individual models for different watersheds.

3.2. Shift of PARAFAC components during events

Fig. 3 shows the time series of the discharge and the four PARAFAC
components for each of the seven sampled events. It is evident that as the
flow increases, the fluorescence intensity of C2 decreases rapidly,



S. Peer et al. Science of the Total Environment 851 (2022) 158016
indicating an attenuation of the signal due to a dilution of the organic com-
pound concentration. Depending on the event's strength, this dilution oc-
curs with a time lag of 8 to 15 h (B, C, and D) due to the so-called piston
flow, i.e., the flood wave carries the water in the river before the event
along its path (Sophocleous, 2002). Thus, samples continue to be taken
from this base-flow situation before the newly discharged water reaches
the monitoring station. Only from this point on the changing water compo-
sition due to high-flow situation can be measured. Regardless of the piston
flow, the effect of combined sewer overflows should at least be considered.
It also occurs with a delay and is accompanied by a sudden increase in the
organic load as soon as its storage capacity has been exceeded. Especially in
the case of massive storm events, this might further contribute to an addi-
tional increase in the DOM. Differences in the time lag are explained by
the exact location of the storm event in the spacious catchment area of
the river and how remote it is from the measuring station. Subsequently,
the signal of C2 remains stable at an evidently lower level for some time
with decreasing discharge (B, C, and G) before it increases with some
delay until the initial level is regained (E).

Hong et al. (2012) attribute this pattern to the inflow of anthropogenic
sources, such that there is a dilution of the protein-like compounds during a
high-flow event if the inflow has not increased proportionately. In contrast,
the signal's dynamic of C1 is analogous to that of the discharge, but also
Fig. 3. Time series of the discharge and the four PARAFAC comp
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with a similar time lag and a gradual decrease, which could be the result
of the piston flow effect. In particular, the signal increases evidently for
events with discharge greater than 30 m3 s-1 (A to D), while this is signifi-
cantly less pronounced for eventswith lower discharge. This result is in per-
fect accordance with the findings of Nguyen et al. (2013) and Fellman et al.
(2009). At high flow, C1may nominally obtain a signal nearly as high as C2
(10 R.U. to 12R.U. at event A), or C1may even temporarily supersede C2 as
the highest peak (B to D). However, there is strong evidence that this
may not necessarily occur as well, especially in unaffected rivers
(Nguyen et al., 2013). Correspondingly, the components C3 and C4 follow
the course of component C1, but the range of the absolute fluorescence sig-
nal is much narrower. Especially the apparent shift toward a higher concen-
tration of humic-like compounds indicates the input of near-surface soil
layers as the key contributor of DOM during high-flow events (Fellman
et al., 2009). The altered ratio of humic- to fulvic-like compounds,
i.e., components C3 and C1, may be attributed to this as well (Fellman
et al., 2009).

Retelletti Brogi et al. (2020) indicate that, in general, protein-like com-
pounds predominate in summer. The available data for the Rába River
show a corresponding variation in the base-flow signal for component C2.
For this reason, it can be concluded that the fluorescence spectroscopic sig-
nal of C2 at base-flow conditions is attributable to the influence of
onents C1, C2, C3, and C4 during the seven sampled events.
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discharges from several industrial WWTPs and that the fluctuation is much
more subject to the production cycle than to seasonal conditions. Under
base-flow conditions, the components C1 and C3 are consistently similar
around 2 R.U. to 6 R.U. and reveal only minor differences, which are well
explained by seasonal variations. Especially in summer, the greatly en-
hanced primary productivity in the river and the increased transfer of soil
organic matter via more frequent rainfall events result to higher DOC con-
centrations than in winter (see summer event B vs. winter event E in Fig. 3)
(Harjung et al., 2018; Yamashita et al., 2011). However, it is evident that
the seasonal cycle depends on the respective catchment. Studies in other
rivers, for instance, report an increase in humic-like components in May
and June (Hong et al., 2012). Due to the high-flow season in autumn,
humic-like DOM, mainly from terrestrial sources, may well be input to
the river at this time, too (Retelletti Brogi et al., 2020). Together, these
mechanisms lead to a reasonably low variance of the fluorescence spectro-
scopic signal of components C1 and C3 at base-flow in the Rába River. Last
but not least, discharges of municipal WWTPs and WWTPs of some indus-
trial sectors (e.g., meat processing) also add humic-like substances
(Rodríguez-Vidal et al., 2020; Li et al., 2014). However, this is a constant
input from point sources, which is not affected by production-related
cycles.

