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Abstract

Stochastic computing (SC) is an alternative computing paradigm that processes data in the form of long

uniform bit-streams rather than conventional compact weighted binary numbers. SC is fault-tolerant

and can compute on small, efficient circuits, promising advantages over conventional arithmetic for

newer and smaller computer chips. However, SC is primarily used in scientific research, not in practical

applications. Digital sound source localization (SSL) locates speakers using multiple microphones in

cell phones, laptops, and other voice-controlled devices. SC has not been integrated to SSL in practice

nor in theory until now. In this work, for the first time to the best of our knowledge, we replace a

conventional computational block of an existing SSL algorithmwith an SC-based design and implement

a working SC-based sound source localizer. The practical part of this work shows that the proposed

stochastic circuits do not rely on conventional analog-to-digital conversion and can process data in the

form of pulse-width-modulated (PWM) signals. The proposed SC design consumes up to 39% less area

than the conventional reference design. The SC-based design can consume less power depending on

the computational accuracy, for example, 6% less power consumption for 3-bit inputs. The presented

stochastic circuit is not limited to SSL and is readily applicable to other practical applications.
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Kurzfassung

Stochastik Computing (SC) ist eine Alternative zu konventioneller binärer Computerarithmetik, die

mit langen Bit-Folgen anstelle von kurzen binären Zahlen rechnet. Zurzeit wird SC hauptsächlich in der

Forschung verwendet, obwohl es durch hohe Fehlertoleranz und kleine effiziente Schaltungen Vorteile

gegenüber konventioneller Computerarithmetik verspricht. Digitale Sound Source Lokalisation (SSL)

ortet Audioquellen mit zwei oder mehreren Mikrophonen und kommt in Mobiltelefonen, Laptops und

anderen sprachgesteuerten Geräten zum Einsatz. Bisher wurde weder in der Theorie noch in der Praxis

versucht SSL mit SC zu kombinieren. In dieser Arbeit ersetzten wir, für einen bestehenden SSL Al-

gorithmus, einen konventionellen Rechenblock durch einen auf SC basierenden. Der praktische Teil

der Arbeit zeigt, dass stochastische Schaltungen keine klassischen analog-zu-digital Konverter benöti-

gen, sondern auch mit analog erzeugten Pulsen rechnen können. Unsere Analyse ergibt, dass digitale

stochastische Schaltungen bis zu 39% kleiner sind und je nach Rechengenauigkeit mehr oder weniger

Energie benötigen. Beispielsweise einen 6% geringeren Energieverbrauch bei 3-bit Rechengenauigkeit.

Die vorgestellte stochastische Schaltung ist nicht auf SSL begrenzt, sondern kann ohne Mehraufwand

in anderen Anwendungen und Bereichen eingesetzt werden, da sie ohne zusätzliche Änderungen im

restlichen Rechensystem auskommt.
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Chapter 1

Introduction

In the 1960s, researchers in the United States and the United Kingdom developed the fundamental

concepts of stochastic computing (SC) [2–5]. Inspired by the human brain, researchers computed basic

mathematical operations with sequences of random pulses. In the 1980s, however, weighted binary

computations seemed to be a better computation paradigm, and research interest in SC decreased [6,7].

Conventional computing using weighted binary numbers has dominated the digital world since then.

Improvements in chip manufacturing have propelled rapid technological advances, and the processing

performance of computer chips increased exponentially. Moore’s Law has successfully predicted a

downscaling of transistor sizes and a constant increase of transistor density. Smaller technology nodes

achieve higher performance and clock speeds, while power consumption remains constant [8].

The shrinking size of transistors has imposed a challenge in maintaining reliability because smaller

circuits are more vulnerable to soft errors1 [9]. Eventually, chip manufactures will not be able to fur-

ther reduce the transistor size and power consumption due to physical constraints. The limitation

motivates more research in parallel computing (e.g., multi-core), specialization (custom chips) and al-

ternative computing paradigms such as approximate computing and SC. The alternative computing

paradigms focus on reducing power consumption and error tolerance rather than achieving accurate

computing [10]. An increasing interest in artificial intelligence and neural networks contributed to

more research on SC in the last decade. Nevertheless, SC has not superseded the conventional weighted

binary computing in a single practical application. Computing a single mathematical operation with

stochastic bit-streams is simple, but multi-stage processing and efficient generation of bit-streams are

complex and have several limitations [1]. In addition, most research focus on applying SC to applica-

tions such as neural networks for video and image processing [11–14]. Other applications are rarely

studied. To the best of our knowledge, this thesis is the first work that applies SC to sound source

1Soft errors cause data to change and can occur due to external environmental factors, such as high-energy atmospheric
neurons.
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2 Chapter 1. Introduction

localization (SSL).

In recent years, recording and processing audio is gaining more and more attention as modern

communication technology has become a part of our daily lives. Voice control as a human-machine

interface is widespread. For example, it appears in smart homes and personal assistants (e.g., Amazon

Alexa and Google Assistant). Current laptops and smartphones are equipped with multiple micro-

phones to record user voices and ambient sound. A set of microphones allows spatial filtering of the

recorded sound, which increases the signal-to-noise ratio (SNR) by suppressing most of the noise out-

side the direction of interest. The process of digitally listening at the speaker’s location is known as

beamforming which requires the exact position of the speaker [15]. SSL is part of the audio signal

processing whenever the user does not speak directly into a microphone.

In this chapter, we first discuss the motivation of this thesis, following by an explanation of its goals

and scope. Finally, we provide an overview of the thesis structure.

1.1 Motivation

Researchers in SC community search for practical applications in which SC could come out ahead and

replace conventional binary computing. To date, there has not been sufficient research that examines

the application of SC to SSL. This thesis analyzes the accuracy and potential hardware area and power

savings. Efficient sound signal processing is an active field of research as many consumer devices are

battery-powered. SC promises high power efficiency that can contribute to longer battery lives. SSL is a

real-time application, starting with capturing audio data and ending in location estimations. Therefore,

analyzing the power consumption of the signal pre-processing and analog-to-digital conversion for SC

could lead to further power savings. Developing a sound source localizer using SC can further increase

the research and public interest in SC.

1.2 Goal and Scope

This thesis targets the computationally intensive parts to replace their costly conventional binary com-

putations with low-cost SC alternatives. The emphasis is on applying SC to a new application, namely

SSL, designing a novel SC-based functional unit, and analyzing the limitations and advantages of SC

for SSL. The work focuses on time-discrete SC, although a time-continuous variant of the sound source

localizer is also feasible. However, complete design and study of a time-continuous SC-based sound

source localizer requires further research and is beyond the scope of this thesis. This study focuses on

the recently introduced deterministic SC [16–18] because it allows computations with lower latency
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compared to the conventional random SC. The thesis also aims to show the challenges, constraints and

promises of using SC in this new application domain but does not contribute to the theory behind SSL.

1.3 Overview

This thesis consists of six chapters within threemain parts. In PART I (Chapters 2 and 3), we provide the

required background on SC and SSL; Chapter 2 gives an overview of SC. Chapter 3 deals with the theory

of SSL and provides an overview of sound source localizers. Chapter 5 elaborates some modifications

to the signal processing chain to realize the proposed SC-based design. In PART II (Chapters 4 to 6), we

start by formal statement of the research question and hypotheses, followed by an overview of the used

methods and research methodology. Chapter 5 discusses the details of the practical implementation.

Chapter 6 presents the accuracy and resource consumption results. PART III (Chapters 7 and 8) contains

the study’s interpretation, discussion and conclusion.



Chapter 2

Stochastic Computing

This chapter introduces stochastic circuits for those who may be new to the subject. It also demon-

strates the limitations and implications of using randomness in stochastic computations. The first part

of this chapter introduces conventional random SC, stochastic formats (unipolar, bipolar) and SC arith-

metic. We focus on single-line (i.e., serial) SC and will not cover multi-line (parallel) SC as it adds more

complexity to the proposed circuits. However, multi-line stochastic circuits are feasible and could be

used for SSL [12, 19]. The last section of this chapter introduces deterministic SC, which addresses

many limitations of random SC.

2.1 Fundamental Concepts

In SC, numbers are coded into stochastic sequences 0s and 1s. A numerical value encoded into a stochas-

tic sequence is called a stochastic number (SN). The logic circuit for doing computations on SNs is called

a stochastic circuit [6, 20]. SC is possible in both the time-continuous and the time-discrete domain,

but some operations such as delaying and storing stochastic sequences are simpler in the time-discrete

domain. The concept of coding a value into a SN is fundamentally different from the concept of con-

ventional computing1. Stochastic sequences have voltage level 1 (high) with probability ρ and level

0 (low) with probability 1 − ρ. In the time-discrete domain, researchers use the term (stochastic) bit-

stream or bit-sequence rather than stochastic sequences. A bit within a random bit-stream is 1 with

probability P(Si = 1) = ρ and is 0 with probability 1 − ρ. We use the notation Si for the ith bit in

bit-stream S with length N (0 ≤ i ≤ N − 1). A stochastic sequence S with 20% 1s and 80% 0s is an

SN with probability ρ = 0.2. The relative position of 1s within a stochastic sequence does not affect the

represented value. Since different stochastic sequences can represent the same value, SNs are defined

by probability rather than a particular order of bits. Bit-streams are considered as Bernoulli processes.
1In weighted binary representation, the value of a number is coded into the position of 1s within the binary number.

4



2.1. Fundamental Concepts 5

Each bit is independent of other bits and is 1 with the same probability of ρ [21]. The expected value

(E) of 1s in bit-stream (N1) is the product of the total length and probability:

E(N1) = Nρ (2.1)

ρ =
E(N1)

N
= lim

N→∞
N1

N
. (2.2)

Since in practice the bit-stream length is limited, we need to convert the data from a continuous to

a discrete probability. This conversion involves a quantization error similar to the quantization error

of analog-to-digital converters (ADCs). The resolution of the bit-stream increases by increasing the

bit-stream length. If the probability cannot be represented with a finite bit-stream length, we can write

ρ̂ to indicate the approximation:

ρ ≈ ρ̂ =
N1

N
(2.3)

The quantization behavior in unipolar SC is similar to the unsigned weighted binary Q-format (Qi.j)

with i = 0 integer bits and j fraction bits. However, the bit-stream length is exponentially greater than

the number of fraction bits (N = 2j), also denoted as equivalent precision. The relation N = 2j is

a disadvantage of SC compared to weighted binary computing. We need to double the length of bit-

streams to gain one extra bit of equivalent precision. For example, a two-bit bit-stream can represent

the probabilities ρ = [0, 0.5] and a two-bit weighted binary can represent [0, 0.25, 0.5, 0.75]. A two-bit

bit-stream can represent two different probabilities, but a two-bit fixed-point weighted binary number

can represent four different values. This is generalized to n different numbers with an n-bit bit-stream

and 2n numbers with an n-bit binary number.

In general, a computing system consists of several processing blocks linked to each other. A pro-

cessing block receives data from the previous block and passes the results to the next one. A stochastic

circuit can replace one or more weighted-binary processing blocks of the computing system. Typ-

ically, we want to implement a processing block that is computationally intensive in stochastic do-

main to maximize the savings in resource consumption. Implementing a processing block that requires

floating-point or high data precision is impractical in stochastic domain as extremely long bit-streams

are needed. Stochastic circuits are best suited for low to medium precision computations. Within con-

ventional computing systems, inputs to a processing block are usually available in weighted binary

representation and the results should be passed as a weighted binary number to the next processing

block. For that reason, an SC processing system in general consists of three sub-blocks. First, a stochas-

tic number generator (SNG) converts inputs from weighted binary representation to SNs. Second, an
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SC circuit that does the actual computation. Third, a probability estimator (PE) transforms the results

into weighted binary numbers. The third block is also known as a back-converter or stochastic-to-

binary converter. Note that the first and the last block usually have to convert multiple numbers in

parallel when the processing block has more than one input and output, respectively. SNGs and PEs

are arranged in an array in multi-input stochastic circuits. A block diagram of an SC processing system

is illustrated in Figure 2.1.

SNG array SC Circuit PE arrayBinary
Inputs

Binary
Outputs

Figure 2.1: Fundamental elements of an SC processing system [1].

A>B

Random #
generator

B
A

B
B

Bit-stream SBinary # (a)

bi

Figure 2.2: An SNG consists of a comparator and an RNG. The inputs are weighted binary numbers
with B-bits precision, and the output is a stochastic bit-stream.

An SNG is the first sub-block of an SC processing system that generates stochastic sequences with

the desired properties (probability, statistics). Figure 2.2 shows the block diagram of a simple SNG. The

illustrated SNG has a data input (binary number), an output (SN), an RNG, and a binary comparator.

The stochastic sequence generation works as follows. The comparator output is Si = 1 whenever the

input (a) is greater than the random number (bi) and is Si = 0 otherwise.

Si =

����
1, a > bi

0, a ≤ bi

(2.4)

The statistics of randomnumbers determine the statistical properties of the stochastic sequence [22].

The distribution of 1s within the stochastic sequence is uniform and randomwhen the random numbers

are uniformly distributed and statistically independent. RNGs have been extensively studied in digital

and analog implementations for the time-continuous and time-discrete domain [23–27]. Linear feed-

back shift registers (LFSRs) are commonly used as RNGs because of their simple and efficient design.

Still, prior research showed that the RNGs often take up to 90% of the area of SC designs [28]. AB-bit
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LFSR generates a periodic sequence with a maximum period length of 2B , where B is the bitwidth

of the shift register. The output sequence is pseudo-random, rather than truly random, because it is

periodic and can be reproduced by having the feedback function and the seed value. However, if B is

large, the pseudo-random number can be considered as a random number. For more details on random

SNGs, the readers are referred to [7].

The stochastic circuit block performs the arithmetic operations and consists of combinational or

sequential circuits (e.g., finite state machines [14]). The stochastic circuit receives SN from the SNG

and passes the results to the PE.

A PE converts SNs to weighted binary numbers. In the time-continuous domain, a voltage integra-

tor works as a PE [20]. In the time-discrete domain, the PE often consists of two sub-blocks. A binary

counter converts SNs to weighted binary representation in the [0, 2B − 1] interval, with B being the

bitwidth of the counter. The counter value increments whenever the current bit of the bit-stream is 1.

The second sub-block scales the counter value to the needed range. The counter value (N1) needs to be

divided by the length of the bit-stream if the result should be a probability estimation (ρ̂) in the [0, 1]

interval.

ρ̂ =
1

N
N1 =

1

N

N−1�
i=0

Si (2.5)

Ideally, N is a power of two. In that case, the division equals shift operations and can be imple-

mented with less computational effort. In summary, SNGs generate SNs, and PEs convert the results

(i.e., SNs) back to conventional binary. We next discuss correlation and its significance for SC.

2.1.1 Correlation

In the previous section, we discussed how data values are converted from binary to stochastic repre-

sentation by encoding values into the probability of observing 1s in a stochastic sequence. Correlation

and dependency between stochastic bit-streams affect the accuracy and arithmetic of stochastic cir-

cuits. Before introducing the arithmetic, we introduce the concepts of positively correlated, negatively

correlated and uncorrelated bit-streams. In the standard definition for correlation (i.e., Pearson corre-

lation), two random variables X and Y are uncorrelated when their correlation coefficient γ(X,Y ) is

zero. Two events are independent when their joint probability equals the product of their probabilities.
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γ(X,Y ) =

�
(X − E[X])(Y − E[Y ])



σXσY

= 0. (2.6)

P(Xi = 1, Yi = 1) = P(Xi = 1)P(Yi = 1) = ρxρy (2.7)

Where E is the expected value, and σX , σY are the standard deviations of X and Y , respectively.

P(Xi = 1) = ρx is the probability of observing 1s. When two bit-streams are independent, they are

also uncorrelated. Generally, this is not true the other way aroundwith the definitions in Equations (2.6)

and (2.7). The traditional definition for correlation is unsuitable for SC because it imposes constraints

on the expected value of the stochastic sequences [29, 30]. In SC, we want an indicator (a metric) not

affected by the number of ones in the bit-stream. For that reason, a new correlation measure, namely

stochastic cross-correlation (SCC) [31], has been proposed for SC. The SCC lies in the [−1, 1] interval

and is defined as follows:

SCC(X,Y ) =

����
ρAND(X,Y )−ρXρY

min(ρX ,ρY )−ρXρY
if ρAND(X,Y ) > ρXρY

ρAND(X,Y )−ρXρY
min(ρX ,ρY )−max(ρX+ρY −1,0) otherwise

(2.8)

This definition of correlation has the convenient property that the measure does not depend on

the encoded values. Further, if SCC = 0, the two random numbers (i.e., SNs) are uncorrelated and

independent. The SCC gives the value +1 for maximum overlap of 1s and 0s between the two bit-

streams. In this work, SCC(X,Y ) = +1 stands for positively correlated bit-streams. SCC(X,Y ) =

−1 shows minimum overlap of 1s between the bit-streams and is called negatively correlated. Table 2.1

gives three examples for uncorrelated, negatively correlated and positively correlated bit-streams.

Table 2.1: Examples for correlation between bit-streams.

