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Abstract

Many systems, including telecommunication systems, radar and imaging systems,

biomedical systems, control and robotics systems, rely on powerful digital signal

processing (DSP). DSP algorithms are hard pressed to provide accurate estimates of

a signal from as few as possible noisy measurements. If the signal to be estimated is

sparse and high dimensional, a novel DSP technique, called compressed sensing (CS),

allows efficient recovery from (possibly noisy) low dimensional representation. Even

though reconstruction guarantees of several CS recovery algorithms have been known

for almost a decade, many nonlinear distortions introduced by a practical measurement

system are often not considered in the analysis. Neglecting these distortions could,

in turn, have a detrimental effect on the performance of a recovery algorithm in a

practical application. In this thesis, I focus on algorithms for recovering sparse vectors

from measurements tampered with some of the most common nonlinear distortions

that appear in practice, namely quantization and modulo distortions, which are not

treated with classical CS recovery algorithms.

To the present date, many reconstruction algorithms have been proposed to solve

noisy CS problems. Among them, the class of approximate message passing (AMP)

algorithms stands out for its low computational complexity, low reconstruction error,

and the ability to predict the states of the algorithm across iterations (at least in

the large system limit). Furthermore, the Bayesian approximate message passing

(BAMP) algorithm has the ability to incorporate signal prior to additionally improve

the estimate, while the generalized approximate message passing (GAMP) algorithm

allows for the reconstruction of sparse signals from nonlinear measurements. These

facts make the AMP algorithms particularly interesting for our problems involving

quantization and modulo distortions with known prior.

BAMP follows the probabilistic estimation approach where a prior distribution

is assumed for the unknown signal. A commonly used family of distributions that

promotes sparsity of the solution is the Bernoulli-Gauss (BG) mixture. In this thesis, I

show how a BG mixture can be thought of as a limiting case of mixture of two Gaussian

distributions. I extend this to the case where the prior is modeled as a mixture of n
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vi

Gaussian distributions, which covers a much larger class of signals. For that case I

derive explicit analytic update rules for the BAMP algorithm. Furthermore, I present a

novel approach to the known Analysis-by-Synthesis (AbS) quantization scheme, where

I use the BAMP algorithm to further reduce the end-to-end reconstruction MSE from

quantized CS measurements.

In many practical applications, the computationally demanding AbS quantization

scheme is not feasible, and CS measurements are simply scalar quantized. During the

storage or communication over a noisy channel, the quantized measurements might

be corrupted in different ways. Reconstruction by conventional algorithms on such

highly distorted measurements will result in poor accuracy. To address these problems,

I use the well established GAMP algorithm and tailor it for scalar quantized CS

measurements corrupted with noise. I provide analytical expressions for the nonlinear

updates assuming different noise models, and conduct numerical experiments to show

that the GAMP algorithm outperforms conventional CS algorithms under the considered

model assumptions.

Finally, I consider a problem that typically appears in the context of calibration

of sensing devices: unknown dynamic range of the input signal. Traditionally, this

problem was addressed by clipping or saturating the input, which results in a loss

of information about the signal. Alternatively, by taking modulo measurements, the

input samples exceeding the sensor’s threshold are simply folded back to its dynamic

range. Even though the sampling theory for recovering a sparse signal from its low-pass

filtered version and modulo measurements already exists, in this thesis, I investigate

the application of the GAMP algorithm for recovering a sparse signal from modulo

samples of noisy randomized projections of the unknown signal.
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Notation and Definitions

number of measurements m

dimension of the source vector N

sparsity of a vector k

deterministic scalar, column vector, and matrix a, a,A

random scalar, column vector, and matrix a, a,A

nth component of vector an

(m,n)th entry of a matrix (A)m,N = Am,N

vector and matrix transpose aT ,AT

matrix inverse A−1

N ×N identity matrix IN

vector having all but i-th element a∼i

vector p-norm (p ≥ 1) ∥a∥p

average value of the entries of a vector ⟨ · ⟩
natural numbers N

integer numbers Z

real numbers R

vector space of real valued N dimensional vectors RN

sign of a number sgn(·)
cardinality of a set ♣S♣
set of positive integers up to N [N ] = ¶1, . . . , N♢
vector with components indexed by set aS

matrix with columns indexed by set AS

probability of an event P¶·♢
expectation of a random quantity E¶·♢
variance of a random quantity var¶·♢
(multivariate) normal distribution with

mean µ and (co-)variance Σ N (µ,Σ)
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xvi Notation and Definitions

iteration index (e.g., in an algorithm) (·)(t)

Dirac delta function δ(·)

Functionals

• Dirac delta (generalized) function: in the strict sense the Dirac delta is not a

function, but defined by the integral

f(a) =
∫

R(f)
f(x)δ(x− a)dx

over any function f : R(f) → I(f) with R(f), I(f) ⊆ R.

Miscellaneous

• Mean squared error (MSE): the MSE between two vectors of dimension N is

defined as

MSE(a,b) =
1

N
∥a − b∥2

2 .

• Decibel notation: quantities x ∈ R in dB units are defined as

x dB = 10
x
10 .
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Chapter 1

Introduction

1.1 Motivation

The recent advances in integrated semiconductor technology [73] has led to ubiquitous

deployment of cheap digital devices equipped with sensors monitoring a multitude of

natural phenomena (e.g., temperature, air pollution) [16]. In the context of Internet of

things (IoT) many digital devices (e.g., sensors) communicate and interact with each

other over the Internet while being monitored and controlled from a remote device

[60]. These digital devices sense, save, process and transmit exponentially increasing

volumes of sensor data, which is threatening to overwhelm classical sensing systems

[3]. Therefore, the digital sensors of the future need to be supported with fast and

robust yet flexible solutions for sensing, saving, processing, and transmission. In the

signal processing world, the answers are to be found in the algorithms for sampling,

quantization, compression, dequantization and recovery of the input signals. The task

of designing these algorithms is tackled in this thesis.

To illustrate the issues mentioned above, consider the acquisition of a grey-scale

image. In the classical approach, a binary number (i.e., pixel value) representing light

intensity is taken from each light detector in a grid of hundreds-by-hundreds detectors.

Storing this large matrix of binary numbers would require an extensive storage volume.

The matrix, therefore, needs to be compressed before storage. For example, we can

compress the matrix using JPEG compression. This compression is based on the

fact that signals obtained from 2 dimensional discrete cosine transformation (DCT-

II) transformation of natural images show a specific structure; in particular, only

a small portion of the transform coefficients have large absolute value, while the

rest of the coefficients are close to zero. Therefore, only a few coefficients have a

significant contribution to the signal. Saving the positions and the values of only
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2 Introduction
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Fig. 1.1 An example of a classical image compression: the original image, distribution of
the magnitudes, and the reconstruction from compressed representation (only 10 % of the
coefficients are used for reproduction).

significant coefficients requires a fraction of storage space needed for the raw data.

When recovering the image from the compressed representation, missing pixel values

are replaced with zeros, and the image is obtained by performing the inverse DCT-II

transform. An example of image compression with JPEG is shown in Figure 1.1 (taken

from [43]). Even though there is a noticeable reduction in the image quality, the key

elements, and most details of the image are contained in the compressed image.

Although a high compression ratio can be achieved using a JPEG compression, and

even more so with more sophisticated compression algorithms (such as JPEG2000),

one could argue that the whole approach is suboptimal. The reasoning is that the

compression step is compensating for the redundant sampling step [43]. An alternative

is offered by a modern digital signal processing (DSP) paradigm called compressed

sensing (CS) [18, 19, 30], where previously separate tasks of sensing and compression are

done in a single step. This is accomplished by taking randomized linear measurements

of a low-dimensional signal that is embedded in a high-dimensional data space. Since

the number of measurements is lower by orders of magnitude than the dimension

of the ambient space, the compression is already achieved. On the other hand, the

problem is ill-posed, and classical recovery algorithms break down. Nonetheless, a

stable recovery is achieved using sophisticated iterative CS recovery algorithms that

exploit the signal structure (e.g., sparse DCT-II transform) during the reconstruction.

For example, the single-pixel camera [38] exploits these ideas to obtain an image in

a poorly lit environment with the compression ration of 20, while using only a single

light detector. Even though this has been a successful proof of concept imaging system,

there are still many practical challenges in image acquisition with CS, that are often

neglected during the development of the theoretical background. For example, the
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1.2 Contribution and Outline 3

light detectors might not be well calibrated; the light intensities have to be quantized

before any later processing; the image needs to be recovered from a finite-precision

representation. Poor solutions to these problems typically degrade the user experience

and are thus unacceptable. More detailed investigation of the practical aspects of CS,

therefore, needs to be done.

In this thesis, I thus focus on two most prominent challenges of the practical appli-

cation of CS in digital sensors of the future, namely quantization and calibration. More

specifically, concerning quantization, I investigate the quantization of CS measurements,

and recovery of sparse signals from quantized CS measurements. Furthermore, for

the case of miscalibrated sensors, I investigate a modern sampling paradigm, called

unlimited sampling (US), within the CS framework.

1.2 Contribution and Outline

Chapter 2: Preliminaries

This chapter aims to make the reader familiar with some general concepts that are

relevant when discussing the main contributions of the thesis, namely, CS algorithms

for quantization and sampling applications. I start by defining noiseless and noisy CS

problem, as well as defining terms frequently used when discussing those problems.

The list of the terms can be, therefore, used as a reference for subsequent chapters.

Later, I discuss some of the most important results in CS, namely, restricted isometry

property (RIP) and connection to basis pursuit denoising (BPDN).

In the subsequent chapters I will be referencing to algorithms that are either used

in their original form or modified for the nonlinear CS problems I focus on. Hence,

I provide a short overview and discussion on the classical CS algorithms. Finally,

I present the problem of quantized compressed sensing (QCS) and discuss the most

relevant results from literature.

Chapter 3: Approximate message passing

Regardless of the practical problem at consideration, i.e., quantization or miscalibration,

the core task is, nonetheless, the recovery of a sparse signal from a noisy measurement.

Since both problems introduce nonlinear effects, I am interested in the recovery of

sparse signals from measurements corrupted with nonlinear distortions. Among many

CS recovery algorithms operating with linear measurements in additive noise, the class

of approximate message passing (AMP) algorithms stands out as the one with most
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4 Introduction

potential for solving CS problems with nonlinear measurements. Even in this case,

the AMP algorithm approximates the computationally intractable high-dimensional

integration involved with calculating E¶x♣y♢ or arg maxx p(x♣y) with a highly efficient

iterative procedure [62]. In Chapter 3, I, therefore, present an overview of the AMP

algorithm, which assumes independent and identically distributed (i.i.d.) Laplacian

prior for the entries of the unknown vector.

As there is nothing special about the Laplacian prior for AMP to be derived, one

can also consider other prior distributions. If the source prior is known (or if it can

be estimated) I show how to use the Bayesian approximate message passing (BAMP)

algorithm to get even better estimates compared to the classical AMP algorithm.

Furthermore, as my own contribution, I assume that the prior consists of a weighted

average of n-Gaussian distributions, each with potentially different mean and different

variance, and derive closed-form expressions for the denoiser functions of the BAMP

algorithm. By choosing appropriate values for the means and the variances, one can

model many practically interesting priors. Moreover, by picking a very small but still

non-zero variance, one can even approximate discrete probability mass functions (pmfs).

Similar to the reasoning which led to the BAMP algorithm, one can argue that

there is nothing special about the Gaussian noise model, where the linear mixtures

z = Ax are corrupted with i.i.d. Gaussian noise. Hence, I conclude Chapter 3 by

briefly presenting the generalized approximate message passing (GAMP) algorithm,

where one considers a general distribution describing the component-wise distortion

of the linear mixtures, i.e., a general output channel given in terms of a conditional

distribution p(yi♣zi).

Chapter 4: Analysis-by-Synthesis with Bayesian Approximate

Message Passing Scalar Quantization for Compressed Sensing

In Chapter 4, I consider a scenario where sensors using CS observe a sparse signal,

quantize the observations, and transmit the discrete valued data over a communication

link with a low rate constraint. I start by stating the problem of quantization of CS

measurements and providing a more intuitive derivation of the optimal quantizer, than

offered in literature.

Major parts of this chapter were published in [64].D
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1.2 Contribution and Outline 5

Chapter 5: Approximate Message Passing for Quantized and

Noisy Compressed Sensing

In many practical applications, CS measurements are first scalar quantized and subse-

quently corrupted in different ways during storage or transmission over a noisy channel.

Reconstruction by conventional CS algorithms on such highly distorted measurements

results in poor accuracy. To address this problem, I use the well established GAMP al-

gorithm and adapt it to our specific problem: recovery of sparse vectors from quantized

CS measurements corrupted with noise. I consider different communication channels

tampering with the quantized measurements, namely the symmetric discrete memory-

less (SDM) channel and the additive white Gaussian noise (AWGN) channel. I provide

analytical expressions for the necessary nonlinear updates of the GAMP algorithm

for different channel models and different rates. I conduct numerical experiments and

present performance results of the proposed scheme.

The contributions of this chapter were published in [66] and [65].

Chapter 6: GAMP for Unlimited Sampling of Compressed

Sensing Measurements

In Chapter 6, I tackle the problem of sampling signals with miscalibrated sensors

within the CS framework. More specifically, I consider the GAMP algorithm for

recovering a sparse signal from modulo samples of its randomized projections. The

modulo samples are obtained by a self-reset analog to digital converter (SR-ADC). In

contrast to previous work on SR-ADC that considers sparse vectors either in time or

frequency domain, I allow for sparse signals in any basis. Furthermore, I also consider a

scenario where the randomized projections are sent through a communication channel

before being digitizing by an SR-ADC. There, the channel is modeled as an AWGN

channel. To show the effectiveness of the proposed approach, I conduct Monte-Carlo

(MC) simulations for both noiseless and noisy case. The results show the ability of the

proposed algorithm to fight the nonlinearity of the SR-ADC, as well as the possible

additional distortion introduced by the AWGN channel.

Major parts of this chapter were published in [67].

Chapter 7: Conclusions

Conclusions of this thesis, as well as suggestion for future work are summarized in

Chapter 7.
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Chapter 2

Preliminaries

This chapter serves as a background for presenting the main contributions of the thesis.

It introduces the reader to the mathematical foundations of compressed sensing (CS) in

Section 2.2, and provides an overview of the classical CS recovery algorithms in Section

2.3. Furthermore, the problem of quantized compressed sensing (QCS), together with a

discussion on the most relevant results from literature, are presented in Section 2.4.

2.1 Intoduction

Shannon’s sampling theorem is a fundamental result in signal processing. It states that

a continuous bandlimited signal can be perfectly reconstructed from a set of samples

taken at a sampling rate proportional to the maximum frequency present in the signal

(Nyquist rate) [75]. For many applications, the required number of samples is, however,

disproportional to the information content of the signal, indicating redundancy in the

acquisition [3, 37]. The ambition to develop a more efficient sampling framework led,

more than a decade ago, to the emergence of CS [20, 30, 31].

2.2 Compressed Sensing

In CS we take randomized linear measurements of a low-dimensional signal that

is embedded in a high-dimensional data space. More formally, we obtain m linear

measurements ¶ya♢m
a=1 of an N -dimensional vector s by multiplying it with a fat matrix

Φ, i.e.,

y = Φs, (2.1)
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8 Preliminaries

where m < N . In general, this is an underdetermined system of linear equations and the

equality holds for infinitely many s. However, in CS we take measurements of signals

of a certain structure, i.e., signals that are generated by a model, and consequently, we

restrict the set of possible solutions for s in (2.1) to those described by the model. In

particular, we are interested in the case where s has a k-sparse1 representation in some

basis Ψ, i.e.,

s = Ψx, (2.2)

where x ∈ ∑

k, and
∑

k is the set of all k-sparse vectors in RN . Hence, we are interested

in finding x which satisfies

y = Ax, (2.3)

where A = ΦΨ is a so-called measurement matrix, and ∥x∥0 = k. Before continuing, it

is important to clarify the notation that I use throughout the thesis which is related to

the problem above, namely

• N is the dimension of the unknown signal,

• m is the number of measurements,

• k is the sparsity of a signal,

• δ = m/N is the measurement ration,

• ρ = k/m is the normalized measure of sparsity,

• ϵ = k/N is the fraction of nonzeros.

It can be show that for any y ∈ Rm, there exists at most one x ∈ ∑

k that satisfies

the measurement constraint iff spark(A) > 2k, where spark(A) is the smallest number

of linearly independent columns of A [27]. Even though we know that for a particular

problem, the solution is unique if it exists, the problem of finding that solution is still

an NP-hard problem [68]. However, in [39, p. 48] it has been shown that x is a unique

k-sparse solution of (6.6) iff it is the solution of

x̂ = arg min
x

∥x∥0, s.t. y = Ax, (2.4)

which is till an NP hard problem. One way to find an approximate solution of the

problem (2.4), is to replace ∥ · ∥0 with ∥ · ∥1, i.e.,

x̂ = arg min
x

∥x∥1, s.t. y = Ax, (2.5)

1 We say that a signal (i.e., vector) is k-sparse if it has exactly k non-zero entries, i.e., ∥x∥0 = k.
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2.2 Compressed Sensing 9

with the intuition that, when searching for a solution in R2, the solution of an ℓ1

minimization problem equals the solution of an ℓp minimization problem, for any

p < 1 [27, p. 28]. This approach, called basis pursuit (BP), was proven to be surprisingly

successful in many different applications, e.g., recovering bandlimited signals, and

geological signals consisting of a train of spikes [27, 37]. Fortunately, the analysis of

recovery properties of ℓ1 minimization was shown to be possible using the restricted

isometry property (RIP) [21].

2.2.1 Restricted isometry property

Definition 1 [21] A matrix A ∈ Rm×N satisfies the RIP of order k with RIP constant

δK ∈ (0, 1) if for all k-sparse vectors x ∈ RN

(1 − δK)∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1 + δK)∥x∥2
2 .

Matrices that satisfy the RIP of order k are approximate isometries for
∑

k, meaning that

they approximately preserve the ℓ2 norm of k-sparse signals under the transformation.

Alternatively we can say that, if the measurement matrix satisfies the RIP of order 2k,

then it approximately preserves the distance between any two k-sparse vectors. This

indicates that the recovery of sparse signals is possible from (6.6), if A satisfies RIP

of order 2k with certain constant δ2k. It is still unclear, however, how to construct a

measurement matrix.

One approach is to use a deterministic procedure to construct a measurement

matrix that satisfies the RIP of order k [15, 29, 44]. Even though this construction

guarantees matrices with the desired properties, the matrix itself has a relatively large

(at least k2 logN) number of rows. This means that the matrix requires too many

measurements of the sparse signal for practical applications [39].

The second approach is to use random constructions of the measurement matrix.

For example, one could construct a measurement matrix by independent sampling from

a sub-Gaussian distribution and assign the samples to the entries of the matrix. In

this setting, testing if the matrix satisfies RIP becomes an exponentially hard problem

even for moderate size problems (i.e., m and N are not too small). Therefore, we can

only aim to proove that the matrix satisfies RIP with certain probability, and that is

precisely done by Theorem 1.
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10 Preliminaries

Definition 2 [39, p. 191] A random variable x is called sub-Gaussian if there exist

constants β, κ > 0 such that ∀t > 0

P¶♣x♣ > t♢ ≤ βe−κt2

.

Definition 3 [39, p. 193] If x is a zero-mean sub-Gaussian random variable, then

there exists a constant c (depending only on β and κ) such that

E¶exp(θx)♢ ≤ exp(c θ2) for all θ ∈ R. (2.6)

Any valid constant c in (2.6) is called a sub-Gaussian parameter of x.

Definition 4 [39, p. 309] A matrix A is called sub-Gaussian if all the entries of the

matrix are independent zero-mean sub-Gaussian random variables with variance 1 and

the same sub-Gaussian parameter c. Alternatively, A is called sub-Gaussian if the

entries are independent sub-Gaussian random variables with variance 1 and the same

parameters β and κ.

Theorem 1 [39, Theorem 9.2] Let A be an m×N sub-Gaussian random matrix with

normalized columns. Then there exists a constant C > 0 (independent of m,N, δk)

such that the RIP constant of A satisfies δk ≤ δ with probability at least 1 − ϵ provided

m ≥ 2Cδ−2(k ln(eN/k) − ln(2ϵ−1)).

Suppose now that we pick some small δ and take m ≥ 2Cδ−2k ln(eN/k) measurements.

If we set ϵ = 2 exp(−δ2m/(2C)), according to Theorem 1 the RIP constant of the

matrix satisfies δk ≤ δ with probability at least 1 − ϵ. This is a quite powerful result

on the required number of rows of A for it to satisfy the RIP with certain δ and

ϵ. Namely, if the matrix is constructed as described above, M scales linearly with

k and logarithmically with N , which is by far superior than anything achieved by

deterministic constructions.

2.2.2 RIP and ℓ1 recovery

The significance of the RIP becomes apparent from the remarkable results of Candès,

Tao, Romberg and others [18, 19, 30]. To get more insight into that work, let xk denote

the best sparse approximation one could obtain if one knew exactly the locations and

amplitudes of the k-largest entries of x, i.e., the vector x with all but the k-largest

entries set to zero. Additionally, we assume that A satisfies the RIP of order 2k with

a certain RIP constant δ2k.
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2.2 Compressed Sensing 11

Theorem 2 [19, Theroem 1.1 (Noiseless recovery)] Assume that δ2k <
√

2 − 1. Then

the solution x̂ to (2.5) obeys

∥x̂ − x∥1 ≤ C0∥x − xk∥1, (2.7)

and

∥x̂ − x∥2 ≤ C0 k
−1/2∥x − xk∥1, (2.8)

for some constant2 C0..

It follows from Theorem 2 that both the ℓ1 and the ℓ2 norm of the reconstruction error

are upper bounded by a term that depends on how well x can be approximated by a

strictly k-sparse vector. Alternatively, if we assume that x ∈ ∑

k, then the solution of

(2.5) perfectly matches the unknown vector x.

The problem of recovering a sparse vector becomes even more difficult when the

linear mixtures z = Ax are corrupted with noise, i.e.,

y = z + w = Ax + w, (2.9)

where w is the noise vector. Therefore, the linear mixtures z are often referred to as

noiseless CS measurements. In this case we want to find

x̂ = arg min
x

∥x∥1, s.t. ∥y − Ax∥2 ≤ ε, (2.10)

where ε is an upper bound on the size of the noise contribution. This problem is also

known as basis pursuit denoising (BPDN). Again, in the work of Candès [19], we find

theoretical guarantees for recovering a sparse vector from noisy measurements.

Theorem 3 [19, Theroem 1.2 (Noisy recovery)] Assume that δ2k <
√

2 − 1 and

∥w∥2 ≤ ε. Then the solution x̂ to (2.10) obeys

∥x̂ − x∥2 ≤ C0 k
−1/2∥x − xk∥1 + C1 ε, (2.11)

with the same constant C0 as before and some constant34 C1.

Similar to Theorem 2 for the noiseless case, Theorem 3 provides an upper bound for

the ℓ2 norm of the reconstruction error. The bound consists of two terms: one that

2The exact value for C0 can be found in [19].
3The exact value for C1 can be found in [19].
4This theorem can be specialised for independent and identically distributed (i.i.d.) Gaussian noise,

or when ∥AT w∥∞ is small [19].
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12 Preliminaries

depends on how sparse x is, which vanishes if x ∈ ∑

k, and one which scales linearly

with ε. As a conclusion, the solution of (2.10), i.e., recovering a sparse vector from

a noisy measurement vector using the ℓ1 norm instead of the ℓ0 norm is stable as it

depends linearly on the size of the noise contribution. The remaining question is "How

to solve for the given problem?".

2.3 Compressed Sensing Recovery Algorithms

Since the early work of Candès on the equivalence of solutions of (2.4) and (2.5) for

strictly sparse signals, many authors proposed different iterative recovery algorithms

for solving (2.10). The list of available algorithms grows larger every year, and a

comprehensive overview would go beyond the scope of this work. I think, however,

that it is necessary to give a quick introduction for the algorithms that will be used

later in the thesis. To do so, I make a slight modification to the concise classification

of iterative CS recovery algorithms provided in [39]. Specifically, the algorithms are

classified as:

• ℓ1 minimization algorithms

• greedy algorithms

• thresholding-based algorithms

• approximate message passing (AMP) algorithms

I what follows, I give a short overview of the algorithm classes from above.