3.3. Correlation between EEM and water quality parameters

The interpretation of C1, C3, and C4 as mainly linked to diffuse inputs
during high-flow and C2 as influenced by industrial emissions is further
confirmed by pairwise correlations between the components and relevant
water quality parameters (Fig. 4). C1, C3, and C4, which are highly corre-
lated among themselves (r ≥ .84), are also medium to highly associated
with DOC (.60≤ r≤ .89), i.e., these serve as proxy parameters for organic
pollution. The fact that three components show this correlation simulta-
neously strengthens the assumption that different wavelength areas in the
EEM represent different DOM compounds. DOC does not distinguish
these as a sum parameter, so the EEM or the PARAFAC components bring
a more nuanced insight about changes to which the DOM composition is
Fig. 4. Distribution of and pairwise correlation between water quality parameters an
calculated according to Spearman. Asterisks represent statistical significance (** indicat
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subject during the high-flow event. Standard water quality parameters pro-
vide this only to a much lower extent, or in many cases, not at all. For this
reason, a perfect correlation between DOC and the components C1, C3, or
C4 is not to be expected.

However, C2, the component which covers a whole different wave-
length region compared to the other components, shows a strong positive
correlationwith Cl- (r=.75), the input of which at the RábaRiver ismainly
due to industrial discharges. It is crucial to know that industrial wastewater
treatment plants usually do not have a sewer and little or no storage facili-
ties. This leads to relatively stable effluent volume flows and concentra-
tions, which fluctuate only due to changes in production qualities and
quantities. This is also confirmed by the dilution of the chloride concentra-
tion during high-flow events and suggests that constant point discharges
largely influence it in addition to a natural background concentration.
Their contribution indeed decreases compared to the total runoff during
an event, but if the concentration is set in relation to the flow rate, an in-
crease in the chloride load can be seen. This finding particularly indicates
diffuse chloride inputs during high-flow events since the chloride load
from point sources is independent of river flow and is rather constant
over time. Fluctuations in the input of chloride load due to changes in the
production cycles of several months do not matter due to the shorter dura-
tion of the high-flow events and can therefore be disregarded. The men-
tioned diffuse input sources, besides their geogenic background, are most
likely de-icing salt run-off from roads (mainly NaCl and CaCl2) and leaching
of certain agricultural fertilizers from surrounding agricultural soils since
some fertilizers contain Cl-. Furthermore, the components C1, C3, and C4
result highly correlated (.65 ≤ r ≤ .70) with orthophosphate (PO4-P).
PO4-P exists in dissociated form in water; thus, no absorbance spectrum is
available for this compound in the UV/Vis-range (Linstrom and Mallard,
2022). However, the increased phosphorus transfer from agricultural soils
into surface waters during rainfall and erosion events is a well-known pro-
cess that can explain this positive correlation (Sims and Sharpley, 2005).

It is reasonable to assume that not all of the numerous data points in the
EEM contribute equally to the prediction of standard water quality param-
eters. Three different statisticalmodels are compared regarding their ability
d the four PARAFAC components C1, C2, C3, and C4. Correlation coefficients are
es P < .01, *** indicates P < .001).
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to verifywavelengths that are sufficiently capable proxies to accurately rep-
resent the pattern described in the previous section throughout different
discharge conditions and annual seasons. The OLS regression analyzes the
relationship between DOC resp. Cl- and the previously described
PARAFAC components. To avoid multicollinearity, component C3 has
been used to represent the highly correlated carbon-associated components
(C1, C3, and C4), as it exhibits the highest correlation with the parameters
of interest (Fig. 4). The resulting regression equations are shown in
Eqs. (1) and (2).