Stochastic Bit-stream S1 Stochastic Bit-stream S2 SCC(XS1 , YS2)

11110000 11001100 0 -> uncorrelated
11110000 00001111 -1 -> negatively correlated
11111100 11110000 1 -> positively correlated

In SC, some operations (such as minimum using AND and maximum using OR gate) require posi-

tively correlated input bit-streams, while some operations (such as multiplication) require uncorrelated

bit-streams. There are also operations that need negatively correlated inputs (see Section 2.3.2). The

block diagram in Figure 2.3 shows an SNG that generates negatively correlated bit-streams S1 and S2

when the switch is connected to SCC= −1. The bit-streams S1 and S2 are positively correlated when
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the inverter is bypassed, and the switch is connected to SCC= +1. Correlation between bit-streams

can also be manipulated after the generation step by using additional circuitry. We refer the readers

to [16, 30] for more information on correlation manipulating circuits.

A>B

Random #
generator

B
A

B
B

Bit-stream S1
Binary # (a1)

bi

B

Binary # (a2)

B
A

Bit-stream S2

SCC=+1

SCC=-1

Figure 2.3: The SNG generates negatively or positively correlated random bit-streams depending on
the position of the switch.

2.1.2 Errors in Stochastic Computing

SC is a computation paradigm that trades higher energy efficiency for lower accuracy and precision.

The primary sources of errors are 1) correlation error, 2) rounding errors, 3) random fluctuations error,

and 4) approximation errors. Other error sources are physical errors from unreliable hardware or bit-

flips from environmental effects [6].

1) Correlation Error. Bit-streams are ideally correlated or uncorrelated after generation. In

stochastic circuits with successive operations, the SCC between bit-streams is often unknown or a mix

between perfectly correlated and ideally uncorrelated. The arithmetic of stochastic circuits (introduced

in Section 2.3) is inaccurate if the level of correlation between bit-streams is not as needed.

2) Rounding Error. Errors from quantization reflect that an N -bit bit-stream can only represent

N different numbers. For unsigned SC, the representable values are 0, 1
N , 2

N , . . . N−1
N , 1 ∈ [0, 1]. Any

other probability needs to be rounded to the nearest representable value. For example, an SNG that

generates a bit-stream withN = 16 bits cannot encode the probability ρ = 0.1555. The bit-stream can

have two 1s and represent x = 2
16 = 0.125 or three 1s and represent x = 3

16 = 0.1785. In both cases,

the SNG produces an error that can only be reduced by increasing N . When the bit-stream length

increases, the computation latency increases. Longer bit-streams increase the processing time and the

power consumption of arithmetic operations. In general, SC is limited to smaller precisions, and the

quantization error is one of the main sources of error.

3) Random Fluctuations Error. Inherent randomness in generating random bit-streams causes
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random fluctuations error particularly when generating short bit-streams. In such cases, the number of

ones in the bit-stream fluctuates depending on the RNGs used resulting in representing different values.

In Section 2.4, we discuss that the deterministic methods of SC [32] can eliminate the error caused by

random fluctuations.

4) Approximation Error. In SC, some arithmetic functions are approximated. A common example

is approximation of the addition operation by union (zapprox = x1 + x2 − x1x2). The error (|x1x2|)
might be acceptable because computing the union instead of addition is more efficient in SC.

2.2 Stochastic Numerical Formats

In SC, values are encoded into the probability of observing 1s in stochastic sequences. So far, we as-

sumed that a stochastic sequence with probability (ρ) represents a number (a) with a simple strategy of

a = ρ. This mapping is called unipolar coding. Other formats are required when SN should represent

negative numbers or numbers greater than 1. In what follows, we introduce the most common formats

of single-line SC that were introduced in the literature [6, 33, 34].

Unipolar Format: In the unipolar format, the probability of observing 1s in the stochastic sequence

is equal to the represented value. The SN is the ratio of the bit-stream length to the number of 1s in the

bit-stream (N1). The ratio N1
N is the approximation of the probability from Equation (2.3).

a = P(Si = 1) = ρ (2.9)

x =
N1

N
=

1

N

N−1�
i=0

Si (2.10)

The value of the SN in Equation (2.10) is equivalent to the function implemented by the probability

estimator in Equation (2.5). The SNs (and probabilities) are limited to the [0, 1] interval. Compared to

the weighted binary representation, the range of the unipolar format is equal to the unsigned fixed-

point Q-format Qi.j with i = 0. For example, the bit-stream S = 0101000 has the probability ρ = 2
6 .

The SN in the unipolar format is x = ρ = 2
6 = 1

3 . When we take the difference of two successive,

representable values, the resolution is 1
N . To reach an equivalent resolution of 2−B (as in a comparable

fixed-point representation), a bit-stream of N = 2B+1 bit length is needed.

Bipolar Format: The bipolar format enables signed computations. It maps the probabilities to the

[−1, 1] interval. The represented value is the difference in probabilities of observing 1s and observing

0s.
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a = P(Si = 1)− P(Si = 0) (2.11)

= ρ− (1− ρ) = 2ρ− 1 =
2E(N1)−N

N
(2.12)

x =
2N1 −N

N
=

2

N

N1�
i=0

Si − 1 (2.13)

The binary input values and the result can be in the [−1, 1] interval. The representable interval

equals the signed Q-format2 (Qi.j) with i = 0. To give a simple example of an SN, the bit-stream S =

010100 has the probability ρ = 2
6 . The corresponding SN in the bipolar format is x = 2× 2

6 − 1 = −1
3 .

We can also calculate the value by replacing all 0s with -1s and computing the mean. The bit-stream

S = 0101100 becomes S� = -1 1 -1 1 -1 -1 with x = 1
N

�N−1
i=0 S�

i = 1
6(2 × 1 − 4 × −1) = −1

3 .

The bipolar format doubles the representable range compared to the unipolar format. The difference

between two successive, representable values is 2
N . The required bit-stream length to resolve 2−B is

doubled compared to the unipolar format (N = 2B+1).

2.3 Stochastic Arithmetic

In the previous sections, we discussed the conversion from and to stochastic sequences, introduced

different mappings between probability and SN, and the concept of correlation. The numerical format

and correlation of bit-streams affect the arithmetic of stochastic circuits. This thesis focuses on the

arithmetic for the linear formats and standard digital components. We first assume that the distribution

of 1s in the bit-streams is independent and uncorrelated (SCC = 0). In the second part, we show how

correlations between bit-streams change arithmetic. The illustrated examples are all in unipolar format

for uncorrelated inputs.

2.3.1 Uncorrelated Stochastic Computing

SC can perform arithmetic operations with simple standard logic gates. We show a series of examples

that illustrate the most basic SC operations and highlight the strengths of SC. The functions are ex-

plained with simple probability theory. For shortened notation, we write ρS instead of P(S1 = 1) for

the probability of observing 1 in bit-stream S1. We also write x = ρ = N1
N for SNs in the unipolar

format and x = 2ρ − 1 = 2N1−N
N for SNs in the bipolar format. We neglect that the resolution is

generally not sufficient to exactly represent the probability. For a derivation of the arithmetic, we refer

2The sign is separately counted and not included in i.



12 Chapter 2. Stochastic Computing

x z
1 1 0 1 0 1 1 1

ρx = 3
4

0 0 1 0 1 0 0 0

ρx = 1
4

Figure 2.4: The NOT-gate is the stochastic ρz = 1− ρx operation

x
z

0 1 1 0 0 1 1 0

ρx, ρy : 1
2

1 0 1 0 1 0 1 0
y

0 0 1 0 0 0 1 0

ρz =
1
4

Figure 2.5: The AND-gate is the stochastic ρz = ρxρy operation

the readers to the literature [6, 33].

NOT Operation The NOT operation is the simplest stochastic operation. A NOT-gate has one input

and inverts all bits of the input bit-streams. The output probability is ρz = 1 − ρx. The arithmetic

depends on the SN format and is shown in Equation (2.14) of Table 2.2. A computation example for

a bit-stream with probability ρ = 3
4 (SN x = 3

4 in the unipolar format) is shown in Figure 2.4. The

probability of observing 1s in the output bit-stream is 1
4 .

AND Operation If and only if both inputs are 1 at the same time, the output is 1. The output bit-

stream has a probability of ρz = ρxρy for two input bit-streams with uncorrelated probabilities ρx and

ρy . AND gate is the stochastic circuit for multiplication in the unipolar format. A graphical example

for an AND-gate multiplication for 1
2 × 1

2 = 1
4 is shown in Figure 2.5.

OR Operation The OR operation computes the union of the input probabilities ρz = ρy ∪ ρx =

ρy + ρx − ρyρx. If at least one of the random bits at the inputs of OR-gate is 1, the output is 1. The

arithmetic for SNs in bipolar and unipolar formats is listed in Equation (2.16). The OR operation can

approximate the addition in the unipolar format if the input values are small (xy << x+ y). Figure 2.6

shows an example for the inputs ρx = 1
2 and ρy = 1

4 . The output is z = x ∪ y = 5
8 < x+ y = 6

8 .

MUX Operation Amultiplexer (MUX) unit has at least three inputs. Two of them are data inputs, and

one is the select input. The select input is not correlated to the two inputs and usually has a probability
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x
z

0 1 1 0 0 1 1 0

ρx : 1
2

1 0 0 0 0 0 1 0
y

ρy : 1
4

1 1 1 0 0 1 1 0

ρz =
5
8

Figure 2.6: The OR-gate is the stochastic ρz = ρx + ρy − ρxρy operation

x

z

y

Sel

0 1 1 0 0 1 0 1

ρx : 1
2

1 1 1 0 1 1 1 0

ρy : 1
4

1 0 1 1 0 1 1 0

ρSel :
1
2

1 1 1 0 0 1 1 1

ρz =
6
8

0

1 S

Figure 2.7: The MUX-gate is the stochastic ρz = (1− ρSel)ρx + ρSelρy operation

of ρs = 0.5. The current bit at the select input determines which of the two inputs is forwarded to

the output. A MUX unit randomly mixes the two input bit-streams and computes a scaled addition of

the two inputs for both unipolar and bipolar formats. In terms of probabilities, the output probability

is ρz = (1− ρSel)ρx + ρSelρy . Equation (2.15) in Table 2.2 lists the equation, and Figure 2.7 shows an

example of scaled addition with a MUX unit.

XNOR Operation XNOR performs multiplication on bipolar bit-streams. Throughout this thesis,

whenever we discuss AND-gates for unipolar representation, it also applies to XNOR-gates for bipolar

bit-streams.

2.3.2 Exploiting Correlation in Stochastic Computing

The accuracy of arithmetic from Section 2.3.1 highly depends on the statistical properties of the input

bit-streams. This section considers SC with positive (SCC = +1) or negative (SCC = −1) correlation
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Table 2.2: SC arithmetic with two input SNs (x, y) and the output (z). The input bit-streams are uncor-
related.

Operation Unipolar Bipolar
NOT z = 1− x z = −x

(2.14)
AND z = xy z = x+y+xy−1

2 (2.15)
OR z = x+ y − xy z = x+y−xy+1

2 (2.16)
MUX z = x+y

2 z = x+y
2 (2.17)

XNOR z = 1− x− y + 2xy z = xy
(2.18)

between bit-streams. Table 2.3 lists the arithmetic for correlated unipolar SNs for MUX units and OR-

gates. An OR-gate can either compute the maximum value function or a saturating addition [31]. The

MUX operation is unaffected by the correlation between data inputs but requires an uncorrelated select

input.

Table 2.3: Unipolar SC Arithmetic with two correlated SNs (x, y).

Operation Negatively Correlated
SCC(X,Y ) = −1

Positively Correlated
SCC(X,Y ) = +1

OR z = min(1, x+ y) z = max(x, y)
(2.19)

MUX z = x+y
2 z = x+y

2
(2.20)

2.4 Deterministic Stochastic Computing

Truly random or pseudo-random numbers have been used since the early days of SC. Each bit of an

N -bit SN is randomly chosen to be 1 with some probability. The results are usually not exact due to

random fluctuations. This section discusses the deterministic methods of SC with the same arithmetic

as random SC from Section 2.3. Recent research on deterministic SC showed that computation using

SC constructs can be completely accurate. Besides quantization errors, running the computation for an

exact number of clock cycles is the only constraint to produce completely accurate results with these

deterministic methods. Different approaches have been proposed that compute on the same stochastic

circuits but use different SNGs. SNGs based on low-discrepancy sequences (e.g., Sobol sequences) and

unary bit-streams, are two common variants of deterministic SNs [16, 18].

In so-called unary bit-streams, the 1s are grouped at the end or beginning of the bit-stream. We can
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generate unary bit-streams by replacing the RNG (Figure 2.2) with an up-counting (or down-counting)

counter. In the first clock cycles, the counter value will be less than the weighted binary input of the

SNG, and the output bit-stream is 1 followed by a cluster of 0s because the counter value is greater than

the weighted binary input. Usually, we generate more than one period of 1s followed by 0s, letting the

counter overflow and repeat. The time-continuous equivalent of a periodic unary bit-stream is a pulse-

width-modulated (PWM) signal. The similarities are shown in Figure 2.8. A PWM signal is defined by

a duty cycle (D) and a frequency (f = 1
period ). The duty cycle is the fraction of time in which the signal

is high and is equal to the probability of observing 1s in the time-discrete domain [20].

Time

Bo
ol
ea
n
Va

lu
e

LOW

HIGH

Duty Cycle

Period

Figure 2.8: Encoding values into the duty-cycle of PWM signals and. Repeated deterministic unary
bit-streams are equal to sampled PWM signals

Deterministic SCworks with periodic, correlated or uncorrelated bit-streams. Each bit of a period of

the first bit-stream should see each bit of a period of the second bit-stream exactly one time to fulfill the

SCC = 0 property of Equation (2.8) (alternative to the SNG in Figure 2.3) [32]. The operation must run

for the correct number of clock cycles, the product of both period lengths. Running the computation

for more (fewer) cycles causes that any two bits meet each other multiple (zero) times. In this work,

we focus on relatively prime bit-streams [32] when computing with uncorrelated bit-streams. We also

discuss the clock division method because it has approximately the same hardware complexity as the

relatively prime method [6, 16, 18].

The relatively prime method computes with unary bit-streams with relatively prime period

lengths. In the example below, we generate one bit-stream with a period of 4-bits, the second with

a period of 3 bits, and connect them to an AND-gate. The important point is that both periods are rel-

atively prime (with GCD(4, 3) = 1) and that the AND operation runs for the least common multiple

(LCM) of both period lengths (LCM(4, 3) = 12). Remind that the AND operation in Equation (2.21)

computes the multiplication for uncorrelated bit-streams [18].
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1

3
= 100100100100

3

4
= 111011101110

1

3
× 3

4
=

3

12
= 100000100100 (2.21)

The clock division method with unary bit-stream uses two counters as RNGs with the same

resolution but different increment rates. The first counter increments every clock cycle, and the second

counter increments after N clock cycles, with N being the period of the first counter. Equation (2.22)

shows the multiplication with the clock division method for N = 4

1

4
= 1000 1000 1000 1000

3

4
= 1111 1111 1111 0000

1

4
× 3

4
=

3

16
= 1000 1000 1000 0000. (2.22)

2.5 Summary

SC can be summarized as computing with probabilities encoded in discrete bit-streams or analog pulses.

The distribution of 1s can be random, pseudo-random, low-discrepancy, or unary. The examples show

that randomness is not mandatory for SC, and simple counter-based SNGs can be used to perform exact

computations. The bit-stream lengths can be shorter compared to conventional random SC because

there are no random fluctuations with deterministic SNs. The results of deterministic SC are predictable

and can be completely accurate.
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Sound Source Localization

The previous chapter introduced the concept of replacing one part of a conventional processing system

with an SC implementation. SSL algorithms exist for both frequency and time domain. Search-based

SSL algorithms in the frequency domain are superior in locating multiple sources simultaneously but

are more computationally intensive. We refer the readers to [15,35,36] for the frequency domain algo-

rithms. In this thesis, we use a time domain algorithm without Fourier transforms and assume only one

active source. Structurally, this chapter consists of three thematic sections. First, we discuss the con-

cept of locating sound sources with multiple microphones. Next, we address three main components

of sound source localizers. Finally, we present a simple SSL algorithm.

3.1 Sound Capture with Microphone Arrays

The microphone array is a set of closely positioned microphones packed in a single device. SSL starts

withmultiplemicrophones capturing soundwaves. A singlemicrophone cannot deal with 3D-Processes,

such as reverberation and ambient noise, whereas multiple microphones can record sound sources spa-

tially selective through beamforming [37,38]1. The sound processing system’s accuracy, precision, and

capabilities improve with the computational complexity of signal processing and the number of micro-

phones in the array. In this section, we introduce technical terms related to sound source localizers.

3.1.1 Coordinate System and Direction of Arrival

The spherical coordinate system describes points and vectors in the three-dimensional space. Micro-

phones and sound sources are defined relative to the center of a microphone array with elevation θ,

azimuth ϕ and radius r. We use the convention that elevation is zero in the x, y plane and increases in
1Beamforming allows listening to the sound coming from one direction while suppressing the background noises and

reverberation.

17
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the z-axis. The elevation angle is often replaced by the polar angle measured from the z-axis so that

the polar angle is 90 − θ. Equation (3.1) shows the conversion between the Spherical and Cartesian

coordinate systems. Small microphone arrays estimate direction-of-arrivals (DOAs), a vector from the

center of a microphone array to a sound source, instead of the absolute source locations. Equation (3.2)

and Figure 3.1 show the definition and an illustration of a DOA vector.

x
y

z

DOA

ϕ

θ

Figure 3.1: Visualization of azimuth and elevation (ϕ,θ) that define the DOA vector. The DOA points
from the center of the microphone array to the sound source.