2.3.1 ℓ1 minimization algorithms

The BPDN problem defined in (2.10), namely

x̂BPDN = arg min
x

∥x∥1, s.t. ∥y − Ax∥2 ≤ ε, (2.12)

is already cast as a convex optimization problem. This means that one could apply

numerical solvers known in convex optimization theory to solve both problems. Using

this approach, we can solve two additional convex problems: least absolute shrinkage

and selection operator (LASSO) and constrained least squares (CLS), defined in (2.13)

and (2.14), respectively.
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2.3 Compressed Sensing Recovery Algorithms 13

BPDN is a convex problem where we want to minimize a linear combination of the

ℓ1 norm of the solution and the term representing disagreement with the measurements,

where the trade-off between the two is controlled by a parameter λ. Specifically, for

some parameter λ ≥ 0,

x̂LASSO = arg min
x

λ∥x∥1 + ∥y − Ax∥2
2. (2.13)

In CLS, compared to (2.10), one switches the roles of the constraint and term to

be minimized. Namely, for some τ ,

x̂CLS = arg min
x

∥y − Ax∥2, s.t. ∥x∥1 ≤ τ. (2.14)

In general, for some choice of ε, λ, and τ we obtain three different solutions for x in

(2.10), (2.13), and (2.14), respectively. However, in [39, p. 64], it was shown that for

any choice of ε > 0, the solution of (2.10) is identical to the solution of (2.13) for a

specific λ > 0, and identical to the solution of (2.14) for a specific τ > 0. The same

conclusion is reached if we fix λ > 0 or τ > 0 to any arbitrary value larger then zero.

Choosing the appropriate algorithm mainly depends on prior information, e.g., if we

have some estimate of the sparsity or noise level. For example, if we know or can

estimate ∥x∥2 or ∥x∥∞, we can upper bound ∥x∥1 using

∥x∥1 ≤
√
N∥x∥2 , or ∥x∥1 ≤ N∥x∥∞ . (2.15)

Note that in literature the problems in (2.10), (2.13) and (2.14) interchange names

(e.g., in [39, p. 64] one finds that the LASSO problem defined in (2.13) is referred to

as the BPDN problem).

2.3.2 Greedy algorithms

With greedy algorithms, at each iteration n, we first calculate the residual estimation

error, in short called residual, r(n) = y − Ax̂(n−1). Next, one aims to find indices

of columns of the measurement matrix with the largest contribution in minimizing

the residual. For example, in orthogonal matching pursuit (OMP) whose steps are

given in Algorithm 1, in each iteration we find exactly one index, whose corresponding

column in A has the largest correlation with the residual. Once it is found, this index

is added to the support S(t) of x̂(t), followed by solving a least squares (LS) problem

involving AS(t) . The classical solution of the LS problem involves computing the inverse

(AT
S(t)AS(t))−1, which has a complexity of O(♣S♣3). However, there exist faster iterative
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14 Preliminaries

Algorithm 1 Orthogonal matching pursuit (OMP)

Input: measurement matrix A, measurement vector y
Initialization: t = 0, S0 = ∅, x̂(0) = 0N×1

do:
1: t = t+ 1 ▷ increment iteration counter
2: j(t) = arg maxj∈[N ] ¶♣A∗(y − Ax̂(t−1))j♣♢ ▷ index of the largest contribution
3: S(t) = S(t−1) ⋃ ¶ j(t) ♢ ▷ update support of the estimate
4: x̂(t) = arg minz∈RN ¶∥y − Az∥2, supp(z) ⊂ S(t)♢ ▷ estimate of sparse vector
while t ≤ k

Output: x̂ = x̂(t)

methods for the projection step based on the QR-decomposition of AS(t) that make a

use of the decomposition at the previous step t− 1, i.e., decomposition of AS(t−1) [39].

In the noiseless setting, the OMP algorithm will provide an exact reconstruction of

any k−sparse signal after k iterations, provided that A satisfies the RIP of order k + 1

with isometry constant δ < 1
3
√

k
[28]. This result was further improved to δ < 1√

2k

in [53], and more recently to δ < 1
1+

√
k

in [56, 61]. For a matrix constructed using a sub-

Gaussian distribution this corresponds to taking m = O(k log(N/k)/δ2) measurements.

In [27] the authors argue that, since the required constants are relatively small, we

instead need to obtain O(k2 log(N)) measurements.

In the noisy case however, with OMP there is a certain probability that we will

erroneously update the support set. Moreover, if this happens, the error will propagate

across the subsequent iterations, and as a consequence this will introduce even more

noise in those iterations. For this reason, in compressive sampling matching pursuit

(CoSaMP) [69], the support is estimated in a more flexible way. Here, the support

set of size k from the previous iteration is augmented with L2k(r(t)), i.e., the set of 2k

indices that correspond to the columns of A that have the largest correlation with the

residual. As in OMP, this step is followed by a projection step. Since the cardinality of

the candidate support set is anything between k and 3k, one needs to apply the hard

thresholding operator Hk(z), which is the best k-term approximation of the input z.

The most important properties of the algorithm are summarized in Theorem 4.

Theorem 4 [69, Theroem A (CoSaMP)] Suppose that A is an m×N sampling matrix

with restricted isometry constant δ2k ≤ c. Let y = Ax + w be a vector of samples of

an arbitrary signal, contaminated with arbitrary noise. For a given precision parameter

η, the algorithm CoSaMP produces a k-sparse approximation x̂ that satisfies

∥x − x̂∥2 ≤ C max

{

η,
1√
k

∥x − xk/2∥1 + ∥e∥2

}

, (2.16)
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2.3 Compressed Sensing Recovery Algorithms 15

Algorithm 2 Compressive sampling matching pursuit (CoSaMP)

Input: measurement matrix A, measurement vector y, sparsity level k, stopping
threshold tmax

Initialization: t = 0, x̂(0) = 0N×1

do:
1: t = t+ 1 ▷ increment iteration counter
2: U (t) = supp(x̂(t−1))

⋃
L2k(A∗(y − Ax̂(t−1))) ▷ update potential support

3: u(t) = arg minz∈RN ¶∥y − Az∥2, supp(z) ⊂ U (t)♢ ▷ update candidate vector
4: x̂(t) = Hk(u(t)) ▷ apply hard thresholding
while t ≤ tmax

Output: x̂ = x̂(t)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

z

H
k
(z

)

(a) Hard thresholding function.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

z

η
(z

;b
)

(b) Soft thresholding function.

Fig. 2.1 Hard thresholding function and soft thresholding function with thresholding parame-
ters set to 0.4 in both cases.

where xk/2 is a best k/2-sparse approximation of x5. The running time is O(L log(∥x∥2/η)),

where L bounds the cost of a matrix-vector multiplication with A or A∗. Working

storage is O(N).

It is worth noting that CoSaMP usually iterates for more steps than OMP, which

might be a critical disadvantage for certain applications. The steps of the algorithm

are given in Algorithm 2.D
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16 Preliminaries

2.3.3 Thresholding algorithms

Two prominent algorithms based on thresholding operators are iterative hard thresh-

olding (IHT) [12] and iterative soft thresholding (IST) [26, 58], which solve

x̂IHT = arg min
x

∥y − Ax∥2
2 + µ∥x∥0, (2.17)

and

x̂IST = arg min
x

∥y − Ax∥2
2 + λ∥x∥1, (2.18)

respectively. Both algorithms iterate between moving in the direction of the gradient of

the measurement fidelity term, i.e., gradient of ∥y − Ax∥2
2, and applying a thresholding

function M(z) that promotes the signal model. The thresholding function is applied

component-wise and the specific functions for IHT and IST are shown in Figure 2.1.

In the case of IHT, M(z) is the hard thresholding function Hk(z) (Figure ??). This

function simply selects k largest terms of the current estimate. On the other hand, the

soft thresholding function η(x; b)

η(x; b)







x− b, if b ≤ x,

0, if − b ≤ x ≤ b,

x+ b, if x ≤ −b.
(2.19)

has a slightly different shape due to the minimization of the ℓ1-term (Figure ??). The

question of how to select parameters of iterative thresholding algorithms (b, µ, λ), as

well as the parameters of CoSaMP and subspace pursuit such that a given algorithm

successfully reconstruct signals with as low as possible sparsity (i.e., largest number of

nonzeros) was answered in [58].

Algorithm 3 Iterative thresholding algorithms

Input: measurement matrix A, measurement vector y, thresholding parameter k or
τ , stopping threshold tmax or ϵ

Initialization: t = 0, x̂(0) = 0N×1

do:
1: t = t+ 1 ▷ increment iteration counter
2: z(t) = x̂(t−1) + A∗(y − Ax̂(t−1)) ▷ move in the direction of the gradient
3: x̂(t) = M(z(t)) ▷ thresholding
while t ≤ tmax or ∥x̂(t) − x̂(t−1)∥2 ≥ ϵ

Output: x̂ = x̂(t)

5c and C are some universal positive constants. For details check [69].
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2.4 Quantized Measurement Vectors 17

2.3.4 Approximate message passing algorithms

The term AMP refers to a class of algorithms that are based on Gaussian and quadratic

approximations of the loopy BP on dense graphs. In the corresponding graphical

model, the entries of the unknown vector are represented by so-called variable nodes,

the entries of the measurement vector are represented by variable nodes, and edges

represent statistical dependencies between nodes. Since, in the general case, the

measurement matrix is dense, and the entries of the unknown vector are i.i.d., the

corresponding graph is an instance of a dense bipartite graph. Whether we are

interested in an approximate minimum mean squared error (MMSE) estimate or a

maximum a posteriori (MAP) estimate, we apply sum-product or max-sum belief

propagation on a graph with loops. As a result, the AMP algorithm approximates

the computationally intractable high-dimensional integration involved with calculating

E¶x♣y♢ or arg maxx p(x♣y)with a highly efficient iterative procedure [62]. Given that

the AMP algorithms [33–35, 57, 71, 72] lie at the heart of this thesis, we will take a

deeper look at these algorithms in Chapter 3.

2.4 Quantized Measurement Vectors

2.4.1 Quantization

In this thesis, I focus on scalar quantizers. A scalar quantizer Q(·) maps each com-

ponent xi of the source vector x ∈ RN to the closest point in the code alphabet

C = ¶c0, c1, . . . , c2R−1♢, i.e.,

xQ
i = Q(xi) = arg min

cj∈C

√

(xi − cj)2, ∀i ∈ ¶1, 2, . . . , N♢. (2.20)

The length of binary vectors acting as labels for code symbols (= log2 ♣C♣) is called

the rate (R) of the code. The set P of possible representations (i.e., codewords) pi, is

called codebook. For a scalar quantizer, P = CN .

One can also consider a general (not a scalar) quantizer Q(·) : RN → P, that

operates on entire input vector x. In order to compare different quantizers defined by

the ensemble A = ¶R,P , Q(·)♢, a function d(x,p), called distortion function, satisfying

d(x,p) ≥ 0

d(x,p) = 0 ⇐⇒ x = p
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18 Preliminaries

needs to be introduced as the measure of distortion of the input vector. Furthermore, if

we are given a distribution p(x) of the input x, we can use so-called average distortion

of the quantizer D, defined as

D = D(p,R,P , Q) = E¶d(x,p)♢ =
∫

d(x, Q(x))p(x)dx, (2.21)

to characterizes the average performance of A.

In general the case, the question "What is the lowest rate (i.e., number of codewords)

for which a given distortion can be achieved?" or alternatively "What is the lowest

distortion for which a given rate can be achieved?" was answered in Shannon’s seminal

paper from 1948 [74]. Both answers define the so-called rate distortion function.

Assuming that the source alphabet is finite, the rate distortion function for an i.i.d.

source x with distribution p(x) and bounded distortion function d(x,p) is equal to the

associated information rate distortion function, i.e.,

R(D) = R(I)(D) = min
p(p♣x):

∑

(x,p)
p(x)p(p♣x)d(x,p)≤D

I(x; p), (2.22)

where I(x; p) is the mutual information between x and p [22, Theorem 13.2.1]6.

However, obtaining a closed-form expression for the rate distortion function is possible

only for a few special cases, e.g., for a Bernoulli discrete source or Gaussian continuous

source.

2.4.2 Quantized Compressed Sensing

In many applications, including magnetic resonance imaging (MRI) [54, 55, 84, 85],

sparse channel estimation [5, 70, 80], photography [38], a coarse quantization of

the CS measurements is unavoidable for further digital signal processing (DSP). By

quantization, i.e., representing continuous values of measurements with values from a

finite discrete set, two different errors are produced, namely:

1. a saturation error, which occurs when there exists one or more measurements

outside of the codebook range.

2. finite-size codebook error, which occurs as continuous source intervals are repre-

sented by discrete values.

6If the elements of x are i.i.d. continuous random variables, the sum in (2.22) is replaced by an
integral.

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


2.4 Quantized Measurement Vectors 19

These two errors, called finite-rage quantization errors, can be controlled by the size of

the codebook, i.e., the rate R of the code. Using more bits per measurement to represent

the unknown sparse vector in measurement domain would reduce the distortion. In a

CS framework however, finding rate-distortion function for a specific recovery algorithm

is even more difficult compared to the classical setting. This is because we quantize

the measurement vector y, and want to minimize the end-to-end distortion between

x and x̂ = x̂(y) = x̂(Q(z)), which involves a nonlinear measurement system as well

as a nonlinear recovery method. Even though some bounds on the distortion are

available for BP and subspace pursuit (SP) algorithms [25], much of research focused

on finding suboptimal CS recovery algorithms from finite-rate quantized measurements

- a problem called QCS [13, 14, 23, 41, 45, 46, 48, 49, 51, 76, 78, 83, 86, 87]. For

example, counter-measures to mitigate signal distortions caused by saturation errors

through measurement rejection or consistent reconstruction were investigated by Laska

et al. in [50]. On the other hand, as pointed out in [76], a huge body of research on

finite-size codebook effects in CS can be assigned to one of the two classes: design of

the quantization scheme that works well for a specific CS algorithm; and modifying

an existing classical CS reconstruction algorithm to include the quantization in the

measurement model. Based on the rate of the quantizer, the algorithms from the last

class can be further subdivided into algorithms for 1-bit CS [13, 14, 46, 49, 51, 83, 86]

and algorithms for R-bit CS (R > 1, i.e., higher rate) [18, 23, 41, 45, 48, 69, 87].

Modified quantization schemes

In [78] the authors use high-rate functional scalar quantization and homotopy con-

tinuation to approximate the high rate optimal scalar quantizer under a specific

CS reconstruction algorithm, namely LASSO. The authors demonstrate through a

numerical experiment that the distoration of the proposed quantizer under LASSO

recovery matches the estimated distortion and significantly outperforms a uniform

quantizer under LASSO. However, the question of optimality of this approach is still

unanswered and one could find a different recovery algorithm with another quantizer

that outperforms the proposed one.

In [76] an end-to-end mean squared error (MSE) minimizing quantization scheme is

proposed that uses the concept of Analysis-by-Synthesis (AbS). In AbS one investigates

the neighbourhood of a scalar-quantized measurement vector in C, with the aim of

finding a representation that will, after applying a nonlinear recovery algorithm, give a

lower end-to-end MSE. Results are presented where the OMP algorithm is used as the
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20 Preliminaries

reconstruction algorithm in the scheme; the proposed scheme allows for use of any CS

reconstruction algorithm.

1-bit CS (R = 1)

In 1-bit CS one considers the extreme case of scalar quantization of CS linear mixtures

z = Ax, where each zi (i ∈ [m]) is mapped to a single bit yi. Bits ¶yi♢m
i=1, arranged

in the vector y ∈ ¶±1♢m, capture only the information about the signs of the inner

products of the unknown vector and the corresponding measurement vectors, i.e.,

y = Q(z) = sign(Ax). (2.23)

In other words, each bit yi tells us on which side of the hyperplane orthogonal to

the associated measurement vector the unquantized measurement vector lies on, i.e.,

in which half-space of RN the unquantized measurement lives in. By taking m

measurements, the intersection of m half-spaces creates the orthant7 Oz̄, such that

z ∈ Oz̄. Since the measurement bits only capture the signs of the linear mixtures, any

information about the ℓ2 norm of the unknown vector is lost with 1-bit quantization.

This property of the 1-bit quantizer can be shown analytically, by observing that

Q(az) = sign(Aax) = sign(Ax) = Q(z), (2.24)

for any positive a. As a consequence, we aim to reconstruct the unknown sparse vector

up to a normalisation constant, and restrict the solution to have unit ℓ2 norm, i.e.,

∥x∥2 = 1.

In the last few years, many authors modified classical CS algorithms to estimate a

sparse vector from 1-bit CS measurements in (2.26) [13, 14, 46, 49, 51, 83, 86]. However,

as opposed to the classical problem where the measurements of the estimate x̂ should

be close to y in the ℓ2 sense, i.e., ∥Ax̂−y∥2 should be small. Here one requires that the

solution x̂ is consistent with the quantized measurements, i.e., y ∈ Rm and Ax̂ should

be close in some sense. For example, the authors of [14] consider the cost function of

LASSO in (2.13), and modify it by using a term that promotes consistency with the

1-bit measurements, namely

x̂FPC = arg min
x

∥x∥1 + λ
m∑

i=1

f(YAx)i, s.t. ∥x∥2 = 1, (2.25)

7An orthant in Rm is the set of all vectors that have the same sign pattern [46].
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2.4 Quantized Measurement Vectors 21

where Y = diag(y), f(x) = 1
2
x2u(−x), and u(x) is the unit step function. To solve

(2.25), the authors propose an iterative algorithm based on the projected gradient

descent method, and additionally normalize the solution at each step to make the solu-

tion lie on the unit sphere. Finally, the authors show results of numerical experiments

to demonstrate that the recovery is possible in the oversampling regime. Note however,

that in the 1-bit CS regime, oversampling is not a sign of bad design, but more an

unavoidable consequence of such a coarse quantization.

Sunsequently, a new algorithm called matching sign pursuit (MSP) was presented

in [13], that combines the principle of consistent reconstruction with greedy sparse

reconstruction, while a faster algorithm, called restricted-step shrinkage (RSS), with con-

vergence guarantees was presented in [51] which shows significantly better performance

in terms of average signal-to-noise ratio (SNR).

In [46] the authors provide probably the first theoretical results on QCS, namely

they give a lower bound on the best achievable reconstruction error from noiseless 1-bit

measurements as a function of m and k, and characterize the ability of a measurement

system to fight the noise in the measurements by introducing a property called ϵ-stable

embedding. Furthermore, the authors complement the work with two algorithms called

binary iterative hard thresholding (BIHT) algorithm, which draw some similarities with

the IHT algorithm for classical CS. In [83], the authors propose the adaptive outlier

pursuit (AOP) algorithm based on the BIHT algorithms, which iteratively detects sign

flips (i.e., errors) in the measurements and recover a sparse vector from the estimated

“correct” measurements.

Finally, the recovery of sparse vectors from noiseless 1-bit CS measurements based on

the generalized approximate message passing (GAMP) algorithm was introduced in [49].

It was further exploited in [86] where the authors consider different ways corrupting

the 1-bit CS measurements by noise: additive white Gaussian noise (AWGN) before

quantization; flipping each bit with probability pe after quantization, etc. The latter

corresponds to the case where one sends 1-bit CS measurements through a binary

symmetric channel (BSC) with bit error probability pe.

R-bit CS (R > 1)

In R-bit CS (R > 1) one considers the scalar quantization of CS linear mixtures

z = Ax, where each zi (i ∈ [m]) is mapped to a symbol ck ∈ C according to (2.20) and

placed at the i-th position of vector y. Hence, we want to estimate a sparse x from

y = Q(z) = Q(Ax), (2.26)

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


22 Preliminaries

where the quantizer function Q(·) is applied component-wise.

To solve this problem, the authors in [18] consider quantization effects as bounded

additive noise and consider the solution of BPDN problem, defined in (2.10). They

prove that, assuming bounded noise power (∥w∥ℓ2 ≤ ϵ), the measurement matrix A

obeys a uniform uncertainty principle8 and the vector is sufficiently sparse, the recovery

with (2.10) is stable, i.e., within the noise level.

In [87] the authors assume that the w is zero-mean i.i.d. Gaussian norm vector

and present two algorithms which use convex optimization methods to minimize two

convex cost functions, each having the standard l1 term that promotes sparsity and a

convex term that promotes fidelity to the quantized measurements, namely a convex

maximum likelihood (ML) term or a convex quasi-LS term. Interestingly, this is one of

the few works that includes a noise term before quantizing the measurements.

A sigma delta quantizer for CS was proposed in [41], which lacks the ability to fight

distortions introduced by other noise sources.

Modifications of the BP algorithm from [18] that solves (2.5) and SP from [23, 69],

that now exploit information about quantization of the linear mixtures are presented

in [23].

Another modification of the BPDN defined in (2.10) is done in [45]. Here the

authors consider different norms (p > 2) of the data fidelity term, i.e., ∥y − Ax∥p, to

obtain an algorithm for quantized CS called BPDNp algorithm. The idea is that for

p > 2, the data fidelity term promotes quantization consistency, i.e., measurements

should be close to the requantized estimated noiseless CS measurements.

In [48] the authors propose a GAMP based algorithm called message-passing de-

quantization (MPDQ) algorithm, which provides an approximation of the MMSE

estimate. Furthermore, if the measurement matrix is i.i.d. Gaussian, the asymptotic

error performance of the algorithm can be predicted using state evolution (SE) for

the GAMP algorithm, which can then be used to optimize the cells ¶si♢2R

i=1 when

considering a scalar quantizer. However, this paper does not offer the closed-form

expressions for the nonlinear updates of the algorithm as well as a deeper analysis of

the GAMP algorithm for noisy QCS.

8Uniform uncertainty principle essentially states that the measurement matrix obeys the RIP [18].
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Chapter 3

Approximate Message Passing

Algorithms

Regardless of the practical problem at consideration (i.e., quantization or miscali-

bration), the core task is, nonetheless, the recovery of a sparse signal from noisy

measurements. Since both studied problems introduce nonlinear artefacts, I am inter-

ested in the recovery of sparse signals from measurements corrupted with nonlinear

distortions. Among many compressed sensing (CS) recovery algorithms operating with

linear measurements in additive noise, the class of approximate message passing (AMP)

algorithms stands out as the one with the most potential for solving CS problems

with nonlinear measurements. Therefore, in this chapter, I discuss some important

aspects of the AMP algorithm. Moreover, as my own contribution, I derive closed-form

expressions for the denoiser functions of the Bayesian approximate message passing

(BAMP) algorithm for a particularly interesting prior: a weighted average of n-Gaussian

distributions, each with potentially different mean and different variance.

3.1 Approximate Message Passing

The term AMP refers to a class of algorithms that are based on Gaussian and quadratic

approximations of the loopy belief propagation on dense graphs. In the corresponding

graphical model, the entries of the unknown vector are represented by so-called variable

nodes, the entries of the measurement vector are represented by variable nodes, and

the edges represent statistical dependencies between nodes. Since, in the general

case, the measurement matrix is dense, and the entries of the unknown vector are

independent and identically distributed (i.i.d.), the corresponding graph is an instance

of a dense bipartite graph. Whether we are interested in an approximate minimum
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24 Approximate Message Passing Algorithms

mean squared error (MMSE) estimate or a maximum a posteriori (MAP) estimate, we

apply sum-product or max-sum belief propagation on a graph with loops. As a result,

the AMP algorithm approximates the computationally intractable high-dimensional

integration involved with calculating E¶x♣y♢ or arg maxx p(x♣y)with a highly efficient

iterative procedure [62].

Given that the AMP algorithm [33–35, 57] lies at the heart of this thesis, in this

chapter, I will take a deeper look at the algorithm. The rest of this chapter is organized

as follows.

In the first section, I provide an overview of the derivation of the algorithm. The

overview is supplemented with some comments on the steps of the derivation, that

might have been skipped or unintuitive in the original derivation. Furthermore, I

discuss computational complexity of the AMP algorithm, and show why it is in the

order of the other iterative thresholding algorithms. I conclude the first section with a

discussion on the state evolution (SE) of the AMP algorithm. As the name indicates,

with SE one can predict the evolution of some parameter of the AMP algorithm. Put

differently, one can predict the value of a parameter of the AMP algorithm across

iterations t.

As I will show in the first section, the AMP algorithm assumes i.i.d. Laplacian

prior for the entries of the unknown vector. As there is nothing special about the

Laplacian prior for AMP to be derived, one can also consider other prior distributions.