dDOCOLS ¼ 1:33 � 0:09 ⋅ C2þ 1:02 ⋅ C3þ 0:32 ⋅ log TSSð Þ (1)

dCl−OLS ¼ 42:27þ 0:87 � C2−5:53 � C3−0:25 � log TSSð Þ ð2Þ

To evaluate the quality of the different statistical modeling approaches,
the predicted DOC and Cl- concentrations are compared to the actual
measured concentrations in Fig. 5. Although the models perform quite sat-
isfactorily by means of the RMSE (RMSEOLS = 0.9 mg L−1 for DOC and
RMSEOLS = 5.31 mg L−1 for Cl-), the OLS regression over- or underesti-
mates the concentrations of some high-flow events throughout. Retelletti
Brogi et al. (2020) found that the correlation between DOC and
PARAFAC components is different when calculated separately for different
seasons. Since only univariate regression models were considered, the re-
sults are comparable only to a limited extent. Yet, there is no evidence
that the systematic under- or overestimation is due to the seasonal
occurrence of high-flow events in the study at hand. The underestimated
and overestimated events for both DOC and Cl- even cannot be grouped ac-
cording to their maximum flow. For example, events B and D both have a
maximum flow close to 30 m3 s-1. However, the OLS model systematically
overestimated the DOC for Event B, while that for Event D is underestimated.
Fig. 5. Predicted versus measured (a) DOC and (b) Cl- concentration in event samples.
regression (PLS).
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The same is true for the comparison of Events E and G. Adding covariates to
the model, e.g., log TSS or the concentration of different phosphorus frac-
tions, could perhaps improve the performance in this respect by allowing
to account for different phases of each event, different flow conditions and
hysteresis effects. In our study, adding these covariates did not improve the
performance significantly. Still, it would be worth testing this hypothesis in
the future with a larger data set covering a higher number of high-flow
events. Furthermore, the assumption of a linear relationship between the
components and DOC or Cl- is not valid across all events, so this method can-
not aim for using the PARAFAC components as proxy parameters. For Event
F, this is strikingly evident when the predicted and measured Cl- concentra-
tions are compared.

In general, sPLS and PLS performed very successfully for DOC
(RMSEsPLS = 0.41 mg L−1 and RMSEPLS = 0.11 mg L−1) as well as Cl-

(RMSEsPLS = 2.21 mg L−1 and RMSEPLS = 1 mg L−1). Both methods con-
siderably exceed the OLS regression in terms of RMSE and fit very well for
all sampled high-flowevents, regardless of their differences inflow and sea-
sonal occurrence. Whereas PLS clearly outperforms sPLS with regard to its
predictive capability, the entire EEM has to be provided for this purpose.
On the other hand, sPLS requires only 18 pairs of emission-excitation
wavelengths for Cl- (Eq. (3)) and 16 pairs of wavelengths for DOC
(Eq. (4)), respectively.

dCl−sPLS ¼ 2:80 � λ222=373 þ 1:49 � λ222=573 þ 1:42 � λ225=592
þ1:20 � λ243=296 þ 1:09 � λ225=269 þ 1:06 � λ228=269

þ1:00 � λ264=287 þ 0:78 � λ225=373 þ 0:64 � λ246=296

−0:23 � λ222=260−0:43 � λ222=517−0:62 � λ222=364
−0:73 � λ222=264−1:25 � λ228=278−1:42 � λ228=251

−1:85 � λ222=569−2:75 � λ222=531−5:85 � λ378=517

ð3Þ
Prediction is based on OLS regression (OLS), sparse PLS regression (sPLS) and PLS
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dDOCsPLS ¼ 0:69 � λ243=592 þ 0:55 � λ225=550 þ 0:45 � λ222=273