4p =


r · cos θ · cosϕ

r · cos θ · sinϕ

r · sin θ

 =


x

y

z

 (3.1)

4ς =


cos θ · cosϕ

cos θ · sinϕ

sin θ

 (3.2)

3.1.2 Near- and Far-Field

Sound sources generate spherical sound waves that propagate away from sources. An observer close

to the source (near-field) can measure the curvature of arriving sound waves. The curvature decreases

for an observer far away (far-field), and the sound waves appear planar [35]. Microphone arrays in

near-field conditions can estimate the curvature of arriving sound waves by calculating the frequency-
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dependent phase delay at each microphone. The curvature of sound waves is proportional to the dis-

tance of sound sources. Generally, SSL with small microphone arrays in far-field conditions is limited

to 1D or 2D DOA estimations without estimating the distance. However, DOA estimations of mul-

tiple small microphone arrays can be used to compute the absolute position of a sound source with

triangulation.

Analyzing sound-pressure levels (SPLs) at each microphone is an alternative or complementary

method to estimate distances. The SPL decreases with distance to sources. This method works in near-

field and far-field behavior, but the accuracy decreases for sources in far-field. Subsequently, we assume

far-field conditions and don’t attempt to estimate the distance to sources.

3.1.3 Ambiguity of Sound Source Localization

Amicrophone arraywith twomicrophones can estimate angles in the [−π/2, π/2] interval. For simplic-

ity, we use the convention that both microphones and source are in the xy-plane, and the microphones

are on the y-axis. Using this spatial distribution, the one-dimensional (1D) DOA vector ς 1D forms a

right angle with the z-axis:

4ς 1D =


cosϕ

sinϕ

0

 (3.3)

x (0°)

y (90°)

Mic 1

Mic 2

DOA 1DOA 2

ϕϕ

Figure 3.2: The coordinate system and the ambiguity in locating sound sources with two microphones.
DOAs, with equal phase delay, form a cone of uncertainty.

Figure 3.2 shows a microphone array with two microphones. In the example, sound waves reach

microphone one before they reach microphone two. The signal delay is equal for DOA1 and DOA2.
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Any DOAs with the same azimuth ϕ (but any elevation θ) will result in the same time delay estimation

(TDE). We can visualize the so-called cone of uncertainty by rotating the DOA vector in Figure 3.2

around the y-axis.

Spatial aliasing also causes ambiguity in SSL results. A microphone array can measure the same

signal delay for multiple different DOAs, even if the θ angle is equal and we only consider sound sources

in one half-plane. The concept of spatial aliasing is shown in Figure 3.3. The frequency of arriving sound

waves is high enough to allow spatial aliasing. The microphones measure the same delay for ϕ = 0

and ϕ = ϕ1 ̸= 0.

x

y
Mic 1

Mic 2

DOA 1

d · sin(ϕ) = λ

d

ϕ

x

y
Mic 1

Mic 2

DOA 2
d

Figure 3.3: Spatial aliasing for high frequencies. DOA 1 and DOA 2 result in the same phase delay.

We observe spatial aliasing for sources that emit a sine wave with frequency f1 = v
λ1
, if Equa-

tion (3.4) is fulfilled [15]

π
d

λ1
sin(ϕ1) = π

d

λ1
sin(ϕ2) + n2π , ϕ1 ̸= ϕ2 (3.4)

and v = 343m s−1 is the velocity of sound waves. Equation (3.4) is solvable when d ≤ λ1
2 , as two

different azimuth angles yield the same phase shift. We prevent spatial aliasing if the distance between

microphones is smaller than half of the maximum wavelength. SSL can tolerate some spatial aliasing

if the most dominant frequencies are below that threshold. Digital or analog lowpass filters are used

before SSL to dampen high-frequency components and reduce spatial aliasing.
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For example, the Amazon Echo Dot has six microphones arranged in a circle around one centered

microphone. The distance between two microphones is d = 77.8mm. Frequencies above f = 2.2 kHz

will cause partial aliasing

2d < λ =
v

f
(3.5)

f <
v

2d
(3.6)

f <
343

0.1556
= 2.2044 kHz. (3.7)

SSL for speech is still possible because the most dominant frequencies of humans are below 2 kHz.

3.2 Sound Source Localizers

A sound source localizer system consists of three subsystems. The preprocessing subsystem usually

segments, filters and weights the audio stream. The preprocessing subsystem splits the stream into

short data blocks because the SSL algorithm calculates source locations based on short audio frames.

Following that, an SSL algorithm processes a single frame when the voice activity detection (VAD)

detects a valid signal. By averagingmultiple one-frame-estimations or using knowledge about the room

geometry and array position, an SSL post-processor can further enhance the precision of estimations

[15]. The following subsections introduce the individual blocks in more detail. A specific example for

the one-frame SSL algorithm is presented in Section 3.3.

Signal Pre-
Processing

One
Frame SSL

SSL Post-
Processing

VAD Storage

Signal
Streams

Averaged
Estimation

Signal
Frames

Estimation &
Confidence

Figure 3.4: Block diagram of a sound source localizer

3.2.1 Preprocessing

The first subsystem of a sound source localizer prepares raw microphone signals for the SSL algorithm.

The preprocessing usually includes low-pass or band-pass filtering, framing and VAD. Fourier trans-

form and signal weighing are optional tasks depending on the application and SSL algorithm.



22 Chapter 3. Sound Source Localization

Signal filtering: Most devices locate human speakers. The frequency band for human speech lies

below≈ 6 kHz, but the main signal power is below 2 kHz. We extract the relevant frequency band and

avoid disturbance through background noise or localization of other active sound sources with filters.

Filtering further reduces spatial aliasing.

Framing: Two reasons for segmenting streams into data blocks are 1) moving sound sources and 2)

efficiency. First, when a speaker moves from A to B, the location estimation is only valid for a limited

period. Second, many signal processing algorithms are more efficient when using data blocks instead of

continuous streams. The window lengthNframe is a trade-off between responsiveness, computational

effort and accuracy. A larger block size increases computational demands and latency of computa-

tion [35]. The motion of the source should be negligible during one frame (window length multiplied

by the sample period). The simplest segmentation is a multiplication with a rectangular function. The

rectangular function function is 1 forNframe samples and 0 otherwise. We can increase the accuracy of

the SSL if we avoid the sharp transitions (high-frequency components) by multiplying the audio frames

with a window function, for example, the Hanning window

wH [n] =

����
0.5[1− cos( 2πn

Nframe−1)] : 0 ≤ n < Nframe

0 : else.
(3.8)

Voice Activity Detection: VAD avoids inaccurate source estimations from breaks between words

and sentences. Also, somewords are quiet and not suitable for correct location estimations. An example

VAD algorithm is an averaging filter that averages the absolute value of the microphone signals and

compares it with a certain threshold.

Weighting: The phase-transform performs well in realistic and reverberate environments [36]. It is

robust to reverberation but sub-optimal under reverberation-free conditions. It is usually computed in

the frequency domain, but it can also be calculated in the time domain [39].

3.2.2 One Frame Sound Source Localization

The theory of SSL can be divided into algorithms that locate sources in either one or two processing

steps. One-step methods are based on the steered response power. These algorithms form a beam and

steer over predefined spatial points, for example, a 5° grid. Algorithms based on the steered response

power require a Fourier transform in the preprocessing subsystem because they compute the source
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location in the frequency domain. Two-step methods rely on TDEs for each microphone pair [15, 36].

This thesis focuses on two-step methods that are further discussed in Section 3.3.

3.2.3 Post Processing

The post-processor is the final subsystem of a sound source localizer that receives the one-frame SSL

estimations and optional confidence levels. The post-processor uses application-specific information

and previous one-frame location estimations to enhance the accuracy of the sound source localizer.

Application-specific information can, for example, include the location of the microphone array. If the

microphone array is mounted on a wall, it can filter out false estimations that come from behind. The

SSL post-processor has access to previous location estimations and can average over multiple frame

estimations. If the microphone array tracks a single speaker, subsequent valid estimations should ap-

proximately be in the same area. If a recent location estimation is far from the current average location,

it can be identified as false.

3.3 Sound Source Localization Based on Time Delay Estimation

Algorithms based on TDE use the propagation speed of sound waves to localize sources [40]. A sound

wave reaches each microphone with a relative delay. The time delay is calculated pairwise for each

microphone pair. Note that anM -microphone array hasNpairs =
M(M−1)

2 unique pairs. Selecting two

microphonesm1,m2 (that lie on the y-axis), a sound wave in the far-field reaches microphonem2 with

a delay that depends on the azimuth angle ϕ of the DOA:

τd =
d

v
sinϕ, (3.9)

where d is the distance between microphones.

3.3.1 Cross-Correlation

An intuitive computing approach for TDEs is the cross-correlation (CC) function. CC indicates the

similarity signals. The function has a sharp peak at a position proportional to the time delay. For

discrete inputs, CC is defined as

c[n] = (x1 / x2)[n]
def
=

∞�
i=−∞

x∗1[i]x2[i+ n] (3.10)
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where x∗1 is the complex conjugate of signal x1. Since microphone signals have no imaginary com-

ponent, we can set x∗1 = x1. If c[imax] is the maximum value of the CC function and imax is different

from zero, then audio waves reached microphone 1 before or after microphone 2. If the time delay

between the microphone signals increases, then |imax| increases. The maximum time delay is reached

when both microphones and the source are lined up. The TDE τd is used in Equation (3.9) to calculate

the azimuth (ϕ) of the DOA:

τd =
imax

fs
(3.11)

ϕ = arcsin
τd · v
d

= arcsin
imax · v
fs · d (3.12)

Equation (3.12) results from of a simple one-frame SSL algorithm that uses twomicrophones. Spatial

aliasing causes a broader peak in the CC function. The CC function always has one clear peak if

dominant frequencies are below the spatial aliasing threshold (d ≤ λ
2 ) and only damped frequencies

cause spatial aliasing. A larger microphone array can calculate source locations in a closed-form [41]

or search-based. For search-based algorithms, the final location estimation is the position with the

minimum root-mean-square error of calculated and measured TDEs. For a detailed analysis, see [15,

35, 42].

3.3.2 Resolution

The resolution of CC is determined by the distance between the microphones and the sampling fre-

quency. For example, d = 0.066m between two microphones and a sample rate of fs = 15.6 kHz

results in 2×NMaxLag + 1 = 7 different possible time delays

τd,max =
d

v
= 192 µs (3.13)

NMaxLag = τd,max ∗ fs = 3 (3.14)

with τd,max being the maximal time delay. A maxima of the CC at c[imax = NMaxLag] corresponds

to a time delay of τd = imax/fs = 192 µs, whereas a maxima at c[imax = NMaxLag − 1] means a time

delay of 128 µs. The resolution is limited to 64 µs. Interpolating the CC function increases the resolution

with additional computational effort. We can interpolate the maximum between two samples instead

of using the closest sampled value c[imax].
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3.4 Summary

This chapter showed that we need at least two microphones to locate sound sources. For two micro-

phones, the SSL is synonymous with one-dimensional DOA estimation. The one-frame SSL processing

block is the core of the sound source localizer and computes the CC function of both microphone sig-

nals. Next, the SSL algorithm searches the peak of the CC result. The peak index (imax) is forwarded

to the SSL post-processing block.



Chapter 4

Research Method

The previous two chapters introduced important concepts of SC and SSL. In summary, SC is an alter-

native computing paradigm, and SSL is one specific signal processing task. So far, both research fields

have not been brought together in practical applications or theory. In this chapter, we explain the re-

search contribution of applying SC to SSL. This chapter starts with the research question, followed by

an explanation and justification. We then discuss the hypotheses emerging from the research question

and my research methods to test them. In the third section, we explain the target SSL architecture for

this thesis and discuss the relevant decisions made during research design. In the final section of this

chapter, we argue for the contribution and summarize the novelties of this thesis.

4.1 Thesis Statement

This thesis aims to apply SC to the field of SSL. Can we gain an advantage by considering SC during the

design of a sound source localizer? The consideration of SC should result in measurable and practical

advantages over solely using conventional computation and thus should motivate further research for

more practical applications of SC.

Justification: SC is a promising computing paradigm that currently is little used in practical appli-

cations. The consideration of SC in a new application could be a research question on its own given

the multiple variants of SC that can be used. Given the limited scope of a MSc thesis, we choose one

specific SSL algorithm and one variant of SC that sounded most promising. The focus on a representa-

tive example allows a detailed analysis of advantages and disadvantages and can answer whether it is

worth the additional design effort.

26
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4.2 Research Hypotheses

Not all properties and characteristics of a computing system are equally important. A single disadvan-

tage can outweigh multiple advantages, so it is essential to consider a broad spectrum and justify their

relevance. The analysis and evaluation in later chapters are based on the hypotheses below. We first

state the individual hypothesis, followed by a justification and description. Below each hypothesis, we

describe and justify the research methods used to test the statements.

4.2.1 Resource Usage

The first hypothesis asserts that a sound source localizer’s power and area consumption can be reduced

using SC. Saving resources in computation systems is an active field of research and crucial for modern

battery-powered devices. Mobile phones, laptops and personal assistants require the speaker location

to enhance their functionality.

First, we implement the SC and conventional designs in a standard hardware description language

(HDL) (very-high-speed integrated circuit hardware description language (VHDL)). We then use the

synthesis reports of VIVADO (Xilinx field-programmable gate array (FPGA) development tool) and

Synopsys Design Compiler (Development tool for application-specific integrated circuits (ASICs) to

compare the resource consumption. Two independent tools with two different technologies (FPGAs

and ASICs) allow an unbiased comparison as both technologies have strengths and weaknesses.

4.2.2 Precision and Computation Speed

The second hypothesis claims that being limited to low precision and slow computations (disadvantages

of SC) are no drawbacks in SSL. A disadvantage of SC is that higher accuracy requires exponentially

longer bit-streams and processing times. Lower computation precision should not limit the accuracy

of location estimations.

We will study the effect of low precision computations by analyzing the accuracy of location es-

timations. We will show accuracy results for 3,4,5, and 8-bit precision inputs. If the results are still

accurate in low precision implementations, then the exponential relation between bit-stream length

and accuracy of SC is tolerable. Longer bit-streams (higher precision) require faster clock speeds of the

stochastic circuit to keep up with the sampling rate of the audio data. Faster clocks, however, increase

the dynamic power consumption, which will be studied and evaluated during power analysis.
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4.2.3 Approximate Computing

We further argue that we can use approximate functions in SC and still get accurate source estimations.

Some operations in SC are exact, and others are approximate. In this thesis, we analyze if SSL can

tolerate approximate computing. Approximate circuits are often smaller and consume less power than

exact implementations.

One version of the sound source localizer with SC uses anOR-gate to accumulate products of the CC

function. Wewill compare the localization accuracy of approximate implementationswith exact results.

The OR-gate as an approximate adder in unipolar SC is a well-known example of saving resources. It

is of interest if approximation negatively affects the accuracy of SSL estimations. SSL requires the

maximum position in the CC result but not the exact value unless we interpolate in a post-processing

step.

4.2.4 Near-Sensor Processing

We further test if redesigning the analog signal processing path for SC results in power savings and

lower complexity. SC requires some pre-processing, which could bemore efficient in the analog domain,

for example generating bit-streams. ADCs are not mandatory if the bit-streams are generated in the

analog domain.

Potential advantages in near-sensor processing will be analyzed by building a custom analog board,

discussed in Chapter 5. We will do power measurements (Chapter 6) and theoretical analysis in Chap-

ter 7.

4.2.5 Design Complexity

The fifth hypothesis is that adding SC to SSL does not necessarily increase the design complexity and

general usability. The design complexity and constraints with SC are comparable with conventional

only designs. Highly custom and optimized designs are generally more efficient than generic solutions.

Additional effort or design constraints should not outweigh the advantages of using SC.

All digital stochastic circuits should use Complementary metal-oxide-semiconductor (CMOS) tech-

nology and synchronous circuits. Chapter 7 will evaluate the design from a system perspective and

compare general constraints like input counts and scalability. As this thesis analyzes a new practical

application for SC, it is essential to be compatible with existing widespread technologies.

4.2.6 Properties excluded from analysis

The following properties and topics are not covered in this thesis.
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1. SC is error-tolerant. Small fabrication nodes and low power make computations susceptible to

bit flips (a faulty transition from zero to one or the other way around). In SC, a bit flip is always as

severe as a bit flip in an equivalent conventional computation circuit’s least significant bit (LSB).

Error tolerance, however, is alreadywell-known, and sufficient research exists. There is no reason

to assume that error tolerance is more critical for SSL than for other applications

2. SC can save power by exploiting progressive precision. SC approaches the correct result

during computation. As the computation time progresses, the result becomes more accurate.

This behavior is known as progressive precision. The accuracy can be controlled dynamically

when lower precision is required, for example, during the power-saving mode.

Progressive precision is higher for certain types of SC than others. This thesis focuses on deter-

ministic unary bit-streams with relatively low progressive precision. Preemptively terminating

the computation would cause high errors and save relatively little power.

4.3 Research Design and Justification

To answer the research question and test some of the hypotheses from the previous section, we design a

simple representative sound source localizer with the SSL architecture based on Figure 3.4. The design

uses two microphones, analog signal processing, digital TDE with CC, an average filter as SSL post-

processing, and light emitting diodes (LEDs) as outputs. The design diagram is shown in Figure 4.1 and

briefly explained in Section 4.3.1. Following that, the justification of the five most important design

decisions is outlined in Section 4.3.2.

