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Abstract
We explore systematic connections between weighted (semi-abstract) argumentation frames and t-norm-based fuzzy logics.
To this aimwe introduce the concept of argumentative immunity, as well as corresponding notions of argumentative soundness
and completeness with respect to given sets of logical attack principles. For Gödel logic, a detailed proof of argumentative
soundness and completeness with respect to appropriate principles is presented. For Łukasiewicz and product logic this
is indicated more briefly, but with some hints on corresponding interpretations of the attack relation between (claims of)
arguments. Moreover, the central axiom of prelinearity is analyzed from our argumentation-based perspective.

Keywords t-norm-based logics · Abstract argumentation · Weighted argumentation frames · Semantics of fuzzy logics

1 Introduction

In a seminal paper Dung (1995) demonstrated that various
concepts of non-monotonic reasoning, logic programming,
and game theory can be modeled via so-called abstract argu-
mentation frameworks. The latter are directed graphs, where
the vertices are identified with arguments and the edges rep-
resent attacks between arguments. Initially, arguments and
attacks have been considered only in a binary (classical)
setting: either they are present, accepted, rejected, etc, or
not. More recently, proposals for generalizing to graded
scenarios, where arguments and/or attacks can be of vari-
ous strength have been made, see, e.g., Coste-Marquis et al.
(2012), Dunne et al. (2011), Krause et al. (1995) and Matt
and Toni (2008) for some important contributions along this
line. Here, wewill followDunne et al. (2011) in insisting that
weights of attacks between arguments naturally give raise to
degrees of acceptability of arguments and thus their claims.

Since fuzzy logics—in the sense of full-fledged truth-
functional logics over truth values in [0, 1], see Cintula et al.
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(2015)—take truth to be graded, one might think that there
is a straightforward connection between frameworks fea-
turing graded arguments and fuzzy logics. However, even
in the non-graded scenario, the relation between logical
consequence and so-called semantics for Dung-style argu-
mentation frames (see, e.g., Besnard and Hunter 2008) is
delicate. One possibility for establishing such a connection is
to focus on purely logical argumentation (Arieli and Straßer
2015), where the claims of arguments are assumed to be
logically entailed by the support part of an argument. Note,
however, that this amounts to a severe restriction of the types
of arguments considered. Moreover, it has been pointed out,
e.g., in Amgoud et al. (2016), that an argument that features
its own claim also as its support is a paradigmatic case of an
unacceptable argument, thus running head on into conflict
with the most basic property of ordinary logical consequence
relations, namely reflexivity. For this reason, we will follow
another route here, that is not limited to purely logical argu-
mentation and that considers not just explicit, but in particular
also logically implicit arguments.

We look for principles that constrain the strength of
implicit attacks on claims that either logically follow from
claims of attacking arguments or that, conversely, logically
entail claims of attacking arguments. For example, it seems
natural to stipulate that an argument, which attacks a claim A
with a given weight, implicitly attacks the claim A∧ B with
at least the same weight. Similarly, an attack on a disjunctive
claim A ∨ B may reasonably be assumed to entail attacks
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on A and on B that carry at least the same weight. A closely
related scenario has recently been introduced by Corsi and
Fermüller (2017) for the non-weighted case, investigating
which sets of logical attack principles give raise to either
classical logic or—more realistically from the argumenta-
tion point of view—to certain sub-classical logics that are
induced by fragments of the classical sequent calculus LK.

In our endeavor to connect logical argumentation prin-
ciples with fuzzy logics, we will first focus on Gödel logic,
since the constraints onweights of attacks that can be system-
atically related to many-valued truth functions are arguably
more transparent for this logic than for others. However,
we will also consider Łukasiewicz and product logic in this
vein and make a few remarks on more general connections
between t-norm-based fuzzy logics and weighted versions of
logical attack principles.

We want to emphasize that we do not want to suggest
that fuzzy logics can be viewed as logics of argumentation in
any straightforward sense. Rather, we are interested in deter-
mining which constraints are actually needed to establish the
connection. Someof these principles, like the onesmentioned
in the last paragraph, are probably uncontroversial, while
others seem to be too demanding with respect to pre-formal
intuitions about the relation between logical connectives and
argument strength. Our aim is to provide a detailed picture
regarding the respective necessity and sufficiency of a fairly
large set of different principles for characterizing various t-
norm-based fuzzy logics.

Another possible misunderstanding that we want to
address right away concerns the very nature of
argumentation-based reasoning: shouldn’t any ‘logic of argu-
mentation’ be non-monotonic? So why do we attempt to
characterize ordinary (monotonic) truth-functional logics as
logics of argumentative reasoning? We certainly agree that a
claim that is justified with respect to a given set of arguments
may well have to be discarded, if further arguments are taken
into account. Indeed, the information that can be extracted
from what we will call a semi-abstract argumentation frame
below, cannot be expected to grow or shrink monotonically,
if we update the frame. But this does not mean that we can-
not observe certain monotonic inference patterns, if we refer
to the set of all possible semi-abstract argumentation frames
that satisfy certain closure properties regarding implicit argu-
ments and attacks. In fact, in this paper we restrict attention
to logically complex propositions that are immune to attack
according to various principles relating logical form to poten-
tial attack. The fact that such ‘argumentatively immune’
statements turn out to coincide with logically valid formulas
according to certain monotonic non-classical logics is not in
conflict with principles of non-monotonic reasoning.

Some readers may be disappointed that our concepts, and
results do not relate in any direct manner to the various
extension-based ‘semantics’ or to other methods for singling

out (in some appropriate sense) maximal conflict free sets of
coherently defensible arguments that have been developed
in computational argumentation theory. However, as already
indicated, our aim is to analyze towhich extend t-norm-based
fuzzy logics can be interpreted in a new semantic framework
that talks about attacks of varying strength rather than about
degrees of truth. Consequently, we seek to contribute to the
literature on alternative semantics for fuzzy logics (see, e.g.,
Bennett et al. 2000; Giles 1982; Lawry 1998; Paris 1997,
2000; Ruspini 1991), rather than to computational argumen-
tation theory. Whether such an endeavor can also have an
impact on argumentation theory remains to be seen. Except
for some very tentative remarks in the conclusion, no claim
of relevance regarding argumentation theory is made here.

The rest of the paper is organized as follows. In Sect. 2
we quickly review some basic concepts from Corsi and Fer-
müller (2017) regarding classical attack principles. These
notions and some of the principles are generalized to
weighted (semi-abstract) argumentation frames in Sect. 3.
Section 4 introduces our central new concept: argumentative
immunity. In Sect. 5 we prove argumentative soundness and
completeness for Gödel logic G with respect to an appro-
priate collection of attack principles. Section 6 presents
attack principles for Łukasiewicz logic Ł and for product
logic P. In Sect. 8 we analyze the so-called prelinearity
axiom, which is central for all t-norm-based fuzzy logics,
from our argumentation-based perspective. In the conclusion
(Sect. 10) we briefly look back at what we have achieved and
suggest several directions for further research.

2 Attack principles for unweighted
argumentation frames

Wehave introduced the concept of logical attack principles in
Corsi and Fermüller (2017) for (unweighted) argumentation
frames. Before dealing with weighted argumentation frames,
we revisit central notions and previous results fromCorsi and
Fermüller (2017). To keep the paper self-contained, we also
review the ideas and motivation guiding our approach.

Recall that Dung’s abstract argumentation frames (Dung
1995) are just finite directed graphs, where the vertices rep-
resent arguments and the edges represent attacks between
arguments. The aim is to identify so-called admissible exten-
sions, which are sets of arguments that are pairwise conflict
free (i.e., there is no attack among them) and that defend
every member attacked by some external argument by in
turn attacking this attacking argument. Various conditions
on admissible extensions lead to refined versions of exten-
sions. We will not deal with extension-based semantics here,
but refer the interested reader to, e.g., Besnard and Hunter
(2008) for a thorough introduction into Dung-style argumen-
tation theory.
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Abstract argumentation frames (AFs) can be instantiated
by attaching concrete arguments to the vertices and defining
concrete types of attack between arguments. This can be done
in various ways: important examples of systems for extract-
ing argumentation frames from concrete data (formulas and
rules) are Caminada and Amgoud (2007) and Modgil and
Prakken (2013). In general, arguments consist in a support
part and a claim. In this paper, we will not investigate fully
instantiated AFs, but rather focus exclusively on the logical
structure of the claim of a given argument. Consequently,
we deal with a variant of Dung’s AFs that still abstracts
away from the internal structure of arguments and attacks,
but partly instantiates the graph by associating its vertices
with propositional formulas that represent the claims of cor-
responding arguments.