If the source prior is known, or can be estimated from measurements, in Section 3.2, I

show how to use the BAMP algorithm to get more accurate estimates compared to the

classical AMP algorithm. Subsequently, I consider a prior that consists of a weighted

average of n-Gaussian distributions, each with potentially different mean and different

variance. By choosing appropriate values for the means and the variances, one can

model many practically interesting priors. Moreover, by picking a very small but still

non-zero variance, one can even approximate discrete probability mass functions (pmfs).

As my own contribution, for the prior consisting of weighted average of n-Gaussians, I

derive closed-form expressions for the denoiser functions of the BAMP algorithm.

Similar to the reasoning which led to the BAMP algorithm, one can also argue that

there is also nothing special about the Gaussian noise model for AMP to be derived.

Considering a general distribution describing the component-wise distortion of the CS

linear mixtures, one can once again approximate the message passing algorithm. This

approach leads to the generalized approximate message passing (GAMP) algorithm,

which allows us to incorporate the knowledge of nonlinear acquisition of the CS

measurements in the estimation. Since in the following chapters I frequently refer
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3.1 Approximate Message Passing 25

to the GAMP algorithm, I conclude this chapter by briefly presenting the GAMP

algorithm.

3.1.1 Message passing algorithm for basis pursuit

For simplicity, it is assumed that ai,j ∈ ¶−1/
√
m,+1/

√
m♢, the measurements of a

sparse vector x are obtained according to (6.6), and we are interested in solving the

basis pursuit (BP) problem defined in (2.5). Instead of assuming that a fixed number

of entries of x are nonzero, in AMP we take a probabilistic approach. In particular, we

assume that the entries of x are i.i.d. random variables, distributed according to the

same sparsity promoting distribution. For example, the Laplace distribution is a good

candidate since we can promote sparsity by reducing the variance of the distribution.

Faced with an observation vector y and using the Bayes’ theorem, we can write the

conditional distribution px♣y(x♣y) as

px♣y(x♣y) =
1

p(y)
p(x)p(y♣x) =

1

Z

N∏

i=1

exp(−β♣xi♣)
m∏

a=1

δ(ya = (Ax)a). (3.1)

The authors of [33, 34] argue that when β → ∞, the mass of this distribution

concentrates around the solution of the basis pursuit problem. Therefore, provided

that the maximizer is unique, the BP problem becomes the problem of finding marginal

distributions of px♣y(x♣y). Since finding exact marginals pxi♣y(xi♣y) for all i ∈ [N ]

requires multidimensional integration over x∼i
1, the problem is infeasible even for small

problem sizes.

x1 x2 xi xN

y1 ya ym

m
i
→

a
(x

i
)

m̂
a
→

i
(x

i
)

Fig. 3.1 Factor graph corresponding to the BP problem.

1a∼i is a vector containing all but i-th element of a
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26 Approximate Message Passing Algorithms

x1 xr xi xN

y1 ya ym

m̂
i
→

a
(x

i
)

m̂

1
→

i
(x
i
)

m̂
m
→
i (
x
i )

(a) Messages involved with calculation of mes-
sages from variable nodes to factor nodes.

x1 xr xi xN

y1 ya ym

m
r
→

a (
x
r )

m̂
a
→

i
(x

i
)

m
1
→

a (
x
1 )

m
N
→

a
(x

N

)

(b) Messages involved with calculation of mes-
sages from factor nodes to variable nodes.

Fig. 3.2 Factor graph corresponding to the BP problem.

To approximate MMSE estimate E¶x♣y♢ or maximum likelihood (ML) estimate

arg maxx p(x♣y), we turn to efficient optimization algorithms based on belief propaga-

tion on factor graphs, namely the sum-product and the max-sum algorithm [62]. Here,

one starts by constructing a graphical model (i.e., factor graph) G = (V ,F , E), consist-

ing of a set of variable nodes V corresponding to the entries of the unknown x (denoted

by circles), a set of factor nodes F corresponding to the observations y (denoted by a

square), and a set of edges E , where each edge indicates statistical dependency between

connected nodes. In Figure 3.1, an example of a complete bipartite graph is shown,

where every factor node is connected to all variable nodes, and vice versa, every variable

node is connected to all factor nodes. Belief propagation iteratively updates a set of

functions of the optimization variables (messages) associated to directed edges in E
[62]. In particular, for each direction of the edge e ∈ E , a message corresponding to a

scaled distribution is sent in that direction. Those scaled distributions are updated

according to the update rules of the sum-product algorithm, namely:

(1) (Figure 3.2a) At each variable node xi, multiply prior distribution (local belief)

of xi with all incoming messages about xi except the one from destination factor

node ya, and send the resulting message to ya. Repeat the process for all ya ∈ F .

(2) (Figure 3.2b) At each factor node ya multiply the local constraint f(ya) with all

incoming messages except from xi, marginalise over x∼i, and send the resulting

scaled distribution to xi. Repeat the process for all i ∈ V. .D
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3.1 Approximate Message Passing 27

3.1.2 Derivation of the algorithm

We start by drawing the associated bipartite graph G = (V ,F , E) given in Figure 3.1.

Here, V is the set of the N components of x, F is the set of m measurements in y, and

the edge set E is given by E = V × F = ¶(i, a) : i ∈ [N ], a ∈ [m]♢.

The belief propagation algorithm iteratively updates the 2mN variables of the

algorithm

m
(t+1)
i→a (xi) ∼= p(xi)

∏

b̸=a

m̂
(t)
b→i(xi)

= e−β♣xi♣
∏

b̸=a

m̂
(t)
b→i(xi), (3.2)

m̂
(t)
a→i(xi) ∼=

∫
∏

j ̸=i

m
(t)
j→a(xj) p(ya♣za;xi) dx∼i

= Ex∼i

{

p(ya♣za;xi)
}

= Ex∼i

{

δ(ya − za;xi)
}

, (3.3)

where in (3.2) we implicitly assumed an i.i.d. Laplacian prior for x, z is the vector of

linear mixtures (i.e., z = Ax), and ∼= denotes equality up to a normalization constant.

Message passing algorithm

Keeping track of the terms in (3.2) and (3.3), i.e., functions over R, leads to prohibitive

complexity. To simplify the updates from above, the authors in [33, 34, 57] utilize the

Berry-Esseen theorem2 [77] to approximate m
(t+1)
i→a (xi), and m̂

(t)
a→i(xi) with functions

that belong to a family of functions characterized with a small set of parameters. This

way, instead of sending functions over R, one needs to send a vector of parameters to

perform the updates of the sum product algorithm.

Approximation of m̂
(t)
a→i(xi):

Theorem 5 [6, The Berry-Esseen theorem] Let x1, x2, . . . , xn be independent random

variables with respective means µi and variances σ2
i . We call

λ(xi) =







E¶♣xi♣3♢/σ2
k, if σ2

k ̸= 0,

0, if σ2
k = 0,

(3.4)

2The Berry-Esseen theorem is a more general version of the central limit theorem.
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28 Approximate Message Passing Algorithms

the moment-ratio of xi, and set Λ = max¶λ(x1), λ(x2), . . . , λ(xn)♢. Consider the sum

x =
∑n

i=1 xi, which has mean µ =
∑n

i=1 µi, and variance σ2 =
∑n

i=1 σ
2
i , and denote

with F (x) the cumulative distribution function (cdf) of x. The least upper bound of the

modulus of the difference between F (x) and the cdf of the associated normal distribution

is upper bounded by a constant that depends only on the ratio Λ/σ, i.e.,

sup
x∈R

∣
∣
∣F (x) −G((x− µ)/σ)

∣
∣
∣ ≤ 1.88

Λ

σ
. (3.5)

Corollary 1 Suppose µi = 0, σ2
i = σ2

0, and E¶♣xi♣3♢ ≤ ρ for ∀i ∈ [n]. It follows that,

in the limit as n → ∞,

lim
n→∞ sup

x∈R

∣
∣
∣F (x) − Φ((x))

∣
∣
∣ ≤ lim

n→∞ 1.88
Cρ

σ3
0

√
n

= 0. (3.6)

According to the Berry-Esseen theorem (Theorem 5), distribution of the sum of

n random variables (with bounded absolute third moment) converges to a normal

distribution as the sample size increases to infinity. It follows that the distribution

of
∑

j ̸=i aajxj can be well approximated with a Gaussian distribution with mean
∑

j ̸=i aajx
(t)
j→a and variance

∑

j ̸=i a
2
arτ

(t)
j→a, i.e.,

∑

j ̸=i

aajxj ∼̇ N
(∑

j ̸=i

aajx
(t)
j→a,

∑

j ̸=i

a2
ajτ

(t)
j→a



, (3.7)

where ∼̇ is interpreted as "is approximately distributed as", and x
(t)
j→a and τ

(t)
j→a denote

mean and variance of the message m
(t)
j→a(xj), i.e.,

x
(t)
j→a = E

{

xj

∣
∣
∣m

(t)
j→a(xj)

}

,

τ
(t)
j→a = var

{

xj

∣
∣
∣m

(t)
j→a(xj)

}

.
(3.8)

Therefore,

za♣xi = aaixi +
∑

j ̸=i

aajxj ∼̇ N
(

aaixi +
∑

j ̸=i

aajx
(t)
j→a,

∑

j ̸=i

a2
ajτ

(t)
j→a



, (3.9)
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3.1 Approximate Message Passing 29

and

m̂
(t)
a→i(xi) = Ex∼i

{

p(ya♣za;xi)
}

≈
∫

p(ya♣za;xi) N
(

za; aaixi +
∑

j ̸=i

aajx
(t)
j→a,

∑

j ̸=i

a2
ajτ

(t)
j→a



dza

=
∫

δ(za − ya) N
(

za; aaixi +
∑

j ̸=i

aajx
(t)
j→a,

∑

j ̸=i

a2
ajτ

(t)
j→a



dza

= N
(

ya; aaixi +
∑

j ̸=i

aajx
(t)
j→a,

∑

j ̸=i

a2
ajτ

(t)
j→a



= N
(

aaixi; ya −
∑

j ̸=i

aajx
(t)
j→a,

∑

j ̸=i

a2
ajτ

(t)
j→a



.

(3.10)

It follows from (3.10), that 2(N − 1) scalar parameters are sufficient to approximate

the message m̂
(t)
a→i(xi).

Approximation of m
(t+1)
i→a : Since the messages m̂

(t)
a→i(xi) can be well approximated

by Gaussian distributions, going back to (3.2), we can conclude that the messages

from the variable nodes to the factor nodes m
(t+1)
i→a (xi) can be well approximated by

the product of a Gaussian distribution and the prior (Laplace distribution). It turns

out that the mean xj→a and the variance τj→a of m
(t+1)
i→a (xi), as β → ∞, can be

approximated as

x
(t+1)
i→a = η


∑

b̸=a

abiz
t
b→i, τ̂

t


, τ
(t+1)
i→a ≈ τ̂ t η′


∑

b̸=a

abiz
t
b→i; τ̂

t


, (3.11)

where η(x; b) is the soft thresholding function defined in (2.19), and τ̂ t is an edge-

independent approximation of τ̂ t
a→i. To calculate τ̂ t, it is observed in [57] that

τ̂ (t+1) =
N∑

i

a2
aiτ

(t+1)
i→a =

1

m

N∑

i

τ
(t+1)
i→a ≈ 1

m

N∑

i

τ̂ t η′

∑

b

abiz
t
b→i; τ̂

t


. (3.12)

The above message passing algorithm iteratively computes 2mN messages, namely

mN variances zt
a→i, and mN means x

(t)
i→a. Even though these messages (formerly

functions over R) simplify to real numbers, the number of the messages still introduces

prohibitive computational complexity, and further approximations are needed.

Approximation of the message passing algorithm

To further simplify the message passing algorithm, since ai,j ∈ ¶−1/
√
m,+1/

√
m♢,

it is assumed that µ
(t)
i→a as well as zt

a→i differ in terms that are of order O( 1√
N

) for
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30 Approximate Message Passing Algorithms

different a and i, respectively, i.e.,

x
(t)
i→a = x

(t)
i + δx

(t)
i→a, z

(t)
a→i = z(t)

a + δz
(t)
a→i, (3.13)

where δx
(t)
i→a and δz

(t)
a→i are O( 1√

N
). These assumptions, although not strictly proven

to be correct, lead to the following approximations in the large system limit (i.e.,

m,N → ∞, δ = const) for the messages zt
a→i and x

(t)
i→a

z
(t)
a→i ≈ z(t)

a = ya −
∑

j∈[N ]

aajx
(t)
j +

1

δ
z(t)

a

〈

η′
(

Az(t) + xt, τ̂ t
〉

, (3.14)

x
(t)
i→a ≈ x

(t+1)
i = η


∑

b∈[n]

abiz
(t)
b + xt

i, τ̂
t


, (3.15)

where ⟨ · ⟩ denotes the average value of the entries of its input vector. Equations (3.12),

(3.14) and (3.15)) give final expressions for the tuning free AMP algorithm which can

be written in vector notation as

x(t+1) = η
(

A(t)z(t) + xt, τ̂ t


, τ̂ t =
τ̂ (t−1)

δ

〈

η′
(

A(t)z(t−1) + xt, τ̂ (t−1)
〉

,

z(t) = y − Ax(t) +
1

δ
z(t−1)

〈

η′
(

A(t)z(t) + xt, τ̂ (t−1)
〉

.

(3.16)

The details of above approximations can be found in [57].

AWGN output channel (AMP for soft constraints)

Here, we assume that the CS measurements are corrupted with additive white Gaussian

noise (AWGN), i.e.,

y = Ax + w, (3.17)

where w is an i.i.d. zero-mean AWGN noise vector with the covariance matrix σ2
wI.

Now suppose that we want to recover x by solving the basis pursuit denoising (BPDN)

problem given in (2.10). As before, one needs to write down the conditional distribution

px♣y(x♣y), which, respecting the measurement model in (3.17), can be written as

px♣y(x♣y) =
1

Z

N∏

i=1

exp(−βλ♣xi♣)
m∏

a=1

exp
(

− β

2
(ya − (Ax)2

a



. (3.18)

Note that, compared to the conditional distribution px♣y(x♣y) of the the BP prob-

lem given in (3.1), the distribution in (3.18) differs in the term that describes the

measurement process, and in the weighting term λ. Just as in the case of the AMP
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3.1 Approximate Message Passing 31

algorithm for hard constraints, one proceeds with applying the Berry-Esseen theorem

to approximate messages from factor nodes to variable nodes by Gaussian distributions

with certain means and variances, and Taylor expansions to approximate means of the

messages in the opposite direction with edge-independent terms. Finally, we end up

with the following AMP algorithm for soft constraints:

u(t) = A(t)z(t−1) + x(t−1),

x(t) = η
(

u(t), λ+ γ(t)


,

z(t) = y − Ax(t) +
1

δ
z(t)

〈

η′
(

u(t), λ+ γ(t)
〉

,

γ(t+1) =
λ+ γ(t)

δ

〈

η′
(

u(t), λ+ γ(t)
〉

.

(3.19)

Comparing the algorithm with the one given in (3.16), we can see that the only

difference is the way the soft thresholding parameter is calculated. Additionally, in

(3.19) one needs to tune the λ parameter which trades off between l1 and l2 penalties in

(2.10). Poor selection of this parameter can lead to a high reconstruction error as well

as slow convergence of the algorithm [57, p. 68]. In [57], Maleki gives a recipe how to

select λ for certain classes of sparse signals, using the maximin approach, i.e., selecting

λ which gives the lowest mean squared error (MSE) for the worst case signal. Arguing

that this approach is too pessimistic, the authors in [63] propose a parameter free

optimal AMP. This algorithm asymptotically, as N → ∞, at the same time achieves

the MMSE and the highest convergence rate. Assuming that the argument w(t) of the

soft thresholding function η(w(t); τ) is given by3

w(t) = A(t)z(t) + x(t) = x + σ(t)v(t), (3.20)

where v(t) is an i.i.d. standard Gaussian noise vector at iteration t, the authors apply the

approximate gradient descent algorithm to find the soft thresholding parameter τ which

minimizes Stein’s unbiased risk estimate of the risk function r(τ ;σ) = 1
N
Ex,u ∥η(x +

σu; τ) − x∥2
2, where u ∼ N (0, I).

Using a very simple approach, in (3.19) one can approximate λ+ γ(t) by the mean

empirical power of the residual, i.e., b =
√

σ2
w + 1

m
∥z(t)∥2, which is correct in the large

system limit and showed good empirical results for moderate-size problems [62]. If the

noise variance σ2
w is unknown we can simply use b =

√
1
m

∥z(t)∥2 as it has shown good

empirical performance [17, Chapter 9.5.1]. These choices of the threshold parameter

3Correctness of this assumption will be addressed in Subsection 3.1.4.
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32 Approximate Message Passing Algorithms

avoid determining the optimal λ for each pair (δ, ρ), and to my experience give a more

stable implementation of the AMP algorithm for a large set of pairs (δ, ρ).

3.1.3 Computational complexity

The AMP algorithm, given in Algorithm 4, is a highly efficient algorithm whose

computational complexity is similar to other iterative thresholding algorithms. The

most complex operation of the algorithm is matrix vector multiplication, whose cost is

O(N2). Additionally, even tough the computation of the thresholding function η(·; ·)
might be costly, it needs to be applied component-wise. Hence, the cost of this step is

O(N) per iteration of the algorithm.

The AMP algorithm, just as other iterative thresholding algorithms, terminates

when some stopping criterion is met. For example, one can run the algorithm for tmax

iterations, where tmax is typically in the order of N or less. Another common choice is

to run the algorithm as long as the l2 norm of the relative difference of the solutions

between two successive iterations is greater than some predefined small number εstop

(e.g., 10−3), i.e., ∥x̂(t) − x̂(t−1)∥2 ≥ εstop ∥x̂(t)∥2. Having larger tmax or smaller εstop

increases the reconstruction accuracy at the cost of higher computational complexity.

Algorithm 4 Approximate message passing algorithm

Input: measurement matrix A, measurement vector y, noise level σ2
w (optional), soft

threshold parameter λ, stopping threshold εstop or tmax

Initialization: t = 0, x̂(0) = 0N×1, z(0) = y, γ(1) = 1
δ
ϵ σ2

x

do:
1: t = t+ 1 ▷ increment iteration counter
2: u(t) = A(t)z(t−1) + x(t−1) ▷ decouple measurements
3: x(t) = η(u(t), λ+ γ(t)) ▷ denoise, i.e., apply thresholding
4: z(t) = y − Ax(t) + 1

δ
z(t−1)⟨η′(u(t), λ+ γ(t))⟩ ▷ calculate residual

5: γ(t+1) = λ+γ(t)

δ
⟨η′(u(t), τ (t))⟩ ▷ calculate soft threshold parameter

while t ≤ tmax or ∥x̂(t) − x̂(t−1)∥2 ≥ εstop ∥x̂(t)∥2

Output: x̂ = x(t)

3.1.4 State evolution

The goal of the state evolution (SE) is to analyze the AMP algorithm in the large

system limit, i.e., N,m → ∞ while δ = m/N = const, at any iteration t. As the name

indicates, with SE we predict the value (i.e., evolution) of some parameter (i.e., state)
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0 4 8 12 16 20
−20

−15

−10

−5

t

MSE(t)/dB simulation

MSE(t)/dB SE prediction

γ(t)/dB simulation

γ(t)/dB SE prediction

Fig. 3.3 SE prediction of MSE(t) and γ(t) of the AMP algorithm in (3.19) against iteration
counter t. Parameters: N = 1000, λ = 0.3, δ = 0.4, ϵ = 0.1, σ2

w
= −35dB. The results of 100

MC simulations are averaged and presented with the blue curves.

of the algorithm across iterations t. For example, it would be an insightful result to

investigate the evolution of the MSE of the AMP algorithm.

Replacing the soft thresholding function η( ·; · ) in (3.19) with a general denoising

function ηt( ·; · ) that may change from iteration to iteration, the authors in [4] consider

the recursion

x(t+1) = ηt

(

A(t)z(t) + x(t)


,

z(t+1) = y − Ax(t) +
1

δ
z(t)

〈

η′
t

(

A(t)z(t) + x(t)
〉

,
(3.21)

where ηt( · ) is applied component-wise.

For a set
{

¶ηt♢N
t=1, ρ, δ, λ, px

}

the SE is a recursive map σ2(t) 7→ Ψ(σ2(t)
) that

describes the evolution (change) of the state σ2(t)
, also called effective noise variance,

of the AMP algorithm across iterations t. Starting with σ2(0)
= σ2

w + 1
δ
Ex¶x

2♢, the SE

is given by

σ2(t+1)
= Ψ

(

σ2(t)


,

Ψ(σ2(t)
) = σ2

w +
1

δ
Ex,z

{[

ηt(x + σ(t)
z) − x

]2
}

︸ ︷︷ ︸

M̂SE(x̂(t),x)

, (3.22)
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34 Approximate Message Passing Algorithms

where z ∼ N (0, 1).The following theorem is fundamental for characterisation of the

AMP algorithm.

Definition 5 [4] For k > 1 we say a function ϕ : Rm → R is pseudo-Lipschitz of

order k and denote it by ϕ ∈ PL(k) if there exists a constant L > 0 such that, for all

x,y ∈ Rm

♣ϕ(x) − ϕ(y)♣ ≤ L
(

1 + ∥x∥k−1 + ∥y∥k−1


∥x − y∥ .

Theorem 6 [4, Theroem 1] Let ¶A(N)♢N≥0 be a sequence of sensing matrices A ∈
Rm×N indexed by N , with i.i.d. entries aij ∼ N (0, 1/m), and assume m/N → δ ∈
(0,∞). Consider further a sequence of signals ¶x(N)♢N≥0 whose empirical distribution

converge weakly4 to a probability measure px on R with bounded (2k − 2)th moment,

and assume Ep̂x(N)(x
2k−2) → Epx(N)(x

2k−2) as N → ∞ for some k ≥ 2. Also assume

the noise w has i.i.d. entries with distribution pw that has bounded (2k − 2)th moment.

Then, for any pseudo-Lipschitz function ψ : R2 → R of order k and all t ≥ 0, almost

surely

lim
N→∞

1

N

N∑

i=1

ψ(x
(t+1)
i , xi) = Ex,z

{

ψ
(

ηt(x + σ(t)
z), x

}

, (3.23)

with x ∼ px and z ∼ N (0, 1) independent.

This theorem, which was proven in the large system limit for any choice of

(ρ, δ, λ, p(x)), has a few important consequences for asymptotical prediction of the

AMP algorithm. In particular, the evolution of parameters of the algorithm; prediction

of the MSE of the algorithm; phase transition; and the decoupling principle will be

explained in the following subsection.

Evolution of AMP parameters

If we choose ψ(x, y) = (x− y)2, we can estimate the true MSE of the AMP algorithm

at iteration t, given by MSE(t)(x̂(t),x) = 1
N

∥x̂(t) − x∥2
2, by

MSE
(t)
SE = Ex,z

{

(x̂ − x)2
}

= Ex,z

{(

ηt(x + σ(t)
z) − x

2}

, (3.24)

for any choice of ηt(· ; ·) (under certain technical conditions). Compared to all iterative

thresholding algorithms, this property is unique to the AMP algorithm. Additionally,

if we use the denoiser function given in (3.19), one could track the evolution of the

soft threshold parameter γ(t). Figure 3.3 shows an example of both SE prediction as

4Details about weak convergence can be found in [10].
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-10
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Fig. 3.4 MSE(t) and σ2(t)
against iteration t of the AMP algorithm (left) and the prediction

of the effective noise transitions (right). Parameters: N = 1000, λ = 2.0, δ = 0.3, ϵ = 0.1,
σ2

w
= −30dB.

well simulation results (averaged over 100 simulations) of MSE(t) and γ(t) across t for

a specific set of parameters given below. Even for not so large N we can observe an

excellent match between simulation results and SE prediction of the corresponding

terms.