4.3.1 System Design

Figure 4.1 shows an overview block diagram of the sound source localizer used in this thesis. The thesis

focuses on the CC and Custom and Reference Analog processing blocks. The signal processing starts

with a custom analog processing that generates the PWMs of two microphone signals. Those signals

are sampled by an FPGA and thus converted to periodic unary bit-streams. We use a serial peripheral

interface (SPI)-controlled ADC for reference as an alternative path. We will analyze and evaluate both

analog paths in more detail in Section 5.1.1. The remaining signal processing happens within an FPGA

(Xilinx Zedboard). The development board is equipped with a Zynq-7000 FPGA. In the digital domain,

we implement different versions of the CC, which we describe in Section 5.2.1 and analyze regarding

accuracy and resource consumption in Chapter 6. The focus lies on comparing the proposed stochastic

implementations with the reference implementation that uses weighted binary arithmetic. After the

CC, the subsequent computation block searches for the maximum c[imax] in the centered K values of
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Figure 4.1: Thesis implementation overview. Block diagram of the signal processing chain.

the CC, as imax is proportional to the time delay (see Section 3.3.1). The last processing block computes

the average of multiple TDEs. The output of the digital design is an averaged TDE. We linearly map

the TDE to 15 individually addressable LEDs on a semicircle, so they point towards the direction of the

source location.

4.3.2 Design Decisions

This section explains and justifies my decisions during design. There are multiple variants of SC (ran-

dom or deterministic) and SSL (SSL based on time-delay or steered response power). The following

list of design decisions starts with why SSL is chosen as the target application and ends with the exact

variant of SC used in the remainder of this thesis.

1. SSL as the target application.

(a) Audio data is relatively slow compared to other signal processing tasks. Since human voice

is limited to a low-frequency band, we can use 12 kHz as sampling frequency to fulfill the

Nyquist criteria. Therefore, the processing can also be slow, making human voice process-

ing a well-suited application for SC.

(b) SSL is a widespread processing task in our modern devices, with increasing demand.

2. We apply SC to the category of SSL based on TDEs instead of algorithms based on steered re-

sponse power.
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(a) SSL algorithms based on TDE are usually faster (real-time) but less accurate than algorithms

based on the steered response power. Since SC performs better at lower precision it is more

natural to go for the lower accuracy real-time variant.

(b) SSL algorithms based on the steered response power require fast Fourier transform (FFT)

before computing the source location. Even if researchers found a method to compute an

FFT in SC [43], the transformation alone is more complex than some SSL algorithms based

on TDEs.

(c) In this thesis, we compute CC with stochastic circuits to calculate the time delay between

signals (through a simple maximum search ofK-centered CC values). The TDE can then be

used for a wide range of advanced SSL algorithms for different numbers and spatial distri-

bution of microphones. After showing that SC works for two microphones, the concept can

quickly be expanded to microphone arrays with multiple microphones and more advanced

algorithms.

3. We implement the TDE using SC instead of other blocks in the SSL algorithm, like interpolation

or pre-processing of audio signals.

(a) TDE is a part of every two-step SSL algorithm (also called algorithms based on TDE). TDEs

are also used in other applications such as radar ranging, wireless location, sonar direction

finding, beamforming, sensor calibration and many more. In other research fields, similar

terminologies for TDE include time difference of arrival estimation, time of arrival estima-

tion, and time of flight estimation. The successful implementation of the CC function could

be mapped to other applications.

(b) TDE in the time domain is a maximum search over the CC result of two signals. The CC

function can be broken down into a set of multiply-accumulate (MAC) operations. Since SC

shines at computing multiplication, saving resources compared to conventional computa-

tions is likely.

(c) Other computation blocks in the SSL processing chain are optional (most pre-processing

blocks in Section 3.2.1) and solely enhance the accuracy. It seems natural to start working

on the mandatory CC function before targeting optional processing blocks.

4. We use deterministic periodic unary bit-streams for SC computation.

(a) We chose deterministic bit-streams instead of random (stochastic) bit-streams as random-

ness is not required for the most advantageous properties of SC (see Section 2.4). As Devon

Jenson and Marc Riedel say in [16] “We conclude that there is no clear reason to compute

with stochastic bit-streams. Even when randomness is free,...”. We don’t have access to
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a free random number generator and implementing one would unnecessarily increase the

resource consumption and complexity of the sound source localizer.

(b) We choose unary bit-streams (1s are stacked) for the following reasons.

i. The generation of bit-streams often consumes more resources than the stochastic cir-

cuit that does the actual computation. An SNG for unary bit-streams uses a counter

and a comparator and should require less or equal resources than other deterministic

SNGs.

ii. Using two analog-to-time converters (PWM signal generators) instead of first convert-

ing voltages to conventional binary values followed by digital bit-stream generation

could open new possibilities for saving resources (Near-Sensor Processing).

5. We focus on the unipolar stochastic representation. This decision seems counter-intuitive as

audio data has positive and negative half-waves, making a signed representation (bipolar in SC)

more natural.

(a) The reason lies in the limited adding capabilities of the bipolar representation (see the anal-

ysis in Section 5.2.1).

(b) In the unipolar representation, we can use the property of OR-gates to approximate or even

exactly calculate the (non-scaled) sum.

To use the unipolar representation, we can either re-scale the original signal to the [0,1] interval

with a mean of 0.5 or only process positive half-waves of the audio signal. We also analyze a

digital implementation that uses a counter for summation (so only multiplication is done with

stochastic circuits). For that scenario, we can also use bipolar representation as stochastic multi-

plication works well for unipolar and bipolar encoded bit-streams.

4.4 Contributions

The first and main contribution is SSL as a new application for SC. Second, this work contributes to

near-sensor processing in general. We demonstrate that using time-encoded PWM data is possible with

stochastic circuits, and therefore, SC does not rely on conventional ADCs. The third contribution of

the thesis, on a theoretical level, is to show the potentials and challenges of deterministic multi-stage

stochastic circuits. We show that properties of deterministic, stochastic multiplication can be used to

design an accurate MAC unit used in the CC function of TDE. The fourth contribution is the practical

implementation of an SSL based on SC.We compare its resource consumption with conventional binary

processing in both analog and digital domains to demonstrate the advantages of this work. In summary,

this thesis contains the following four novelties.
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1. The first application of SC to SSL.

2. Practical usage of PWM modules for SC (instead of ADCs).

3. New SC-based MAC, published in [44]. We attached the paper as Appendix C.

4. Implementing a new, efficient sound source localizer with SC.
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Implementation

In Section 4.3.1, we introduced the target SSL architecture, which we discuss in more detail in this chap-

ter. We cover the complete signal flow, startingwithmicrophones capturing soundwaves and ending up

in an indication of the source location. The sound source localizer in Figure 4.1 uses two microphones

and is limited to one-dimensional SSL. Subsequently, we use SSL as a synonym for one-dimensional

DOA estimation (see Section 3.1.3). In the following two sections, we discuss the implementations

in the analog (Section 5.1) and digital domain (Section 5.2). This chapter contains all implementation

variants for real-time demonstrations, analysis (Chapter 6) and discussion (Chapter 7). We use discrete

components such as capacitors, resistors and operational amplifiers (OPAMPs) for analog processing

and a Digilent Zedboard with an FPGA for digital computations.

5.1 Analog Implementation

In what follows, we describe the analog circuitry built, mainly to handle inputs and outputs of the sound

source localizer. Section 5.1.1 covers the analog signal processing that happens before SSL. One signal

path is for conventional processing, and a second is specially designed for SC. Section 5.1.2 explains

how we implement the input and output of the SSL system, the sound capture and visualization of the

estimated source location.

5.1.1 Analog Board

One contribution of this thesis is the Analog Board presented in this section. The Analog Board requires

a 5V direct current (DC) power supply. The board takes two audio signals as inputs and has two

outputs. The first is a conventional SPI, and the second is a unidirectional interface with two channels

that carry the PWM signals for SC (more details are inserted later in this section). In Figure 5.1, the

signals flow from left to right with the input audio jack on the left-hand side and the Peripheremodule

34
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Figure 5.1: Analog Board for two audio signals. The amplifier, half-wave rectifier, PWM generation and
ADC circuits are marked yellow, red, green and blue.

(PMOD) interface (Digilent Inc.) to the FPGA on the right-hand side. The PMOD interface combines

both outputs to a single cable. The signal processing chain for the left and the right audio channel is

on the top and bottom of the Analog Board. Below, we will explain the signal flow and the schematic

of the Analog Board.

1) The audio input to the Analog Board connects with a stereo 3.5mm audio jack on the left-hand

side in Figure 5.1. In this thesis, we use two microphone signals (see Section 5.1.2) and a stereo sound

card (for repeatable hardware tests with pre-recorded audio data) as audio sources.

2) The stereo signal from the audio jack is fed into two alternating current (AC)-coupled, non-

inverting amplifiers, marked with yellow rectangles in Figure 5.1. The circuit uses a Texas Instrument

OPA322 OPAMP and is shown in Figure 5.2. The two 100 kΩ resistors at the input of Figure 5.2 bias the

input AC signal, and the capacitor decouples the biasing network from the supply. A 10 pF capacitor

in the feedback path decouples the AC amplification from the DC operating point at the output stage.

The amplifier circuit fulfills three tasks. First, the circuit brings the OPAMPs operating point to 2.5V

(mid-supply) for a maximum voltage output swing of 0 to 5V. Second, the circuit has an adjustable gain

in the [1.15, 151] interval using a potentiometer with 1 kΩ to 1000 kΩ. Third, resistors and capacitors

work as low and high-pass filters that attenuate noise and pass-through human speech. The amplified
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signal is forwarded to an ADC and two half-wave rectifier circuit.
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Figure 5.2: Adjustable, non-inverting, analog amplifier circuit. It uses passive components and a Texas
Instrument OPA322. The circuit is marked with yellow in Figure 5.1

3) The LTC1098 is an 8-bit ADC with two input channels. The circuit is shown in Figure 5.3 and

is marked with blue in Figure 5.1. The LTC1098 offers a channel selection through software, is used

for both (amplified) microphone signals and connects to the FPGA over an SPI. The pins driven by the

FPGA (master out slave in (MOSI), chip select (CS), serial clock (SCLK)) are in the [0V,3.3V] interval

and directly connected to the ADC. The master in slave out (MISO) requires a 5V to 3.3V voltage

divider to protect the input pin of the FPGA.

Besides the ADC, the amplifier outputs connect to two half-wave rectifiers with the schematic

shown in Figure 5.4. The 100 nF AC coupling capacitor at the input of Figure 5.4 separates the 2.5V

DC offset from the AC audio signal. The AC component of the input signal does not have to overcome

the threshold voltage of Diode D2 because of the bias created by Diode D1 in combinationwith a 150 kΩ

and 1MΩ resistor. A small positive signal at the input passes through D2, and negative voltages are

blocked. The voltage divider at the output limits the positive swing to 1V for the subsequent PWM

module.

4) The PWM circuits, shown in Figure 5.5, receive the inputs from the half-wave rectifiers and are

built with Analog Devices LTC6992 microchips. They are located on the right-hand side of the Analog
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Figure 5.3: Schematic of the ADC (LTC1098) circuitry with two input channels and an SPI. The circuit
is marked with blue in the center of Figure 5.1.

Board and marked green in Figure 5.1. The voltage level at the INP pin of the LTC6992 controls the duty

cycle of the generated PWM signal, with a non-linear transfer. The duty cycle is D = 0% for input

voltages in the 0V to 0.1V interval and D = 100% for input voltages in the 0.9V to 1V interval.

The transfer function is Dout = (VMod − 0.1) × 1.25 for Vmod in the 0.1V to 0.9V interval. We

will analyze the effect of the non-linear conversion in Chapter 6. Figure 2.8 shows a PWM signal with

D = 75%, representing a voltage of Vmod = 0.75
1.25 + 0.1 = 0.7V. The passive components at the

SET and DIV inputs determine the frequency of the PWM signal. The potentiometer at the SET input

allows adjusting the frequency in the 15 kHz to 250 kHz interval. If not stated otherwise, one of the

two PWM circuits is set to fPWM,1 = 234 kHz, and the second is set to fPWM,2 = 249.6 kHz. The

two PWM signals are sampled with a 3.744MHz clock at the input register of the FPGA, which results

in bit-streams with relatively prime periods of n = 16 and k = 15

n =
fclk

fPWM,1
=

3.744 · 106
234 · 103 = 16 (5.1)

k =
fclk

fPWM,2
=

3.744 · 106
249.6 · 103 = 15. (5.2)
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100 nF
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D1

1MΩ

5V

D2

150 kΩ

100 kΩ

OUT

Figure 5.4: Schematic of the half-wave rectifier circuit, marked with red in Figure 5.1.

For the exact stochastic multiplication, we need 15 periods of fPWM,1 and 16 periods of the fPWM,2

(see Section 2.4), which brings us to the equivalent audio sampling frequency

fs =
fPWM,1

15
=

fPWM,2

16
= 15.6 kHz, (5.3)

also used by the ADC. A voltage divider after the LTC6992 reduces the signal voltage (5V to 3.3V)

because the FPGA pins are limited to 3.3V.

5) The outputs of the Analog Board are connected to the FPGA through a PMOD cable. The PMOD

connection has a total of 12 pins. Eight of them are reserved for signals, two are connected to the

ground and two are for power (3.3V at pin 6 and 12). The Analog Board uses both ground pins and

six signal pins. Four pins are used for the SPI protocol, and two lanes carry the outputs of the PWM

circuits.

5.1.2 Input/Output Board

This section presents the Input/Output Board shown in Figure 5.6. The board connects to the Analog

Board via a stereo cable and to the Zedboard through a PMOD cable.

The Input/Output Board fulfills two tasks. First, it provides audio signals to the Analog Board

via two electret microphones. The microphones are soldered to two ADAFRUIT MAX4466 and are

mounted to the Input/Output Board with a 90° angle. The ADAFRUIT MAX4466 is a fully assembled

printed circuit board with an electret microphone and an amplifier circuit with the schematic shown in

Figure A.1 (Appendix A). Both ADAFRUIT MAX4466 are marked blue in Figure 5.6. The outputs of the
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Figure 5.5: The LTC6992 is a voltage-controlled pulse-width-modulator from Analog Devices. The
circuit converts voltages to PWM signals for unary SC and is marked green in Figure 5.1.

ADAFRUIT MAX4466 are single-ended microphone signals forwarded to the Analog Board through a

3.5mm jack located at the top of Figure 5.6.

Second, the Input/Output Board visualizes the SSL output through 15 individually controllable LEDs

(SK6812). Figure 5.6 on the bottom shows a LED strip mounted on a half-circle. A speaker in front of

the Input/Output Board sees a lighted LED pointing in his direction because the spatial distribution of

the LEDs matches the coordinate system of the microphone array. The origin of the coordinate system

is between the microphones on the ±90° axis. For example, lighting the first LED indicates a sound

source at 90° because the LED is located on the right-hand side of Figure 5.6 and lies on the same axis

as the two microphones. Lighting up the second LED represents a sound source at 90− 1× 180
14 ≈ 77°,

and the eighth LED indicates 90− 7× 180
14 = 0°.

The LED strip expects a 5V control signal with a threshold greater than the output of the FPGA

(HIGH≥3.4V). For that reason, the Input/Output Board has a level shift circuit shown in Figure 5.7 and

marked with red in Figure 5.6. The unidirectional level-shift circuit consists of a single bipolar junction

transistor and two resistors at the base and the collector. This circuit only works for high impedance

loads at the OUT pin and drivers that can sink enough current at the INP pin.

Before discussing digital signal processing, we want to summarize the most important design pa-

rameters from the Analog and Input/Output Board.

1. The implementation has two microphones, and the distance between them is d = 0.066m. The
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Figure 5.6: Input/Output Board with two microphones as input sensors and LEDs to display outputs.
The microphones are soldered to ADAFRUIT MAX4466 and marked blue. The level shift circuit for
interfacing with the LED strip is marked with red.

distance sets the maximum time delay of sound waves with τd,max = d
v = 192 µs.

2. The audio sampling frequency is fs = 15.6 kHz. The main reason for setting fs = 15.6 kHz is

that its product with the distance between the microphones is approximately an integer value

NMaxLag = fsτd,max ≈ 3, simplifying the digital implementation and the mapping to the LEDs.

3. The LED strip of the Analog Board can indicate 15 different source locations fromϕ ∈ [−90°,90°].

The spatial distribution of the LEDs is aligned with the coordinate system of the 2-microphone

array. The axis through the microphones is perpendicular to ϕ = 0° and parallel to ϕ = ±90°.
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5.1 kΩ

5V

2 kΩ

3.3V

INP

OUT

Figure 5.7: Unidirectional 3.3V to 5V level-up shift circuit marked red in Figure 5.6.

5.2 Digital Implementation

This section explains the digital processing blocks of the sound source localizer shown in Figure 4.1

on the right-hand side of the vertical line, labeled with FPGA. We will start with the CC function and

continue with the remaining digital processing blocks. The focus lies on the SSL-based CC because the

other processing blocks are implemented with traditional binary arithmetic.

x1[n]

x2[n]

∗
+

Accumulator

c�12[0]

x1[0]

x2[0]

∗

x1[1]

x2[1]

∗

x1[N − 1]

x2[N − 1]

∗

+
c�[0]

(a) (b)

Figure 5.8: Two MAC architectures for calculating one value of the CC function. (a) Sequential MAC
architecture. (b) Parallel MAC architecture.