Definition 1 A semi-abstract argumentation frame (SAF) is
a directed graph (A , R→), where each vertex a ∈ A is
labeled by a propositional formula over the connectives ∧,
∨, ⊃, ¬, and constant ⊥. We say that F attacks G and write
F−→G if there is an edge from a vertex labeled by F to one
labeled by G.

F−→G signifies that in some underlying (ordinary) argu-
mentation frame there is an argument featuring claim F that
attacks an argument with the claim G. As indicated, we will
mostly drop the reference to (full) arguments and speak of
attacks on the level of corresponding claims, i.e., proposi-
tional formulas.

Let us revisit an example of an SAF, originally presented
in Corsi and Fermüller (2017).

Example 1 Consider the following statements:

– “The overall prosperity in society increases.” (P)
– “Warlike conflicts about energy resources arise.” (W )
– “The level of CO2 emissions is getting dangerously

high.” (C)
– “Awareness about the need of environmental protection
increases.” (E)

Moreover, consider an argumentation frame containing argu-
ments, where the claims consist in some of these statements
or in some simple logical compounds thereof.

Using the indicated abbreviations and identifying ver-
tices with their labels, a concrete corresponding SAF SE =
(A , R→) is given byA = {P, E,W , P ⊃ C, E∨C, P∧C}
and R→ = {E−→P ⊃ C, W−→C∨E, W−→P∧C, C∨
E−→P}.

Note that the various statements that are put forward as
claims in the above example may well be thought as sup-
ported by additional statements that remain implicit here.
Even without any access to such additional statements, one

can identify certain logical connections between these claims
that bear on the existence of further implicit arguments and
attacks.

Example 2 Suppose we have an argument, say X , that attacks
the claim that the majority of the population of some country
strongly supports its government. Without analyzing X and
even without knowing X , one can reasonable assume that X
implicitly also attacks the conjunctive claim that the major-
ity of the population strongly supports its government and
believes that the economic situation is improving. Note that
this observation does not assert any particular connection
between support for the government and economic perfor-
mance. It rather expresses the simple rationality principle that
one cannot attack a statement A without implicitly thereby
also attacking any conjunction of the form A ∧ B.

Note that the observation made in Example 2 only refers
to the logical form of claims. The corresponding principle
can be formulated as follows

(A. ∧ ) If F−→A or F−→B, then F−→A ∧ B.

This principle can be understood as a simple instance of the
following general attack principle, where |� denotes logical
consequence

(A.gen) If F−→G and G ′ |� G, then F−→G ′.

As instances of (A.gen) we obtain not only (A. ∧ ), but also
the following attack principles, referring to other logical con-
nectives.

(A. ∨ ) If F−→A ∨ B, then F−→A and F−→B.
(A. ⊃ ) If F−→B, but not F−→A, then F−→A ⊃ B.
(A.⊥) F−→⊥, for every F .

In Corsi and Fermüller (2017) we defined a notion of log-
ical consequence (‘argumentative consequence’) that views
attacks on formulas as forms of (weak) counterexamples and
asked which attack principles are needed to recover classical
consequence as argumentative consequence. As expected, it
turns out the above mentioned principles are not sufficient to
characterize classical logic. For that purpose we rather have
to consider additional, stronger and arguably more problem-
atic inverse principles like

(C. ∧ ) If F−→A ∧ B, then F−→A or F−→B.
(C. ∨ ) If F−→A and F−→B, then F−→A ∨ B.
(C. ⊃ ) If F−→A ⊃ B, then F−→B, but not F−→A.

At least some of these latter principles are hard to jus-
tify with respect to intuitions about rational constraints on
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(implicit) arguments. Therefore, Corsi and Fermüller (2017)
introduces a simplemodal interpretation of the attack relation
that allows one to sort out certain attack principles as invalid
in general. It is shown that the logic that results from just
enforcing the remaining principles is characterized by a frag-
ment of the classical sequent calculus LK, and consequently
admits an alternative semantics in terms of non-deterministic
matrices over the two classical truth values. While this type
of interpretation can be considered as a form of many-valued
semantics, it does not refer to intermediary truth values.
This raises the question whether certain fuzzy logics can be
characterized in a similar manner. For this purpose we will
consider weighted (degree-based) versions of argumentation
frames.

3 Attack principles for weighted attacks

For the graded scenario we generalize semi-abstract argu-
mentation frames in a straightforward manner by attaching a
value from the closed real unit interval to each edge (m, n)

of the argumentation graph attack. This value is intended to
model the (normalized) strength of attack on the argument
represented by the node m on the argument represented by
the node n.

Definition 2 Aweighted semi-abstract argumentation frame
(WSAF) is a triple (A , R→, w), where (A , R→) is a SAF,
andw is an assignment ofweights ∈ [0, 1] to the attacks, i.e.,
to the ordered pairs of elements inA . We write F

w−→ G if
the weight w is assigned to F−→G.

Any WSAF combines an SAF according to Definition 2
with a WAF, as introduced in Dunne et al. (2011). For the
unweighted case, i.e., for SAFs, we stipulated in Sect. 2
that R→ arises from an underlying classical argumentation
frame by setting F−→G, whenever there exists an argu-
ment with claim F that attacks an argument with claim G.
In the weighted case, we have to take into account that dif-
ferent underlying attacks on G from arguments with claim
F , which may carry different weights, might exist in a given
WAF. We could of course stipulate that w in F

w−→ G is
the supremum over all weights of attacks with correspond-
ing claims. The precept that the attack with maximal weight
should be decisive in case of multiple attacks of the same
type is certainly adequate for specific application scenarios.
However, we see no need to restrict the weight assignments
in WSAFs in any specific manner, here. Rather we just stip-
ulate that—as part of the abstraction process from concrete
collections of weighted attacks to a WSAF—some system-
atic method is applied, that maps the sets of weights between
arguments involving the same claims into a single weight.

Since we allow also attacks of weight 0, (unweighted)
SAFs are just special cases of WSAFs, where each attack is

either of weight 1 or 0. The latter, of course, amounts to ‘no
attack at all’, i.e., where we previously wrote F 
−→A, we

now write F
0−→ A.

The attack principles for SAFs can be generalized to
WSAFs in various ways, at least some of which are very
straightforward, as indicated by the following example.

Example 3 We revisit Example 2 of Sect. 2, where we con-
sidered an argument X that attacks the claim A, expressing
that the majority of the population of some country strongly
supports its government. Let us now assume we have some
information regarding the actual strength of this attack. Note
that we are not, at least not in any direct way, attaching a
degree of truth or belief to the claim A itself. Rather we
only consider the given attack on the statement. Different
meanings can be associated with ‘strength of the attack’ as
emphasized, e.g., in Dunne et al. (2011). For example, it
could simply reflect our (the modelers) degree of belief in
the validity of the attack. In a more sophisticated scenario,
we can imagine a set of experts who are asked to judge
whether the alleged attack of X on the argument claiming
A is convincing or not. The weight of the attack could then
be stipulated to equal the proportion of experts who find the
attack convincing. Of course, many alternative interpreta-
tions of ‘weight’ are conceivable. But in any case it should
be clear that the argument X should not attack any claim
that is formed by conjunctively attaching a further claim B
to A with higher weight that A itself. Like in the unweighted
case, this expresses a simple rationality principle that only
takes into account the logical form of the attacked claim.
Neither the content of the involved argument nor the nature
of the attack and the particular interpretation of ‘strength’ or
’weight’ matter when stipulating that any attack on a claim
A (implicitly) attacks any claim of the form A ∧ B with at
least the same weight.

In accordance to the above example we obtain the follow-
ing generalization of principle (A. ∧ ):

(Aw. ∧ ) If F
x−→ A and F

y−→ B, then F
z−→ A ∧ B,

where z ≥ max(x, y).

Actually, since we also consider attacks of weight 0 (equiv-
alent to ‘no attack edge’ in SAFs), we may assume without
loss of generality that the graph formed by R→ in a WSAF
is complete. But this means that the above formulation of
the attack principle for conjunction can be reformulated as
follows:

(Aw. ∧ ) If F
x−→ A, F

y−→ B, and F
z−→ A ∧ B, then

z ≥ max(x, y).
In words: an attack against a conjunction carries a
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weight that is at least as large as that against any
of its conjuncts.

Likewise, the following principle refinement of (A. ∨ ) for
(implicit) attacks on disjunctive claims should be intuitively
uncontroversial.

(Aw. ∨ ) If F
x−→ A, F

y−→ B, and F
z−→ A ∨ B, then

z ≤ min(x, y).
An attack against a disjunction entails attacks to
both of its disjuncts of at least the same weight.