MSE and fixed points

Fixed points of the state evolution are states for which σ2(t+1)
= σ2(t)

, and consequently

x(t+1) = x(t). We can differentiate between two types of fixed points of the SE iteration,

namely: stable fixed points and unstable fixed points. A stable fixed point is a fixed

point to which the system converges after an arbitrary small perturbation. Otherwise,

the fixed point is unstable. Let us take a better look at Figure 3.4, where we show

MSE(t) and σ2(t)
against iteration t of the AMP algorithm on the left, and the prediction

of the effective noise transitions on the right. The first stable fixed point that appears

from the right side (higher MSE) is the one that defines MSE(∞). According to (3.22),

at t = 0 we start with σ2(0)
= σ2

w + 1
δ
E¶x

2♢ ≈ −4.78 dB, and at this point the value of

the SE prediction is σ2(1) ≈ −6.97 dB. This point is highlighted in Figure 3.4 (right),

by the far right marker. Moving horizontally from this point to the baseline and then

vertically to the SE curve we find the SE prediction of σ2(1)
. Continuing this process,

we will end up in the point where function Ψ and the baseline cross. The crossing point

corresponds to the fixed point of the algorithm, and asymptotically the algorithm is

producing MSE(∞) = δ(σ2(∞) − σ2
w). In this specific case, MSE(∞) ≈ −15.3 dB and
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Fig. 3.5 PT curve of the AMP algorithm ϵAMP(δ) for hard constraints predicted by the SE.
Maximum number of iterations is tmax = 200. Additionally, the recursion is terminated if

MSE
(t)
SE ≤ −90 dB.

σ2(∞) ≈ −10.02 dB, where the difference of −5.28 dB between the two is mainly due

to the 10 log10 δ ≈ −5.22 dB.

Phase transition

All pairs of measurement ratio and non-zero probability (δ, ϵ) ∈ [0, 1]2 constitute the

so-called phase space5. For BP and BPDN problems given in (2.5) and (2.10), provided

that the elements of A are i.i.d. Gaussian random variables, asymptotically the phase

space partitions in the two regions [36]. The curved line separating those two regions

ϵl1(δ) (alternatively ρl1(δ)) is called PT curve (or simply phase transition), and the

regions indicate if the reconstruction is successful or not: below the PT curve with high

probability (whp) the sparsity ratio is sufficient to allow for successful reconstruction,

while above the PT curve whp the reconstruction is unsuccessful.

For the AMP algorithm on the other hand, for any pair (δ, ϵ), in the large system

limit, we can use fixed points of the SE to determine if the algorithm converges to the

true solution or not. If σ2(t)
= 0 is the only stable fixed point, then x̂(t) → x as t → ∞

since

MSE(t) = δσ2(t) → 0 as t → ∞.

5Alternatively, one can consider phase space as all pairs of measurement ratio and normalized
sparsity (δ, ρ) ∈ [0, 1]2. In this case the phase transition curve is denoted by ρ(δ).
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Fig. 3.6 Success rate of the AMP algorithm for hard constraints predicted by the SE.
Maximum number of iterations is tmax = 200. Additionally, the recursion is terminated if

MSE
(t)
SE ≤ −90 dB.
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−50

−40

−30

−20

−10

0

Fig. 3.7 MSE of the BAMP algorithm predicted by the SE for the problem described in
Examples 1 in 3.2.2. Maximum number of iterations is tmax = 100. Additionally, the recursion

is terminated if MSE
(t)
SE ≤ −60 dB.
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38 Approximate Message Passing Algorithms

Figure 3.5 shows the PT curve ϵAMP(δ) and Figure 3.6 shows success rate of the

AMP algorithm for hard constraints given in (3.16). To get the results shown in

the figures, we run the SE recursion given in (3.22) for every pair (δ, ϵ) ∈ [0, 1]2 50

times, and average the end MSE
(t)
SE. The recursion is stopped when the maximum

number of iterations tmax is reached, or if MSE
(t)
SE is less than −90 dB. We say that

a reconstruction x̂ in Algorithm 4 is successful (i.e., the algorithm converges to the

true solution) if MSE
(t)
SE ≤ −60. In Figure 3.6 we can se a clear transition between the

region of the (δ, ϵ) space where the reconstruction is successful and the region where it

is not. The line separating those regions, i.e., the phase transition curve, is shown in

Figure 3.5.

Alternatively, one could find empirical PT curve [32, 36] by running the AMP

algorithm a number of times for every pair (δ, ϵ), each time with an independent

realization of x and A, and calculating the average number of successful recoveries.

However, this approach is much slower than running the SE recursion.

In Figure 3.7, one can show MSE of the AMP based algorithms as a function of

(δ, ϵ) for problem defined. Here, we use Bayesian-optimal denoiser function of the

BAMP algorithm, as will be later described in 3.2.

Decoupling principle

As a consequence of Theorem 6, any typical subsets of the entries of x(t) are asymp-

totically independent [4]. Additionally, the argument of the soft threshold function

A(t)z(t) +x(t) "behaves like" an observation of true x corrupted with zero mean Gaussian

noise with variance σ2(t)
, i.e., A(t)z(t) + x(t) = x + v(t), where v(t) ∼ N (0, σ2(t)

Im).

These properties of the AMP algorithm are demonstrated in Figure 3.8, where we

show the empirical distribution of the effective noise as well as zero-mean Gaussian

distribution whose variance is predicted by SE, for different levels of AWGN. We can

observe a very good match between the two distributions. Since the presence of the

Onsager term in (3.22) is the only difference between thresholding algorithms and

AMP, one can argue that this term is responsible for the decoupling principle.
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3.2 Bayesian Approximate Message Passing 39

(a)

(b)

(c)

Fig. 3.8 Normalized histogram (blue) and SE prediction of the distribution (black) of the
effective noise at different iterations of the AMP algorithm: a) σ2

w
= −∞ dB, b) σ2

w
= −40 dB,

c) σ2
w

= −20 dB (bottom). Parameters: N = 1000, λ = 2.0, δ = 0.5, ϵ = 0.1.

3.2 Bayesian Approximate Message Passing

Going back to (3.18) we see that by choosing λ, we implicitly assume a certain prior from

the family of Laplacian distributions for x. There is nothing stopping us from choosing
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40 Approximate Message Passing Algorithms

some other prior px(x;α), parametrised by a set of parameters α, that promotes prior

knowledge about x. For example, if we want to promote sparsity, we could use i.i.d.

zero-mean Bernoulli-Gauss (BG) mixture prior given by

pxi
(x; ϵ, σ2

x) = (1 − ϵ)δ(x) + ϵN (x; 0, σ2
x), (3.25)

where ϵ is probability of nonzero value, and σ2
x is the power of the Gaussian component.

In this case, the corresponding conditional distribution of x given the observation

vector y is

px♣y(x♣y;α) =
1

Z

N∏

i=1

(

(1 − ϵ)δ(xi) + ϵN (xi; 0, σ2
x)
 m∏

a=1

exp
(

− β

2
(ya − (Ax)2

a



. (3.26)

Repeating the steps for deriving the AMP algorithm, one can see that nothing changes,

except that now the messages from the variable nodes to the factor nodes m
(t+1)
i→a (xi)

can be approximated by the product of a Gaussian and here assumed prior. As a

consequence, the mean and the variance of m
(t+1)
i→a (xi), given in (3.11), take different

form, namely the mean and the variance of the above mentioned product of distributions.

The resulting algorithm, called BAMP is given by Algorithm 5. It is the implementation

of the following iteration

u(t) = A(t)z(t−1) + x(t−1),

x(t) = F
(

u(t); c(t), α


,

z(t) = y − Ax(t) +
1

δ
z(t)

〈

F ′
(

u(t); c(t), α
〉

,

c(t+1) = σ2
w +

1

δ

〈

G
(

u(t); c(t), α
〉

,

(3.27)

where functions F (·), F ′(·), and G(·) are applied component-wise and are given by

F (ui; c, α) = Ex¶x♣u = ui ; c, α♢,

F ′(ui; c, α) =
d

dui

F (ui ; c, α),

G(ui; c, α) = varx¶x♣u = ui ; c, α♢.

(3.28)

Comparing the AMP algorithm given by (3.19), and BAMP given by (3.27), we

can see that the only difference is in the denoiser function, that uses different prior

knowledge about x. In (3.28), the argument ui of the denoiser function F (·) acts as

an observation of xi corrupted with zero-mean Gaussian noise with variance c, i.e.,
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3.2 Bayesian Approximate Message Passing 41

Algorithm 5 Bayesian Approximate Message Passing Algorithm

Input: measurement matrix A, measurement vector y, noise level σ2
w (optional), prior

distribution p(xi♣α), stopping threshold εstop or tmax

Initialization: t = 0, x̂(0) = 0N×1, z(0) = y, c(1) = σ2
w + 1

δ
ϵσ2

x

do:
t = t+ 1 ▷ increment iteration counter
u(t) = A(t)z(t−1) + x(t−1) ▷ decouple measurements
x(t) = F

(

u(t); c(t), σ2
x



▷ denoise, i.e., apply thresholding

z(t) = y − Ax(t) + 1
δ
z(t−1)⟨F ′

(

u(t); c(t), σ2
x



⟩ ▷ calculate residual

c(t+1) = σ2
w + 1

δ
⟨G
(

u(t); c(t), σ2
x



⟩ ▷ estimate effective noise variance

while t ≤ tmax or ∥x̂(t) − x̂(t−1)∥2 ≥ εstop ∥x̂(t)∥2

Output: x̂ = x(t)

ui ∼ N (xi, c). Therefore, the conditional distribution p(xi♣ui ; c, α) can be written as

p(xi♣ui ; c, α) =
1

p(ui)
p(ui♣xi ; c) p(xi ;α) =

1

κ(ui; c)
g(ui − xi; 0, c) p(xi ;α), (3.29)

where κ(ui; c) is a normalizing constant, and g(·; 0, c) is zero-mean Gaussian distribution

with variance c. Depending on the specific prior p(xi), one could get closed-form

expressions for the functions in (3.19), or use numerical methods to get approximations

of those functions.

As indicated in the input part of the Algorithm 5, we need to provide the prior

distribution p(xi ;α). Therefore, one can argue that this is a disadvantage of the BAMP

algorithm, since the prior is not usually known. One way out of this problem is to

model the signal as a general Gaussian-Bernoulli mixture, and learn the parameters

of the distribution using an empirical-Bayesian technique while producing ever better

MSE estimate in each iteration of the algorithm [82]. Alternatively, if the prior can

be parametrised, one can use low complexity scheme based on Method-of-Moments to

estimate the parameters of the prior distribution during the iterations of the BAMP

algorithm [40].

Before giving some results for specific priors of interest, we show alternative formu-

lation of the denoiser functions F (·), F ′(·), and G(·).
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42 Approximate Message Passing Algorithms

Alternative formulation of the denoiser functions

Using integration by parts and a few mathematical tricks, one can rewrite (3.28) as

F (uj; c, α) = uj −
√

2c

π

I0(uj; c, α)

I2(uj; c, α)
,

G(uj; c, α) = c+ F (uj; c, α)


uj − F (uj; c, α)


−
√

2c

π

I1(uj; c, α)

I2(uj; c, α)
,

F ′(uj; c, α) =
1

c
G(uj; c, α),

(3.30)

where the integrals I0(uj; c, α), I1(uj; c, α), and I2(uj; c, α) are defined as

I0(uj; c, α) =
∫ +∞

−∞
e− (xj −uj )2

2c p′
xj

(xj;α) dxj,

I1(uj; c, α) =
∫ +∞

−∞
xj e

− (xj −uj )2

2c p′
xj

(xj;α) dxj,

I2(uj; c, α) =
∫ +∞

−∞
erf

(

xj − uj√
2c



p′
xj

(xj;α) dxj.

(3.31)

3.2.1 Mix of n non-zero mean Gaussians

I assume that the prior consists of a weighted (weighting factors γk) average of n-

Gaussian distributions, each with possibly different mean µk and different variance

σ2
k. By choosing appropriate values for the means and variances, many practically

interesting priors can be modeled or approximated, even including discrete distributions

(by picking very small but still non-zero variance).

Hence, the prior considered is given as

p(xj ; α) =
n∑

k=1

γk pk(xj) =
n∑

k=1

γk g(xj;µk, σ
2
k), (3.32)
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3.2 Bayesian Approximate Message Passing 43

where
∑n

k=1 γk = 1, and 0 ≤ γk ≤ 1 ∀k. Inserting the prior from (3.32) in to (3.31), we

have

I0(uj; c, α) =
n∑

k=1

γk

∫ +∞

−∞
e−(xj −uj)

2

2c p′
k(xj) dxj

︸ ︷︷ ︸

I0k(uj ;c)

,

I1(uj; c, α) =
n∑

k=1

γk

∫ +∞

−∞
xj e

−(xj −uj)
2

2c p′
k(xj) dxj

︸ ︷︷ ︸

I1k(uj ;c)

,

I2(uj; c, α) =
n∑

k=1

γk

∫ +∞

−∞
erf

(

xj − uj√
2c



p′
k(xj) dxj

︸ ︷︷ ︸

I2k(uj ;c)

.

(3.33)

Here, I omit a detailed calculation of the integrals I0k(uj; c), I1k(uj; c), and I2k(uj; c)

which is given in the Appendix A.2, and instead give final expressions for the integrals,

namely

I0(uj; c, α) = −
√

2πc
n∑

k=1

γk g(uj;µk, σ
2
k,c)

uj − µk

σ2
k,c

,

I1(uj; c, α) = −
√

2πc
n∑

k=1

γk g(uj;µk, σ
2
k,c)



σ2
k(uj − µk)2

σ4
k,c

+
c+ µk(uj − µk)

σ2
k,c

]

,

I2(uj; c, α) = −
√

2πc
n∑

k=1

γk g(uj;µk, σ
2
k,c)

√

2

πc
,

(3.34)

where σ2
k,c = σ2

k + c.

3.2.2 General discrete prior mixed with a zero-mean Gaus-

sian prior

We assume that the source takes a discrete value with probability 1−ϵ and a continuous

value with probability ϵ, i.e.,

pxj
(xj, α) = (1 − ϵ) pd

xj
(xj, α) + ϵ pc

xj
(xj, α). (3.35)

Moreover, the discrete values come from the set ¶bm♢M
m=1, where the probability of the

value bm is ϵd
m, i.e.,

pd
xj

(xj, α) =
M∑

m=1

ϵd
mδ(xj − bm) with

M∑

m=1

ϵd
m = 1, (3.36)
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44 Approximate Message Passing Algorithms

while the continuous part pc
xj

(xj, α) of the distribution pxj
(xj, α) is a zero-mean Gaussian

distribution with variance σ2
x. Hence, the prior becomes

pxj
(xj, α) = (1 − ϵ)

M∑

m=1

ϵd
mδ(xj − bm) + ϵ g(xj; 0, σ2

x). (3.37)

Plugging in the mixture prior given in (3.37) to (3.28) we can obtain closed-form

expressions for the denoiser functions of the BAMP algorithm. Alternatively, since we

model occurrence of zero value with delta distribution δ(x), and δ(x) can be considered

as a limit limσ→0 g(x; 0, σ2), we can use the results given in (3.34) to obtain closed-form

expressions for the denoiser functions of the BAMP algorithm. We omit this derivation,

which is given in Appendix A.1 and instead give final expressions for the integrals

I0k(uj; c), I1k(uj; c), and I2k(uj; c), namely

I0(uj; c) = −1 − ϵ

c

M∑

m=1

ϵm(uj − bm) e− (uj −bm)2

2c − ϵ

√
c

σ3
x,c

uj e
−

u2
j

2σ2
x,c ,

I1(uj; c) = −1 − ϵ

c

M∑

m=1

ϵm (c+ bmuj − b2
m) e− (uj −bm)2

2c − ϵ

√
c

σ3
x,c

(

c+
σ2

σ2
x,c

u2
j



e
−

u2
j

2σ2
x,c ,

I2(uj; c) = −(1 − ϵ)

√

2

πc

M∑

m=1

ϵm e− (uj −bm)2

2c − ϵ

√
√
√
√

2

πσ2
x,c

e
−

u2
j

2σ2
x,c ,

(3.38)

where σ2
x,c = σ2

x + c.

Numerical examples

1. Example 1: Discrete point at ±1. Here in (3.37) we choose M = 2, ϵd
1 = ϵd

2 = 1
2
,

and b1 = 1 = −b2, while the variance of the zero-mean Gaussian continuous

component is σ2
x = 0.4. The probabilities for the continuous components are

ϵ = 0.4 and ϵ = 0.05.

The results for the estimator functions F (uj; c, α) and its derivative are given

in Figs. 3.9a and 3.9b. Since the results are symmetric with respect to the

y-axis, we only show results for positive uj. In Fig. 3.9c a Gaussian prior with

larger variance than in Figs. 3.9a and 3.9b is used. In all three figures we can

observe a plateau forming around the discrete points, where the plateau becomes

wider with increasing effective noise standard deviation σ and probability of

discrete points 1 − ϵ. For the inputs close to the discrete points, the denoiser
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(a) Discrete points at ¶−1, +1♢; probability for
a continuous point ϵ = 0.4, with µx = 0, and
σ2

x = 0.4.
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(b) Discrete points at ¶−1, +1♢; probability for
a continuous point ϵ = 0.05, with µx = 0, and
σ2

x = 0.4.
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(c) Discrete points at ¶−1, +1♢; probability for
a continuous point ϵ = 0.1, with µx = 0, and
σ2

x = 1.2.
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(d) Discrete point at 0; probability for a continu-
ous point ϵ = 0.1, with µx = 0, and σ2

x = 1.2.

Fig. 3.9 Function plots of F (uj ; c) and F ′(uj ; c) = G(uj ; c)/c for different Gauss-Bernoulli
mixtures and different effective noise standard-deviations σ.
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46 Approximate Message Passing Algorithms

behaves similar to a quantizer, since those inputs are mapped to values almost

indistinguishable from the discrete points.

2. Example 2: Sparse case, i.e., discrete point at 0. In Fig. 3.9d a continuous

Gaussian prior with variance σ2
x = 1.2 is used, but now the discrete part is located

at zero with probability 1 − ϵ = 0.9.

Note that as long as a reasonably large variance for the continuous Gaussian

prior is chosen, there are no numerical problems, as there are no gaps in the

support and the prior distribution has significant non-zero values in a reasonable

range of input values u to the estimator.

Also note that the curve for c = 0.1 (low noise case) in Fig. 3.9d looks rather

similar to a hard thresholding function. However, as the noise increases, the

typical effect of MMSE estimators appears: the output magnitudes tend to

smaller values, due to the ambiguity caused by the noise.

3.3 Generalized Approximate Message Passing

In Section 3.2 we saw that there is nothing special about the Laplacian prior for AMP

to be derived, and later showed BAMP algorithm for a general prior distribution (also

referred to as the input channel). Similarly, one can argue that there is nothing special

about the Gaussian noise model that describes a distortion of the vector of linear

mixtures z = Ax. This approach leads to the GAMP algorithm, where one considers a

general distribution describing the component-wise distortion of the linear mixtures,

i.e., a general output channel given in terms of a conditional distribution p(yi♣zi). This

includes for example, component-wise nonlinear distortions of the vector z, that appears

when we quantize CS measurements. By approximating sum-product loopy belief

propagation, the sum-product GAMP algorithm approximates the computationally

intractable high-dimensional integration involved with calculating E¶x♣y♢ with a highly

efficient iterative procedure. Similarly, the max-sum version of GAMP approximates

the computationally intractable calculation of arg maxx p(x♣y) when one seeks for the

MAP estimate of x [71]. In the rest of the text we will focus on the sum-product

GAMP for the MMSE estimate, and refer to it simply as the GAMP algorithm.

The generalized estimation problem with linear mixing is shown in Figure 3.10.

Here, as in BAMP, vector x is distributed according to p(x;α), where α contains the

distribution parameters. This vector is multiplied (i.e., sampled) with measurement
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3.3 Generalized Approximate Message Passing 47

Separable output channel

z

Separable input channel Linear mixing

α

p(xi|α) p(ya|za)A

x y

Fig. 3.10 General estimation problem: Vector x, distributed according to p(x; α) is multiplied
with measurement matrix A, resulting in z. Each measurement yi is generated randomly
from zi according to p(yi♣zi). Find x given y.

matrix A, and the resulting vector is denoted by z. Finally, each measurement yi is

generated randomly from zi according to p(yi♣zi).

The problem is to get MMSE or MAP estimate x given the measurement vector y,

where the corresponding conditional distribution can be written as

px♣y(x♣y;α) =
1

Z

N∏

i=1

p(xi;α)
m∏

a=1

p(ya♣za). (3.39)

3.3.1 Overview of the derivation of the GAMP algorithm

Approximation of the message passing algorithm for the conditional distribution given in

(3.39) is similar to derivation of AMP and BAMP, but somewhat more mathematically

involved. A detailed derivation of the GAMP algorithm is provided in [71], with

more insights available in [79]. Compared to the derivation of the AMP algorithm,

one difference is that now the messages of the sum-product algorithm are log-pdfs.

Following the update rules for variable nodes (1) and for factor nodes (2) on page 26,

the log-pdf messages m
(t+1)
i→a (xi) and m̂

(t)
a→i(xi) can be written as

m
(t+1)
i→a (xi) = log

1

Z1

p(xi;α)
∏

b̸=a

exp
(

m̂
(t)
b→i(xi)



= const + log p(xi;α) +
∑

b̸=a

m̂
(t)
b→i(xi), (3.40)

m̂
(t)
a→i(xi) = log

1

Z2

∫

p(ya♣za)
∏

j ̸=i

exp
(

m
(t)
j→a(xj)



dx∼i

= const + log
∫

p(ya♣za)
∏

j ̸=i

exp
(

m
(t)
j→a(xj)



dx∼i, (3.41)

where Z1 and Z2 are normalizing constants.
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48 Approximate Message Passing Algorithms

Approximation of m̂
(t)
a→i(xi): To approximate the message m̂

(t)
a→i(xi), given in (3.41),

we follow the same reasoning as in (3.10) to obtain

m̂
(t)
a→i(xi) = const + log

∫

p(ya♣za;xi)
∏

j ̸=i

exp
(

m
(t)
j→a(xj)



dx∼i

= const + logEx∼i

{

p(ya♣za;xi)
}

≈ const + log
∫

p(ya♣za;xi) N
(

aaixi +
∑

j ̸=i

aajx̂
(t)
ja ,

∑

j ̸=i

a2
ajv

x
ja

(t)


dza

︸ ︷︷ ︸

H(ya, aaixi+
∑

j ̸=i
aaj x̂

(t)
ja

,
∑

j ̸=i
a2

aj
vx

ja
(t))

= const +H
(

ya, aaixi +
∑

j ̸=i

aajx̂
(t)
ja ,

∑

j ̸=i

a2
ajv

x
ja

(t)


= const +H
(

ya, aai(xi − x̂
(t)
ia ) +

∑

j

aajx̂
(t)
ja ,

∑

j

a2
ajv

x
ja

(t) − a2
aiv

x
ia

(t)


.

(3.42)

Let us denote the sums over j in (3.42) with

p̂(t)
a =

∑

j

aajx̂
(t)
ja ,

vp
a

(t) =
∑

j

a2
ajv

x
ja

(t),
(3.43)

and the posterior mean and variance of variable xj at iteration t with

x̂
(t)
i = E¶xi ♣m(t)

i (·)♢,
vx

i
(t) = var¶xi ♣m(t)

i (·)♢,
(3.44)

where

m
(t)
i (xi) = const + log p(xi;α) +

∑

b

m̂
(t)
b→i(xi). (3.45)

Neglecting terms that are O(1/N) in (3.46), i.e.,

H(·, ·, ·) = H
(

ya, aai(xi − x̂
(t)
ia ) +

∑

j

aajx̂
(t)
ja ,

∑

j

a2
ajv

x
ja

(t) − a2
aiv

x
ia

(t)


= H
(

ya, aai(xi − x̂
(t)
i ) + aai(x̂

(t)
i − x̂

(t)
ia )

︸ ︷︷ ︸

O(1/N)

+p̂(t)
a , vp

a
(t) − a2

aiv
x
ia

(t)

︸ ︷︷ ︸

O(1/N)



≈ H
(

ya, aai(xi − x̂
(t)
i ) + p̂(t)

a , vp
a

(t)


,

(3.46)
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3.3 Generalized Approximate Message Passing 49

and using Taylor’s expansion of H(·, ·, ·), message m̂
(t)
a→i(xi) can be approximated with

m̂
(t)
a→i(xi) ≈ const +H

(

ya, p̂
(t)
a , vp

a
(t)


+ aai(xi − x̂
(t)
i )H ′

(

ya, p̂
(t)
a , vp

a
(t)


+
1

2
a2

ai(xi − x̂
(t)
i )2H ′′

(

ya, p̂
(t)
a , vp

a
(t)


.
(3.47)

Following the derivation in [79, p. 14], it can be shown that the first derivative and

negative of the second derivative of H(·, ·, ·) in (3.47) are equal to

ŝ(t)
a = H ′

(

ya, p̂
(t)
a , vp

a
(t)


=
1

vp
a

(t)

(

E
{

za

∣
∣
∣ ya; p̂(t)

a , vp
a

(t)
}

− p̂(t)
a



,

vs
a

(t) = −H ′′
(

ya, p̂
(t)
a , vp

a
(t)


=
1

vp
a

(t)

(

1 −
var

{

za

∣
∣
∣ ya; p̂(t)

a , vp
a

(t)
}

vp
a

(t)



,

(3.48)

where p(za ♣ ya; p̂(t)
a , vp

a
(t)) ∝ p(ya ♣ za) N (p̂(t)

a , vp
a

(t)). Therefore, we can finally write

(3.47) as

m̂
(t)
a→i(xi) ≈ const + aai(xi − x̂

(t)
i ) ŝ(t)

a − 1

2
a2

ai (xi − x̂
(t)
i )2vs

a
(t)

= const + (aaiŝ
(t)
a + a2

aiv
s
a

(t) x̂
(t)
i )xi − 1

2
a2

ai v
s
a

(t)x2
i .