We need to divide the continuous microphone signals into frames before computing the CC func-

tion. The window length is a trade-off between responsiveness and accuracy. Setting Nframe = 128

means that one computation of the CC function requires Δt = 1
fs

×Nframe = 8.2ms. Subsequently,

we will assume that the position of a sound source is approximately constant within 8.2ms, which is
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essential for accurate estimations. We can write the CC function for signals of length Nframe as

c�[n] =
Nframe−1�

i=0

x1[i]x2[(i+ n)modNframe
]. (5.4)

Further, as indicated in Section 3.3.2, only the CC values close to c�[0] are relevant for TDEs. The

distance between the microphones of the Input/Output Board in Figure 5.6 is d = 0.066m, and the

sampling rate is fs = 15.6 kHz. Therefore only NMaxLag = 3 (see Equation (3.14)) values to the right

and the left of c�[0] are of interest for TDEs. We can efficiently calculate the seven (K = 2×NMaxLag+

1 = 7) centered values of the CC function as a set ofMAC operations. Wewill denote x[n] as the current

audio sample and x[n−1], x[n−2], x[n−3] as the three former samples. We calculate theK-centered

values of the CC function with K MAC units as

c�[i] =

��������������������������������������

c�[−3] ← c�[−3] + x2[n]x1[n− 3]

c�[−2] ← c�[−2] + x2[n− 1]x1[n− 3]

c�[−1] ← c�[−1] + x2[n− 2]x1[n− 3]

c�[0] ← c�[0] + x2[j]x1[j]

c�[1] ← c�[1] + x2[n− 3]x1[n− 2]

c�[2] ← c�[2] + x2[n− 3]x1[n− 1]

c�[3] ← c�[3] + x2[n− 3]x1[n]

0 if i<-3 or i>3

(5.5)

with j ∈ {n−3, n−2, n−1, n}1. The accumulator is set to zero afterNframe samples just before the

next frame begins. The two architectures corresponding to Equations (5.4) and (5.5) for sequential and

parallel MAC operation are shown as block diagrams in Figure 5.8. The examples in Figure 5.8 compute

the centered value c�[0] of the CC because there is no relative shift between microphone signals x1 and

x2. The MAC architecture in Figure 5.8(a) is more suited for efficient stream-based audio processing

than the parallel, block-based method in Figure 5.8(b). Seven MAC units calculate the seven centered

values of the CC result while storing only six input samples and seven accumulator values.

1We can use any pair of audio samples (x1[j]x2[j]) to compute c�[0].
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5.2.1 Overcoming the Limitations of SC

In this section, we explain how to compute MAC with SC and overcome the limitations of SC in com-

puting multiple arithmetic operations that follow one after another. The MAC operation has a multi-

plication stage followed by a chain of summation stages. The number of stages depends on the window

lengthNfame and theMAC architecture. If all summands are available at any time, with the architecture

in Figure 5.8(b), the number of summation stages is log2(Nframe) = 7. For the stream-based architec-

ture in Figure 5.8(a), only two summands are present at any time, and the MAC unit has Nframe − 1

summation stages after the multiplication stage.

The difficulty with multi-stage computations in SC is that the correlation of intermediate results

becomes unknown, and correlation between inputs affects the arithmetic operation. The result will be

no well-defined arithmetic operation for most stochastic circuits when the correlation is not defined

properly (SCC ̸∈ {−1, 0, 1}). Let us take the OR-gate with the unipolar format and undefined corre-

lation as an example, the result is a mixture between a scaled sum (SCC = −1), the union (SCC = 0)

and the maximum of both inputs (SCC = +1). Below, we discuss several design options considered

during research for efficient MAC operation with SC.

1. We can estimate and accept the error caused by an unknown correlation [45]. Not all stochastic

circuits, however, are equally resilient to correlation errors. Non-scaled summation with OR-

gates requires negatively correlated inputs at all stages. Every overlap between 1s in bit-streams

will cause an error that cannot be compensated elsewhere. For that reason, in the case of satu-

rating addition with OR-gates, the error caused by unknown correlation is high.

2. We could use MUX units for scaled addition instead of saturating addition with OR-gates. MUX

units calculate scaled addition and do not impose constraints on the correlation of data inputs as

long as the select input is uncorrelated. MUX units need an additional random bit-stream for the

select input, which is only a minor drawback. The issue of MUX units is the scaling by 1
2 for each

addition. The MAC unit computes Nframe − 1 = 127 sums, equal to a scaling factor of 1/2127

for the first addend, 1/2126 for the second addend, and so forth, when we use the architecture

in Figure 5.8(a). Using Figure 5.8(b), the scaling factor is 2− log2(Nframe) = 2−7. The equivalent

precision of stochastic circuits is usually between three and five bits. The MUX-based MAC units

compute results too small for accurate representation.

3. After each arithmetic operation, we can convert the intermediate results to weighted binary num-

bers and generate new bit-streams with the correct correlation. This approach has two major

drawbacks. First, it leads to narrow time restrictions as PEs and SNGs require processing time,

and the computation needs to finish in time (after 1
fs
). Second, this method increases resource
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consumption due to more circuitry and higher clock speeds.

4. There exist several techniques to manipulate the correlation between bit-streams [30]. However,

there is a trade-off between the complexity of additional circuitry and the effectiveness of cor-

relation manipulation. Circuits for manipulating the correlation can become more complex than

the actual intended arithmetic operation.

5. With deterministic SC, we calculate the distribution of 1s and 0s in intermediate results as a

function of the input values and number of inputs. We published this technique, which focused

on the MAC operation, in [44]. We will use it in the structure shown in Figure 5.9. We attached

the published paper as Appendix C to this thesis.

6. The final approach avoids multi-stage stochastic circuits by either choosing different algorithms

or computing sequential arithmetic operations in weighted binary. Mapping this method to MAC

operations gives two options for the architectures in Figure 5.8. First, using the MAC architecture

in Figure 5.8(b) and an accumulative parallel counter (APC) to accumulate the products in parallel

[46]. Second, choose the sequential algorithm in Figure 5.8(a) and accumulate it with a single

counter, as shown in Figure 5.10. The output is a weighted binary number in both cases, which

is beneficial for this thesis’s SSL architecture as all other processing blocks use conventional

arithmetic.

A>BB
B

BInp2
A

Cnt. n

A>BB
B

BInp1
A

Cnt. k

b0b1b2. . .bN-1

Cnt. 1s
2B

Out

Reset

Inp. Cnt

Enable

SNG Array

Stochastic Circuit Probability Estimator

Figure 5.9: OR-based SC processing system for MAC operations.

In what follows, we present two SC implementations for MAC with the two last approaches from

the list above. The examples in this section use digital SNGs to generate bit-streams, however, the

analog PWM generation with the Analog Board can replace digital SNGs. The first MAC method uses

the novel technique that we proposed and published during research [44]. As we showed in our paper
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too, we use AND-gates for multiplication and OR-gates for addition. AND-gates compute exact multi-

plication for relatively prime bit-streams with periods of n and k (k = n − 1)2. In this thesis, we use

n = 16 and k = 15 unless stated otherwise, which is comparable to conventional computations with

4-bit precision (B = log2(n) = log2(16) = 4). The input bit steams, and the results of AND-gate have

N = LCM(nk) = 240 bits, so the precision of the products is approximately 2B = 8 3. As we use

deterministic bit-streams, we can compute the distribution of 1s and 0s within products. It turns out

that 1s are grouped at the beginning and the end of the result for relatively prime lengths n = k−1. As

mentioned in Section 2.3.2, OR-gates require negatively correlated bit-streams to function as saturating

adders. Our novel approach introduces a relative delay between products, that shifts the 1s of the cur-

rent summand to a section of the accumulator bit-stream with 0s only. Our new technique guarantees

a negative correlation between input bit-streams and computes exact or approximate saturate addition.

We refer to the published paper in Appendix C for more details.

Combining the stochastic MAC circuit with an SNG array and a probability estimator, we get the

architecture shown in Figure 5.9. The two counters (markedwith green and labeledwith Cnt. n and Cnt.

k) repeatedly count to n and k = n− 1 to generate relatively prime bit-streams. Then, the bit-streams

are multiplied using an AND-gate. The AND-gate is the first component of the stochastic circuit and

forwards the product x1x2 to the OR-gate. The OR-gate computes the bitwise disjunction of the most

significant bit (MSB) of the shift register (accumulator) and the MSB of the product. The result is then

stored back to the LSB of the shift register. The OR-gate result has an error if both inputs are 1s, which

we refer to as an error due to overlap. In [44], we show how to calculate the number of bits for the shift

register to guarantee no overlap for small input values, but audio signals can have high amplitudes.

However, we know that at least half of the input values are zero due to the half-wave rectifier and the

unipolar format. In this thesis, we use an approximate variant of the published technique with a shift

register of length

NSR = nk + ceil(
nk

Nframe − 1
) · (Nframe − 1) = 494. (5.6)

The first summand, in the beginning, will be in the [0, 239] interval of the shift register. After

the second summand, the first one is shifted to [240, 479], and the second summand is in the [0, 239]

interval. After that, the OR-gate computes logical disjunction of the first and third summand, with a

relative shift between them. The final block in Figure 5.9 is the probability estimator in the form of a

simple up-counting counter. The probability estimator is enabled by a separate counter (Input Counter)

that sets the enable signal NSR clock cycles before the reset, which occurs every nk ×Nframe cycles.
2Note that n = k − 1 is relatively prime for n ≥ 3.
3A bit-streams with 256 bits would exactly have 8-bit resolution.
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After each frame, the reset signal resets the probability estimator and the accumulator bit-stream. In

the remainder of this thesis, we refer to the design in Figure 5.9 as the OR-based design.

A>BB
B

BInp2
A

Cnt. n

A>BB
B

BInp1
A

Cnt. k

Cnt. 1s
2B

Out

Inp. Cnt

Reset

SNG Array

Stochastic
Circuit

Accumulator
and Probability

Estimator

Figure 5.10: Counter-based SC processing system for MAC operations.

The second implementation is shown in Figure 5.10 and simplifies the stochastic circuit. The bit-

stream generation and multiplication work as before but in this design, the PE counts all 1s of the AND-

gate instead of first accumulating with OR. The results are always exact because the multiplication and

the up-counting are exact. Subsequently, we will refer to this implementation as the counter-based

design.

5.2.2 Stochastic Circuit for Cross-Correlation

In this section, we discuss how using either the PWM module or the ADC of the Analog Board af-

fects the implementation in the digital domain. The MAC-based CC (Equation (5.5)) requires three

(NMaxLag) stored audio samples for each microphone. Designs that use the analog SN generation with

the LTC6992 store the audio samples as bit-streams, and designs that use the ADC store the audio

samples as weighted binary numbers. Usually, we prefer storing weighted binary numbers because

bit-streams require more storage.

Figures 5.11 and 5.12 show the block diagrams of the CC with the counter-based MAC for digital

and analog bit-stream generation. Channel One and Two (CH1 and CH2) are PWM signals from the

LTC6992 in Figure 5.12 and weighted binary numbers in Figure 5.11. We draw the registers in a sim-

plified manner as three horizontal squares when storing bit-streams and three vertical squares when

storing weighted binary numbers. The output (c[i]) is the CC result in weighted binary format.

Next, we provide a simple and a more complex method to store the PWM signals from the LTC6992.

For the simple variant, we continuously sample with fclk and get n = 16 (k = 15) bits per period of
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Figure 5.11: Block diagram of the CC with digital bit-stream generation.

the PWM signal. During one audio sample ( 1
fs
), the PWM signal has k (n) periods (see Equation (5.3)),

which results in nk = 240 bits of data per microphone for each audio sample. The second variant

takes advantage of the redundancy within the periodic PWM signals and stores only the first period.

Following that, we perform roll operations until the first period of the next audio sample.

In Figure 5.12, we use arrows that point backward from the end to the start of the shift registers

to indicate that we either do shift-through operations or roll operations. Both variants provide the

same bit-streams to the stochastic circuit if we assume that the duty cycle of PWM signals is constant

between two audio samples.

5.2.3 SPI, Maximum Search, Map and Average

The SPI block shown in Figure 4.1 is a minimal SPI-master that polls data from the ADC. The LTC1098

transmits one channel per query with 14 bits. The first six bits configure the ADC, and the remaining

eight bits are either the left or right channel. To simplify the implementation, we increase the number

of bits per query to Nquery = 16. The ADC operates at its maximum clock frequency of 500 kHz

(fsclk = fs × 2×Nquery = 499.2 kHz).
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Figure 5.12: Block diagram of the CC with PWM signals as inputs (LTC6992).

The post-processing tasks are the maximum search, mapping and average, that we implement with

conventional binary arithmetic. The maximum search finds the maxima of the MAC results c[imax] and

forwards its index (imax) to the Map & Average block if the maximum is above a threshold4. The Map

& Average block maps imax ∈ {−3,−2, . . . , 2, 3} to i�max ∈ {0, 2.5, 5.0, . . . , 12.5, 15.0} to create 15

equally sized intervals for the 15 LEDs of the Input/Output Board. Averaging over multiple i�max, with

an average filter, results in zavg . We will present the filter design later in this section. zavg is mapped

to the LED strip of the Analog Board, as shown in Figure 5.13. The LEDs are marked red, and zavg is

labeled with black. The number of the LED that is turned on is the truncated filter output.

LEDout =

�
zavg

�
∈ {0, 1, 2 . . . , 13, 14}. (5.7)

As zavg is proportional to the TDE, we can use its value to turn on the LEDs of the Input/Output

Board. Mathematically, by mapping the filter output to a semicircle, we transform zavg to an angle in

the [−90°, 90°] interval. When zavg is close to zero, the first LED turns on. When zavg is close to its

maximum, the last one turns on. The two examples indicate sound source locations at ϕ = ±90° with

the LED positions shown in Figure 5.13. We can generalize and calculate ϕ as a function of zavg as

follows.

4As the threshold, we use the median signal energy of all frames that is ≈ 0.33 for the simulation settings outlined in
Section 6.1.
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Figure 5.13: The digital output of the FPGA is in the zavg ∈ [0, 15] interval and is mapped to a LED
strip with 15 LEDs mounted to the Input/Output Board (Figure 5.6).

ϕ = sin-1(
v

d
τd) · 180°

π
(5.8)

= sin-1(
zavg
7.5

− 1) · 180°
π

(5.9)

The average filter has an infinite impulse response (IIR) with the linear difference equation

zavg[n] = α · i�max[n] · (1− α)zavg[n− 1] (5.10)

We choose α = 2−4 and approximate a moving average filter of length Naverage = 20, with an

average interval of 164ms (Naverage×1/fs×Nframe). Choosing theα coefficient is a trade-off between

responsiveness and the accuracy of location estimations for stationary sound sources. Choosing an

even smaller value for α (a larger averaging interval) hardly increases the accuracy of estimations for

stationary sound sources in simulations. However, it drastically reduces the accuracy of estimations

for moving sound sources.

5.2.4 Weighted Binary Implementation

We implement the CC function with weighted binary arithmetic and B=3,4,5,8-Bit precision signed

inputs, for reference. The weighted binary CC design has seven MAC units, and the architecture is

shown in Figure 5.8(a). The multiplier is exact with an output bitwidth twice as large as the input

bitwidth. Note that the precision of products is comparable to the output bit-stream of the AND-gate
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with N = nk bits. Choosing the accumulator bitwidth is a trade-off between not adding too many

integer bits (saving resources) and avoiding overflow for audio frames with high volume.

5.3 Summary

In this chapter, we discussed the analog and digital components of the sound source localizer. The

first and second outcomes are the Analog Board, for analog signal processing, and the Input/Output

Board, for audio capture and visualization of location estimations. The third and fourth outcomes are

digital implementation variants of the CC function for weighted binary and SC and the digital SSL

post-processing based on an IIR average filter.



Chapter 6

Resource and Accuracy Comparison

The previous chapter discussed an SSL architecture that uses SC for the CC function. We can optionally

use voltage-controlled PWM modules for SN generation and either OR-based or counter-based MAC

units for the CC function. However, The previous chapter did not show any results for the SC variants

nor the weighted binary reference. In this section, we compare the accuracy and resource consumption

to test the hypotheses from Chapter 4. We describe and analyze the results but leave the interpretation

and discussion for Chapter 7. This chapter consists of two main sections. In the first section, we

compare the implementation variants concerning their estimation error. Section 6.2 continues with an

analysis of their resource consumption. We distinguish between the following sound source localizer

variants in the remaining of the thesis.

Design (I) The conventional design that uses weighted binary arithmetic, described in Section 5.2.4, with

4-bit precision signed inputs.

Design (II) The counter-based CC shown in Figure 5.11 with 4-bit unipolar (unsigned) inputs.

Design (III) The counter-based CC architecture shown in Figure 5.12 with LTC6992 for analog SN genera-

tion and 4-bit precision unipolar inputs.

Design (IV) The architecture of Figure 5.12 with OR-based MAC units (Figure 5.9) and LTC6992 for analog

SN generation of the 4-bit precision unipolar inputs.

Design (V) The architecture of Figure 5.11 with OR-based MAC units and digital 4-bit precision SNGs.

Design (VI) The stochastic circuits using signed instead of unsigned inputs. B=3,4,5,8-bit refers to the input

precision of the CC function. For example, B=5-bit means one sign bit and four fraction bits.