As explained in Corsi and Fermüller (2017), also (C. ∨ ),
the inverse of (A. ∨ ) can be justified with respect to a
particular formal interpretation of the attack relation. It
straightforwardly generalizes to theweighted scenario as fol-
lows.

(Cw. ∨ ) If F
x−→ A, F

y−→ B, and F
z−→ A ∨ B, then

z ≥ min(x, y).
An attack against a disjunction carries a weight
that is at least as large as that against one of its
disjuncts.

Example 4 Let us expand Examples 2 and 3 to disjunctive
claims by considering the following statement “(A) The
majority of the population strongly supports its government
or (B) believes that the economic situation is improving”.
Assume that some argument X attacks this claim (A ∨ B)

with some weight w ∈ [0, 1]. Then (Aw. ∨ ) expresses the
rationality principle that arguments claiming F cannot attack
A ∨ B with a greater weight than that of a corresponding
attack A or B alone. Note that this makes sense indepen-
dently of any concrete interpretation of weights of attacks,
since A∨B logically follows from A as well as from B, even
if we move from to classical logic to a many-valued one.

The inverse principle (Cw. ∨ ) is less obviously valid.
However, if we adopt the interpretation of weights as reflect-
ing degrees of belief in the validity of the proposed attacks,
then the following principle seems reasonable: An agent who
believes with degree x that arguments claiming F success-
fully attack A and believes with degree y that arguments
claiming F also attack B successfully, should believe with
a degree that is not lower than both x and y that those argu-
ments, at least implicitly, also establish a valid attack on the
claim that either A ∨ B.

Bearing in mind that our principles are not intended to
model actual attacks, but rather suggest possibilities for
‘closing off’ given sets of coherent arguments with respect
to simple logical consequence relations, also the following
version of (A.⊥) should be obvious.

(Aw.⊥) F
1−→ ⊥, for every F .

Every argument fully attacks (at least implicitly)
the clearly false claim ⊥.

Note that⊥ is intended to stand for any obviously false state-
ment. Therefore no incoherence should arise from stipulating
that any argument implicitly rejects an argument with claim
⊥ without qualification regarding the weight of the attack.

Justifying principles involving attacks on implicative
claims ismore delicate. It is important to keep inmind thatwe
only want to consider material, even truth-functional impli-
cation here, and hence do not investigate proper (intensional)
conditionals or counter-factual statements. This means that
we (once more) look for principles that only refer to the
weights of attacks on the claim and on its immediate subfor-
mulas, respectively. In light of the classical principles (A. ⊃ )

and (C. ⊃ ), at least the following candidates are worth con-
sidering.

(Aw. ⊃ ) If F
x−→ A, F

y−→ B, and F
0−→ A ⊃ B, then

x ≥ y.
If an implication is not attacked at all, then the
implying formula is attackedwith at least the same
weight as the implied formula.

(Cw. ⊃ ) If F
x−→ A, F

y−→ B, and F
z>0−→ A ⊃ B,1 then

x < y.
If an implication is attacked with some positive
weight, then the implying formula is attackedwith
a strictly smaller weight than the implied formula.

These two principles are equivalent to the following refor-
mulations, respectively.

(Aw. ⊃ ) If F
x−→ A, F

y−→ B, and x < y, then

F
z>0−→ A ⊃ B.

If the implied formula is attacked with a higher
weight than the implying formula, then the impli-
cation is attacked with some positive weight.

(Cw. ⊃ ) If F
x−→ A, F

y−→ B, and x ≥ y, then F
0−→

A ⊃ B.
If the implied formula is attacked with at least the
same weight than the implying formula, then the
implication is not attacked at all.

These reformulations make transparent that (Aw. ⊃ ) and
(Cw. ⊃ ) jointly express the principle that an implication is
attacked with some positive weight if and only if the implied
formula is attacked with a higher weight than the implying

1 F
z>0−→ G abbreviates ‘F

z−→ G, where z > 0’.
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formula. But no restriction is made on the amount of (pos-
itive) weight of the attack on the implication in relation to
the weights of the attacks on its subformulas. The following
principle bounds the weight of an attack on an implication
by the weight of the corresponding attack on the implied for-
mula. This seems reasonable, if we take into account that we
aim at characterizing strictly material implication, here.

(Bw. ⊃ ) If F
y−→ B and F

z−→ A ⊃ B, then z ≤ y.
No implication is attacked to a higher degree than
the implied formula.

Definition 3 The set of basic weighted attack principlesPB

consists of all principles mentioned in this section; i.e.,

PB = {(Aw. ∧ ), (Aw. ∨ ), (Cw. ∨ ), (Aw.⊥), (Aw. ⊃ ),

(Cw. ⊃ ), (Bw. ⊃ )}.

It is probably not surprising that the basic weighted prin-
ciples, even if imposed jointly, do not suffice to determine
any specific truth-functional semantics for the logical con-
nectives. In other words: further principles will be needed to
characterize particular fuzzy logics.

Example 5 Let us consider a scenario similar to Example 1,
referring to the recent economic growth of China and current
debates on policies about pollution. The involved statements
are the following:

– “Rapid economic growth occurs.” (G)
– “Very high level of CO2 emissions occurs.” (C)
– “Overall prosperity increases.” (P)
– “Awareness about the need of environmental protection
increases.” (E)

– “Strict regulations concerning CO2 emissions are put in
place.” (R)

– “Industry invests in ‘green’ production methods.” (I )

Again, in addition to such statements, also certain logical
compounds of these statements might well be considered
as claims of arguments. Let a concrete corresponding SAF
SE = (A , R→) be given by A = {I ,C, P,G,C ∧ P, P ∨
I , E ⊃ R} and R→ = {I−→C,C−→P∨ I ,G−→E ⊃ R}.

Imposing our attack principles for the unweighted frames
results in additional (implicit) attacks that augment R→;
namely, I−→C ∧ P , C−→I and G−→R using (A. ∧ ),
(C. ∨ ) and (C. ⊃ ), respectively.

So far, we have not yet considered any weights attached
to the indicated attacks. However, it is perfectly conceivable
that not all of the mentioned attacks are equally plausible or
equally agreed upon among a group of experts. Of course,
to systematically derive certain weights of particular attacks,
we would have to analyze the underlying arguments and not

just the claims of these arguments. (Remember that only the
later are recorded in SAFs.) But even without access to such
information, it is plausible that, e.g., arguments claiming I
are only considered partly successful in attacking arguments
claiming C . Similarly, also the two other attacks registered
in the SAF SE may receive weights less than 1. Concretely,
suppose that we have the following weights on the attack

relations: I
0.2−→ C , C

0.7−→ P ∨ I and G
0.5−→ E ⊃ R. Then

the logical principles discussed in this section entail that fur-
ther attacks than those considered explicitly so far should be
taken into account. For example, principle (Aw. ∧ ), applied

to I
0.2−→ C yields that arguments claiming I will attack argu-

ments claiming C ∧ P with at least the same weight (0.2)
with which they attack arguments claimingC . We record this

bywriting I
z1≥0.2−−−−→ C∧P . Similarly, we can apply (Cw. ∨ )

to C
0.7−→ P ∨ I and (Cw. ⊃ ) to G

0.5−→ E ⊃ R to obtain

C
z2≤0.7−−−−→ I and G

z3>0−−−→ R, respectively.

In Dunne et al. (2011), three different ways of imposing
weights are analyzed: weights can be interpreted asmeasures
of votes in support of attacks, as a measure of inconsistency
between arguments or, more generally, as rankings of dif-
ferent types of attack. Under all three interpretations at least
some of our attack principles are straightforwardly justified.
In particular, using the first interpretation it is easy to see that
(Aw. ∧ ), (Aw. ∨ ), (Aw.⊥), and (Aw. ⊃ ) hold. For exam-
ple, if x is the number of votes in support of the attack F−→A
and y is the number of votes in support of F−→B, then
the number of votes in support of F−→A ∧ B can be nei-
ther below x nor below y, because agents that support either
F−→A or F−→B, if acting rationally, will also support the
attack F−→A∧ B. (Aw. ∨ ), (Aw.⊥), and (Aw. ⊃ ) can be
justified analogously.

We do not aim at an analysis of concrete arguments or at a
new method for assigning weights to attacks between argu-
ments. Rather we want to explore under which conditions
given weighted argumentation frames can be used to extract
a many-valued semantics for the involved claims. For this
purpose we are now going to introduce a semantic notion
that re-frames logical validity as immunity with respect to
attacks that adhere to rationality principles like those dis-
cussed in this section, but also later, in Sects. 5, 6, and 8.