(3.49)

Approximation of m
(t+1)
i→a (xi): Inserting (3.49) into (3.40) we get

m
(t+1)
i→a (xi) = const + log p(xi;α) +

∑

b̸=a

m̂
(t)
b→i(xi)

≈ const + log p(xi;α) +
∑

b̸=a

(abi ŝ
(t)
b + a2

bi v
s
b

(t)x̂
(t)
i )xi − 1

2
a2

bi v
s
b

(t)x2
i

= const + log p(xi;α) − 1

2

(∑

b̸=a

a2
bi v

s
b

(t)

(

xi −
∑

b̸=a abi ŝ
(t)
b + a2

bi v
s
b

(t)x̂
(t)
i

∑

b̸=a a
2
bi v

s
b

(t)

2

= const + log p(xi;α) − 1

2vr
ia

(t)
(xi − r̂

(t)
ia )2,

(3.50)

where
r̂

(t)
ia = x̂

(t)
i + vr

ia
(t)
∑

b̸=a

abi ŝ
(t)
b ,

vr
ia

(t) =
(∑

b̸=a

a2
bi v

s
b

(t)
−1

.
(3.51)

Since we have approximated the distribution of xi

∣
∣
∣m

(t+1)
i→a (xi) with p(xi;α) N (xi; r̂

(t)
ia , v

r
ia

(t)),

we can now calculate the mean x̂
(t+1)
ia and the variance vx

ia
(t+1) of the message m

(t+1)
i→a (xi)

defined in (3.8). Furthermore, since this distribution of xi

∣
∣
∣m

(t+1)
i→a (xi) has the same

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


50 Approximate Message Passing Algorithms

structure as the one in (3.42), i.e., a local factor times a Gaussian distribution, we can

use the results of (3.48), and together with Taylors expansion to write6

x̂
(t+1)
ia ≈ x̂

(t+1)
i − aaiŝ

(t)
a vx

i
(t+1), (3.52)

where
x̂

(t+1)
i = E

{

xi

∣
∣
∣m

(t+1)
i (xi)

}

,

vx
i

(t+1) = var
{

xi

∣
∣
∣m

(t+1)
i (xi)

}

,
(3.53)

and xi

∣
∣
∣m

(t+1)
i (xi) is approximately distributed as p(xi;α) N (xi; r̂

(t)
i , vr

i
(t)), and

r̂
(t)
i ≈ x̂

(t)
i + vr

i
(t)
∑

b

abi ŝ
(t)
b ,

vr
i

(t) ≈
(∑

b

a2
bi v

s
b

(t)
−1

.
(3.54)

It remains to approximate p̂
(t+1)
ai and vp

ai
(t+1) with edge independent quantities. Going

back to (3.43), we can write

p̂
(t+1)
ai =

∑

i

aaix̂
(t+1)
ia

(3.52)≈
∑

i

aai(x̂
(t+1)
i − aaiŝ

(t)
a vx

i
(t+1))

=
∑

i

aaix̂
(t+1)
i − ŝ(t)

a

∑

i

a2
aiv

x
i

(t+1) =
∑

i

aaix̂
(t+1)
i − ŝ(t)

a vp
a

(t+1) = p̂(t+1)
a ,

vp
a

(t+1) ≈
∑

i

a2
aiv

x
i

(t+1).

(3.55)

Summary of the GAMP algorithm

Here, we summarize the key equations of the GAMP algorithm. Equations (3.55),

and (3.48) constitute so-called measurement update (3.56), as they calculate posterior

mean and variance of the linear mixtures z. Similarly, with equations (3.54) and (3.53)

we calculate calculate posterior mean and variance of the unknown sparse vector x.

Hence, equation (3.57) gives the so-called estimation update.

6Details can be found in [79, p. 17].

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


3.3 Generalized Approximate Message Passing 51

Measurement update:

vp
a

(t) =
∑

i

a2
aiv

x
i

(t),

p̂(t)
a =

∑

i

aaix̂
(t)
i − ŝ(t−1)

a vp
a

(t),

ŝ(t)
a =

1

vp
a

(t)

(

E
{

za

∣
∣
∣ ya; p̂(t)

a , vp
a

(t)
}

− p̂(t)
a



,

vs
a

(t) =
1

vp
a

(t)

(

1 −
var

{

za

∣
∣
∣ ya; p̂(t)

a , vp
a

(t)
}

vp
a

(t)



,

(3.56)

where p(za ♣ ya; p̂(t)
a , vp

a
(t)) ∝ p(ya ♣ za) N (p̂(t)

a , vp
a

(t)).

Estimation update:

r̂
(t)
i = x̂

(t)
i + vr

i
(t)
∑

b

abi ŝ
(t)
b ,

vr
i

(t) =
(∑

b

a2
bi v

s
b

(t)
−1

,

x̂
(t+1)
i = E

{

xi

∣
∣
∣ r̂

(t)
i

}

,

vx
i

(t+1) = var
{

xi

∣
∣
∣ r̂

(t)
i

}

,

(3.57)

where p(xi ♣ r̂(t)
i ) ∝ p(xi;α) N (xi; r̂

(t)
i , vr

i
(t)).

Finally, the algorithm is shown in Algorithm 6, where we used vector notation.

Here, functions F1(·), F2(·), G1(·), and G2(·) are applied component-wise and are given

by

F1(y, p̂, vp) =
E¶z ♣ y ; p̂(t)

a , vp
a

(t)♢ − p̂

vp

, G1(r̂, vr, α) =E¶x ♣ r̂ ; vr
i

(t), α♢,

F2(y, p̂, vp) =
vp − var¶z ♣ y ; p̂(t)

a , vp
a

(t)♢
v2

p

, G2(r̂, vr, α) = var¶x ♣ r̂ ; vr
i

(t), α♢,
(3.58)

where

p(za ♣ ya; p̂(t)
a , vp

a
(t)) ∝ p(ya ♣ za) N (p̂(t)

a , vp
a

(t)),

p(xi ♣ r̂(t)
i ; vr

i
(t), α) ∝ p(xi;α) N (xi; r̂

(t)
i , vr

i
(t)).

(3.59)
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Algorithm 6 Generalized approximate message passing algorithm

Input: measurement matrix A, measurement vector y, noise level σ2
w (optional),

input channel distribution p(xi♣α), output channel distribution p(ya♣za), stopping

threshold ε or tmax

Initialization: t = 0, x̂(0) = E¶x♢, v(0)
x = var¶x♢, ŝ(0) = 0m×1

do:

1: t = t+ 1 ▷ increment iteration counter

2: vp(t) = (A • A)vx(t−1) ▷ Measurement update - linear step

3: p̂(t) = Ax̂(t−1) − vp(t) • ŝ(t−1) ▷ Measurement update - linear step

4: ŝ(t) = F1(y, p̂(t),vp(t)) ▷ Measurement update - nonlinear step

5: vs(t) = F2(y, p̂(t),vp(t)) ▷ Measurement update - nonlinear step

6: vr(t) =
(

(A • A)T vs(t)
−1

▷ Estimation update - linear step

7: r̂(t) = x̂(t−1) + vr(t) • (AT ŝ(t)) ▷ Estimation update - linear step

8: x̂(t) = G1(r̂
(t),vr(t);α) ▷ Estimation update - nonlinear step

9: vx(t) = G2(r̂
(t),vr(t);α) ▷ Estimation update - nonlinear step

while t ≤ tmax or ∥x̂(t) − x̂(t−1)∥2 ≥ ε ∥x̂(t)∥2

Output: x̂ = x(t)
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Chapter 4

Analysis-by-Synthesis with

Bayesian Approximate Message

Passing Scalar Quantization for

Compressed Sensing

In this chapter, I consider a scenario where sensors using compressed sensing (CS)

observe a sparse signal, quantize the observations, and transmit the discrete valued data

over a communication link with a low rate constraint. I start by stating the problem

of quantization of CS measurements and providing a more intuitive derivation of the

optimal quantizer than offered in literature. An approximation of the optimal quantizer

is offered by the previously proposed Analysis-by-Synthesis (AbS) quantization scheme

for CS. I present this quantization scheme in which, as a novelty, I adopt of the

Bayesian approximate message passing (BAMP) algorithm as the recovery algorithm.

I focus on source signals that can be modeled as a linear combination of a discrete

component and a zero-mean Gaussian component; for those signals, I provide analytical

expressions for the estimation functions of the BAMP algorithm. I compare the results

of AbS when BAMP is used as the recovery algorithm with an AbS scheme known

from literature, in which orthogonal matching pursuit (OMP) is used as the recovery

algorithm. Additionally, I investigate different setups of the AbS scheme.
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4.1 Introduction

As we have seen in Subsection 2.4.2, reconstruction with the classical CS recovery

algorithms on quantized measurements results in poor accuracy [24, 45, 50]. Therefore,

suitable algorithms, which take into account the whole measurement process, need

to be developed to suppress the negative effects of quantization on the recovered

source signal. In [76] an approximation of the end-to-end mean squared error (MSE)

minimizing quantization scheme is proposed that uses the concept of AbS. In AbS,

the neighbourhood of a scalar-quantized measurement vector is investigated, with the

aim of finding a representation that will give a lower end-to-end MSE after applying

a nonlinear recovery algorithm. The proposed scheme allows for the use of any CS

reconstruction algorithm, and the authors adopt OMP for that task.

Recent advances in graph-based algorithms for CS recovery show promising results

[32–34, 57, 71, 72]. In particular, BAMP [33, 34] is most appealing for its simplicity

and small reconstruction errors. High reconstruction accuracy is possible since, as

opposed to most classical recovery algorithms, the BAMP algorithm uses explicitly

the information about source signal prior. Although it seems disadvantageous that the

signal prior needs to be known, recent work [42, 82] demonstrated that the prior can

be estimated during the iterations of the algorithm from the measurements alone. The

explicit knowledge of the prior is, therefore, not required.

The above presented arguments motivate us to adopt BAMP as the reconstruction

algorithm in the AbS scheme. In what follows, I start by giving an overview of the

AbS scheme, which was presented in [76]. Subsequently, I explain some practical

details of implementation of the BAMP algorithm and give explicit solutions for

the BAMP operators for the assumed signal prior. Finally, I present performance

results of the BAMP algorithm in AbS scheme in a fixed bit budget scenario. The

results are compared with those from [76]. My results demonstrate that the BAMP

algorithm significantly outperforms the much more complex OMP algorithm in the

AbS quantization scheme.

4.2 Problem Statement

I assume that a sensor observes linear mixtures y of a sparse signal x according to

(6.6), i.e.,

y = Ax, (4.1)
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4.2 Problem Statement 55

where A is the m×N measurement matrix. The vector of linear mixtures y will be

referred to as the vector of CS measurements. Furthermore, I assume that the CS

measurements are quantized with ry integer number of bits per measurement. The

rate ry can be expressed as

ry = rx/δ, (4.2)

where rx is the given, fixed bit-rate per source component, and δ is the measurement

ratio, i.e., m/N . It is assumed that the code alphabet C = ¶c0, c1, ..., c2ry −1♢, containing

the code symbols ci, is designed offline by the Lloyd-Max algorithm [59].

I consider an encoder E : Rm → Im that operates on the entire vector y, and

outputs a vector of indices i ∈ Im, where I .
= ¶0, 1, ..., 2ry − 1♢. The codeword ŷ is

determined by i and C. The n-th entry ŷn of the codeword ŷ is equal to symbol cin
;

repeating this for each n ∈ [m] produces the entire codeword ŷ. The estimate x̂ of the

source vector is then obtained from the codeword, according to

x̂ = ∆(A, ŷ), (4.3)

where ∆ is a chosen CS reconstruction algorithm.

Given a statistical model for x, the alphabet C, and the measurement matrix A,

our task is to find an encoder E, that performs well based on some performance metric.

As suggested in [76], to compare different solutions I use the end-to-end MSE, defined

as

MSE = Ex

{

∥x − x̂∥2
2

}

, (4.4)

as the performance criterion.

4.2.1 Optimal quantization for a given alphabet

Adopting the end-to-end MSE as the performance criterion, it is observed in [76] that

MSE = Ex

{

∥x − x̂∥2
2

}

= Ex

{

∥x − x̂(i)∥2
2

}

=
∫

y
Ex

{

∥x − x̂(i)∥2
2

∣
∣
∣ y = y

}

fy(y)dy

=
∫

y
Ex

{

∥x − x̂(E(y))∥2
2

∣
∣
∣ y = y

}

︸ ︷︷ ︸

Ex♣y

fy(y)dy.

(4.5)

In (4.5), the only term left for us to choose, i.e., the only "free parameter", is the

encoder function E : Rm → Im. Since f(y) is a distribution, and hence a nonnegative
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function, the optimal encoder E∗(y) that minimizes the end-to-end MSE is the one

that minimizes Ex♣y for every observation y. In other words, the optimal encoding

E∗(y) is given by

E∗(y) = i∗ = arg min
i∈Im

Ex

{

∥x − x̂(i)∥2
2

∣
∣
∣ y = y

}

. (4.6)

The last equation can be rewritten as

i∗ = arg min
i∈Im

Ex

{

∥x − x̂(i)∥2
2

∣
∣
∣ y = y

}

= arg min
i∈Im

Ex

{

∥x∥2
2

∣
∣
∣ y = y

}

+ Ex

{

∥x̂(i)∥2
2

∣
∣
∣ y = y

}

− 2Ex

{

xT x̂(i)
∣
∣
∣ y = y

}

(a)
= arg min

i∈Im
Ex

{

∥x̂(i)∥2
2

∣
∣
∣ y = y

}

− 2Ex

{

xT x̂(i)
∣
∣
∣ y = y

}

(b)
= arg min

i∈Im
∥x̂(i)∥2

2 − 2 x̂(i)TEx

{

x
∣
∣
∣ y = y

}

= arg min
i∈Im

∥x̂(i)∥2
2 − 2 x̂(i)T x̃(y),

(4.7)

where (a) follows from the fact that x is independent of i conditioned on y, (b) follows

from statistical independence of x̂ and x conditioned on y, and x̃(y) denotes the

minimum mean squared error (MMSE) estimate of the sparse vector x given the

(unquantized) observation y.

The minimization in (4.7) requires a search over all 2m·ry possible index vectors i.

This poses a practical limitation as the computational complexity grows exponentially

with the number of measurements. Therefore, an approximation of the optimal solution

must be found with complexity that is at most polynomial m (rather than exponential).

4.2.2 Scalar quantization of the measurements

The simplest way is to directly quantize each measurement yn separately, by searching

for the nearest neighbour of yn in the given alphabet C, i.e., to use the scalar quantizer.

The effect of the quantization on the recovered source signal x̂ is, therefore, not consid-

ered during the quantization; the advantage is simplicity. Later, treating quantization

errors as additive noise, any CS recovery algorithm can be used for the reconstruction.

4.2.3 Quantization using Analysis-by-Synthesis

The AbS quantization scheme from [76], shown in Figure 4.1, offers a way to find a

suboptimal, but computationally feasible solution of (4.7). The solution is found by

iteratively choosing the best quantizer index in for some n ∈ [m], while fixing all the
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Codebook

Sequential or 
non-sequential

update
Codebook

Analyzer

Synthesizer

∆(A,y)

Quantizer encoder Quantizer decoder

i2

i1

im

i1

i2

im

cim

ci1

ci2

cim
ci1

ci2

x̄ x̂
y

x̂
y

CS recovery

algorithm

CS recovery

algorithm

CS recovery

algorithm

Decoding of quantized

measurements

∆(A, ŷ) ∆(A, ŷ)

Fig. 4.1 Analysis-by-Synthesis Quantization Scheme: A suboptimal solution is found by
iteratively choosing the best quantizer index in, while fixing all other encoded indices ¶ik♢m

1 ̸=n.

other quantizer indices i1,i2, ..., in−1, in+1, ..., im. The optimality criterion for selecting

a single quantizer index i∗n to quantize the measurement yn is then given by

i∗n = arg min
in∈I ; ¶i\in♢ fixed

{

∥x̂(i)∥2
2 − 2x̄(y)T x̂(i)

}

. (4.8)

The last equation motivates the term "Analysis-by-Synthesis", and in particular:

• synthesis: for any choice of the index vector i the estimate x̂ is "synthesized" by

the recovery algorithm ∆

• analysis: given all other indices, the chosen index in is the one that minimizes

the end-to-end MSE

Note that x̃(y) equals x only if the reconstruction from the noiseless and unquantized

measurements y = Ax is exact. This requires, however, that the number of measure-

ments m is sufficiently large. What "sufficient" exactly means depends on the chosen

recovery algorithm (all the time assuming that the signal x is indeed strictly k-sparse).

As m is a design parameter, due to too few measurements, it may be the case that the

output of the CS recovery algorithms is not perfect. Furthermore, even if m was indeed

large enough, the MMSE estimate x̃(y) is difficult to compute exactly in reasonable
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Algorithm 7 AbS [76, AbS quantization]

Input: unquantized measurements y, alphabet C, measurement matrix A, update
type AbS_update (options: AbS_seq or AbS_nonseq), stopping threshold εstop

Initialization:
ŷ(0) = nn(y) ▷ initialize with nearest neighbours
x̄(y) = f(A,y) ▷ compute approximation of the MMSE estimate

do:
l = l + 1 ▷ increment iteration counter
[i(l), ŷ(l), x̂(l)] = AbS_update(ŷ(l−1), x̄(y), C,A) ▷ choose representations

while
∣
∣
∣
∣

[

∥x̂(l)∥2
2 − 2x̄(y)T x̂(l)

]

−
[

∥x̂(l−1)∥2
2 − 2x̄(y)T x̂(l−1)

]
∣
∣
∣
∣ < εstop

Output: i(l), ŷ(l), x̂(l)

time as it involves multidimensional integration. Therefore, in (4.8), x̃(y) is replaced

by the output of the speciĄc CS recovery algorithm, i.e.,

x̃(y) ≈ x̄(y) = ∆(A, y). (4.9)

Since the BAMP algorithm is designed to approximate x̃(y), it is likely to perform better

than competing approaches (e.g., OMP), that, in fact, have a different optimization

goal.

To start the step-wise optimization of the indices in, given by Algorithm 7, an

initialization for the vector i is required. A sensible choice is to use the result of a scalar

quantization of the components of the measurement vector y. Furthermore, there are

various ways to choose the order in which the quantizer indices in are updated. Two

methods proposed in [76] are sequential and non-sequential selection.

Sequential update For the sequential selection, the indices are simply updated

in their natural numerical order n = 1, 2, ... ,m. To update the entire vector i,

optimization in (4.8) is performed m times. The steps of the sequential update are

presented in Algorithm 8.

Non-sequential update For the non-sequential selection on the other hand, the

optimal index is calculated (but not yet updated) according to (4.8) for all indices

that were not updated in any of the previous steps. The index i∗k whose update would

produce the smallest value ∥x̂(i)∥2
2 − 2x̄(y)T x̂(i), is selected and updated. This process

repeats until all quantizer indices ¶in♢m
n=1 have been optimized. To update the entire
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Algorithm 8 AbS sequential update [76, AbS_seq]

Input: quantized measurements ŷ(l−1) or equivalently i(l−1), approximation of the
MMSE estimate x̄(y), alphabet C, measurement matrix A

Initialization: ŷ(l) = ŷ(l−1)

for n = 1 : m do
for i = 0 : ♣C♣ − 1 do

ŷ(l)
n = ci ▷ encode n-th entry of y with ci

x̂(n,i) = f(A, ŷ(l)) ▷ compute potential recovery of the sparse vector
end for
i∗n = arg mini∈¶0:♣C♣−1♢

{

∥x̂(n,i)∥2
2 − 2x̄(y)T x̂(n,i)

}

▷ choose the best representation

[i(l)n , ŷ
(l)
n ] = [i∗n, ci∗

n
] ▷ update index and representation

end for
Output: i(l), ŷ(l), x̂(ŷ(l))

Algorithm 9 AbS nonsequential update [76, AbS_nonseq]

Input: quantized measurements ŷ(l−1) or equivalently i(l−1), approximation of the
MMSE estimate x̄(y), alphabet C, measurement matrix A

Initialization: ŷ(l) = ŷ(l−1),L = ∅
while ♣L♣ < m do

for each n ∈ ¶1 : m♢ \ L do
ŷ(l) = ŷ(l−1) ▷ initialize quantized measurements
for i = 0 : ♣C♣ − 1 do

ŷ(l)
n = ci ▷ encode n-th entry of y with ci

x̂(n,i) = f(A, ŷ(l)) ▷ compute potential recovery
∆(n, i) =∥x̂(n,i)∥2

2 − 2x̄(y)T x̂(n,i) ▷ compute cost
end for

end for
[n∗, i∗n∗ ] = arg min[n, i] ∆(n, i) ▷ choose the best index and representation

[i
(l)
n∗ , ŷ

(l)
n∗ ] = [i∗n∗ , ci∗

n∗
] ▷ update index and representation

L = L ⋃ ¶n∗♢ ▷ update set of updated indices
end while

Output: i(l), ŷ(l), x̂(ŷ(l))
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vector i, the optimization in (4.8) is performed m(m+ 1)/2 times. The steps of the

nonsequential update are presented in Algorithm 9.

Independent of the selected update method, once all m elements of i have been

updated, the whole update process is repeated until convergence is reached, i.e., until

the solution x̂(i) remains within a pre-chosen accuracy limit from one iteration to the

next. It has been shown in [76] that the step-wise optimization in (4.8) will converge

for any CS recovery algorithm.

4.3 BAMP as the Reconstruction Algorithm

We know from Chapter 3 that, if the source prior is known (or can be estimated

from the measurements), the BAMP algorithm can be used to recover a sparse vector

from noisy measurements. As can be seen from Algorithm 5, at each iteration, the

BAMP algorithm uses the information about the noise variance σ2
w to calculate the

effective noise variance. In classical noisy CS, the noise variance σ2
w is estimated at

the receiver before running the algorithm. In our scenario, however, the noise is, in

fact, the distortion due to the quantization. When quantizing the measurements,

the independent-noise model becomes questionable (particularly at low rate) and the

distortion is hard to Ąnd in advance and analytically.

Alternatively, the effective noise variance c(t+1) can be approximated. In [17,

Chapter 9.5.1], the effective noise variance is approximated with 1
m

∥z(t)∥2
2, where z(t)

is the residual deĄned in Algorithm 5. For the remainder of this chapter, the BAMP

algorithm that estimates the effective noise variance using 1
m

∥z(t)∥2
2 will be called the

BAMP2 algorithm. On the other hand, the BAMP1 algorithm refers to the (classical)

version of the BAMP algorithm with the known noise variance. In the following

subsection, I discuss which version of the algorithm should be used within the AbS

framework.

4.3.1 Analysis-by-Synthesis with BAMP1 or with BAMP2

The BAMP2 algorithm is particularly appealing in the AbS scheme, as the noise

variance σ2
w is not used explicitly. On the other hand, since BAMP2 uses less prior

knowledge (the noise variance) one would expect it to have worse performance compared

to BAMP1.

To demonstrate the difference in performance between the BAMP1 and the BAMP2

algorithm I show results of a Monte-Carlo simulations. There, I assume that the CS
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measurements are corrupted with additive noise, i.e.,

y = Ax + w, (4.10)

where the entries of w are drawn from zero-mean Gaussian distribution with known

variance. The dimension of the unknown vector N , sparsity k, and the measurement

rate δ take values 512, 35, and 0.25, respectively. At each simulation instance, the

entries of the measurement matrix A are drawn independently from a standard normal

distribution, and the columns are normalized to have unit Euclidian norm. Furthermore,

at each simulation instance, the source vector is drawn from the corresponding Bernoulli-

Gauss (BG) mixture distribution. The unknown sparse source signal is reconstructed

from noisy measurements using both the BAMP1 algorithm and the BAMP2 algorithm.