Due to having signed inputs, we use the bipolar format (instead of unipolar), the clock division

method (instead of relative prime1) and XNOR-gates (instead of AND-gates) for multiplication
1Simulations show that the bipolar format with relatively prime method leads to inaccurate CC results caused by the

unequal resolution of bit-streams (k = n − 1). We can avoid errors by switching to the clock division method discussed in
Section 2.4, with no additional resource consumption [16].
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Table 6.1: Summary of the relations between the digital results and estimated source locations.

imax i�max τd ϕ

-3 0 −192 µs −90°
-2 2.5 −128 µs −41.8°
-1 5 −64 µs −19.5°
0 7.5 0 µs 0°
1 10 64 µs 19.5°
2 12.5 128 µs 41.8°
3 15 192 µs 90°

(see Equation (2.18)). The architecture of the CC is the same as in Figure 5.11, after replacing

AND-gates with XNOR-gates. The CC results are exact and equivalent to weighted binary results

from Design (I).

For all designs, the CC output has double the bitwidth of the input due to the multiplication stage of

the MAC unit. The fraction bits of the accumulator stage are truncated to represent the result 2B bits

without overflow. Unless otherwise stated, we round the CC inputs of all designs to the nearest repre-

sentable value. We want to emphasize that the resource and accuracy differences are due to different

CC implementations and SNGs. The maximum search, mapping and average filter are equal for all

designs.

6.1 Accuracy

We use the Grid corpus audio library [47] which consists of 50 files with male and female speakers

for accuracy simulations. All 50 files sum up to 90.08 s of audio data with 76.03 s audible speech (CC

results are above the VAD threshold) and 14.05 s breaks. The distance between the sound source and

the center of the two microphones is 1m, and the speaker radiates with 60 dB SPL. The microphone

SNR is 75 dB, and reverberations are disabled2. We sweep the sound source from −90° to 90° in a 5°

grid.

In [44], we propose and analyze the summation behavior of an OR-based MAC unit and conclude

that smaller input ranges lead to lower errors. The audio inputs to Design (IV) and (V) are scaled-down

by 1
2× which quarters the maxima of the CC result3 and reduces the error caused by saturation. We

tabulate the simulation results for all designs in Appendix B. The tables contain the distribution of imax,
2Decreasing the SNR and increasing reverberation leads to higher SSL errors for all designs.
3If we assume that both microphone signals are equal, then the maximum of the CC function is the signal energy Es =�+∞

n=−∞ |x[n]|2. The energy quarters if the inputs are halved.
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which can be used for comparisons with future CC implementations or to approximately recalculate

the results presented below.

The accuracy results show the estimated source location (ϕ̂) over the actual source location (ϕ). We

show the results for ϕ̂ rather than zavg because ϕ̂ is more intuitive and the LEDs of the Input/Output

board also indicate ϕ̂. We list the relation between imax, i�max, τd and ϕ̂ in Table 6.1. The index imax

is proportional to the TDE with τd = imax/fs (Equation (3.11)). Both i�max = (imax + 3) × 2.5 and

zavg ≈ mean(i�max) are related to ϕ̂ through the inverse sinus.

6.1.1 Systematic Error
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Figure 6.1: The Systematic error of the sound source localizer architecture. (a) Frame length of 256,
Hanning window, FFT-based TDE, (b) variable frame length with and without Hanning window.

Before analyzing the effect of low precision computations and approximate computing in Sec-

tion 6.1.2, we discuss the SSL error caused by short window lengths, not using a window function,

and doing TDEs through CC in the time domain.

Figure 6.1 shows the mean estimation error of four sound source localizers with double-precision

arithmetic and TDEs in the time and frequency domain. We can see a location-dependent bias, even

with high computational effort4 and no external disturbances, such as reverberation and noise. Fig-

ure 6.1(b) shows the mean estimation error for the sound source localizer with Nframe = 128 and

Nframe = 256. The dataset labeled with Windowed comes from a sound source localizer that has an

additional processing block preceding the CC, where frames are multiplied with the Hanning window

(Equation (3.8)). Figure 6.1(b) shows that applying an appropriate window function after framing and

increasing the window length reduces the systematic error. Figure 6.1(a) also uses a Hanning window
4Here, we also apply cubic interpolation after CC for high accuracy TDEs.
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and frame length of Nframe = 256 but computes the time delay through multiplication in the fre-

quency domain instead of CC in the time domain5. The sound source localizer with FFT-based TDEs

has a lower systematic error for |ϕ| > 45° than the one labeled withWindowed. We include Figure 6.1(a)

to show the lowest possible error with two microphones and the averaging filter as post-processing.

The sound source localizers in both plots have a systematic bias towards positive mean errors for

source locations at negative angles and a tendency towards negative mean errors for source locations

with positive angles.

1. Mathematically, by cutting the microphone signals into frames, we multiply the infinite micro-

phone signals with the rectangular function of value 1 during the current frame and 0s otherwise.

In the frequency domain, the framing is equal to a convolution with the sinc function6. The sinc

function shows a high peak at t = 0, so we are more likely to see the maximum of the CC re-

sult at imax = 0. As imax = 0 occurs more frequently, we see a bias towards 0° and a positive

or negative mean error depending on the source location. As a countermeasure, we can either

increase the window length, for example, doubling Nframe in Figure 6.1(b), to widen the peak

of the sinc function or use a proper window function such as the Hanning function to avoid the

sinc altogether.

2. For source locations close to ϕ = ±90°, the average IIR filter cannot compensate errors with an

inverted sign. For example, for a sound source at ϕ = −90°, 84% of all CC evaluations have the

maximum at c[−3] (Table B.1 for 8-bit precision). However, 16% of all CC evaluations are either

c[−2] and c[−1] and cause a positive bias.

Figure 6.1 shows ripples from spatial aliasing, discussed in Section 3.1.3. A low-pass filter eliminates

the ripples if all frequencies that cause spatial aliasing are attenuated. In Figure B.1 (Appendix B) we

show the mean estimation error for a sound source localizer with a first-order low pass filter at 2.5 kHz,

which is low enough to avoid spatial aliasing.

6.1.2 Low Precision and Approximate Computing

In the previous section, we analyzed the systematic bias of the sound source localizer architecture with

double precision arithmetic. The following sections are dedicated to efficient, low precision implemen-

tations. From here on, the sound source localizers always use fixed-point arithmetic, time domain CC,

no Hanning window function and a frame length of Nframe = 128.

Figure 6.2(a) shows the mean SSL error for Design (VI) and the following three trends:

5Amultiplication in the time domain is a convolution (mirror of the CC function) in the frequency domain and vice versa.
6The Fourier transform of the rectangular function is the sinc function.
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Figure 6.2: Mean estimation error of (a) Design (VI) (exact and bipolar) and (b) Design (II), (IV) and (V)
(4-bit unipolar inputs).

1. The error due to not using a window function and a short window length is higher for designs

with 8-bit precision than 3 or 5-bit precision. For example, the mean estimation error at ϕ = 55°

is −8.8° for 2-bit and −14.9° for 8-bit precision.

2. For 5-bit and 8-bit precision, the results are point symmetrical with ϕ = 0°. For example, the

mean estimation error for ϕ = −30° is the negation of the mean estimation error for ϕ = +30°,

for 5 and 8-bit, but not for 3-bit precision. The probability of having multiple equal maxima in

the CC result increases with low precision. The Max Search block forwards the index of the

first maxima (with the lowest index) to the Map & Average block, which causes a bias towards

ϕ̂ = −90°.

3. Themean estimation error plotted over the source location follows a triangle function. For source

locations at ϕ̂ ∈ {−41.8°, −19.5°, 0°, 19.5° and 41.8°}, the mean error is approximately zero be-

cause these angles correspond to imax ∈ {−2,−1, 0, 1, 2} (see Table 6.1). Between these angles,

the averaging filter keeps the error below 20°, but for imax = ±3 (±90°), the error is higher

because of the systematic error discussed in Section 6.1.1.

Figure 6.2(b) shows the mean estimation error for the unipolar Design (II), (IV) and (V). The error

difference between the unipolar and bipolar format is low, but the difference between the OR-based and

the counter-based summation is high due to more bias towards −90°. Using OR-gates for summation

limits the output range of the CC and further increases the probability of having multiple equal maxima

in the CC result.

For the designs in Figure 6.2, we also list the mean absolute error (MAE) in Table 6.2. The right-most
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column in Table 6.2 shows the mean of MAEs, which is below 8.6° for all designs. The MAE decreases

with lower input precision7 because low precision designs are less susceptible to the systematic error

discussed in Section 6.1.1.

Table 6.2: MAE (°) of the angle estimation (ϕ̂) in degree.

ϕ (°)
-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90 Mean

D
es
ig
n
(V
I) 3-Bit Inputs 8.0 6.7 5.7 2.0 2.7 3.8 0.0 2.2 4.6 4.1 6.4 5.9 15.5 4.9

4-Bit Inputs 6.2 8.5 5.1 3.2 2.9 4.0 0.0 3.0 5.3 3.8 6.4 6.4 11.0 5.2
5-Bit Inputs 7.8 7.6 5.5 3.8 6.0 3.5 0.0 3.0 7.4 3.9 6.6 6.8 10.0 5.6
8-Bit Inputs 18.5 9.0 10.6 6.5 12.3 2.7 0.0 2.7 12.3 6.5 10.6 9.0 18.6 8.6

Counter (II) 13.8 6.0 4.7 4.7 3.6 2.3 0.0 1.9 5.8 5.3 6.2 7.5 16.5 5.8
OR (III) 6.2 7.9 7.0 2.9 3.0 3.4 0.1 2.0 5.7 4.8 7.6 6.7 15.6 5.3
OR LTC6992 (IV) 2.0 11.3 10.3 2.3 3.5 3.5 0.0 1.5 4.5 3.6 4.6 5.0 13.5 5.1

During simulation, it turned out that the rounding method during the quantization of inputs affects

the estimation error, and truncation rather than rounding gives lower MAEs. For example, the average

MAE (last column of Table 6.2) changes to 4.7°, 4.9°, 5.4° and 8.2° for 3, 4, 5, and 8-bit precision, re-

spectively, an improvement of 3% to 9%. The results are similar for the unipolar designs. Truncation

leads to sharper peaks in the CC result and better TDEs. An in-depth analysis of the rounding method

is out of the scope of this thesis.

6.2 Resource Consumption

Lowering resource consumption is one of themain goals when considering SC in designing a computing

system. This section shows the synthesis results produced by the Synopsys Design Compiler v2018.06

with the 45 nm FreePDK CMOS library [48] for the ASIC design flow and Vivado Design Suite for

synthesis on an FPGA. The HDL synthesis tools analyze the digital processing blocks on the right

hand-side of the vertical line in Figure 4.1. We further show the power consumption measurements for

the processing blocks implemented with discrete components.

Table 6.3: Power consumption of the Analog Board.

Total Idle Active LTC6992 Active LTC1098 Total Active
17.65mW + 2× 0.95mW + 0.5mW = 20.05mW

The Analog Board in Figure 5.1 has four black current sense resistors for power consumption mea-

surements. The low current consumption of the Analog Board in conjunction with the low resistance

of the current sense resistors (R = 0.025Ω) causes a small voltage drop over the current sense resistor
7Lowering the input precision of the CC to 2-bit increases the MAE.
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that is difficult to measure. For example, the voltage drop over the current sense resistor of the LTC1098

is approximately 0.1mA× 0.025Ω = 2.5 µV.
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Figure 6.3: LUT, registers and slice utilization of the digital processing blocks. (I) Weighted binary, (II)
counter, (III) Counter with LTC6992, (IV) OR with LTC6992.
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Figure 6.4: Area (a) and power (b) consumption of SC and weighted binary designs for 4-bit precision
and fs = 15.6 kHz. (I)Weighted binary, (II) counter, (III) Counter with LTC6992, (IV)ORwith LTC6992.

Figures 6.3 and 6.4 show the resource consumption for the Max Search and Map & Average (Sub-

sequently referred to as Max & Average), SPI and CC processing blocks for FPGAs and ASICs. The re-

source consumption of the 4-bit bipolar design (Design (VI)) is equal to the Counter design (Design (II)).

The figures visualize the area reports of Vivado and Synopsys. However, we only show the power con-

sumption estimations for ASICs. Power estimations from Vivado are not precise enough as the static

power consumption of the FPGA is significantly higher than the power consumption of the individ-
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ual processing blocks. The power consumption estimation of Synopsys reports that designs with SC

components have higher dynamic power consumption but lower static power consumption8. Vivado

and Synopsys estimate that the CC function consumes more power than the Max & Average and SPI

processing blocks. Both HDL synthesis tools agree that the Counter with LTC6992 design (Design (III))

consumes the least resources, followed by the Counter (Design (II)) and weighted binary design (De-

sign (I)). The synthesis tools estimate a different resource consumption of the OR with LTC6992 design

(Design (IV)). Synopsys reports about ten times higher power and area consumption, whereas the uti-

lization report of Vivado shows only a doubling in LUT utilization compared to other CC designs. The

ORwith LTC6992 design (Design (IV)) stores a bit-stream accumulator with nk = 240-bit (for 4-bit pre-

cision arithmetic). FPGAs are optimized for storing data, whereas ASICs synthesize a separate flip-flop

for each bit. When comparing Design (I) with Design (II), we save 11% power and 23% area if we use

SC for cross-correlation. The savings of the digital implementation increase to 25% power and 37%

area when we compare the conventional design with Design (III). However, Design (III) uses the PWM

modules on the Analog Board, which consume more power than the ADC and outweigh the savings in

the digital domain.

Table 6.4 lists the resource consumption for the counter-based CC with digital SN generation (used

in Design (II)) and the conventional CC (used in Design (I)). The table shows the utilization, power and

area consumption for 3-, 4-, and 5-bit precision inputs. The area consumption increases with the input

precision, but the differences are higher for the conventional implementation. For higher precision,

the weighted binary design has larger multipliers and adders. In contrast, the area consumption of the

counter-based CC implementation hardly increases because only the counter size for SN generation

and the accumulation changes. Going from 3-bit to 5-bit inputs increases the area consumption by

53% for the conventional and 18% for the SC design. The utilization increase on FPGAs is in the same

range.

The clock speed to finish one MAC operation is constant for the weighted binary and increases

exponentially in the SC-based implementations. The conventional CC always computes with 15.6 kHz.

The clock speed of the SC-based CC increases from 873.6 kHz for 3-bit to 3.744MHz for 4-bit and

15.4752MHz for 5-bit (fclk = nk× fs). Table 6.4 shows a power consumption increase of 53% for the

conventional design and 254% for the SC design. SC consumes less power for 3-bit, more power for

4-bit and 5-bit inputs, and fewer area resources in all cases.

A close look at the resource consumption of the CC for Design (I) and (II) in Figure 6.4 indicates

that the conventional CC consumes slightly more power than the counter-based CC. However, Table 6.4

8Vivado also reports higher dynamic power consumption for designs with SC, if we increase clock speeds and fill up the
FPGA with duplicates of the HDL modules.
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shows it the other way around for 4-bit inputs. We use a faster clock in full system simulations because

all designs need one high-frequency clock to control the SPI and generate the SCLK. When simulating

Design (I) and (II), we use the same 3.744MHz clock and a clock-enable signal to enable the weighted

binary CC every fs = 15.6 kHz9. In Table 6.4, we use a 15.6 kHz clock and connect the clock-enable

signal to a constant high (Logic-1). Using a higher base clock and a clock-enable signal increases the

power consumption of the conventional CC from 23.4 µW to 28.2 µW.

Table 6.4: FPGA utilization and ASIC area and power consumption of the CC function for fs =
15.6 kHz.

Vivado 3-Bit Inputs 4-Bit Inputs 5-Bit Inputs
LUT Reg Slice LUT REG Slice LUT Reg Slice

Conventional 139 145 80 257 160 122 303 182 130
Counter-based 72 151 61 83 163 69 88 174 72

Synopsys 3-Bit Inputs 4-Bit Inputs 5-Bit Inputs
Area Power Area Power Area Power

Conventional 3956 µm2 19.6 µW 4788 µm2 23.4 µW 6066 µm2 29.9 µW
Counter-based 3136 µm2 18.4 µW 3393 µm2 27.9 µW 3699 µm2 65.1 µW

9We use switching annotations to increase the accuracy of the power estimations.
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Discussion and Interpretation

In the previous three chapters, we first outlined the hypotheses and contributions of this thesis. Thenwe

presented the implementation details of the sound source localizer, focusing on SC and weighted binary

variants of the CC function. Chapter 6 showed the simulation and measurement results that we will

interpret in Chapter 7. Structurally, this chapter consists of four sections. Sections 7.1 and 7.2 discuss

the results and cover the first four hypotheses of Section 4.2. Section 7.3 discusses the complexity and

implications of considering SC in a processing system, covering the fifth hypothesis. The last section

points out the limitations of this research.

7.1 Resource Consumption

LTC6992 is not as efficient as LTC1098. However, other research [17] shows that generating PWM

signals can consume less power than conventional analog-to-digital conversion. We still use LTC6992

in our analog design because the PWM module is adjustable and can output frequencies in the 4Hz

to 1MHz interval. The power consumption difference of LTC6992 and LTC1098 is too large to be

compensated through savings in the digital domain. Since achieving a lower total power with SC is

an important goal of this thesis, we also provide the resource consumption of SC designs that use

conventional ADCs (Design (II) and (V)).