4 Argumentative immunity

Remember that we are actually not interested in con-
crete (weighted or unweighted) argumentation frameworks.
Ratherwewant to relate fuzzy logics to the realm of all possi-
ble weighted argumentation frames that satisfy certain attack
principles, like the ones discussed in the last section. Since
we cannot expect any givenWSAF to already contain explic-
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itly all arguments and all attacks that are required in order to
make it possible to satisfy such principles, we introduce the
following closure operation.

Definition 4 A WSAF S is logically closed with respect to
Γ if all formulas and subformulas of formulas in Γ occur as
claims of some argument in S.

We will suppress the explicit reference to Γ whenever the
context makes clear what formulas are expected to be avail-
able as claims of arguments in the relevant WSAF. For
example, in speaking of an argumentation frame S that sat-
isfies the principle (Aw. ∧ ) it is implicitly understood that
S is closed at least with respect to {A ∧ B} and thus contain
not only attacks (possibly of weight 0) on A ∧ B, but also
attacks on A and on B.

Definition 5 Let P be a set of (weight related) attack prin-
ciples, then we call a formula F P argumentatively immune
(shortly: P-immune) if there is no logically closed WSAF
(with respect to {F}) that satisfies the principles in P and
contains an argument that attacks F with some weight > 0.

Argumentative immunity is intended as a notion that pro-
vides a new view on logical validity, which is not based on
Tarski-style semantics, but rather only refers to claims of
arguments (that may or may not be interpreted in the usual
way) and to theweights of explicit or implicit attacks between
them. To illustrate its use, consider the following example
that refers to the axiom of (pre-)linearity and is thus charac-
teristic for all t-norm-based fuzzy logics.

Proposition 1 The formula (A ⊃ B) ∨ (B ⊃ A) is
{(Aw. ∨ ),(Cw. ⊃ ) }-immune.
Proof Let S be aWSAF that satisfies (Aw. ∨ ) and (Cw. ⊃ ).
We proceed indirectly and assume that S contains an argu-
ment X that attacks (A ⊃ B) ∨ (B ⊃ A) with some positive

weight z. By (Aw. ∨ ), we obtain X
x>0−→ A ⊃ B and

X
y>0−→ B ⊃ A. Applying (Cw. ⊃ ) to these attacks yields

a contradiction: we obtain X
u−→ A and X

v−→ B, where

u < v because of X
x>0−→ A ⊃ B and v < u because of

X
y>0−→ B ⊃ A. 
�
More generally, our aim is to investigate with respect

to which collections of attack principles some fundamen-
tal fuzzy logics are argumentatively sound and complete,
respectively. By argumentative soundness we mean that all
valid formulas are argumentatively immune; argumentative
completeness is the converse: all argumentatively immune
formulas are logically valid.

Regarding argumentative soundness, the following obser-
vation is crucial: argumentative immunity is preserved under
applications ofmodus ponenswhenever (Aw. ⊃ ) is satisfied.
More precisely the following holds.

Proposition 2 If G as well as G ⊃ F are argumentatively
P-immune, then also F is argumentatively P-immune as
long asP contains (Aw. ⊃ ).

Proof Suppose that F is not argumentatively P-immune.
This means that there is a WSAF S that is logically closed
(with respect to at least {G ⊃ F}), such that S satisfies all
principles in P and contains an argument X attacking F

with positive weight (X
z>0−→ F). We make the following

case distinction.

(1) X
x>0−→ G ⊃ F : this means that G ⊃ F , too, is not P

argumentatively immune.

(2) X
0−→ G ⊃ F : then according to principle (Aw. ⊃ )

we have X
x−→ G and X

y−→ F , where x ≥ y. But by

the assumption X
z>0−→ F we obtain that y and thus also

x is greater than 0. In other words, in this case the first
premise is not P argumentatively immune.

To sum up: we have shown, indirectly, that F isP argumen-
tatively immune if bothG andG ⊃ F areP argumentatively
immune, assuming that (Aw. ⊃ ) is among the principles col-
lected inP . 
�

5 Characterizing Gödel logic

Propositional finite-valued Gödel logics were introduced
(implicitly) by Gödel (1933) to show that intuitionistic logic
does not have a characteristic finite matrix. Dummett (1959)
later generalized these to an infinite set of truth values
and showed that the set of its tautologies is axiomatized
by intuitionistic logic extended by the prelinearity axiom
(A ⊃ B) ∨ (B ⊃ A). Hence infinite-valued Gödel logic G is
also called Gödel–Dummett logic or Dummett’s LC. Gödel
logics naturally turn up in a number of different areas of logic
and computer science. For instance, Dunn and Meyer (1971)
pointed out their relation to relevance logics; Visser (1982)
employedG in investigations of the provability logic of Heyt-
ing arithmetic. Most importantly in our context, G has been
recognized as one of the most important formalizations of
fuzzy logic (Hájek 2001).

Wewill first review the semantics and aHilbert-style proof
system for G and, then proceed in three steps.

1. We introduce two further attack principles (Gw. ⊃ ) and
(Cw. ∧ ) that have not been considered in Sect. 3.

2. We show that all formulas that are derivable in the
Hilbert-style system for Gödel logic are argumentatively
immune with respect toPB∪ {(Gw. ⊃ ), (Cw. ∧ ) }.
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3. Conversely, we show that formulas that all formulas that
are argumentatively immune in this specific sense are also
valid according to Gödel logic.

Recall the semantics of Gödel logic: every assignment I
of truth values in [0, 1] to propositional variables is extended
to non-atomic formulas as follows:

‖A ∧ B‖GI = min
(
‖A‖GI , ‖B‖GI

)
,

‖A ∨ B‖GI = max
(
‖A‖GI , ‖B‖GI

)
,

‖A ⊃ B‖GI =
{
1 if ‖A‖GI ≤ ‖B‖GI
‖B‖GI otherwise.

¬A is defined as A ⊃ ⊥, hence

‖¬A‖GI =
{
1 if ‖A‖GI = 0

0 otherwise

For the atomic formula ⊥ we have ‖⊥‖GI = 0. F is G-valid

if ‖F‖GI = 1 for all assignments I .
Gödel logic can be axiomatized in various ways. Below,

we will refer to the Hilbert-style system consisting in the
following axioms:

[⊃-1] : F ⊃ (G ⊃ F)

[⊃-2] : (F ⊃ (G ⊃ H)) ⊃ ((F ⊃ G) ⊃ (F ⊃ H))

[∧-1] : (F ∧ G) ⊃ F
[∧-2] : (F ∧ G) ⊃ G
[∧-3] : F ⊃ (G ⊃ (F ∧ G))

[∨-1] : F ⊃ (F ∨ G)

[∨-2] : G ⊃ (F ∨ G)

[∨-3] : (G ⊃ F) ⊃ ((H ⊃ F) ⊃ ((G ∨ H) ⊃ F))

[⊥] : ⊥ ⊃ F
[Lin] : (F ⊃ G) ∨ (G ⊃ F)

The only inference rules is modus ponens: from F and
F ⊃ G infer G. Note that the only axiom that is not already
valid in intuitionistic logic is Lin. The following fact has been
established by Dummett (1959).

Theorem 1 The above Hilbert-style system is sound and
complete for Gödel logic. In other words: a formula F is
derivable in the system iff F is G-valid.

To obtain a characterization of Gödel logic in terms of
argumentative immunity, we have to consider the following
additional principles for weighted attacks.

(Gw. ⊃ ) If F
x−→ A and F

y−→ B, where x < y, then

F
y−→ A ⊃ B.

If the implying formula is attacked with a smaller

weight than the implied formula, then the implica-
tion is attackedwith the sameweight as the implied
formula.

(Cw. ∧ ) If F
x−→ A, F

y−→ B, F
z−→ A ∧ B, then

z ≤ max(x, y).
An attack against a conjunction entails an attack
to at least one of its conjuncts with an equal or
higher weight.

Definition 6 PG = PB ∪ {(Gw. ⊃ ), (Cw. ∧ )}.
Note that in the presence of (Cw. ⊃ ), (Gw. ⊃ ) amounts
to a strengthening of (Bw. ⊃ ). In other words, (Bw. ⊃ ) is
redundant in PG. However, it is still interesting to see in
which cases it suffices to refer to (Bw. ⊃ ) instead of to the
stronger principle (Gw. ⊃ ).

Theorem 2 (Argumentative soundness of G) Every G-valid
formula isPG argumentatively immune.