To compare different algorithms, I follow [76], and adopt normalized mean squared

error (NMSE) as the performance metric. The NMSE is deĄned as

NMSE/dB = 10 log10

Ex,w

{

∥x − x̂∥2
2

}

Ex

{

∥x∥2
2

} , (4.11)

where x̂ is the reconstruction of the source vector. In my results, I compute the NMSE

by averaging results of Monte-Carlo (MC) simulations. Figure 4.2 shows the empirical

NMSE of both BAMP algorithms against signal-to-noise ratio (SNR), where the SNR

is deĄned as

SNR = Ex

{

∥Ax∥2
2

}

/Ew

{

∥w∥2
2

}

. (4.12)

The Ągure shows that even with exact knowledge of the noise variance, BAMP1 does

not produce signiĄcantly better results than BAMP2. Furthermore, as previously

argued, within the AbS quantization framework the "noise variance" will not be known

exactly in advance. Therefore, the performance of the BAMP1 algorithm might even

deteriorate. In further investigations I will, hence, use only the BAMP2 algorithm.

4.3.2 BAMP operators for a sparse Gaussian signal prior

To obtain the BAMP operators F (uj; c) and G(uj; c), I assume that the independent

and identically distributed (i.i.d.) prior pxi
can be written as

pxi
(x; ϵ, σ2

x) = (1 − ϵ)δ(x) + ϵN (x; 0, σ2
x), (4.13)
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Fig. 4.2 NMSE in dB of BAMP1 and BAMP2 as a function of SNR. The parameters N , k,
and δ are 512, 35 and 0.25, respectively.

where ϵ is the probability of nonzero value, and σ2
x is the power of the Gaussian

component. This commonly used i.i.d. zero-mean BG mixture source prior is used in

[76] as well. To obtain analytical expressions for F (uj; c) and G(uj; c), I use the results

from Subsection 3.2.2. The operators can be written as

F (uj; c) = uj H(uj), (4.14)

G(uj; c) = c H(uj) + h(uj) F
2(uj; c), (4.15)

where

H(uj) =
σ2

x

σ2
x + c

1

1 + h(uj)
, and h(uj) =

1 − ϵ

ϵ

√

σ2
x + c

c
e

−
u2

j

2c

σ2
x

σ2
x+c . (4.16)

4.4 Numerical Results

To investigate the performance of the proposed quantization techniques I present

the results of Monte-Carlo simulations, each with 1000 independent realizations of

pairs of a source vector and a measurement matrix. The authors of [76] have kindly

made available their Matlab code1, so I could integrate the BAMP algorithm in their

framework. For easier comparison of different reconstruction algorithms, I use the same

1https://people.kth.se/~amishi/reproducible_research.html
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parameters as in [76]. In particular, the length of the source vector N = 512, and the

sparsity level k = 35. This leads to a sparsity ratio of k/N = 0.0684. Consequently,

the probability of a nonzero component ϵ = 0.0684. The entries of the sensing matrix

A and the non-zero components of the source vector x are drawn independently from a

standard normal distribution. In order to have the same setup as in [76], the columns

of the sensing matrix are later normalized to have unit Euclidean norm. This is,

however, not a requirement of the BAMP algorithm. The alphabet C is designed

off-line according to LloydŠs algorithm, with unquantized measurements as training

data. The stopping thresholds for both the sequential and the non-sequential AbS are

set to εAbS = 10−6; where as the stopping threshold for the BAMP algorithms is set to

εBAMP = 10−4.

Throughout the simulations, the total amount of available bits (i.e., the bit budget)

Nrx is kept Ąxed. Since ry ≜ Nrx/m = rx/δ, it follows that increasing the measurement

rate will consequently decrease the amount of available bits per measurement component.

For faster convergence, the AbS scheme is initialized with the nearest neighbour

reproducer values.

4.4.1 Sequential or non-sequential update with BAMP2

As we have seen in Subsection 4.2.3, the non-sequential update in the AbS scheme

produces signiĄcantly higher computational complexity than the sequential update.

More speciĄcally, in the non-sequential update the optimization in (4.8) is performed

m(m+ 1)/2 times, compared to m times in the sequential update.

In Fig. 4.3, I analyse how much there is to be gained in terms of NMSE when using

the non-sequential scheme (applied with BAMP2 for CS reconstruction). The NMSE

against the measurement rate δ (= m/N) for both types of updates with rx = 0.5 and

rx = 0.75 bits per source component is shown in Fig. 4.3. We observe only a slight

improvement in NMSE for non-sequential updates. The sequential update is, hence,

preferable due to the much lower complexity.

4.4.2 BAMP2 or OMP in AbS

The performance of OMP as the reconstruction algorithm in the AbS quantization

scheme has already been investigated in [76]. Here I compare those results to the ones

obtained when BAMP2 is used as the reconstruction algorithm. Figs. 4.4 and 4.5

show the NMSE as a function of the measurement rate δ for different setups of the

AbS scheme, and for given and Ąxed quantization bit-rate of rx = 0.5 and rx = 0.75,
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BAMP2 Non-sequential AbS

rx = 0.75

rx = 0.5

Fig. 4.3 NMSE vs. measurement rate δ (= m/N) for sequential and non-sequential AbS with
BAMP2. The comparison is for two fixed quantization bit-rates (rx = 0.5 and rx = 0.75 bits
per component of the unknown sparse vector, equivalent to a total bit budget of Rx = 256
and Rx = 384 bits, respectively). Source vector dimension N = 512, sparsity k = 35.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
−10

−8

−6

−4

−2

0

δ

N
M

S
E

/
d
B

OMP Nearest-neighbour
OMP Sequential AbS
OMP Non-sequential AbS
BAMP2 Nearest-neighbour
BAMP2 Sequential AbS

Fig. 4.4 NMSE vs. measurement rate δ (= m/N) of AbS with OMP and BAMP2; fixed
quantization bit-rate of rx = 0.5 bits per component of the unknown sparse vector (equivalent
to a total bit budget of Rx = 256 bits). Source vector dimension N = 512, sparsity k = 35.
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BAMP2 Nearest-neighbour
BAMP2 Sequential AbS

Fig. 4.5 NMSE vs. measurement rate δ (= m/N) of AbS with OMP and BAMP2; fixed
quantization bit-rate of rx = 0.75 bits per component of the unknown sparse vector (equivalent
to a total bit budget of Rx = 384 bits). Source vector dimension N = 512, sparsity k = 35.

respectively. Both Ągures show that BAMP2 signiĄcantly outperforms the OMP

algorithm and that the lowest NMSE is achieved for δ = 0.25. Out of all considered

measurement rates in my simulation, δ = 0.25 gives the best trade-off between the

number of measurements and the quantization bit depth, for a speciĄc total bit budget.

Finding the optimal measurement rate for this highly nonlinear problem is a difficult

task that goes beyond the scope of this work. In Fig. 4.4, we can see that for rx = 0.5,

the gain of using sequential BAMP2 compared to non-sequential OMP in AbS is at

least 1 dB. SpeciĄcally, for δ = 0.25 the gain is roughly 3 dB. Results for rx = 0.75 are

shown in Fig. 4.5; the gain of using sequential BAMP2 compared to non-sequential

OMP in AbS is at least 2 dB, with roughly 4 dB at δ = 0.25. It should also be noted

that nearest-neighbor coding with BAMP2 produces roughly the same performance as

OMP in the AbS scheme.

For the measurement rate δ = 0.25, Figure 4.6 shows the NMSE of AbS-quantization

with OMP and BAMP2 as a function of rate rx. Two conclusions can be drawn:

• The BAMP2 curves continue to descend beyond the rate of 1 bit per source

component. The NMSE will also saturate at some point, as accuracy is then

limited by the threshold of 10−4 for the BAMP2 iterations.
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Fig. 4.6 NMSE vs. rate rx for AbS quantization with OMP and BAMP2. Source vector
dimension N = 512, sparsity k = 35, measurement rate δ = 0.25.

• For rates below 1 bit per sample, the gain of using sequential BAMP2 compared

to non-sequential OMP in AbS is about 4 dB. This clearly demonstrates the

superior performance of BAMP2 that is due to the use of prior information.

Finally it should be noted that OMP is signiĄcantly more complex than BAMP2,

as OMP requires the computation of a pseudo-inverse during its iterations. Hence,

BAMP2 provides signiĄcantly better performance at signiĄcantly lower complexity.

4.5 Summary

In this chapter, I investigated the use of the BAMP algorithm as the recovery algorithm

in the AbS framework for quantization of CS measurements. I focused on the scenario

where the bit budget is constrained. In this case, the optimal measurement ratio, and

consequently the optimal bit-rate per source component, for speciĄc source prior is

impossible to determine analytically. However, for a set of possible bit-rates, one can

empirically determine, and later use, the one that shows the lowest NMSE.

My numerical experiments showed that it is preferable to have fewer but Ąnely

quantized measurements. Additionally, the results of the experiments demonstrate

that the BAMP algorithm signiĄcantly outperforms the much more complex OMP

algorithm, for both sequential and non-sequential updates in the AbS quantization

scheme.
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Chapter 5

Generalized Approximate Message

Passing for Noisy and Quantized

Compressed Sensing

In many practical applications, compressed sensing (CS) measurements are Ąrst scalar

quantized and subsequently corrupted in different ways during storage or transmission

over a noisy channel. Reconstruction by conventional CS algorithms on such highly

distorted measurements results in poor accuracy. To address this problem, I use the

well established generalized approximate message passing (GAMP) algorithm and adapt

it to our speciĄc problem: recovery of sparse vectors from quantized CS measurements

corrupted with noise. I consider two cases:

• 1-bit CS (R = 1), where extreme quantization is enforced that captures only the

sign of the measurements. Here, I allow for the quantized measurements to be

corrupted with additive white Gaussian noise (AWGN).

• R-bit CS (R > 1), where each measurement is represented with only a few bits.

This case, therefore, corresponds to a low-rate quantization scenario. I consider

different communication channels tampering with the quantized measurements,

namely the symmetric discrete memoryless (SDM) channel and the AWGN

channel.

I provide analytical expressions for the necessary nonlinear updates of the GAMP

algorithm for different channel models and different rates. I conduct numerical ex-

periments and present performance results of the proposed scheme. The results show

the superiority of the GAMP algorithm compared to conventional CS reconstruction

algorithms for both SDM and AWGN channels.
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Sensing

5.1 Introduction

In many applications, including magnetic resonance imaging (MRI) [54, 55, 84, 85],

sparse channel estimation [5, 70, 80] or photography [38], a coarse quantization of

the CS measurements is unavoidable for further digital signal processing (DSP). By

quantizating the CS measurements, as continuous input intervals are represented by

discrete values, distortion is introduced in the observations. This distortion can be

controlled by the size of the codebook; it is reduced by increasing the rate R, i.e.,

by using more bits per measurement to represent the unknown sparse vector in the

measurement domain. Fnding the rate-distortion function for a speciĄc CS recovery

algorithm is, however, an even more difficult task compared to the classical (not CS)

setting. The reason is that we want to minimize the end-to-end distortion between x

and x̂ = x̂(y) = x̂(Q(z)), which involves a nonlinear measurement system as well as a

nonlinear recovery method, while quantizing the measurement vector y. Much of the

existing literature, therefore, focuses on Ąnding suboptimal CS recovery algorithms

from quantized measurements [13, 14, 23, 41, 45, 46, 48, 49, 51, 76, 78, 83, 86, 87]. This

work follows the same line of research. In particular, I use the well established GAMP

algorithm and adopt it to our problem: recovery of sparse vectors from quantized

compressed sensing (QCS) measurements corrupted with noise.

The rest of this chapter is organized as follows. In Section 5.2, I deĄne the problem

of noisy QCS and formulate the mathematical model for the unknown sparse signal

and the measurement process. In Section 5.3, I provide analytical expressions for the

necessary nonlinear updates of the GAMP algorithm. Results of numerical experiments

are presented in Section 5.4, and conclusions are drawn in Section 5.5.

5.2 Problem Statement

Next, I formulate the mathematical model for the unknown sparse signal and the

measurement process.

5.2.1 Signal model

I assume that the components ¶xi♢N
i=1 of the unknown sparse vector x are independent

and identically distributed (i.i.d.) realizations of the Bernoulli-Gauss (BG) mixture

distribution, i.e.,

pxi
(x) = (1 − ϵ) δ(x) + ϵN (x ; 0, σ2

x), (5.1)
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GAMP
for noisy 

quantized 

CS

CS scalar

quantization

Communication channel

(AWGN)

x

z

w

y

A
y
∗

Sparse

source

Transmitter

x̂

Receiver

Reconstruction

algorithm

Estimate of

the source

Fig. 5.1 The signal processing chain. A unknown k-sparse vector x ∈ RN is multiplied
with a measurement matrix A ∈ Rm×N to obtain a vector z ∈ Rm of CS measurements.
Each component of y∗ represents the quantized version of the respective component in z.
Symbols from y∗ are sent through a communication channel to obtain the vector of received
measurements y.

where ϵ represents the probability of nonzero value, and σ2
x is the power of the Gaussian

component. The transmitter from Fig. 5.1 forms a vector of CS measurements (i.e.,

linear mixtures) z, i.e.,

z = Ax, (5.2)

where A ∈ Rm×N is a Gaussian measurement matrix. The vector of CS measurements

z is scalar quantized with R bits per measurement, using a codebook C. The resulting

vector of quantized CS measurements y∗, that is subsequently transmitted over a

communication channel, can be expressed as

y∗ = Q(z) = Q(Ax), (5.3)

where Q(·) is the quantization function deĄned in (2.20).

5.2.2 Measurement model

Noisy AWGN channel

Fig. 5.1 shows the corresponding transmission chain with an AWGN channel. In this

case, the measurement vector y at the receiver, can be compactly expressed as

y = y∗ + w = Q(Ax) + w , (5.4)

where w is a noise vector. The entries of the noise vector are assumed to be i.i.d. real-

izations of a zero-mean Gaussian distribution with variance σ2
w
. Furthermore, in the

case of 1-bit CS, the quantization function amounts to the sgn(·) function.
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E¶z ♣ y = y♢ E¶z
2 ♣ y = y♢ fy(y) or py(qk)

AWGN fy(y)−1
∑

k

fw

(
y − qk

)
mk fy(y)−1

∑

k

fw

(
y − qk

)
sk

∑

k

fw(y −qk)pk

SDM py(qk)−1
[
pe2−Rp̂ + (1 − pe)mk

]
py(qk)−1

[
pe2−R(vp + p̂2)+(1−pe)sk

]

pe2−R+(1−pe)pk

pk = Φ(bk+1; p̂, vp) − Φ(bk; p̂, vp); mk = p̂pk − vpn(bk+1; p̂, vp) − vpn(bk; p̂, vp);

sk = pk(p̂2 + vp) − vp

[
(bk+1 + p̂) n(bk+1; p̂, vp) − (bk + p̂) n(bk; p̂, vp)

]

Table 5.1 Scalar mean, power, and probability density function for the GAMP nonlinear
measurement updates. For the AWGN channel the observation y can take any real value.
For the SDM channel, y is constrained to the codebook I.

Noisy SDM channel

In the case of a SDM channel, each measurement yi is equal to the transmitted symbol

y
∗
i with probability 1 − (1 − 2−R)pe. Furthermore, it is equal to any other symbol

from the codebook, i.e., I \ y
∗
i , with probability 2−Rpe. Therefore, we can write the

distribution of yi ♣ y
∗
i as

yi =







y
∗
i = Q(Ai∗x) w.p. 1 − (1 − 2−R)pe,

qk′ w.p. 2−Rpe,
(5.5)

where qk′ is any code symbol from I \ y
∗
i .

5.3 GAMP Algorithm for Noisy Quantized Com-

pressed Sensing

To estimate the unknown sparse vector, I use the GAMP algorithm, whose steps are

shown in Algorithm 6, Section 3.3. I use the scalar version of this algorithm, where the

entries in vt
s and vt

x are the same within the respective vector. As heuristic experiments

showed, this produces more stable implementation of the algorithm.

The source, described in Subsection 5.2.1, is modeled as an i.i.d. random vector,

whose components are distributed according to a BG mixture. Therefore, to get the
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expressions for nonlinear functions G1(·) and G2(·) in (3.58), I can use the results from

Subsection 3.2.2. On the other hand, for nonlinear functions F1(·) and F2(·) in (3.58), I

derive closed-form expressions, respecting the measurement models given by (5.4) and

(5.5). The derivation is provided in Appendix B, whereas a summary of the update

functions is shown in Table 5.1.

5.4 Numerical Results

To investigate the performance of the proposed reconstruction algorithm I present the

results of Monte-Carlo (MC) simulations. In the simulations, the nonzero components

of the source vector x as well as the entries of A are drawn randomly from a standard

normal distribution. The columns of the sensing matrix are later normalized to have

unit Euclidean norm.

The stopping threshold for the GAMP algorithm is ε = 10−2. The maximal number

of iterations of the proposed algorithm for R = 1 and R > 1, is set to tmax = 64 and

tmax = 32, respectively1.

5.4.1 1-bit CS

To compare the performances against different 1-bit CS algorithms, the mean squared

error (MSE), deĄned as

MSE/dB = 10 log10







∥
∥
∥
∥
∥

x

∥x∥2

− x̂

∥x̂∥2

∥
∥
∥
∥
∥

2

2






, (5.6)

is used as a Ągure of merit. From (2.24) we know that 1-bit quantization eradicates

the information about the l2-norm of the source. Therefore, in (5.6) I normalize both

the source vector and the estimate to have unit l2-norm.

I compute the average empirical MSE over 1000 independent realizations of the

source vector, the measurement matrix, and the noise vector. In each simulation, I

acquire m = 2000 measurements of the underlying sparse vector of length N = 512.

Each 1-bit CS measurement vector is corrupted with AWGN with power σ2
w = 10−SNR/10,

where the SNR is deĄned as

SNR = Ey∗

{

∥y∗∥2
}

/Ew

{

∥w∥2
2

}

. (5.7)

1This choice of the parameters gave satisfactory results heuristically.
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Fig. 5.2 Performance of different GAMP based algorithms for different sparsity levels k:
a) k = 16, b) k = 32, c) k = 64, and d) k = 128. The dashed magenta line represents
the "robustified" GAMP algorithm for 1-bit CS. The solid blue line represents the GAMP
algorithm presented in this paper. The grey stars represent the limit set by the performance of
the GAMP algorithm for noiseless 1-bit CS measurements. Parameters: N = 512, m = 2000.

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


5.4 Numerical Results 73

Results

Since, in the case of 1-bit CS measurements in AWGN, the GAMP algorithm presented

in this chapter uses real numbers as inputs, I refer to it as the GAMP algorithm

with soft information. On the other hand, in [86] the authors present the GAMP

algorithm with the "robustiĄed activation function". They consider different ways

corrupting the 1-bit CS measurements by noise: e.g., adding AWGN before quantization;

Ćipping each bit with probability pe after quantization. In all cases, the GAMP

algorithm from [86] operates with symbols form a discrete alphabet, namely signs of

the measurements. I, therefore, refer to this algorithms as the GAMP algorithm with

hard information. Furthermore, since this algorithm operates on binary measurements,

I feed it with quantized measurements sgn(y). It assumes that each bit was Ćipped

with the probability of pe, which I set to pe = F(−1/
√

σ2
w).

In Fig. 5.2, I compare the performance of the GAMP with soft information with

the performance of the GAMP with hard information. We see that within a large SNR

range the GAMP algorithm with soft information outperforms (in the MSE sense)

the GAMP algorithm that uses hard information. The gain, in terms of MSE, for

SNR values below 2 dB is about 5 dB. As expected, for larger SNR values this gain

diminishes, and both algorithms approach the limit set by the GAMP algorithm for

noiseless 1-bit CS measurements.

5.4.2 R-bit CS

When quantizing with more than one bit per measurement, to validate the recovery

potential of the GAMP algorithm, I use MSE, deĄned as

MSE/dB = 10 log10∥x − x̂∥2
2, (5.8)

as the performance metric. I average the MSE over 200 independent instances of the

source x, the noise w, and the measurement matrix A. In each simulation, I acquire

m = 512 CS measurements of the underlying sparse vector of length N = 512. Every

CS measurement is then scalar quantized with R bits per measurement using a Ąxed

codebook. The code symbols are obtained using LoydŠs optimization algorithm [59].

Quantized measurements are corrupted during transmission over both the AWGN

channel and the SDM channel. In the case of the AWGN channel, each component of

the noise vector is an independent realization of a normal distribution with variance

σ2
w

= 10−SNR/10, where the SNR is deĄned in (5.7). In the case of the SDM channel, I
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Fig. 5.3 MSE against SNR for different sparsity k in an AWGN channel. GAMP* denotes
the GAMP algorithm for a noiseless channel. Parameters: R = 2, m = 512, N = 512.

Ćip each symbol from the vector of quantized measurements with probability pe to a

symbol from codebook I.

Results

For k = 16 and k = 128, I conduct three sets of simulations, and present results of

different reconstruction algorithms. In each simulation, I compute the empirical MSE of

the orthogonal matching pursuit (OMP), approximate message passing (AMP), Bayesian

approximate message passing (BAMP), and two GAMP algorithms. The OMP, AMP,

and BAMP algorithms are oblivious of the quantization of the CS measurements.

Furthermore, among two GAMP algorithms, there is the GAMP and the GAMP⋆

algorithm. The GAMP⋆ algorithm refers the algorithm from [48] that does not take

the noisy channel into consideration.

In the Ąrst set, I quantize each CS measurement with 2 bits/sample and corrupt the

quantized values with AWGN. Fig. 5.3 shows empirical MSE against SNR of different

recovery algorithms. We can see that the gain of accounting for the noisy channel in

the GAMP algorithm, can be as large as 10 dB for mid-range SNR values. For high
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Fig. 5.4 MSE against the probability of the transmission error pe for different k in a symmetric
channel. Parameters: R = 4, m = 512, and N = 512.
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Fig. 5.5 MSE against R for different k in a symmetric channel. Parameters: pe = 0.05,
m = 512, and N = 512.
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SNR values, the MSE of the GAMP⋆ algorithm for noiseless quantized CS converges

to the MSE of the GAMP for noisy quantized CS.

The second set of simulations corresponds to the scenario of sending quantized

CS measurements through an SDM channel. I quantize each measurement with 4

bits/sample and randomly Ćip each symbol with probability pe. Fig. 5.3 shows empirical

MSE against pe of different recovery algorithms. We can observe that, in this channel

model, the GAMP algorithm signiĄcantly outperforms classical CS algorithms. For

a low probability of Ćipping the source symbol, the GAMP algorithm gives at least

10 dB of gain compared to the classical CS algorithms. In a very destructive channel,

the algorithms that ignore quantization of the CS measurements fail completely, while

the GAMP algorithm still offers low-MSE recovery.

Finally, I Ąx the Ćip probability at pe = 0.05 and consider quantizing measurements

with different number of bits per measurement, ranging from 2 to 7 bits/measurement.

The MSE versus SNR of different recovery algorithms is shown in Fig. 5.5. We

observe that the MSE (in dB) of the GAMP algorithm almost linearly decreases as

the quantization rate increases. I conclude that unlike other algorithms, the GAMP

algorithm makes use of additional bits per measurement.

5.5 Summary

In this chapter, I discussed the performance of the GAMP algorithm for recovering

unknown sparse vectors from noisy quantized CS measurements. Numerical results

show a superior performance of this algorithm compared to other algorithms from

literature.

In the case of 1-bit CS, for low SNR values, the algorithm outperforms the GAMP

algorithm using hard information. Furthermore, for high SNR values, the algorithm ap-

proaches the limit set by the GAMP algorithm for the noiseless 1-bit CS measurements,

without any signiĄcant increase in computational complexity.

In the case of R-bit CS, I considered different communication channels, namely

the AWGN channel and the SDM channel. For the AWGN channel, my results show

that the GAMP algorithm outperforms other algorithms from literature. For the SDM

channel, the gain of using the GAMP algorithm is even larger. For a low probability of

Ćipping the source symbol, the GAMP algorithm gives at least 10 dB of gain compared

to the classical CS algorithms. Moreover, in a very destructive channel, the numerical

experiments show the algorithms that ignore quantization of the CS measurements fail

completely, while the GAMP algorithm still offers low-MSE recovery. Finally, unlike
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5.5 Summary 77

other classical CS algorithms, the GAMP algorithm makes use of additional bits per

measurement.