The resource analysis confirms that the CC function consumes more resources than the average

filter, SPI-module and maximum search. Resource savings due to applying SC in the CC function have

a relevant impact on the overall resource consumption. The analysis also showed that storing bits

consumesmore resources than combinational logic, with threemain consequences. First, the sequential

MAC architecture from Figure 5.8(a) is more efficient than the architecture in Figure 5.8(b) because it

stores fewer audio samples. Second, it is crucial to capture only one period of LTC6992 and digitally

recreate the PWM signal (see Section 5.2.2). Third, the OR-based approach requires the most resources
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due to the cost of the accumulator, which is a large shift register. We need to use the counter-based CC

with the comparisons in Table 6.4 and figs. 6.3 and 6.4 to be more area and occasionally power-efficient

than the conventional implementation. The SC design requires less static power but more dynamic

power. The threshold, whether SC is more power-efficient, shifts with technology and is currently at

4-bit precision inputs for the 45 nm CMOS library. Newer technologies have lower dynamic and higher

static power consumption and favor the SC-based design.

7.2 Accuracy

It turns out that the precision of inputs has little effect on the accuracy of SSL because the algorithm

only uses the position (index) of the CC’s maxima. LTC1098 is an 8-bit ADC, and we can either round

or truncate to lower precisions, but simulations show that truncation leads to sharper peaks in the CC

result and lower MAEs.

Thiswork does not yield any advantageswhile studying the approximate saturatingOR-based adder

for the stream-based MAC unit and SSL. In contrast to the accurate counter-based MAC, the OR-based

design has several disadvantages. First, the accumulator needs to be redesigned for different window

lengths and computational precisions. Second, the OR-based MAC is sensitive to volume changes be-

cause its accuracy rapidly decreases when the OR-based adder is saturating. Third, the OR-gate adder

is limited to the unipolar format.

The outputs of the SC approach are the same as the outputs from the binary approach when using

the bipolar format with the clock-division method and the Counter design.

7.3 Design Complexity

The VHDL code of the stochastic circuits is synthesizable with the same tools used to synthesize the

weighted binary circuits.So, the SC approach does not add any additional synthesis effort. Digital chips

have a limited number of physical pins. LTC6992s uses two (PWM) instead of four (SPI) connections to

the ASIC or FPGA, which can be advantageous when physical pins are limited. However, alternative

protocols for ADCs such as I2C also require two pins.

The SC and weighted binary CC designs change with computational precision. The stochastic

circuit stays the same1, and only the clock speed needs to be adjusted when lowering or increasing

the precision. For weighted binary arithmetic, the size of adders and multipliers change, but the clock

speed stays constant. SC-based designs could use different clock speeds based on the accuracy demand,

affecting the dynamic power consumption. Dynamically adapting the precision is similar to saving
1Only the counters for bit-stream generation and probability estimation use more or fewer bits.
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power by exploiting progressive precision [10], which was excluded from the analysis in this thesis

(Section 4.2).

The counter-based CC shown in Figure 5.11 contains SNGs, the stochastic circuit and PEs, which

form a complete SC processing system (Figure 2.1). It is self-contained and can replace a conventional

CC design without further changes to other processing systems as it has weighted binary inputs and

outputs. The counter-based CC works for unsigned and signed inputs by replacing AND-gates with

XNOR-gates. The SC-based and the weighted-binary CC designs are equally scalable as additional

MAC units compute more values of the CC function2.

7.4 Limitations

We reported the power consumption estimations based on the synthesis results from the Synopsys

Design Compiler with a 45nm CMOS gate library. The results will be different for other tools and

technology. Any changes to the base clock or computational speed benefit either the conventional or

the SC designs. Simulating the designs for different clock speeds (with clock-enable signals), different

sampling frequencies, and synthesis tools would give a complete view of the power consumption.

Our analysis consider SSL as the only processing task in the digital design. However, the system

usually includes other signal processing tasks. The parallel MAC architecture could be more efficient

than the stream-based MAC (Figure 5.8) if the audio samples are stored in any case and do not add

costs to SSL. The counter-based MAC is not an option for the MAC architecture in Figure 5.8(b). It

can be replaced with APCs. Even OR-based summation could be a competitive alternative because

it does not need a bit-stream accumulator. We need Nframe = 128 multipliers and adders in the

parallel architecture (instead of only one), changing the resource comparison of SC andweighted binary

designs.

The resource consumption savings with the SC approach are maximized if the cost of other sub-

systems is similarly low. The block diagram in Figure 4.1 could additionally contain a processing block

to apply a window function and an adaptive whitening filter which both increase the accuracy of esti-

mations but lower the overall gain through using SC. Further, SC designs cannot benefit from analog

SN generation if the first digital processing block uses conventional digital binary arithmetic.

2The example in the block diagram computes the seven centered values of the CC.
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Conclusion

In this thesis, we first introduced SC and SSL. Chapter 2 discussed random and deterministic SC and

the linear unipolar and bipolar SC formats. The background chapter for SSL focused on efficient TDE-

based algorithms. We compute the TDE with the CC function, either block-wise in time or frequency

domain, or stream-based with MAC units. Efficient implementation of multiplication operation is a

well-known strength of SC. So the research was narrowed down to efficient accumulation in MAC

operations. To prove the functionality of the SC-based sound source localizer, we implemented the full

signal processing chain. This resulted in two prototype circuit boards and multiple HDL designs.

Implementing a separate analog processing chain for SC did not provide power savings because

generating voltage-controlled PWM signals with LTC6992 consumes about two times more power than

the conventional analog-to-digital conversion with LTC1098. However, the analog implementation

served as the proof of concept that SC does not rely on conventional ADCs. The digital HDL design

showed the weaknesses and strengths of SC. On the one hand, the approximate OR-based design has

lower flexibility and more design constraints than the counter-based and conventional designs because

the OR-gate adder only works for unsigned inputs and is sensitive to data value changes. On the other

hand, we also designed a new counter-based CC with SC that is completely exact and easy to use.

Conventional adders and multipliers become more complex for higher computational precision,

whereas stochastic circuits hardly change. When synthesized on FPGAs, the SC designs approximately

halve the slice and LUT utilization compared to the conventional design. Our synthesis results showed

that the ASIC area consumption decreases by 21% for 3-bit inputs and by 39% for 5-bit inputs. The

power consumption increases with computational precision for weighted binary and SC but exponen-

tially faster for SC. For 3-bit input precision, the SC-design consumes 18.4 µW with an 874 kHz clock,

and the conventional design consumes 19.6 µW with a clock equal to 15.6 kHz sampling frequency.

When we increase the computational precision to 4-bit or 5-bit, we can keep the clock speed of the
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conventional design but must increase the clock frequency of the stochastic circuit to finish the com-

putations in the same time. For 4-bit, for example, the power consumption increases to 27.9 µW for the

SC-based design but only to 23.4 µW for the conventional design. To keep the power consumption in

favor of the SC-based design, we can decrease the sampling rate to loosen the time constraints, or use

technologies with lower dynamic power.

The Counter design is not tied to SSL or any specific signal processing task. The SC-based CC

design can be reused in other applications, which use low-precision CC functions, and can provide the

same resource savings as for SSL.
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Appendix A

Mathematical Symbol Reference

Table A.1: A description of the variables we use in this thesis.

a, b weighted binary scalar value B precision, bitwidth
d distance between two microphones D duty cycle
f frequency E expected value
i,m integer value / index G gain
k, n relative prime k=n-1 K number of different possible

time-delays in the CC during TDE
r radius M number of microphones
t time N length of the stochastic bit-stream
v the velocity of sound waves P probability
x, y stochastic number S bit-stream /stochastic sequence
z result/output X,Y random variable

• x . . . data vectors are written bold

• 4p . . . vector in 3D coordinate system

• ρ1 . . . probability of observing 1

• ρ̂1 . . . a hat indicates measured or estimated values

• xi(t) . . . continuous signal

• x[n] . . . discrete signal

• x∗ . . . complex conjugate x

• c[n] . . .CC function

• τd . . . time delay estimation

• imax . . . index of the maximum of the CC function
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Adafruit MAX4466

+

−
MAX4466

VCC

1MΩ VR

22kΩ

1kΩ

10 µF

1MΩ

VCC

100 pF

OUT
10 nF

1 kΩ

1 kΩ

VCC

100 nF

Figure A.1: Schematic of the Adafruit electret microphone amplifier (MAX4466 board). The board
requires an input voltage of 2.4V to 5.5V. The gain can be changed with a variable resistor in the
[25, 125] interval.
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Simulation Data
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Figure B.1: Systematic error as in Figure 6.1, however, with a 2.5 kHz low-pass filter to suppress spatial
aliasing.
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Table B.1: Distribution of the CC-maximum (c[imax]) in percent (%) for different computation precision
and source location in the [-90,-90] interval. For example, 84% of all CC-results have their maximum at
imax = 3 for 8-bit and double precision inputs.

imax

ϕ 90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90

3-
Bi
t

-3 96 96 93 70 17 3 0 0 1 0 0 0 0 0 0 0 0 0 0
-2 3 4 6 28 82 96 54 2 0 0 1 0 0 0 0 0 0 0 0
-1 0 0 0 0 0 1 44 98 59 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 39 100 61 2 1 0 1 2 1 0 0
1 0 0 0 0 0 0 1 0 0 0 38 97 66 7 2 1 0 0 0
2 0 0 0 0 0 0 0 0 1 0 0 0 32 92 93 49 17 12 10
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 49 82 88 89

4-
Bi
t

-3 97 97 94 65 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0
-2 2 3 5 33 92 98 43 0 0 0 1 0 0 0 0 0 0 0 0
-1 0 0 0 0 0 2 55 99 51 0 0 0 2 0 0 0 0 0 0
0 0 0 0 2 1 0 0 1 47 100 63 1 1 1 1 2 0 0 0
1 0 0 0 0 0 0 2 0 0 0 34 99 68 4 1 0 0 0 0
2 0 0 0 0 0 0 0 0 1 0 0 0 29 96 96 47 12 7 6
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 50 87 92 93

5-
Bi
t

-3 96 95 90 56 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
-2 3 4 9 41 97 96 26 0 0 0 1 0 0 0 0 0 0 0 0
-1 1 1 1 1 1 3 71 99 37 0 0 0 2 0 0 0 0 0 0
0 1 1 1 2 1 1 1 1 61 100 69 2 1 1 2 2 1 1 1
1 0 0 0 0 0 0 2 0 0 0 29 98 77 4 1 1 1 1 1
2 0 0 0 0 0 0 0 0 1 0 0 0 19 95 97 47 11 6 5
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 49 88 93 94

8-
Bi
t

-3 84 83 75 40 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
-2 13 14 22 53 91 83 1 0 0 0 1 0 0 0 0 0 0 0 0
-1 2 2 2 4 6 14 91 87 15 0 0 0 2 0 0 0 0 0 0
0 1 1 1 3 3 3 6 13 83 100 83 13 6 3 3 3 1 1 1
1 0 0 0 0 0 0 2 0 0 0 15 87 91 14 6 4 2 2 2
2 0 0 0 0 0 0 0 0 1 0 0 0 1 83 91 53 22 14 13
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 40 74 83 84

D
ou

bl
e

-3 84 83 74 40 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
-2 13 14 22 53 91 83 0 0 0 0 1 0 0 0 0 0 0 0 0
-1 2 2 2 4 6 14 92 87 15 0 0 0 2 0 0 0 0 0 0
0 1 1 1 3 3 3 6 13 83 100 83 13 6 3 3 3 1 1 1
1 0 0 0 0 0 0 2 0 0 0 15 87 92 14 6 4 2 2 2
2 0 0 0 0 0 0 0 0 1 0 0 0 0 83 91 53 22 14 13
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 40 74 83 84
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Table B.2: Distribution of the CC-maximum (c[imax]) in percent (%) for 4-bit (bipolar), 4-bit unipolar,
two approximate OR implementations and source location in the [-90,0] interval.

imax

ϕ 90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90

4-
Bi
t

-3 97 97 94 65 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0
-2 2 3 5 33 92 98 43 0 0 0 1 0 0 0 0 0 0 0 0
-1 0 0 0 0 0 2 55 99 51 0 0 0 2 0 0 0 0 0 0
0 0 0 0 2 1 0 0 1 47 100 63 1 1 1 1 2 0 0 0
1 0 0 0 0 0 0 2 0 0 0 34 99 68 4 1 0 0 0 0
2 0 0 0 0 0 0 0 0 1 0 0 0 29 96 96 47 12 7 6
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 50 87 92 93

4-
Bi
tU

ni
po

la
r

-3 91 90 85 61 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2 6 7 12 34 92 92 37 0 0 0 1 0 0 0 0 0 0 0 0
-1 2 2 2 2 2 6 58 95 47 0 0 0 1 0 0 0 0 0 0
0 1 1 1 3 2 3 3 5 52 100 63 6 5 4 3 3 2 2 2
1 0 0 0 0 0 0 1 0 0 0 36 94 66 7 3 2 2 3 2
2 0 0 0 0 0 0 0 0 1 0 0 0 28 90 92 40 14 8 7
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 54 82 88 89

4-
Bi
tO

R

-3 97 96 94 76 20 1 1 0 0 0 0 0 0 0 0 0 0 0 0
-2 2 3 5 23 78 96 60 1 1 0 0 0 0 0 0 0 0 0 0
-1 1 1 1 1 1 2 38 98 61 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 38 99 74 7 5 3 2 2 1 1 1
1 0 0 0 0 0 0 0 0 0 0 25 93 72 10 4 3 3 2 2
2 0 0 0 0 0 0 0 0 0 0 0 0 24 87 91 57 22 13 10
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 38 74 84 86

4-
Bi
tO

R,
LT

C6
99
2 -3 99 99 99 85 30 3 0 0 0 0 0 0 0 0 0 0 0 0 0

-2 1 1 0 15 69 96 66 1 0 0 0 0 0 0 0 0 0 0 0
-1 0 0 0 0 1 1 33 99 68 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 32 100 66 3 2 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 34 97 71 10 2 1 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 27 89 95 49 20 12 10
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 49 79 86 89
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High-Accuracy Multiply-Accumulate (MAC)
Technique for Unary Stochastic Computing

Peter Schober, M. Hassan Najafi, Member, IEEE and Nima TaheriNejad, Member, IEEE

Abstract—Multiply-accumulate (MAC) operations are common
in data processing and machine learning but costly in terms
of hardware usage. Stochastic Computing (SC) is a promising
approach for low-cost hardware design of complex arithmetic
operations such as multiplication. Computing with deterministic
unary bit-streams (defined as bit-streams with all 1s grouped at
the beginning or end of a bit-stream) has been recently suggested
to improve the accuracy of SC. Conventionally, SC designs use
multiplexer (MUX) units or OR gates to accumulate data in the
stochastic domain. MUX-based addition suffers from scaling of
data and OR-based addition from inaccuracy. This work proposes
a novel technique for MAC operation on unary bit-streams that
allows exact, non-scaled addition of multiplication results. By
introducing a relative delay between the products, we control
correlation between bit-streams and eliminate OR-based addition
error. We evaluate the accuracy of the proposed technique com-
pared to the state-of-the-art MAC designs. After quantization, the
proposed technique demonstrates at least 37% and up to 100%
decrease of the mean absolute error for uniformly distributed
random input values, compared to traditional OR-based MAC
designs. Further, we demonstrate that the proposed technique is
practical and evaluate area, power and energy of three possible
implementations.

Index Terms—Stochastic Computing, Unary Computing, Mul-
tiply Accumulate, Unary Bit-streams, deterministic bit-stream
processing, pulse-width modulation.

I. INTRODUCTION

STOCHASTIC computing (SC) [1]–[3] is an unconven-
tional computing paradigm providing low-cost and noise-

tolerant design for complex arithmetic functions such as mul-
tiplication. In contrast to common positional binary represen-
tation, in SC, data is represented using non-positional uniform
bit-streams. The bit-streams can be random with interleaved
bits of 0s and 1s or predictable (deterministic) with uniform
unary bit-streams having first all 1s and then all 0s (or vice
versa) [4]–[6].

Stochastic Computing (SC) can be realized in both digital
and analog domain. In the digital domain, the binary to
bit-stream conversion is often performed using a stochastic
number generator (SNG) unit built from a random number
generator (RNG) (or a counter for the unary case) and a
comparator [5]. Alternatively, in the analog domain where
the input is given in analog voltage or current format, an
analog-to-time converter such as a pulse-width modulator can
be used to convert the data into a time-encoded stochastic
number [7]. The important factor in generating stochastic

Peter Schober and Nima TaheriNejad are with the Institute of Computer
Technology (ICT), Technische Universität Wien (TU Wien), Vienna, Aus-
tria. M. Hassan Najafi is with the School of Computing and Informatics,
University of Louisiana, LA, 70504, USA. Email: peter-schober@gmx.at,
najafi@louisiana.edu, nima.taherinejad@tuwien.ac.at
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Fig. 1: Encoding the value 0.75 into the duty-cycle of a time-
encoded pulse-width-modulated (PWM) signal. SC works with
time-continuous PWM signals as well as with their time-
discrete represented which we call periodic unary bit-streams.

numbers is the ratio of the number of 1s to the length of
bit-stream, or the fraction of the time that the signal is high
(i.e., logic-1). For example, if a signal is high 20% of the
time, or equivalently, if 20% of the bits in a bit-stream are 1,
the signal/bit-stream represents 0.20 in the so-called unipolar
representation [3]. In the unipolar format, the probability of
observing a 1 in the bit-stream is equal to the represented
value1. Unless otherwise stated, the bit-streams discussed in
this paper are in the unipolar format. The outputs of stochastic
operations are again two-level signals, which can be used as
the input(s) to other stochastic circuits or converted back to
positional binary representation for further processing using
conventional binary designs or storing in memory.