Proof By Theorem 1 and Proposition 2, it remains to check
that the axioms for Gödel logic arePG-immune. In the fol-
lowing, we implicitly assume that all arguments occur in a
WSAF that is logically closed with respect to the axiom in
question. In each case we argue indirectly, deriving a con-
traction from the assumption that there is an argument X that
attacks the axiom in question with some positive weight.

[⊃-1]: Assume that X
z>0−→ F ⊃ (G ⊃ F), then by

(Cw. ⊃ ) we obtain f < y, where f is given by

X
f−→ F and y is given by X

y−→ G ⊃ F . On the
other hand, applying (Bw. ⊃ ) to the latter state-
ment yields y ≤ f , which is a contradiction.

[⊃-2]: Assume that X
z>0−→ (F ⊃ (G ⊃ H)) ⊃ ((F ⊃

G) ⊃ (F ⊃ H)). Then by (Cw. ⊃ ), we obtain

x < y, where X
x−→ F ⊃ (G ⊃ H) and X

y−→
(F ⊃ G) ⊃ (F ⊃ H). Since y > 0 we can apply
(Cw. ⊃ ) to obtain v < w, where X

v−→ F ⊃
G and X

w−→ F ⊃ H . Since w > 0, (Cw. ⊃ )

implies f < h, where X
f−→ F and X

h−→ H .We
can also apply (Gw. ⊃ ) to obtain y = w. Applying
(Gw. ⊃ ) again, justified by f < h, yields w = h.
For reference below, we assign the following labels
to some of the facts established so far: (1) x < y,
(2) f < h, and (3) y = h.
We show that each of the following cases leads to
a contradiction.

g < h: By (Gw. ⊃ ) this implies u = h. By (2)
we obtain f < u and thus can apply (Gw. ⊃ )

to obtain x = u. Jointly, this yields x = h and
hence, by (3), also x = y, which contradicts
(1).
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g ≥ h and f < g: By (Gw. ⊃ ) f < g yields
g = v. Because of (2), (Gw. ⊃ ) also leads
to w = h. Therefore g ≥ h implies w ≤ v.
By (Cw. ⊃ ), the latter entails y = 0, which
contradicts (1).

g ≥ h and f ≥ g: By transitivity we have f ≥ h,
which contradicts (2).

[∧-1]: Assume that X
z>0−→ (F ∧ G) ⊃ F . , then by

(Cw. ⊃ ) we obtain x < f , where X
x−→ F ∧ G

and X
f−→ F . On the other hand, by (Cw. ∧ ),

we obtain x ≥ max( f , g), where g is given by

X
g−→ G. This in particular implies x ≥ f .

Thus we have a contradiction since X cannot attack
(F ∧ G) ⊃ F with a weight that is both smaller
and greater or equal to f .

[∧-2]: Analogous to [∧-1].
[∧-3]: Assume that X

z>0−→ F ⊃ (G ⊃ (F ∧ G)). By
applying (Cw. ⊃ ) twice, we first obtain f < y

and, then g < x , where X
y−→ G ⊃ (F ∧ G),

X
x−→ F ∧ G, X

f−→ F and X
g−→ G. On

the other hand, by (Aw. ∧ ), we obtain x ≤ f or
x ≤ g. The latter case clearly contradicts g < x .
To obtain a contradiction also in the first case, we
apply (Gw. ⊃ ) to X

y−→ G ⊃ (F∧G) and X
x−→

F ∧G to obtain x = y, and consequently f < y =
x ≤ f .

[∨-1]: Assume that X
z>0−→ F ⊃ (F ∨ G). , then by

(Cw. ⊃ ) we obtain f < y, where X
f−→ F and

X
y−→ F ∨ G. On the other hand, by (Aw. ∨ ),

we have y ≤ f , which is in contradiction with the
previous assertion.

[∨-2]: analogous to [∨-1]
[∨-3]: Assume that X

z>0−→ (G ⊃ F) ⊃ ((H ⊃ F) ⊃
((G ∨ H) ⊃ F)). We first name the weights of
attacks by X on subformulas: X

x−→ (H ⊃ F) ⊃
((G ∨ H) ⊃ F), X

y−→ G ⊃ F , X
u−→ H ⊃ F ,

X
v−→ (G ∨ H) ⊃ F , X

w−→ G ∨ H , X
f−→ F ,

X
g−→ F , and finally X

h−→ H .
By successively applying (Cw. ⊃ ), we obtain y <

x , u < v, and w < f .
Next, (Gw. ⊃ ) yields v = f , because w < f , and
x = v, because u < v. Below, we will refer to
x = v = f as (∗).
Finally, we show that each of the following cases
leads to a contradiction.

g < f : By (Gw. ⊃ ) this implies y = f . This
contradicts y < x combined with (∗).

h < f : By (Gw. ⊃ ) this implies u = f . This
contradicts u < v combined with (∗).

g ≥ f and h ≥ f : This means that f ≤ min(g, h).
By applying (Aw. ∨ ) to X

w−→ G ∨ H we
obtain that g ≤ w or h ≤ w. But abovewe have
shown w < f , and thus obtain a contradiction
in both cases.

[⊥]: Assume that X
z>0−→ ⊥ ⊃ F . By (Cw. ⊃ ) we

obtain that x < f , where X
x−→ ⊥ and X

f−→ F .
This directly contradicts principle (Aw.⊥), which
requires that x = 1.

[Lin]: By Proposition 1.


�
We remarking in passing that, to guarantee the argumenta-

tive immunity of [⊃-2] and [∨-3], one cannot trade (Gw. ⊃ )

for any principle already contained inPB . Likewise one can
show that the ‘strong’ principle (Cw. ∧ ) is indeed needed to
render [∧-1] argumentatively immune. All are other axioms
are already PB argumentatively immune.

Before showing the converse of Theorem 2—namely,
argumentative completeness of G—let us observe that clas-
sical logic is not argumentatively sound with respect toPG.
F ∨ ¬F (i.e., F ∨ (F ⊃ ⊥)) is not PG-immune. Consider
a WSAF that just contains four arguments with claims ⊥, F ,
¬F(= F ⊃ ⊥) and F ∨ ¬F , respectively, and where the
weights of attacks between these arguments are as specified
in the following matrix:

w−→ ⊥ F F ⊃ ⊥ F ∨ ¬F
⊥ 1 0 1 0
F 1 0.5 1 0.5

F ⊃ ⊥ 1 1 0 0
F ∨ ¬F 1 0 1 0

It is straightforward to check that all principles ofPG are sat-
isfied in thisWSAF. Since F∨¬F is attackedwithweight 0.5
by F it is not argumentatively valid.

Theorem 3 (Argumentative completeness of G) Every PG
argumentatively immune formula is G-valid.

Proof We proceed indirectly. Suppose that F is not G-valid.
Thismeans that there is an assignment I such that ‖F‖GI < 1.
Taking I as a starting point, we construct a WSAF SI that is
logically closed with respect to {F} and satisfies the attack

principles inPG such that X
z>0−→ F for some (claim of an)

argument X in SI .
We define SI by assigning the weight 1 − ‖G‖GI to each

edge (H ,G) of the attack relation of SI . In other words,
we stipulate that every (claim of an) argument is attacked
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by every other argument and by itself with a weight that is
inverse to its degree of truth in I .

It remains to check that all attack principles in PG are
satisfied in SI .

(Aw. ∧ ): Let A ∧ B be an argument in SI and let
‖A ∧ B‖GI = u, ‖A‖GI = v, and ‖B‖GI = w. Then, by

definition of SI , we have F
1−u−→ A ∧ B, F

1−v−→ A, and

F
1−w−→ B for every argument F in SI . Moreover, since

‖A ∧ B‖GI = min(‖A‖GI , ‖B‖GI ), i.e., u = min(v,w)

we obtain 1 − u = max(1 − v, 1 − w), as required by
(Aw. ∧ ).

(Aw. ∨ ),(Cw. ∨ ): Let A ∨ B be an argument in SI and let
‖A ∨ B‖GI = u, ‖A‖GI = v, and ‖B‖GI = w. Then, by

definition of SI , we have F
1−u−→ A ∨ B, F

1−v−→ A, and

F
1−w−→ B for every argument F in SI . Moreover, since

‖A ∨ B‖GI = max(‖A‖GI , ‖B‖GI ), i.e., u = max(v,w)

we obtain 1 − u = min(1 − v, 1 − w). Consequently
(Aw. ∨ ) and (Cw. ∨ ) are satisfied.