Theoretical prediction of the MSE of the GAMP algorithm with the state evolution

(SE) analysis is an interesting open research problem. Furthermore, this study can be

extended with the vector version of the GAMP algorithm.
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Chapter 6

Generalized Approximate Message

Passing for Unlimited Sampling of

CS Measurements

In many practical applications (e.g., image and audio processing, bio-medical appli-

cations and analysis of physiological data), the amplitude of the input signal might

exceed the sensorŠs Ąnite dynamic range [−λ,+λ]. In this case, a classical converter

would saturate and clip the input, resulting in unwanted distortion. Alternatively, the

input can be converted with a self-reset analog to digital converter (SR-ADC)). In a

SR-ADC, the input samples exceeding the sensorŠs threshold λ are simply folded back

to the interval [−λ,+λ]. The converter is then equivalent to the modulo λ operator.

As a counterpart to the previous chapters, where the focus was on quantization of

the compressed sensing (CS) measurements, I now consider the problem of clipping the

CS measurements. More speciĄcally, I consider the generalized approximate message

passing (GAMP) algorithm for recovering a sparse signal from modulo samples of its

randomized projections. The modulo samples are obtained by a SR-ADC. In contrast

to previous work on SR-ADC that consider sparse vectors either in time or frequency

domain, I allow for sparse signals in any basis. Furthermore, I also consider a scenario

where the randomized projections are sent through a communication channel before

being digitizing by a SR-ADC. There, the channel is modeled as an additive white

Gaussian noise (AWGN) channel. To show the effectiveness of the proposed approach,

I conduct Monte-Carlo (MC) simulations for both noiseless and noisy case. The results

show the ability of the proposed algorithm to Ąght the nonlinearity of the SR-ADC, as

well as the possible additional distortion introduced by the AWGN channel. To the
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best of my knowledge, this is the Ąrst work that examines the effects of SR-ADC on

phase transition curves of a CS recovery algorithm.

6.1 Introduction

ShannonŠs sampling theorem is a fundamental result in signal processing. It states

that a continuous bandlimited signal can be perfectly reconstructed from a set of

samples taken at a sampling rate proportional to the maximum frequency present

in the signal (Nyquist rate) [75]. In the theorem it is assumed that the sampler has

inĄnite precision and inĄnite dynamic range. This assumption is, however, not met in

practical applications as the samples of the input signal might exceed sensorŠs Ąnite

dynamic range. In this case, a classical sampler would saturate and clip the input,

resulting in unwanted distortion.

A standard approach to this problem is to attenuate the input, so that the saturation

never occurs. Even though a rescaling of the input solves the problem of clipping,

it increases the quantization distortion due to a coarser representation of the input.

Alternatively, provided that the input is bandlimited, the authors in [7] propose

sampling the input signal with a SR-ADC. In a SR-ADC, the input samples exceeding

the sensorŠs threshold are simply folded back to its dynamic range [−λ,+λ]. The

converter is then equivalent to the modulo λ operator. More formally, the SR-ADC

with the parameter λ is deĄned by the mapping

Mλ(t) = 2λ

(s
t

2λ
+

1

2

{
− 1

2



, (6.1)

where JtK ≜ t− ⌊t⌋ is the remainder of the division t by λ.

In Figure 6.1, I illustrate the effects of digitizing an input signal with a SR-ADC

with λ = 0.5. We can observe that only those values of the received signal that are

outside the range [−0.5,+0.5] are affected by the converter. For each of those samples,

the converter sums its value with 2kλ, where k ∈ Z is chosen such that the sum is in

the range[−λ,+λ].

The authors of [7] prove that it is possible to recover any bandlimited signal from

samples taken at regular intervals if:

• the norm of the input signal is known

• the bandwidth of the signal is normalized to π

• the sampling period satisĄes T ≤ (2πe)−1

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


6.1 Introduction 81
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Fig. 6.1 An example of digitizing a signal with SR-ADC, with λ = 0.5. All the values inside
interval [−λ, λ] are kept undistorted, while the values outside this range are folded back to
the interval [−λ, λ].

Furthermore, apart from giving the sufficient conditions for perfect recovery, the authors

present a stable recovery algorithm.

The problem of recovering signals from clipped measurements appears also when

sampling certain sparse signals [2, 8, 9, 47]. In [8], two examples of a practical

application are shown where the measurements of a sparse signal are clipped, namely

ultra-wide band sensing and ultrasonic non-destructive testing. It was observed that

during the calibration phase, the peaks of the amplitude are usually larger compared to

those in the subsequent sensing phase. In those cases, a classical sampler will saturate

and clip the measurements. On the other hand, the authors in [8] consider taking

modulo measurements of the low-pass Ąltered k-sparse signal. The recovery of the

sparse signal is then based on a two step approach:

1. The authors capitalize on their results from [7], to recover the low-pass represen-

tation of the sparse signal from modulo measurements.

2. Using the results from [11, 52, 81], the sparse signal is perfectly recovered from

its low-pass projection.

The authors provide sufficient conditions for perfect recovery of the sparse signal,

together with a constructive recovery algorithm.

In this chapter, I follow the work of [8], but instead of sampling a low-pass Ąltered

version of a sparse signal, I consider taking CS measurements and digitizing them with

a SR-ADC. This way we can sample signals that are sparse not only in time domain,

but also in some other domains, e.g., wavelet domain. The class of signals I consider

is, therefore, much broader then in [8]. Furthermore, I consider the case where the
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GAMP

CS SR ADC

Communication channel

(AWGN)

x

z

w

y

A
y
∗

Sparse

source

Transmitter

x̂

Receiver

Reconstruction

algorithm

Estimate of

the source

Fig. 6.2 The signal processing chain. The unknown k-sparse vector x ∈ RN is multiplied with
measurement matrix Am×N to obtain a vector of CS measurements z ∈ Rm. The components
of z are transmitted through an AWGN channel. At the receiver, the samples of the received
signal y∗ are digitized with a SR-ADC to obtain the vector of measurements y. The GAMP
algorithm is applied to produce an estimate x̂ of the unknown sparse signal x.

measurements are possibly corrupted with noise. A possible application scenario is

shown in Fig. 6.2, where a sparse signal is to be communicated to a receiver. To

reduce traffic over the channel, we begin by constructing a vector of CS measurements

of a sparse signal. That message vector is then transmitted over an AWGN channel

and digitized at the receiver with a SR-ADC. Since the GAMP algorithm [71] was

already successfully applied for recovery of sparse signals from CS measurements with

nonlinear distortions [48, 49, 65, 66, 71, 86], I employ it as the recovery algorithm in

our problem as well.

The rest of this chapter is organized as follows. In Section 6.2, I deĄne the

problem of recovering a sparse signal from, possibly noisy, modulo samples of CS

measurements. I propose solving the problem with the GAMP algorithm. Therefore,

in Section 6.3, I provide analytical expressions for the necessary nonlinear updates of

the GAMP algorithm. Results of numerical experiments are presented in Section 6.4,

and conclusions are drawn in Section 6.5.

6.2 Problem Statement

Next, I formulate the mathematical model for the unknown sparse signal and the

measurement process.

6.2.1 Signal model

I assume that the components ¶xi♢N
i=1 of the unknown sparse vector x are independent

and identically distributed (i.i.d.) realizations of the Bernoulli-Gauss (BG) mixture

distribution, i.e.,

pxi
(x) = (1 − ϵ) δ(x) + ϵN (x ; 0, σ2

x), (6.2)

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t i

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
at

 th
e 

T
U

 W
ie

n 
B

ib
lio

th
ek

.
tu

w
ie

n.
at

/b
ib

lio
th

ek

https://www.tuwien.at/bibliothek


6.2 Problem Statement 83

where ϵ represents the probability of nonzero value, and σ2
x is the power of the Gaussian

component. I assume that the transmitter from Fig. 6.2 transmits a vector of CS

linear mixtures z, i.e.,

z = Ax, (6.3)

where A ∈ Rm×N is a Gaussian measurement matrix. As before, the ratio of the

number of transmitted symbols (rows) and the ambient dimension of the source vector

N deĄnes the sampling rate (indeterminacy) ρ = m/N .

6.2.2 Measurement model

I assume that the vector of CS measurements z is sent over an AWGN channel.

Therefore, the signal at the receiver y∗ can be written as

y∗ = z + w = Ax + w, (6.4)

where w is i.i.d. zero-mean AWGN noise vector with the covariance matrix σ2
w I, i.e.,

w ∼ N (0, σ2
w I). Subsequently, each measurement yi is a folded version of the i-th

component of the received signal y∗, i.e.,

yi = Mλ(y∗
i ), (6.5)

where Mλ(·) represents the nonlinear mapping of the SR-ADC converter given in (6.1).

I can compactly write the entire measurement process as

y = Mλ

(

Ax + w


. (6.6)

I note that the involved SR-ADC has inĄnite precision in the interval [−λ, λ]. Further-

more, for later discussions it is important to deĄne the so-called simple function. Since

y is a distorted version of y∗, one could model that distortion as additive noise, i.e.,

y = y∗ + ϵg. (6.7)

The noise vector ϵg in (6.7) is called the simple function and its entries belong to a set

of discrete points 2λZ.

In the following section, I show how to estimate x from y using the GAMP algorithm.
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6.3 GAMP Algorithm for SR ADC

The general steps of the GAMP algorithm are given in Section 3.3, Algorithm 6.

Respecting the signal model in (6.2), the algorithm is initialized according to

wx̂0 = E¶x♢ = 0, v0
x = var¶x♢ = ϵ σ2

x, ŝ0 = y. (6.8)

Moreover, when implementing the algorithm for a speciĄc problem, one needs to Ąnd

analytical expressions for the nonlinear steps in (3.58), namely

F1(y, p̂, vp) =
E¶z ♣ y♢ − p̂

vp

, G1(r̂, vr; px) =E¶x ♣ r̂♢,

F2(y, p̂, vp) =
vp − var¶z ♣ y♢

v2
p

, G2(r̂, vr; px) = var¶x ♣ r̂♢,
(6.9)

where z ∼ N (p̂, vp), and x ∼ N (r̂, vr). Since the source is modeled as an i.i.d. random

vector whose components are distributed according to a BG mixture, to get the

expressions for nonlinear functions G1(·) and G2(·) in (6.9), I can use the results from

Subsection 3.2.2. On the other hand, for nonlinear functions F1(·) and F2(·), in what

follows, I derive analytical expressions considering the noisy channel model, given

in (6.6). The derivation of those functions for the noiseless channel can be found in

Appendix B.3.

It is worth noting that, since the expressions in (6.9) involve calculating means and

variances, one could alternatively resort to numerical methods for approximating those

terms.

6.3.1 Nonlinear steps for the AWGN channel and SR ADC

Here I assume that the vector of linear mixtures z is corrupted with AWGN with power

σ2
w during the transmission (Fig. 6.2). At the receiver, the input signal is sampled with

a SR-ADC with threshold parameter λ. For y ∈ [−λ, λ], the conditional distribution

fy(y ♣ z) is calculated as

fy(y ♣ z) =
∫ +∞

−∞
fy,y∗(y, y∗ ♣ z) dy∗ =

∫ +∞

−∞
fy∗(y∗ ♣ z) fy(y ♣ y∗, z) dy∗

(a)
=
∫ +∞

−∞
N (y∗ ; z, σ2

w) fy(y ♣ y∗) dy∗

=
∫ +∞

−∞
N (y∗ ; z, σ2

w) δ(y − Mλ(y∗)) dy∗ =
∞∑

k=−∞
N (y + 2kλ ; z, σ2

w),

(6.10)
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where in
(a)
= I use the fact that y

∗ ♣ z ∼ N (z, σ2
w), and the fact that y and z are

statistically independent given y
∗. Outside of the interval [−λ, λ], the conditional

distribution fy(y ♣ z) = 0. Using BayesŠ rule we can write the distribution fz(z ♣ y) as

fz(z ♣ y) =
1

fy(y)
fy(y ♣ z) fz(z) =

1

fy(y)

∞∑

k=−∞
N (y + 2kλ ; z, σ2

w) N (z ;µz, σ
2
z)

=
1

fy(y)

∞∑

k=−∞
N (z ; y + 2kλ, σ2

w) N (z ;µz, σ
2
z).

(6.11)

The sum in (6.11) involves a product of two Gaussian distributions. In [1], it is shown

that a product of two Gaussian distributions fx(x) and gx(x), with arbitrary means

µf and µg and arbitrary variances σ2
f and σ2

g , can be written as a scaled Gaussian

distribution, i.e.,

fx(x)gx(x) =
Sfg

√

2πσ2
fg

exp


− (x− µfg)2

2σ2
fg



, (6.12)

with

σ2
fg =

σ2
fσ

2
g

σ2
f + σ2

g

, µfg =
µfσ

2
g + µgσ

2
f

σ2
f + σ2

g

,

and the scaling factor Sfg having a form of a Gaussian distribution

Sfg =
1

√

2π(σ2
f + σ2

g)
exp



− (µf − µg)2

2(σ2
f + σ2

g)



. (6.13)

Therefore, the conditional distribution f(z ♣ y) in (6.11) can be written as

fz(z ♣ y) =
1

fy(y)

∞∑

k=−∞
N (z ; y + 2kλ, σ2

w) N (z ;µz, σ
2
z)

=
1

fy(y)

∞∑

k=−∞
N (0 ; y + 2kλ− µz, σ

2
z + σ2

w) N (z ;µwz, σ
2
wz)

=
1

fy(y)

∞∑

k=−∞
γk N (z ;µwz, σ

2
wz),

(6.14)

where

σ2
wz =

σ2
wσ

2
z

σ2
w + σ2

z

,

µwz =

(

y + 2kλ

σ2
w

+
µz

σ2
z



σ2
wz,

γk = N (0 ; y + 2kλ− µz, σ
2
z + σ2

w).

(6.15)
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In (6.14), the term py(y) is a normalizing term that ensures that the conditional

distribution pz(z ♣ y) integrates to 1. Therefore, it can be calculated as

fy(y) =
∫ +∞

−∞

∞∑

k=−∞
γk N (z ;µwz, σ

2
wz) dz =

∞∑

k=−∞

∫ +∞

−∞
γk N (z ;µwz, σ

2
wz) dz

=
∞∑

k=−∞
γk

∫ +∞

−∞
N (z ;µwz, σ

2
wz) dz =

∞∑

k=−∞
γk.

(6.16)

Similarly, E¶z ♣ y♢ and E¶z
2 ♣ y♢ can be calculated as

E¶z ♣ y♢ =
∫ ∞

−∞
z fz(z ♣ y) dz =

∫ ∞

−∞
z

1

f(y)

∞∑

k=−∞
γk N (z ;µwz, σ

2
wz) dz

=
1

f(y)

∞∑

k=−∞
γk

∫ ∞

−∞
zN (z ;µwz, σ

2
wz) dz =

1

f(y)

∞∑

k=−∞
γk µwz,

E¶z
2 ♣ y♢ =

∫ ∞

−∞
z2 fz(z ♣ y) dz =

∫ ∞

−∞
z2 1

f(y)

∞∑

k=−∞
γk N (z ;µwz, σ

2
wz) dz

=
1

f(y)

∞∑

k=−∞
γk

∫ ∞

−∞
z2 N (z ;µwz, σ

2
wz) dz =

1

f(y)

∞∑

k=−∞
γk (σ2

wz + µ2
wz).

(6.17)

Finally, the variance var¶z ♣ y♢ is obtained as

var¶z ♣ y♢ = E¶z
2 ♣ y♢ −

(

E¶z ♣ y♢
2
. (6.18)

6.4 Numerical Results

To investigate the performance of the proposed reconstruction algorithm I present

the results of MC simulations. In the simulations, the nonzero components of the

source vector x as well as the entries of A are drawn randomly from a standard normal

distribution. The columns of the sensing matrix are later normalized to have unit

Euclidean norm. Each MC simulation corresponds to a Ąxed pair of the measurement

ratio ρ and the probability of nonzero value ϵ. I set the length N of the sparse vector

x to 256, and acquire n CS measurements ¶zi♢n
i=1 of a k-sparse vector, where

n = ρN, and k = ϵN. (6.19)

Subsequently, the vector of CS measurement z is corrupted with an independent

realization of AWGN noise vector w. The power of the noise is σ2
w = 10−SNR/10, where
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the SNR is deĄned as

SNR = Ey∗

{

∥y∗∥2
}

/Ew

{

∥w∥2
2

}

. (6.20)

In the noiseless case, I simply set SNR = ∞. The SR-ADC threshold λ is Ąxed to 1.

To validate the recovery potential of the GAMP algorithm, I use mean squared error

(MSE), deĄned as

MSE/dB = 10 log10∥x − x̂∥2
2, (6.21)

as the performance metric. To compute the MSE for a speciĄc pair (ρ, ϵ), I average

results over 4000 independent realizations of the source vector, the measurement matrix,

and the noise vector. In the noiseless case, my simulations showed that the algorithm

either recovers the unknown vector almost perfectly (with very small MSE ≤ - 40dB),

or fails completely. Therefore, in this case, the average number of successful recoveries

(i.e., success rate), is used as the performance metric. I consider a recovery to be

successful if the resulting MSE is ≤ −30dB.

The stopping threshold for the algorithms is ε = 10−3, where as the maximal

number of iterations of the proposed algorithm is set to tmax = N/2 = 128.

6.4.1 Recovery from noiseless modulo measurements

In Fig. 6.3, I show the success rate of the GAMP algorithm (Fig. 6.3a) and the average

norm of the simple function ∥ϵg∥0 (Fig. 6.3b), both as a function of the measurement

ratio ρ and the nonzero probability ϵ. The norm of the simple function provides a

measure of how corrupted the measurements are, due to the signal acquisition using a

SR-ADC. In Fig. 6.3a, we see a clear phase transition between unsuccessful (black)

and successful (white) regions. While classical CS algorithms fail completely when

∥ϵg∥0 ̸= 0, I observe that GAMP is able to cope with folded measurements. Moreover,

for the considered values of ρ and ϵ, the phase transition curve is almost a linear

function.

6.4.2 Recovery from noisy modulo measurements

In Fig. ??, I show the MSE of the GAMP algorithm (Fig. ??) and the average norm

of the simple function ∥ϵg∥0 (Fig. ??), both as a function of the measurement ratio ρ

and the nonzero probability ϵ. In Fig. ??, we observe that, compared to the noiseless

case, the phase transition curve is shifted the right lower corner. This is to be expected,

since the measurements are corrupted with AWGN (SNR = 20dB) before digitization,

and more measurements are needed for accurate reconstruction.
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(a) Average success rate of GAMP

0.2 0.4 0.6 0.8 1

5 · 10−2

0.1

0.15

0.2

0.25

ρ

ϵ

0

2

4

6

8

10

(b) Average norm of the simple function ∥ϵg∥0

Fig. 6.3 Average success rate of GAMP reconstruction algorithm on the left, and average
norm of the simple function ∥ϵg∥0 on the right as a function of the nonzero probability ϵ and
the measurement ratio ρ. The CS measurements are digitized with a SR-ADC with λ = 1.
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(a) Average MSE in dB of GAMP
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(b) Average norm of the simple function ∥ϵg∥0

Fig. 6.4 Average MSE in dB of GAMP reconstruction algorithm on the left, and average
norm of the simple function ∥ϵg∥0 on the right as a function of the nonzero probability ϵ and
the measurement ratio ρ. The CS measurements are corrupted with AWGN noise before
being digitized with a SR-ADC with λ = 1. The SNR is set to 20dB.
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6.5 Summary

I investigated the potential of applying the GAMP algorithm for recovery of a sparse

signal from CS measurements digitized with a SR-ADC. Additionally, in contrast to

the previous work on SR-ADC, I considered a scenario where the CS measurements

(i.e., randomized projections) are sent through a communication channel, before being

quantized by a SR-ADC. The channel is modeled as an AWGN channel.

To show the effectiveness of the proposed approach, I conducted MC simulations

for both noiseless and noisy cases. The results of the numerical experiments show that

for a certain set of problems, the GAMP algorithm is able to successfully recover a

sparse signal from folded measurements, while classical CS algorithms fail completely.

Moreover, unlike the previously proposed algorithm for recovery of sparse signals from

folded measurements, the GAMP algorithm can cope with the noise introduced by a

communication channel.

Having smaller and smaller λ makes measurements less and less informative. In the

limit λ → 0 the measurements carry no information. However, in practical scenarios

with Ąnite bit-budget per sample, too large λ leads to a coarse quantization. Therefore,

one needs to make a good trade-off between large dynamic range and Ąne quantization

resolution. It is an interesting research problem to investigate the effects of folding

combined with a Ąnite bit budget quantization of the folded measurements on the

phase transition curves of the GAMP algorithm.
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Chapter 7

Conclusions

I this thesis, I studied practical challenges of the practical application of the digital

sensors of the future. The main aim of the thesis is to Ąnd robust and fast algorithms

for sampling, quantization, compression, dequantization and recovery of the input

signals. If the signal to be estimated is sparse and high dimensional, a novel digital

signal processing (DSP) technique, called compressed sensing (CS), allows efficient

recovery from (possibly noisy) compressed representation. In my thesis, I focus on two

most prominent challenges of the practical application of CS, namely quantization of

the CS measurements and miscalibrated sensors.

Regardless of the practical problem at consideration, i.e., quantization or miscal-

ibration, the core task is, nonetheless, the recovery of a sparse signal from a noisy

measurement. Among many CS recovery algorithms, the class of approximate mes-

sage passing (AMP) algorithms stands out as the one with most potential for solving

inverse problems involving quantized CS measurements. As my own contribution, in

Chapter 3, I assume that the source prior consists of a weighted average of n-Gaussian

distributions, each with potentially different mean and different variance, and derive

closed-form expressions for the denoiser functions of the Bayesian approximate message

passing (BAMP) algorithm. By choosing appropriate values for the means and the

variances, one can model many practically interesting priors. Moreover, by picking a

very small but still non-zero variance, one can even approximate discrete probability

mass functions (pmfs).

In Chapter 4, I investigated the use of the BAMP algorithm as the recovery algorithm

in the Analysis-by-Synthesis (AbS) framework for quantization of CS measurements.

I focused on the scenario where the bit budget is constrained. My numerical experi-

ments showed that it is preferable to have fewer but Ąnely quantized measurements.

Additionally, the results of the experiments demonstrate that the BAMP algorithm
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92 Conclusions

signiĄcantly outperforms the much more complex orthogonal matching pursuit (OMP)

algorithm, when used in the AbS framework.

In Chapter 5, I studied the performance of the generalized approximate message

passing (GAMP) algorithm for recovering unknown sparse vectors from noisy quantized

CS measurements. I provide analytical expressions for the necessary nonlinear updates

of the GAMP algorithm for different channel models and different rates. Numerical

results show a superior performance of this algorithm compared to other algorithms

from literature, for both, the additive white Gaussian noise (AWGN) channel and the

symmetric discrete memoryless (SDM) channel.

Theoretical prediction of the mean squared error (MSE) of the GAMP algorithm with

the state evolution (SE) analysis is an interesting open research problem. Furthermore,

this study can be extended with the vector version of the GAMP algorithm.

Finally, in Chapter 6, I studied the problem of sampling signals using miscalibrated

sensors, within the CS framework. In particular, I investigated the potential of applying

the GAMP algorithm for recovery of a sparse signal from CS measurements digitized

with a self-reset analog to digital converter (SR-ADC). Additionally, in contrast to

the previous work on SR-ADC, I considered a scenario where the CS measurements

(i.e., randomized projections) are sent through a communication channel, before being

quantized by a SR-ADC. The channel is modeled as an AWGN channel. The results of

the numerical experiments show that for a certain set of problems, the GAMP algorithm

is able to successfully recover a sparse signal from folded measurements, while classical

CS algorithms fail completely. Moreover, unlike the previously proposed algorithm for

recovery of sparse signals from folded measurements, the GAMP algorithm can cope

with the noise introduced by a communication channel.