þ0:42 � λ402=508 þ 0:37 � λ408=517 þ 0:32 � λ399=517

þ0:26 � λ231=255 þ 0:26 � λ393=517 þ 0:23 � λ222=264

−0:20 � λ225=260−0:27 � λ399=442−0:28 � λ222=255− 0:31 � λ222=573

−0:35 � λ228=273−0:40 � λ225=373−0:52 � λ222=564

ð4Þ

Most of the by sPLS selectedwavelength pairs formodeling Cl- are located
in area d, which expands strongest toward area c when the relaxation of the
sparsity parameter increases the number of variables in the model. Area c it-
self is very narrow but also well specific for the highest peak in the fluores-
cence signal at low-flow conditions (cf. Fig. 2). This result is in remarkable
alignment with the PARAFAC component C2, which is highly correlated
with Cl-. For DOC, region f is the one that spans themost pairs ofwavelengths.
As the number of variables is increased, region f is found to expand fastest to-
ward an excitation wavelength of 320 nm. Hence, this region plays a crucial
role in enabling the EEM to serve as a proxy for DOC. This is particularly
interesting since this region is contained in component C3 but only as a sec-
ondary peak. Although both peaks, primary and secondary, are essential for
characterization as a terrestrial humic-like compound, the information of
the secondary peak is more relevant in the model of the sPLS. Moreover,
the suitability of peak C, which is located in this area, as a proxy parameter
for DOC has been well demonstrated (Carstea et al., 2020). But the fact that
the applicability of peakC as the only universal proxy for DOC is controversial
(Baldwin and Valo, 2015), speaks in favor of the approach chosen here to in-
clude several wavelength combinations in the prediction. This advantage of
themulti-parameter approach applies especially if peak C is not the dominant
feature in the EEM (Saraceno et al., 2009). Regions a and e provide informa-
tion about the highest emission wavelengths at which a fluorescent signal is
still present. Especially with increasing flow, it can be observed how the fluo-
rescencefingerprint stretches to emissionwavelengths of 500 nm and higher.
Fig. 6 visualizes the relevant wavelength combinations selected by sPLS.

For the prediction of bothDOCandCl-, those regions that typically exhibit
low signal (c versus g and b versus f) are also included in the sPLS model in
each case albeit with negative coefficients. This is likely to be specific to the
situation at the Rába River, where the peak shift described earlier means
that both peaks never present simultaneously with similar high fluorescence
signals. Compared to the peaks of the four PARAFAC components, the sPLS
indeed contains areas that do not correspond to the primary peaks. Instead,
it rather exploits the entire fluorescence spectroscopic fingerprint by, for in-
stance, also accounting for peripheral spectroscopic zones. Thus, the predic-
tion performance improves significantly by using slightly more information
from the EEM than just the PARAFAC components. This is in accordance
with the results of Yin et al. (2021), who showed that a boosting regression
tree yielded a better prediction for DOC than the corresponding PARAFAC
model. As such, fluorescence spectroscopy coupled with multivariate statis-
tics becomes not only a promising proxy parameter for standardwater quality
parameters but also provides important insights into the qualitative change of
the DOM in the riverine system.
Fig. 6.Wavelength combinations selected by sPLS. The rectangles a to d mark areas
where 18wavelength combinations for modeling Cl- are located. The rectangles e to
g mark areas where 16 wavelength combinations for modeling DOC are located.
Note that each rectangle spans over one or more wavelength combinations. The
exact excitation-emission wavelengths of the combinations are specified in Eq. (3)
for Cl- and Eq. (4) for DOC.
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In contrast to other established optical measurement methods, which
require different calibrations for both low- and high-flow conditions, quan-
tification using EEM even succeeds across the entire range of flow condi-
tions and events of various magnitudes. Yet the use of combinations of
excitation and emission wavelengths adjusted via sPLS is clearly superior
to the extracted PARAFAC components. As expected, the prediction accu-
racy increases with the number of wavelength combinations included in
the model. This in fact also applies to OLS regression (Carter et al., 2012).
However, this is not the case for all available water quality parameters
(e.g., NH4-N, data not shown),while some can be at least estimated through
a mediating relationship (e.g., PO4-P, data not shown).

4. Conclusions

This paper shows that fluorescence spectroscopy is well suited for iden-
tifying and predicting water quality dynamics during river high-flow
events. In particular, the combination with multivariate statistical tech-
niques precisely reflects known phenomena of flood dynamics, such as
the piston flow, much better than previous strategies like peak picking
could do. This result fosters the hope that fluorescence spectroscopic online
measurements canmonitorwater quality evenmore effectively on-site, pro-
vided that preceding filtration is implemented.

Although combining the extracted PARAFAC components with OLS is a
widely accepted approach, these models are not universally comparable as
no globally applicable PARAFAC model has been found yet. Using the
whole EEM via PLS is advantageous as it incorporates all the information.
Still, at the same time, it is a disadvantage because of the high-dimensional
data structure. Consequently, the use of sPLS represents a novel and promis-
ing solution, with the benefit of combining the selection of wavelength com-
binationswith quantifyingwater quality parameters all at once. This provides
a considerably better quantification than PARAFAC components and an
equally satisfying quantification as PLS but requires significantly fewerwave-
length combinations. For this reason, the sPLSmodel is highly recommended
for fluorescence spectroscopy with in-field instruments with a local calibra-
tion. The future goal is to extend this to water quality parameters beyond
DOC and Cl- as this opens a massive gateway to expand the targeted water
quality monitoring by fluorescence spectroscopy.
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