(Cw. ⊃ ), (Aw. ⊃ ), (Bw. ⊃ ),(Gw. ⊃ ): Let A ⊃ B be an
argument in SI and let ‖A ⊃ B‖GI = u, ‖A‖GI = v,

and ‖B‖GI = w. Then, by definition of SI , we have

F
1−u−→ A ⊃ B, F

1−v−→ A, and F
1−w−→ B for every

argument F in SI . By the definition of the truth function
for implication in G, we obtain

u =
{
1 if v ≤ w

w otherwise.

and consequently

1 − u =
{
0 if 1 − w ≤ 1 − v

1 − w otherwise.
.

But this means that indeed all attack principles in PG
regarding implication are satisfied.

(Aw.⊥): By definition every argument in SI attacks ⊥ with
weight 1 = 1 − ‖⊥‖GI .


�
Remark 1 It is well known that the truth of formulas in Gödel
logic actually does not depend on the absolute values of the
degrees of truth (other than 0 and1) assigned to atomic propo-
sitions, but only on the relative order of these values. This fact
has repercussions for the argumentation-based interpretation
of Gödel logics discussed above. It means that argumentative
immunity with respect to the principles PG only concerns
the relative order of weights. This in turn implies that wemay
focus on weighted argumentation frames, where the weights
attached to attacks between arguments reflect rankings of

attacks, which is one of three possible ways of assigning
meaning to weights in Dunne et al. (2011).

6 Characterizing Łukasiewicz and product
logic

Gödel logic G is only one of three fundamental t-norm-based
fuzzy logics (Hájek 2001). The other two are Łukasiewicz
logic Ł and product logic P. In this section we explore attack
principles with respect to which Ł and P are argumentatively
sound and complete. The discussion of possible interpreta-
tions of these principles is deferred to Sect. 7.

Both Ł and P feature not only the ‘lattice conjunction’
or ‘weak conjunction’ ∧, specified by min like in Gödel
logic, but also a second, non-idempotent ‘strong conjunc-
tion’, which we will denote by & . It is specified by the
Łukasiewicz and product t-norm, respectively. More pre-
cisely, the (standard) semantics for strong conjunction in Ł
and P, respectively, is given by extending assignments I over
[0, 1] as follows:

‖A& B‖ŁI = max(0, ‖A‖ŁI + ‖B‖ŁI − 1),

‖A& B‖PI = ‖A‖PI · ‖B‖PI .

In both cases, implication is given by the respective residuum
of t-norm, which amounts to

‖A ⊃ B‖ŁI = min(1, 1 − ‖A‖ŁI + ‖B‖ŁI ),

‖A ⊃ B‖PI =

⎧⎪⎨
⎪⎩
1 if ‖A‖PI ≤ ‖B‖PI
‖B‖PI
‖A‖PI

otherwise.

Negation can be defined by ¬A = A ⊃ 0. Given ‖⊥‖ŁI =
‖⊥‖PI = 0, this amounts to the following truth functions.

‖¬A‖ŁI = 1 − ‖A‖ŁI ,
‖¬A‖PI =

{
1 if ‖A‖PI = 0

0 otherwise.

Attack principles that characterize strong conjunction for
Ł and P are obtained by stipulating that theweight of an attack
on a conjunction is determined by the respective co-t-norm:

(Łw.& ) If F
x−→ A, F

y−→ B, and F
z−→ A& B, then

z = min(1, x + y).

(Pw.& ) If F
x−→ A, F

y−→ B, and F
z−→ A& B, then

z = x + y − xy.

Correspondingly, we obtain the following attack principles
for implications:
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(Łw. ⊃ ) If F
x−→ A, F

y−→ B, and F
z−→ A ⊃ B, then

z = max(0, y − x).

(Pw. ⊃ ) If F
x−→ A, F

y−→ B, where x < y, and F
z−→

A ⊃ B, then z = y−x
1−x .

The condition x < y in (Pw. ⊃ ) indicates that we assume
the basic attack principles (Aw. ⊃ ) and (Cw. ⊃ ), which
cover the case where x ≥ y, are still present.

Definition 7

PŁ = PB ∪ {(Łw.& ), (Łw. ⊃ )},
PP = PB ∪ {(Pw.& ), (Pw. ⊃ )}.

Given corresponding Hilbert-style proof systems, it is
straightforward to show in analogy to Theorem 2 that Ł and
P are argumentatively sound relative toPŁ andPP, respec-
tively. Likewise, argumentative completeness can be checked
in prefect analogy to the proof of Theorem3. Since the proofs
are routine, lengthy, but not very informative, we just state
the corresponding results.

Theorem 4 (Argumentative soundness and completeness of
Ł) Every formula is PŁ argumentatively immune formula if
and only if it is Ł-valid.

Theorem 5 (Argumentative soundness and completeness of
P) Every formula isPP argumentatively immune formula if
and only if it is P-valid.

7 Justifying attack principles for Ł and P

While the basic attack principles PB introduced in Sect. 3,
but also the additional principles introduced in Sect. 5, are
easy to grasp2 also independently of any specific knowledge
about Gödel logic or fuzzy logics in general, this is hardly the
case for (Łw.& ) and (Łw. ⊃ ) or for (Pw.& ) and (Pw. ⊃ ).
Indeed, considering only what we have presented in Sect. 6,
one may suspect that Theorems 4 and 5 amount to purely
formal and in fact rather straightforward technical observa-
tions. It is therefore highly desirable to explore to which
extend these results can be employed to establish connections

2 Remember that we do not suggest that all these principles regard-
ing implicit attacks on logically compound claims should actually be
respected in any given weight argumentation frame. We only claim that
the principles collected in PG are fairly easy to understand and thus
help to assess which conditions are necessary and sufficient for estab-
lishing a systematic relation between fuzzy logics and semi-abstract
argumentation frames. While some of the principles, e.g., (Aw. ∧ ),
(Aw. ∨ ), indeed correspond to very natural assumptions on reason-
ing about conjunctive and disjunctive claims, other principles, e.g.,
(Cw. ∧ ) and (Gw. ⊃ ) are certainly much less natural and may well
be too demanding to be imposed on given collections of (explicit and
implicit) arguments.

between fuzzy logics, that shed new light on the informal
meaning on argument (attack) strength on the one hand and
degrees of truth or acceptability an the other hand.

Revisiting (Łw.& ) under the just mentioned perspective,
we suggest to attach the following informal reading to it:

(Łw.& ) If F
x−→ A, F

y−→ B, and F
z−→ A& B, then

z = min(1, x + y).
A conjunction is attacked with the weight that
results from summing up the weights of attacks on
its conjuncts; but the sum is capped at the maximal
weight.

Summing up weights of attack is certainly very reasonable
if the underlying arguments are independent. At this point it
is important to recall from Sect. 3, that formulas only denote
claims of arguments, but—except in a degenerated case—
are not already full arguments themselves. We stipulated that
F

x−→ A means that x is the overall weight of attack, that
we obtain if we take into account all arguments with claim
F that attack some argument with claim A in some spe-
cific way. This now provides a basis for a modeling scenario
that is able to explain the difference of the meaning of weak
conjunction (∧) and strong conjunction (& ): A ∧ A is log-
ically equivalent to A and consequently attacks on A ∧ A
are treated as indistinguishable from attacks on A; however,
determining the overall weight against the claim A& A calls
for exhibiting two independent attacks on A, unless we find
that already A alone is attacked with maximal weight. More
generally, according to the suggested interpretation of ŁPŁ-
argumentative immunity, F

x−→ A& B means that x is the
(truncated) sum of weights of independent attacks with claim
F on A and B, respectively. The consideration of strong con-
junction in the sense of Łukasiewicz logic thus seems to be
justified only with respect to argumentation frames that are
rich enough to contain (also) independent arguments against
corresponding claims.

Example 6 Recall Examples 2 and 3, where we considered
two arguments with the following respective claims: (A)
“Themajority of the population strongly supports its govern-
ment” and (B) “The majority of the population believes that
the economy is growing”. Considering the further claim (X)
“Many people are worried about their future”. There clearly
is some tension between X and A and, likewise, between X
and B. Assume that this tension is witnessed by attacking
arguments involving these claims. Suppose that we have no
direct access to these arguments, but that we are informed
that the following weights arise for an SAF, i.e., when we

abstract away from the underlying arguments: X
0.7−→ A and

X
0.9−→ B. On the basis of just this information, it is dif-

ficult to decide which weight one should assign to implicit
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attacks of arguments claiming X to arguments that claim the
conjunction of A and B. But under the following two assump-
tions it seems reasonable to follow principle (Łw.& ) and
correspondingly assign the maximal weight to the implicit
attack on the conjunctive claim: (1) The conjunction is under-
stood in the strong sense, meaning that the degree of truth
of the conjunction is, in general, strictly smaller than the
degree of truth of each conjunct. (2) The (unknown) argu-

ments that are represented in the abstraction as X
0.7−→ A

and X
0.9−→ B, respectively, are independent and therefore

mutually reinforce each other. In otherwords, (Łw.& ) yields

X
1−→ A& B, since we assume that we have independent

arguments against A and B, respectively, where the sum of
the weights of these arguments is at least as high as the max-
imal value for individual weights.