It is an interesting research problem to investigate the effects of folding combined

with a Ąnite bit budget quantization of the folded measurements on the phase transition

curves of the GAMP algorithm.
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Appendix A

Estimation Updates of the GAMP

Algorithm

A.1 Estimation Update for a Bernoulli-Gauss Mix-

ture Prior

We assume that he overall prior can be written as

pxj
(xj) = γ

N∑

m=1

ϵmδ(xj − bm)

︸ ︷︷ ︸

pD(xj)

+(1−γ) N (xj; 0, σ2)
︸ ︷︷ ︸

pC(xj)

= γpD(xj)+(1−γ)pC(xj) , (A.1)

where
∑N

m=1 ϵm = 1, and ϵm ≥ 0. Form (3.31), it follows that

I0(uj; c) = γ
∫ +∞

−∞
e− (xj −uj )2

2c p′
D(xj) dxj + (1 − γ)

∫ +∞

−∞
e− (xj −uj )2

2c p′
C(xj) dxj,

I1(uj; c) = γ
∫ +∞

−∞
xj e

− (xj −uj )2

2c p′
D(xj) dxj + (1 − γ)

∫ +∞

−∞
xj e

− (xj −uj )2

2c p′
C(xj) dxj,

I2(uj; c) = γ
∫ +∞

−∞
erf

(

xj − uj√
2c



p′
D(xj) dxj + (1 − γ)

∫ +∞

−∞
erf

(

xj − uj√
2c



p′
C(xj) dxj.

(A.2)
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94 Estimation Updates of the GAMP Algorithm

It can be shown that the contributions of discrete part of the prior to each of the

integrals above is

I0D(uj; c) = −γ

c

N∑

m=1

ϵm(uj − bm) e− (uj −bm)2

2c ,

I1D(uj; c) = −γ
N∑

m=1

ϵm e− (uj −bm)2

2c



1 +
bm

c
uj − b2

m

c



,

I2D(uj; c) = −γ
√

2

πc

N∑

m=1

ϵm e− (uj −bm)2

2c .

(A.3)

What is left is to compute the contributions of the continuous part of the prior, namely

I0C(uj; c), I1C(uj; c) and I2C(uj; c). To compute each of these integrals we will again

use integration by parts as follows.

Computation of the integral I0C(uj; c)

I0C(uj; c) =
∫ +∞

−∞
e− (xj −uj )2

2c p′
C(xj) dxj =

∫ +∞

−∞
e− (xj −uj )2

2c
(−xj)

σ3
√

2π
e−

x2
j

2σ2 dxj

= e− (xj −uj )2

2c
1

σ
√

2π
e−

x2
j

2σ2

∣
∣
∣
∣
∣

+∞

−∞
−
∫ +∞

−∞
−(xj − uj)

c
e− (xj −uj )2

2c
1

σ
√

2π
e−

x2
j

2σ2 dxj

= − uj

cσ
√

2π

∫ +∞

−∞
e− (xj −uj )2

2c e−
x2

j

2σ2 dxj − σ2

c

∫ +∞

−∞
e− (xj −uj )2

2c
−xj

σ3
√

2π
e−

x2
j

2σ2 dxj

= − uj

cσ
√

2π

∫ +∞

−∞
e− (xj −uj )2

2c e−
x2

j

2σ2 dxj − σ2

c
I0C(uj; c).

= − c

c+ σ2

uj

cσ
√

2π

√
π

2

√

2cσ2

σ2 + c
erf




cxj + σ2(xj − uj)
√

2cσ2(σ2 + c)



 e
− 1

2

u2
j

σ2+c

∣
∣
∣
∣
∣
∣

+∞

−∞

= −
√
c uj

(σ2 + c)
3
2

e
− 1

2

u2
j

σ2+c .

(A.4)
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A.1 Estimation Update for a Bernoulli-Gauss Mixture Prior 95

Computation of the integral I1C(uj; c)

I1C(uj; c) =
∫ +∞

−∞
xj e

− (xj −uj )2

2c p′
C(xj) dxj =

∫ +∞

−∞
xj

(−xj)

σ3
√

2π
e− (xj −uj )2

2c e−
x2

j

2σ2 dxj

= xje
− (xj −uj )2

2c
1

σ
√

2π
e−

x2
j

2σ2

∣
∣
∣
∣
∣

+∞

−∞
−
∫ +∞

−∞

(

1 − xj
(xj − uj)

c



e− (xj −uj )2

2c
1

σ
√

2π
e−

x2
j

2σ2 dxj

= − 1

σ
√

2π

∫ +∞

−∞
e− (xj −uj )2

2c e−
x2

j

2σ2 dxj − uj

σ
√

2π c

∫ +∞

−∞
xje

− (xj −uj )2

2c e−
x2

j

2σ2 dxj

+
1

σ
√

2π c

∫ +∞

−∞
x2

je
− (xj −uj )2

2c e−
x2

j

2σ2 dxj

= − 1

σ
√

2π

√
π

2

√

2cσ2

σ2 + c
erf




cxj + σ2(xj − uj
√

2cσ2(σ2 + c)



 e
− 1

2

u2
j

σ2+c

∣
∣
∣
∣
∣
∣

+∞

−∞

+ +
ujσ

2

c
I0C(uj; c) − σ2

c
I1C(uj; c)

= − c

(σ2 + c)

√

c

σ2 + c
e

− 1
2

u2
j

σ2+c − c

(σ2 + c)

ujσ
2

c

√
c uj

(σ2 + c)
3
2

e
− 1

2

u2
j

σ2+c

= −
√
c
(

σ2c+ c2 + σ2u2
j



(σ2 + c)
5
2

e
− 1

2

u2
j

σ2+c .

(A.5)

Computation of the integral I2C(uj; c)

I2C(uj; c) =
∫ +∞

−∞
erf

(

xj − uj√
2c



p′
C(xj) dxj

= erf

(

xj − uj√
2c



pC(xj)

∣
∣
∣
∣
∣

+∞

−∞
+
∫ +∞

−∞

d

dxj

(erf

(

xj − uj√
2c



)pC(xj) dxj

=
1

σ
√

2π
erf

(

xj − uj√
2c



e−
x2

j

2σ2

∣
∣
∣
∣
∣

+∞

−∞
− 1

σ
√

2π

√

2

πc

∫ +∞

−∞
e− (xj −uj )2

2c e−
x2

j

2σ2 dxj

= − 1

σ
√

2π

√

2

πc
e

−
u2

j

2(σ2+c)

∫ +∞

−∞
e

−((σ2+c)xj −σ2uj)
2

√
2σ2c(σ2+c) dxj

= − 1

σ
√

2π

√

2

πc

√
π

2

√

2σ2c

σ2 + c
e

−
u2

j

2(σ2+c) erf




cxj + σ2(xj − uj
√

2cσ2(σ2 + c)





∣
∣
∣
∣
∣
∣

+∞

−∞

= −
√

2

π(σ2 + c)
e

−
u2

j

2(σ2+c) .

(A.6)
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96 Estimation Updates of the GAMP Algorithm

It should be noted that integrals in (A.4), (A.5) and (A.6) hold when 1
c

+ 1
σ2 > 0, which

is always true since both c and σ2 represent variances. Finally we can write

I0(uj; c) = −γ

c

N∑

m=1

ϵm(uj − bm) e− (uj −bm)2

2c − (1 − γ)

√
c uj

(σ2 + c)
3
2

× e
− 1

2

u2
j

σ2+c ,

I1(uj; c) = −γ
N∑

m=1

ϵm e− (uj −bm)2

2c



1 +
bm

c
uj − b2

m

c



− (1 − γ)

√
c
(

σ2c+ c2 + σ2u2
j



(σ2 + c)
5
2

e
− 1

2

u2
j

σ2+c ,

I2(uj; c) = −γ
√

2

πc

N∑

m=1

ϵm e− (uj −bm)2

2c − (1 − γ)

√

2

π(σ2 + c)
e

−
u2

j

2(σ2+c)

(A.7)

A.2 Estimation Update for a Weighted Average of

n-Gaussian Distributions

Here we assume that the prior (the discrete part together with the continuous part)

can be approximated by a weighted average of n-Gaussian distributions as

p(xj) =
n∑

k=1

γkpk(xj) =
n∑

k=1

γk

σk

√
2π

e
−(xj −µk)

2

2σ2
k ,

where
∑n

k=1 γk = 1. Form (3.31), it follows that

I0(uj; c) =
∫ +∞

−∞
e−(xj −uj)

2

2c p′(xj) dxj

=
n∑

k=1

γk

∫ +∞

−∞
e−(xj −uj)

2

2c p′
k(xj) dxj =

n∑

k=1

γkI0k(uj; c),

I1(uj; c) =
∫ +∞

−∞
xj e

−(xj −uj)
2

2c p′(xj) dxj

=
n∑

k=1

γk

∫ +∞

−∞
xj e

−(xj −uj)
2

2c p′
k(xj) dxj =

n∑

k=1

γkI1k(uj; c),

I2(uj; c) =
∫ +∞

−∞
erf

(

xj − uj√
2c



p′(xj) dxj

=
n∑

k=1

γk

∫ +∞

−∞
erf

(

xj − uj√
2c



p′
k(xj) dxj =

n∑

k=1

γkI2k(uj; c).

(A.8)
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A.2 Estimation Update for a Weighted Average of n-Gaussian Distributions 97

Now we can obtain expressions for I0(uj; c), I1(uj; c) and I2(uj; c) by calculating con-

tributions of a single Gaussian distribution, namely I0k(uj; c), I1k(uj; c) and I2k(uj; c).

Computation of the integral I0k(uj; c)

I0k(uj; c) =
∫ +∞

−∞
e−(xj −uj)

2

2c p′
k(xj) dxj =

∫ +∞

−∞
e−(xj −uj)

2

2c
− (xj − µk)

σ3
k

√
2π

e
−(xj −µk)

2

2σ2
k dxj

=
∫ +∞

−∞
e−((xj −µk)−(uj −µk))

2

2c
− (xj − µk)

σ3
k

√
2π

e
−(xj −µk)

2

2σ2
k dxj.

(A.9)

Substituting xj − µk = x′
j and consequently dxj = dx′

j it follows that

I0k(uj; c) =
∫ +∞

−∞
e−(x′

j
−(uj −µk))

2

2c

(−x′
j)

σ3
k

√
2π
e

−
x′2

j

2σ2
k dx′

j. (A.10)

Using result from (A.4) we can write

I0k(uj; c) = −
√
c (uj − µk)

(σ2
k + c)

3
2

e
− 1

2

(uj −µk)
2

σ2
k

+c . (A.11)

Computation of the integral I1k(uj; c)

I1k(uj; c) =
∫ +∞

−∞
xj e

− (xj −uj )2

2c p′
k(xj) dxj =

∫ +∞

−∞
xj e

− (xj −uj )2

2c
− (xj − µk)

σ3
k

√
2π

e
−(xj −µk)

2

2σ2
k dxj

=
∫ +∞

−∞
(xj − µk) e−((xj −µk)−(uj −µk))

2

2c
− (xj − µk)

σ3
k

√
2π

e
−(xj −µk)

2

2σ2
k dxj + µkI0k(uj; c).

(A.12)

Using the same substitution as in case of calculating I0k(uj; c) it follows

I1k(uj; c) =
∫ +∞

−∞
x′

j

−x′
j

σ3
k

√
2π

e−(x′
j

−(uj −µk))
2

2c e
−

x′2
j

2σ2
k dx′

j + µkI0k(uj; c). (A.13)
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98 Estimation Updates of the GAMP Algorithm

Using result from (A.5) we can write

I1k(uj; c) = −
√
c
(

σ2
kc+ c2 + σ2

k (uj − µk)2


(σ2
k + c)

5
2

e
− 1

2

(uj −µk)
2

σ2
k

+c + µkI0k(uj; c)

= −
√
c
(

σ2
kc+ c2 + σ2

k (uj − µk)2


(σ2
k + c)

5
2

e
− 1

2

(uj −µk)
2

σ2
k

+c − µk

√
c (uj − µk)

(σ2
k + c)

3
2

e
− 1

2

(uj −µk)
2

σ2
k

+c

= −
√
c
(

σ2
kc+ c2 + σ2

k (uj − µk)2 + µk (uj − µk) (σ2
k + c)



(σ2
k + c)

5
2

e
− 1

2

(uj −µk)
2

σ2
k

+c .

(A.14)

Computation of the integral I2k(uj; c)

I2k(uj; c) =
∫ +∞

−∞
erf

(

xj − uj√
2c



p′
k(xj) dxj =

∫ +∞

−∞
erf

(

xj − uj√
2c



− (xj − µk)

σ3
k

√
2π

e
−(xj −µk)

2

2σ2
k dxj.

(A.15)

Again, making substitution xj − µk = x′
j and consequently dxj = dx′

j it follows that

I2k(uj; c) =
∫ +∞

−∞
erf

(

x′
j − (uj − µk)√

2c

 −x′
j

σ3
k

√
2π
e

−
x′2

j

2σ2
k dx′

j , (A.16)

and together with the results from (A.6) we can write

I2k(uj; c) = −
√

2

π(σ2
k + c)

e
− 1

2

(uj −µk)
2

σ2
k

+c . (A.17)

Finally we have

I0(uj; c, α) = −
√

2πc
n∑

k=1

γk N (uj;µk, σ
2
k,c)

uj − µk

σ2
k,c

,

I1(uj; c, α) = −
√

2πc
n∑

k=1

γk N (uj;µk, σ
2
k,c)



σ2
k(uj − µk)2

σ4
k,c

+
c+ µk(uj − µk)

σ2
k,c

]

,

I2(uj; c, α) = −2
n∑

k=1

γk N (uj;µk, σ
2
k,c),

(A.18)

where σ2
k,c = σ2

k + c.
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Appendix B

Measurement Updates of the

GAMP Algorithm

B.1 Measurement Update for the SDM Channel

Since z ∼ N (µz, σ
2
z) we can write

fz(z ♣ y = qk) =
fz(z, y = qk)

py(qk)
=
py(qk ♣ z)
py(qk)

fz(z) =
py(qk ♣ z)
py(qk)

N (z; µz, σ
2
z). (B.1)

First we need to Ąnd the expression for py(qk ♣ z) which summarizes the measurement

proces. In this case, each measurement yi has the value of Q(z) with the probability

(1 − ϵ), or any value from the set of symbols with the probanility ϵ. This means that

eventhough the symbol of Q(z) is Ćipped, it might be Ćipped to the same symbol.

Flipping of a symbol is modeled with random variable b which takes a value from the

set ¶0, 1♢ (1 means that a symbol was Ćipped).

py(qk ♣ z) =
∑

b∈¶0,1♢
py(qk, b ♣ z) =

∑

b∈¶0,1♢
py(qk ♣ b, z) p(b ♣ z) =

∑

b∈¶0,1♢
py(qk ♣ b, z) p(b)

= py(qk ♣ b = 1, z) p(b = 1) + py(qk ♣ b = 0, z) p(b = 0)

= ϵ2−R + py(qk ♣ b = 0, z)(1 − ϵ)

(B.2)
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100 Measurement Updates of the GAMP Algorithm

Now we can write py(qk) as

py(qk) =
∫ +∞

−∞
fy,z(qk, z) dz =

∫ +∞

−∞
py(qk ♣ z)fz(z) dz

=
∫ +∞

−∞



ϵ2−R + py(qk ♣ b = 0, z)(1 − ϵ)

]

fz(z) dz

= ϵ2−R + (1 − ϵ)
∫ +∞

−∞
py(qk ♣ b = 0, z)fz(z) dz

= ϵ2−R + (1 − ϵ)pŷ(qk).

(B.3)

Here pŷ(qk) denotes the probability that y takes the value qk where no symbols are

being Ćipped (noiseless R-bit generalized approximate message passing (GAMP)). The

mean and the power of z ♣ y = qk can be calculated as

E¶z ♣ y = qk) =
∫ ∞

−∞
zfz(z ♣ y = qk) dz =

∫ ∞

−∞
z
py(qk ♣ z)
py(qk)

fz(z) dz

=
1

py(qk)

∫ ∞

−∞
z



ϵ2−R + (1 − ϵ)py(qk ♣ b = 0, z)

]

fz(z) dz

=
1

py(qk)



ϵ2−Rµ+ (1 − ϵ)
pŷ(qk)

pŷ(qk)

∫ ∞

−∞
zpy(qk ♣ b = 0, z) fz(z) dz

]

=
1

py(qk)



ϵ2−Rµ+ (1 − ϵ)pŷ(qk)E¶ẑ ♣ y = qk♢
]

,

(B.4)

E¶z
2 ♣ y = qk) =

∫ ∞

−∞
z2fz(z ♣ y = qk) dz =

∫ ∞

−∞
z2py(qk ♣ z)

py(qk)
fz(z) dz

=
1

py(qk)

∫ ∞

−∞
z2



ϵ2−R + (1 − ϵ)py(qk ♣ b = 0, z)

]

fz(z) dz

=
1

py(qk)



ϵ2−R(σ2 + µ2) + (1 − ϵ)
pŷ(qk)

pŷ(qk)

∫ ∞

−∞
z2py(qk ♣ b = 0, z) fz(z) dz

]

=
1

py(qk)



ϵ2−R(σ2 + µ2) + (1 − ϵ)pŷ(qk)E¶ẑ
2 ♣ y = qk♢

]

.

(B.5)

B.2 Measurement Update for the AWGN Channel

Since z ∼ N (µz, σ
2
z) we can write

fz(z ♣ y) =
fz,y(z, y)

fy(y)
=
fy(y ♣ z)
fy(y)

fz(z) =
fy(y ♣ z)
fy(y)

N (z; µz, σ
2
z). (B.6)
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B.2 Measurement Update for the AWGN Channel 101

The conditional probability density function (pdf) y ♣ z can be written as

fy(y ♣ z) = fy(y ♣Q(z)) = fy

(

Q(z) + w = y ♣Q(z)


= fw

(

y −Q(z)


. (B.7)

In (B.6), fy(y) is a normalizing term that can be calculated as

fy(y) =
∫ ∞

−∞
fy,z(y, z) dz =

∫ ∞

−∞
fy(y ♣ z)fz(z) dz =

∫ ∞

−∞
fw

(

y −Q(z)


fz(z) dz

=
2R−1∑

k=0

∫ bk+1

bk

fw

(

y −Q(z)


fz(z) dz =
2R−1∑

k=0

∫ bk+1

bk

fw(y − qk)fz(z) dz

=
2R−1∑

k=0

fw(y − qk)
∫ bk+1

bk

fz(z) dz =
2R−1∑

k=0

fw(y − qk)pk,

(B.8)

where

pk =
1

2



erf

(

bk+1 − µz
√

2σ2
z



− erf

(

bk − µz
√

2σ2
z

]

. (B.9)

The mean and the power of z ♣ y can be calculated as

E¶z ♣ y♢ =
∫ ∞

−∞
zfz(z ♣ y) dz =

∫ ∞

−∞
z
fy(y ♣ z)
fy(y)

fz(z) dz =
1

fy(y)

∫ ∞

−∞
zfy(y ♣ z)fz(z) dz

=
1

fy(y)

∫ ∞

−∞
zfw

(

y −Q(z)


fz(z) dz =
1

fy(y)

2R−1∑

k=0

∫ bk+1

bk

zfw

(

y −Q(z)


fz(z) dz

=
1

fy(y)

2R−1∑

k=0

∫ bk+1

bk

zfw

(

y − qk



fz(z) dz =
1

fy(y)

2R−1∑

k=0

fw

(

y − qk

 ∫ bk+1

bk

zfz(z) dz

=
1

fy(y)

2R−1∑

k=0

fw

(

y − qk



mk,

(B.10)

where

mk = µpk −
√

σ2
z

2π

(

e
− (bk+1−µz)2

2σ2
z − e

− (bk−µz)2

2σ2
z



= µpk − σ2
z

(

N (bk+1;µz, σ
2
z) − N (bk;µz, σ

2
z)



.

(B.11)
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102 Measurement Updates of the GAMP Algorithm

E¶z
2 ♣ y♢ =

∫ ∞

−∞
z2fz(z ♣ y) dz =

∫ ∞

−∞
z2fy(y ♣ z)

fy(y)
fz(z) dz =

1

fy(y)

∫ ∞

−∞
z2fy(y ♣ z)fz(z) dz

=
1

fy(y)

∫ ∞

−∞
z2fw

(

y −Q(z)


fz(z) dz =
1

fy(y)

2R−1∑

k=0

∫ bk+1

bk

z2fw

(

y −Q(z)


fz(z) dz

=
1

fy(y)

2R−1∑

k=0

∫ bk+1

bk

z2fw

(

y − qk



fz(z) dz =
1

fy(y)

2R−1∑

k=0

fw

(

y − qk

 ∫ bk+1

bk

z2fz(z) dz

=
1

fy(y)

2R−1∑

k=0

fw

(

y − qk



sk,

(B.12)

where

sk = (σ2
z + µ2)pk − σ2

z



(bk+1 + µz)N (bk+1;µz, σ
2
z) − (bk + µz)N (bk;µz, σ

2
z)


. (B.13)

B.3 Measurement Update for the SR ADC

Using BayesŠ rule we can write the distribution fz(z ♣ y) as

fz(z ♣ y) =
1

fy(y)
fy(y ♣ z) fz(z). (B.14)

In the case of the noiseless channel and self-reset analog to digital converter (SR-ADC),

the conditional distribution that models the measurement process fy(y ♣ z) amounts to

fy(y ♣ z) = δ(y − Mλ(z)). (B.15)

Therefore, we can rewrite (B.14) as

fz(z ♣ y) =
1

fy(y)
δ(y − Mλ(z)) N (z ;µz, σ

2
z), (B.16)
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B.3 Measurement Update for the SR ADC 103

where fy(y) is the normalizing term that ensures that the conditional distribution

integrates to 1. Therefore, it can be calculated as

fy(y) =
∫ +∞

−∞
fy,z(y, z) dz =

∫ +∞

−∞
fy(y ♣ z) fz(z) dz =

∫ +∞

−∞
fy(y ♣ z) N (z ;µz, σ

2
z) dz

=
∫ +∞

−∞
δ(y − Mλ(z)) N (z ;µz, σ

2
z) dz =

∑

z:Mλ(z)=y

N (z ;µz, σ
2
z)

=
∞∑

k=−∞
N (y + 2kλ ;µz, σ

2
z)

︸ ︷︷ ︸

γk

=
∞∑

k=−∞
γk

(B.17)

It follows that the E¶z ♣ y♢ and var¶z ♣ y♢ (= E¶z
2 ♣ y♢ − (E¶z ♣ y♢)2) can be calculated

as

E¶z ♣ y♢ =
∫ ∞

−∞
z fz(z ♣ y) dz =

1

fy(y)

∫ ∞

−∞
z δ(y − Mλ(z)) N (z ;µz, σ

2
z) dz

=
1

fy(y)

∑

z:Mλ(z)=y

zN (z ;µz, σ
2
z) =

1

fy(y)

∞∑

k=−∞
(y + 2kλ) γk ,

(B.18)

and

E¶z
2 ♣ y♢ =

∫ ∞

−∞
z2 fz(z ♣ y)dz =

1

fy(y)

∫ ∞

−∞
z2δ(y − Mλ(z)) N (z ;µz, σ

2
z)dz

=
1

fy(y)

∑

z:Mλ(z)=y

z2 N (z ;µz, σ
2
z) =

1

fy(y)

∞∑

k=−∞
(y + 2kλ)2 γk.

(B.19)
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104 Measurement Updates of the GAMP Algorithm

List of Acronyms

AbS Analysis-by-Synthesis

AMP approximate message passing

AOP adaptive outlier pursuit

AWGN additive white Gaussian noise

BAMP Bayesian approximate message passing

BG Bernoulli-Gauss

BIHT binary iterative hard thresholding

BP basis pursuit

BPDN basis pursuit denoising

BSC binary symmetric channel

cdf cumulative distribution function

CLS constrained least squares

CoSaMP compressive sampling matching pursuit

CS compressed sensing

DCT-II 2 dimensional discrete cosine transformation

DSP digital signal processing

GAMP generalized approximate message passing

IHT iterative hard thresholding

i.i.d. independent and identically distributed

IST iterative soft thresholding

LASSO least absolute shrinkage and selection operator

LS least squares
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B.3 Measurement Update for the SR ADC 105

MAP maximum a posteriori

MC Monte-Carlo

ML maximum likelihood

MMSE minimum mean squared error

MPDQ message-passing de-quantization

MRI magnetic resonance imaging

MSE mean squared error

MSP matching sign pursuit

NMSE normalized mean squared error

OMP orthogonal matching pursuit

pdf probability density function

pmf probability mass function

QCS quantized compressed sensing

RIP restricted isometry property

RSS restricted-step shrinkage

SDM symmetric discrete memoryless

SE state evolution

SNR signal-to-noise ratio

SP subspace pursuit

SR-ADC self-reset analog to digital converter

US unlimited sampling

whp with high probability
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