The case for product logic P seems to be more subtle than
the one for Ł. To assist the reader, we restate the correspond-
ing attack principle for strong conjunction:

(Pw.& ) If F
x−→ A, F

y−→ B, and F
z−→ A& B, then

z = x + y − xy.

The crucial expression x + y − xy is not only the co-t-norm
of the product t-norm, but is also known as probabilistic
sum, which hints at a suitable interpretation. To this aim, we
suggest to identify the weight of an attack on claim A by
an argument with claim F with the conditional probability
p(A|F), i.e., with the probability that A does not hold, given
that F holds (A denotes the event that is complementary to
that corresponding to proposition A). Arguably, this amounts
to an intuitively sound interpretation of argument strength, or
more appropriately: attack strength3 Similarly to the case for
Łukasiewicz logic, let us assume that A and B correspond to
two independent events. We then get p(A ∧ B|F) = x+ y−
xy if x = p(A|F) and y = p(B|F), where F corresponds
to any non-empty event.

Note that the above scenario does not directly support the
interpretation of arbitrarily nested logically compound state-
ments, since A, B, F refer to classical events (and moreover
the event F has to be non-empty). The scenario, however,
suggests the use of a two-tiered language: (1) at the inner
level, formulas are built up from atomic formulas using the
classical connectives ∧, ∨, ¬, intended to denote events; (2)
at the outer level, one may combine classical formulas using
connectives from product logic. The intended meaning of
formulas combined by strong (product) conjunction is then
given via (Pw.& ), interpreted as suggested. One might want
to explore generalizations of this setting using fuzzy events

3 We refer to Pfeifer and Fermüller (2018) for a more detailed presen-
tation and evaluation of this interpretation.

(Yager 1982) and more general combinations of inner and
outer language levels along the line of Hájek et al. (1995)
or Godo et al. (2003).

We have only addressed the interpretation of (strong) con-
junction, so far. The corresponding principles for implication
are uniquely determined, if we stipulate that the truth func-
tion for implication is the residuum of the truth function for
strong implication. In our context we can enforce residuation
by the following attack principle.

(Rw.⊃/&) F
x−→ (A& B) ⊃ C if and only if F

x−→ A ⊃
(B&C)

In presence of (Aw. ⊃ ) and (Cw. ⊃ ), (Rw.⊃/&) ensures
that (Łw.& ) entails (Łw. ⊃ ) and, likewise, that (Pw.& )

entails (Pw. ⊃ ).
Once implication is fixed, all other connectives—negation,

weak (lattice) conjunction and disjunction, but also strong
disjunction, the dual of strong conjunction—are uniquely
defined as well. It should be obvious by now, how corre-
sponding attack principles can be formulated.

8 An analysis of prelinearity

Recall that by Proposition 1 of Sect. 4 the formula (F ⊃ G)∨
(G ⊃ F) (prelinearity) is {(Aw. ∨ ),(Cw. ⊃ ) }-immune.
Given the centrality of prelinearity for t-norm-based fuzzy
logics, it may be useful to emphasize that only two rather
reasonable principles on implicit attacks are needed to render
this axiom argumentatively immune.

1. Corresponding to (Cw. ⊃ ): An implication is attacked
with some positive weight only if the implying formula
is attacked with less weight than the implied formula.

2. Regarding (Aw. ∨ ): The proof of Proposition 1 shows
that actually only aweak form of this principle is needed.
Namely, if a claim F is not attacked at all, then neither is
any (logically weaker) claim of the form F ∨G. Equiva-
lently: any positive attack on a disjunction entails positive
attacks on both disjuncts.

These observations are certainly encouraging from the per-
spective of fuzzy logic, since they seems to indicate that
rather mild conditions on implicit attack already single out as
possible ‘logics of weighted argumentation’ (in our current
sense) those that satisfy an axiom that can be considered a
hallmark of all deductive fuzzy logics. (See, e.g., Běhounek
and Cintula (2006) for a general characterization of fuzzy
logics that focuses on prelinearity.) However, it is impor-
tant to remember that prelinearity can also be expressed
in a purely implicative form. In particular the standard
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proof systems for Hajek’s BL, the logic of all continuous
t-norms (Hájek 1998), features the following version of the
axiom:

[PreLin:] ((F ⊃ G) ⊃ H) ⊃ (((G ⊃ F) ⊃ H) ⊃ H)

Likewise PreLin, rather than (F ⊃ G) ∨ (G ⊃ F), is
among the axioms of MTL, the logic of all left-continuous
t-norms (Esteva and Godo 2001). Therefore it is important
to take note of the following fact.

Proposition 3 PreLin is not PB argumentatively immune.

Proof Clearly, only the principles (Aw. ⊃ ), (Bw. ⊃ ), and
(Cw. ⊃ ) of PB are relevant. Recall that (Aw. ⊃ ) and
(Cw. ⊃ ) jointly express that an implication is attackedwith a
nonzero weight if and only if the implied formula is attacked
with a higher weight than the implying formula. (Bw. ⊃ )

bounds the weight of an attack on an implication by the
weight of an attack on the implied formula. It is therefore
straightforward to check that all three principles are satisfied,
if, in a given WSAF, for an arbitrary (claim of an) argument
X , the weights of corresponding attacks on the subformulas
of PreLin are as follows:

X
0−→ F,

X
1−→ G,

X
1−→ H ,

X
0.5−→ F ⊃ G,

X
0.5−→ (F ⊃ G) ⊃ H ,

X
0−→ G ⊃ F,

X
0.5−→ (G ⊃ F) ⊃ H ,

X
1−→ ((G ⊃ F) ⊃ H) ⊃ H ,

X
1−→ ((F ⊃ G) ⊃ H) ⊃ (((G ⊃ F) ⊃ H) ⊃ H).

Since PreLin is attacked with weight 1, it is not PB argu-
mentatively immune. 
�

Let us make two observations about the assignment of
weights to attacks used in the above proof. (1) Although
the weights on attacks to F , G, and H are in {0, 1}, some
implications involving only these subformulas are attacked
with the intermediaryweight 0.5. (2) Although the respective
weights of attacks on the immediate subformulas of (F ⊃
G) ⊃ H and of ((G ⊃ F) ⊃ H) ⊃ H are identical (0.5 for
the implying formula, and 1 for the implied formula), these
formulas are attacked with different weights. This motivates
the following definitions and further observation.

Definition 8 A WSAP is compatible with the unweighted
case if the weight of an attack on any formula whose subfor-
mulas are attacked with weights in {0, 1} is also either 0 or
1.

Definition 9 A WSAP has a functional weight assignment
if for each logical connective, the weight of an attack on a
compound formula only depends on the weights of attacks
on its immediate subformulas.

Proposition 3 can be strengthened as follows.

Proposition 4 PreLin is not PB argumentatively immune,
even if onlyWSAPswith functional weight assignments, com-
patible with the unweighted case are considered.

Proof It is straightforward to check that the followingweight
assignment is functional, compatible with the unweighted
case, and still satisfies (Aw. ⊃ ), (Bw. ⊃ ), and (Cw. ⊃ ).

X
0.3−→ F,

X
0.6−→ G,

X
0.9−→ H ,

X
0.4−→ F ⊃ G,

X
0.5−→ (F ⊃ G) ⊃ H ,

X
0−→ G ⊃ F,

X
0.7−→ (G ⊃ F) ⊃ H ,

X
0.8−→ ((G ⊃ F) ⊃ H) ⊃ H ,

X
1−→ ((F ⊃ G) ⊃ H) ⊃ (((G ⊃ F) ⊃ H) ⊃ H).

Since PreLin is attacked with weight 1, it is not PB argu-
mentatively immune. 
�

The question arises which further principles guarantee the
argumentative immunity of PreLin. Of course, sinceG, Ł, and
P are argumentatively sound, we know that each of (Gw. ⊃ ),
(Łw. ⊃ ), and (Pw. ⊃ ), separately, but in conjunction with
PB , suffices to render PreLin argumentative immune with
respect to corresponding, pairwise incompatible, set of attack
principles. Motivated by the search for a general, not logic
specific principle that suffices to justify PreLin, we suggest
the following.

(Dw. ⊃ ) If F
0−→ A, F

x−→ B and F
y−→ A ⊃ B, then

y ≥ x .
If the implying formula is not attacked at all, then
the implication is attacked with at least the same
weight as the implied formula.

Proposition 5 PreLin isPB ∪ {(Dw. ⊃ ) } argumentatively
immune.
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Proof For some claim X , let the weights of corresponding
attacks to subformulas of PreLin as follows:

X
f−→ F,

X
g−→ G,

X
h−→ H ,

X
w−→ F ⊃ G,

X
x−→ (F ⊃ G) ⊃ H ,

X
v−→ G ⊃ F,

X
u−→ (G ⊃ F) ⊃ H ,

X
y−→ ((G ⊃ F) ⊃ H) ⊃ H ,

X
z−→ ((F ⊃ G) ⊃ H) ⊃ (((G ⊃ F) ⊃ H) ⊃ H).

Assume that z > 0; then (Cw. ⊃ ) entails x < y, and, since
y > 0, further also u < h.
We now distinguish two cases.

g ≥ f : By (Cw. ⊃ ) we have v = 0, and therefore can
apply (Dw. ⊃ ) to obtain u ≥ h, which contradicts
u < h.

g < f : By (Cw. ⊃ ) we have w = 0, and therefore, by
(Dw. ⊃ ), h ≤ x . On the other hand, applying
(Bw. ⊃ ) to the right subformula of PreLin yields
y ≤ h. Since x < y, we obtain x < h, contradicting
h ≤ x .

These contradictions imply that PreLin cannot be attacked
with positive weight. 
�

9 Remarks on related Literature

To our best knowledge, the idea to explore principles that
constrain on the weights of (implicit) attacks on logically
complex claims in terms of the strength of attacks on corre-
sponding subformulas is new. These logical attack principles
for weighted argumentation frames generalize those intro-
duced in Corsi and Fermüller (2017) for unweighted frames,
intended to capture some plausible intuitions about implicit
attacks that result from considering straightforward logical
connections between attacked claims. We emphasize that
this approach does not seek to improve argumentation-based
reasoning per se, but rather is motivated by the problem
to characterize fuzzy logics in terms of graded concepts
that do not simply take the notion of degrees of truth for
granted. The challenge here is to derive truth functions
for logical connectives from specific rationality principles,
rather than to impose them directly. From this perspec-
tive our approach can be classified as alternative to other
attempts to derive fuzzy logics from various frames of inter-
pretation, like voting semantics (Lawry 1998), acceptability

semantics (Paris 1997), re-randomising semantics (Hisdal
1988), and in particular Giles’s game-based semantics for
Łukasiewicz logic (Giles 1977, 1982).

From an argumentation perspective, quite different lines
of literature appear to be related. As alreadymentioned in the
introduction, various generalizations of ordinary argumenta-
tion frames to grade versions have been suggested, see, e.g.,
Coste-Marquis et al. (2012), Krause et al. (1995) and Matt
and Toni (2008). In particular, an impressive group of experts
joined to investigate weighted argument systems in Dunne
et al. (2011). While Dunne et al. (2011) mainly focuses
on computational aspects, also different possible interpreta-
tions of weights of attacks are discussed there. Moreover, the
authors of Dunne et al. (2011) forcefully argue that weights
on attacks should be considered as a primitive notion from
which one can derive weights for (claims of) arguments,
rather than the other way round. We have adopted this view
in our own approach.

Janssen et al. (2008) introduced fuzzy argumentation
frameworks to model the relative strength of attacks. They
generalize Dung-style extensions from sets to fuzzy sets of
arguments and establish a connection to fuzzy answer set pro-
gramming. A more elaborate formalization of argumentative
reasoning based on fuzzy logic is presented by Alsinet et al.
(2008). The authors introduce PGL+, a possibilistic logic
over Gödel logic, extended with fuzzy constants. PGL+ is
then incorporated in a possibilistic defeasible logic program-
ming language, intended to support argumentative reasoning
in presence of imprecise (fuzzy) information. More recently,
Budán et al. (2017) suggest to add meta-level information
to arguments using labels referring to fuzzy evaluations.
These labels are propagated through an argumentative graph
according to the relations of support, conflict and aggregation
between arguments.

Finally, in light of Sect. 7, it should be mentioned
that several papers investigate probabilistic versions of
Dung’s argumentation frameworks. In particular, Li et al.
(2012) introduced probabilistic argumentation frameworks
that attach degrees of belief to arguments. A more specific
use of probabilities for assumption-based argumentation in
jury-based disputes is presented by Dung and Thang (2010).
Hunter (2013) generalizes this concept to logic-based argu-
mentation with uncertain arguments. However, none of the
mentioned papers explicitly consider constraints like our
weighted attack principles for implicit arguments.

10 Conclusion

We set out to explore the possibility to characterize certain
deductive fuzzy logics in terms of weighted argumentation
frames. Both concepts refer to degrees or grades: in the first
case to degrees of truth and in the latter to graded strength of
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attacks. As indicated in Sect. 9 different combinations of both
concepts have been considered in the literature. However,
the idea to connect the semantics of fuzzy logics to weighted
attacks seems to be novel. Ourmain tool for establishing such
a link are rationality principles (attack principles) that refer
to the logical form of claims of attacked arguments.We intro-
duced the notion of argumentative immunity with respect to
given collections of attack principles. While some of these
principles reflect general and natural desiderata concern-
ing weights of attacks on logically compound claims, given
weights of attacks on their immediate subformulas, other
principles are quite specific and might well be questionable
or outright inadequate for specific instances of the abstract
framework. Our results reveal that not only basic principles
of the first kind, but also specific principles of the latter
kind are needed in order to characterize Gödel, Łukasiewicz
and product logic in terms of argumentative immunity. This
should neither come as a surprise, nor should it be inter-
preted as a largely negative result. We rather submit that our
findings present specific characteristics of the various logics,
as expressed by different axioms, from a new perspective,
namely that of (possibly very strong and specific) rational-
ity principles for weighted attacks between arguments. Like
other semantic frameworks (Bennett et al. 2000; Giles 1982;
Lawry 1998; Paris 1997, 2000; Ruspini 1991), the estab-
lished connection may help to select or discard particular
meanings that one can attach to ‘degrees of truth’ in given
application scenarios. It remains to be explored which types
of applications may benefit from the argumentation-based
semantics of fuzzy logics suggested here.

As already emphasized in the introduction, we do not
pretend to contribute to the practice or theory of abstract
argumentation frameworks, at least not directly. We rather,
conversely, ‘borrow’ some basic concepts from abstract
weighted argumentation to assemble a new type of semantic
framework for fuzzy logics—one that is based on attacks of
graded strength, rather than on a direct assignment of degrees
of truth. From the point of view of fuzzy logic, it is par-
ticularly encouraging that different versions of the central
prelinearity axiom can be justified in various ways in this
manner.

Our scenario calls for further research in several direc-
tions. While, the focus on the three fundamental t-norm-
based fuzzy logics, G, Ł, and P seems natural for a first
exploration of this new territory, already our own results indi-
cate that one should probably consider weaker logics, like BL
or MTL, in order to identify more general and more robust
links between attack principles and fuzzy logics.

The rather brief remarks inSects. 3 and6 regarding various
possible interpretations of the attack relation and on differ-
ent options for constrainingweights on combined attacks, are
only intended as first hints toward a more systematic inves-
tigation of coherent interpretations of argument strength. In

particular, we recently joined forces with the cognitive scien-
tist Niki Pfeifer to explore probabilistic interpretations with
respect to concrete data from experimental psychology. A
first assessment along this line can be found in Pfeifer and
Fermüller (2018).

Also our investigation of prelinearity in Sect. 8 (and partly
already in Sect. 4) is by nomeans definitive, but should rather
for example, various principles regarding the monotonicity
of attack weight with respect to weights of attacks on implied
and implying subformulas come to ourmind as candidates for
further attack principles that justify prelinearity. Moreover,
also other characteristic properties and corresponding axioms
of t-norm-based fuzzy logics, like residuation, seem worth
exploring.

Finally, we recall that validity for important t-norm-based
fuzzy logics, in particular for the three logics investigated
here, is co-NP-complete. This means that corresponding
forms of argumentative immunity can, presumably, be
checked much more efficiently than semantic properties that
naturally appear in the context of non-monotonic reasoning
(Gottlob 1992). This might render such checks attractive as
a kind of coherence check for argumentative claims with
respect to logically implicit attacks.
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