While (pseudo) random bit-streams have been the common
form of representing data in SC [2], [3], unary bit-streams
recently attracted attention due to their efficient and low-cost
generation, and their potential for deterministic and accurate
computation using SC logic [6]–[11]. For example, 1100,
0011, and 1111000 are all examples of unary bit-streams
representing 0.5. Unary bit-streams in the digital domain are
interpreted as PWM signals in the analog domain [7]. A PWM
signal is defined by a duty cycle (D) and a frequency (or period
where frequency=1/period). The duty cycle is the fraction
of time in which the signal is high. Hence, the duty cycle
determines the represented value. Fig. 1 shows a PWM signal
with D = 3

4 , which can also be sampled as a discrete unary
bit-stream and represented by 0111. Continuous PWM signals
can work with significantly higher speed [7], but are more
susceptible to environmental conditions and noise compared to
discrete bit-streams. While processing of discrete bit-streams
is also limited by quantization noise, digital bit-streams are
easier to buffer and process compared to continuous signals.

Accumulation (addition) is an essential operation for many
computing systems. In unipolar SC, numbers are limited

1A stochastic value is said to be unipolar, if x = Mρx, where x denotes
the represented value, ρ denotes the probability of observing high (logic 1),
and M is a positive scaling factor. In this paper, we assume M = 1.



2

to the [0,1] interval [2]. Hence, scaled addition, instead of
normal addition, is natural as the maximum output from
normal addition will be above the upper bound. A multiplexer
(MUX) implements scaled addition in SC, when correlated
(or uncorrelated) bit-streams are connected to the main and
an uncorrelated bit-stream, representing 0.5, is connected to
the select input [5], [7]. In this paper, we use the stochastic
cross correlation (SCC) [12] as a measure for correlation.
Two bit-streams are called positively correlated (SCC = +1)
when they have maximum overlap between 1s, and negatively
correlated (SCC = −1) when they have minimum overlap
between 1s. Further, the term uncorrelated (SCC = 0) is
used interchangeable with independent. The correlation of bit-
streams can be controlled during generation of them or ma-
nipulated [13] when receiving from other stochastic circuits.
It is also possible to generate approximately uncorrelated or
correlated bit-streams from existing bit-streams using addi-
tional circuitry. For example, the uncorrelated select input of
the MUX can be generated by using an additional XOR gate
and a (toggle) flipflop [14], [15].

The processing time increases exponentially with the bit-
stream lengths as the output length equals the product of the
periods of the input bit-streams [5]. When the input values
are small and the result stays in the representable range, i.e.,
in the [0,1] interval, non-scaled addition is preferred. As an
alternative to the MUX-based scaled addition, OR gate has
been suggested for fast and non-scaled addition of data [16].
A requirement for OR-based addition, however, is that the input
bit-streams must be negatively correlated to produce accurate
output. If a bit in a bit-stream is 1, the same bit position in the
other bit-stream(s) must be 0. Any overlap between 1s results
in inaccuracy in the OR-based addition.

Besides the traditional summation methods using MUX
unit and OR gate, several modifications and alternatives have
been proposed in the literature. One approach for non-scaled
addition combines an OR-based adder with additional circuitry
that includes a shift register [17]. When both inputs of the OR
gate are 1, the circuit forwards logic-1 to the output and stores
a 1 bit in the shift register. When both inputs are 0, a previously
stored 1 bit is added to the inputs. Assuming that the shift
register is large enough to store enough 1s and the sum is in
the valid interval, this method also allows exact summation.
If the sum should be converted back to a binary number, an
accumulative parallel counter (APC) can be used to implement
the exact non-scaled summation and the conversion to binary
in a single circuit. APCs function as multi-input stochastic-to-
binary converters that increase an internal counter for each 1 at
their inputs [18]. Finally, scaled summation can be mapped to
mealy finite state machines [15]. The number of inputs is equal
to the number of states and the current state in conjunction
with the current input determine the output. Despite the fact
that in SC, multiplication can be accurate and efficient, it
has been shown in [19] that multiply-accumulate (MAC)
circuits can be implemented without conventional stochastic
multiplication and addition. In [19], the authors use counters
to compute multiplication as well as accumulation and the
inputs and outputs are in conventional binary format.

In this work, we propose a novel summation theory that
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Fig. 2: (a) MAC architecture with accumulator a and factors b
and c for sequential data. (b) Parallel MAC architecture with
factors xi, yi and result z.

builds on the already existing work on exact multiplication
operation (with AND gates) using deterministic unary bit-
streams [5], [7], [8]. Combined, this work performs fast,
efficient and accurate MAC operation that can be used in
many applications. We propose an OR-based MAC unit that
accurately accumulates the output of multiplication operations
performed on unary bit-streams.

The rest of this paper is organized as follows. Section II
provides a brief overview of unary SC and MAC operation. In
Section III, we present our claims for the proposed theorem as
well as the theoretical limits on summation of multiplication
results for our technique. In Sections IV and V, mathematical
proofs are derived for the proposed theory and its upper error
bound, respectively. Section VI presents experimental results
of the proposed technique. In this section, we also provide
accuracy comparisons with the state-of-the-art MAC designs
and evaluate gray-scaling as a practical case study. In Sec-
tion VII, we provide an analysis of the resource consumption
between different MAC implementations. We further discuss
constraints and latency of our technique in Section VIII.
Finally, we draw conclusions in Section IX.

II. BASICS OF MAC OPERATION USING TIME-ENCODED
STOCHASTIC COMPUTING

The MAC operation is defined as

a ← a+ (b · c). (1)

with a as accumulator, and b and c as factors. A block diagram
of Equation (1) is illustrated in Fig. 2(a). It is worth pointing
out that using multiple multipliers in parallel combined with a
multi-input adder produces the same output value z. That is,

z =

N�
i=1

xiyi (2)

with inputs xi, yi. The corresponding architecture is shown in
Fig. 2(b). The advantage of (2) lies in a faster computation
speed at the cost of additional hardware resources.

A unary bit-stream is mathematically describable through
a length (or period), n, and number of 1s, v. The value
represented by a unary bit-stream is v

n . For example, if n = 16
and v = 4, the bit-stream represents v

n = 4
16 = 0.25. We will

show that factors with relatively prime lengths of k = n − 1
always have a centered interval of uninterrupted 0s in the
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products. A relative delay (i.e., a unique lag between bit-
streams) can position 1s of other summands in an interval
where all other products exclusively have 0s. This allows
accurate accumulation of stochastic products through logic-
OR. The proposed technique has no restrictions concerning the
cause of the relative delays between summands. As examples,
we provide three possible implementations in Section VI-B.

Throughout the paper, whenever we refer to multiplication,
the underlying operation is logic-AND, and addition stands for
applying logic-OR to stochastic bit-streams. When we use the
terms summands, products or the inputs of the OR gate, we
refer to the intermediate results between multiplication and
summation. We emphasize that the focus of this paper lies
in the summation of unary bit-streams. For more detail on
why and how multiplication of unary bit-streams is performed
accurately, we refer the reader to [5]. In Section III, we will
take a closer look at the limits on summation of products using
logic-OR and upper-error-bound, if these limits are exceeded.

III. THEOREM

A. Claim

Let v denote the maximum allowed number of 1s in the
input bit-streams. If binary numbers, represented by unary bit-
streams with relatively prime lengths of n, k (where k = n−1
and both inputs are less than or equal to v

k ) are multiplied using
logic-conjunction, then N products (results of multiplication)
can be accurately summed using logic-disjunctions, when each
summand is processed with a predefined lag. The upper-bound
of N and v is given by

N ≤
�
n− v

v

�
·
�
n

v

�
(3)

v ≤
�

n

⌈
√
4N+1−1

2 ⌉+ 1

�
, (4)

where {N,n, v ∈ N}.

B. Expanded Explanation and Examples

Note that N is the number of inputs to the OR gate (not to
the MAC unit). A pairwise multiplication of 2N inputs with
AND gates results in N products, which are then summed by
OR gates. For example, if n = k + 1 = 8 and v = 4, at
most N = 2 products can be summed by an OR gate without
producing any error. The four inputs of the MAC unit must
be less than or equal to v

k = 0.5714. As some additional
examples, Table I lists the maximum allowed input thresholds
for different n = k + 1 and N for exact MAC.

Note that, Equation (4) can be used when the application
determines the number of inputs. In that case, the input range
is [0, v

k ]. We also provide (3), which is more applicable when
the input ranges are known in advance or the application does
not imply a specific number of inputs.

The delays mentioned above need to be applied in the
computation-chain before performing logic-OR. This is done
by either inserting registers, delaying the bit-stream genera-
tion, or using the intrinsic delay of sequential arriving data.
The important point in performing exact addition is that all
summands are delayed differently and therefore, N unique

TABLE I: Examples for the accuracy threshold v
k for different

period lengths n = k + 1 and number of MAC inputs, see
Equation (92)

Calculation with input values below the thresholds is exact.
Period length n = k + 1

16 32 64 128 256
4 Inputs (N=2) 0.53 0.52 0.51 0.50 0.50

12 Inputs (N=6) 0.33 0.32 0.33 0.33 0.33
24 Inputs (N=12) 0.27 0.26 0.25 0.25 0.25
40 Inputs (N=20) 0.20 0.19 0.19 0.20 0.20
60 Inputs (N=30) 0.13 0.16 0.16 0.17 0.16

delays are required to sum N products. In Section IV, we will
derive two types of delays. Long or major, and intermediate or
minor delays. We will show Nmajor=

�
n−2v

v

�
(Nmajor ∈ N) as

the number of different long and Nminor=Nmajor+1=
�
n−v
v

�
(Nminor ∈ N) as the number of different minor delays. Having
defined the required variables, we will now present the algo-
rithm that computes the delays. Algorithm 1 gets two inputs
n, v and returns a vector with N=(Nmajor+1) · (Nminor+1)
unique delays, which guarantees exact MAC for input values
less than or equal v

k . As an example, we calculate Nmajor

= 1 and Nminor = 2, when n=16 and v=5. We compute
N=6 different delays with Algorithm 1 and get Delays :=
{0, 5, 10, 80, 85, 90}. Fig. 3 shows the summation for this
example. The first six sequences are the delayed products of
two factors ( 5

16 · 5
15 ). The last sequence represents the sum,

produced using a 6-input OR gate.

Algorithm 1 Computing delays for N summands

Input: n, v
Output: Delays

1: Nmajor =
�
n−2v

v

�
, Nminor =

�
n−v
v

�
, i = 1

2: for q = 0, 1, 2, to Nmajor do
3: for p = 0, 1, 2, to Nminor do
4: Delays(i) = q · vn+ p · v
5: i = i+ 1
6: end for
7: end for
8: return Delays

If input bit-streams have more 1s than allowed by (4),
exact MAC operation cannot be guaranteed. In that case,
inputs represent values that are greater than v

k . Pairwise
multiplication of these inputs is exact, but the accumulation
of their products causes error. In that circumstance, the upper
error bound, Eupper, gives the maximum summation error:

Eupper =
3
2c(c+ 1) + c(v − 1)

nk
· L (5)

where c is the number of extra (and potentially overlapping)
1s per period in the input bit-streams and v + c is the total
number of 1s in them. Further, L(L ≤ N |L ∈ N) is the
number of products, where inputs represent values in [0, v+c

n ].
We highlight that L is the number of products, i.e., the number
of inputs to the OR gate.

Subsequently, we give two examples for the usage of (5). In
the first one, the application guarantees that half of the inputs
satisfy (4), but no assumptions are made for the remaining
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1 f[n-90]
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1

Bits

Sum

100 105 110 115 120
0

1

Bits
260 270 280 290

0

1

Bits
Fig. 3: The proposed method for exact summation of six unary bit-streams using relative delays and logic-disjunction. The
summands a, b, c, d, e, f are delayed by 0, 5, 10, 80, 85, 90 bits, respectively. All summands are equal besides of the different
delay (a = b = c = d = e = v

n
v
k ) and sum to a + b + c + d + e = 6( vn

v
k ) = 0.625, with n = 16, k = 15 and v = 5. The

bottom plot shows the logic-OR of upper sequences and represents the exact sum.

1 1✁✁✕
1

0 ✁✁✕
1

00 0

1 ✁✁✕
1

0 1 ✁✁✕
1

0 1 ✁✁✕
1

0

1 0 0 1 0 0

1 0 1 0 1 0

x1 : 2
3

y1 : 1

x2 : 1
3

y2 : 1
2

X1

Y1

X2

Y2

AND

AND

OR
z

Fig. 4: The proposed MAC technique for four inputs, relative
prime lengths n = k + 1 = 3 and a relative delay between
summands of 1 bit (marked by gray squares). The circuit is
exact for inputs with at most 1 bit logic-1 per period (input
values ≤ v

k = 1
2 ). Because X1 and Y 1 exceed this limit by

c = 1 bit, the result z has a maximum error Eupper = 0.5 (5).

inputs. This example is meant to point out how to use variable
L to consider correct summands during the error estimation.
Fig. 4 shows the proposed MAC circuit with two of four input
bit-streams (X1 and Y 1) not satisfying (4), having one extra
logic-1 (c = 1) per period. Because both are connected to the
same AND gate, one product (L = 1) has too many 1s for
exact summation. We use short relative prime periods n =
k + 1 = 3 for better graphic display. The circuit computes
1101100 which represents 4

6 , the number of 1s divided by the
least common multiple (LCM) of the input periods. The MAC
error is 5

6 - 46 = 1
6 , which is less than the upper error bound

Eupper =
3
2 ·1·(1+1)+1·(1−1)

3·2 · 1 = 1
2 .

In the second example, all input values stay in the allowed
[0, v

k ] interval. The results are exact, when all input values are
less than or equal v

k = 0.315, with n = k+1 = 16, v = 5 and
N = 6. The maximum exact result is z =

�6
1

5
16 · 5

15 = 0.625,
when all input bit-streams have v = 5 1s per period. In contrast
to the first example, all input values exceed the threshold at
the same time. Now assume that all 12 MAC inputs (L = 6)
have one additional bit toggled from 0 to 1 (c = 1). The output
increases to z =

�N
i=1

6
16 · 6

15 = 0.9, whereas the proposed
method computes 0.8625. The error 0.9− 0.8625 = 0.0375 is
less than the upper-error estimation in (5):

Eupper = [
3

2
· 1(1 + 1) + 1 · (5− 1)]/(16× 15)× 6 = 0.175 (6)

In the next section, we prove that the proposed method is
exact when condition (3) or (4) is satisfied.

IV. PROOF OF THE THEOREM

Assume Sn and Sk are two unary bit-streams with v 1s,
followed by n−v and k−v 0s. Their product is computed by
feeding k repetitions of Sn and n repetitions of Sk to an AND
gate as elaborated in [7]. The n times repetition of Sk will
be denoted as Sk,n. Similarly, Sn,k is the k times repeated
sequence of Sn. Sn,k, Sk,n and their logic-conjunction SAND
are piecewise defined as

Sn,k[i] =

�
1 {nx ≤ i < nx+ v} (a)
0 {nx+ v ≤ i < n(x+ 1)} (b) (7)

Sk,n[i] =

�
1 {ky ≤ i < ky + v} (a)
0 {ky + v ≤ i < k(y + 1)} (b) (8)

SAND[i] = AND(Sn,k, Sk,n) (9)
with {0 ≤ x < k, 0 ≤ y < n|x, y ∈ N}. (10)
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Note that, in the binary domain, (7) and (8) are factors of
the product represented by (9). Fig. 5 shows these sequences
for n = 5, k = 4 and v = 2. The subsequent proof of (3) is
divided into two parts. We begin by deriving positions of 1s in
SAND. We will then use this information to derive the relative
delays that lead to no overlap between 1s. Using these delays
will guarantee exact summation through logic-disjunction.

1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sn,k

Sk,n

SAND

DSn,k
= 2

5

DSk,n
= 2

4

DSn,k
·DSk,n

= 1
5

Sk,n

Sn,k
SAND

Fig. 5: Stochastic multiplication of two unary bit-streams using
AND gate. Sn,k represents v

n = 2
5 with v = 2 1s and a period

of n = 5 bits (Duty Cycle DSn,k=0.4). Sk,n represents v
k = 2

4
with a period of k = 4 bits (Duty Cycle DSk,n=0.5). The
output SAND represents 1

5 .

By definition AND(Sn,k[i], Sk,n[i]) produces a 1 when

{Sn,k[i] = 1 AND Sk,n[i] = 1}. (11)

It follows that both inequations, (7,a) and (8,a) are required to
be fulfilled to get a 1 in SAND.

{nx ≤ i < nx+ v and ky ≤ i < ky + v} (12)

We use natural numbers m, t to rewrite inequations (12) as

{nx ≤ i < nx+ v} = {i = nx+m} (13)
{ky ≤ i < ky + v} = {i = ky + t} (14)

with {0 ≤ m < v, 0 ≤ t < v|m, t ∈ N}.
Equations (12) to (14) lead to two possible substitutions:

{{nx ≤ i < nx+ v and i = ky + t} or
{ky ≤ i < ky + v and i = nx+m}} (15)

= {{nx ≤ ky + t < nx+ v} or
{ky ≤ nx+m < ky + v}} (16)

= {{−t ≤ ky − nx < v − t} or
{−m ≤ nx− ky < v −m}} (17)

= {{v − t > ky − nx ≥ −t} or
{m ≥ ky − nx > m− v}} (18)

The disjunction in (18) has two maximum solutions (m =
t = 0 and m = t = v− 1) that both can be simplified to (19).

{v > ky − nx ≥ 0 or 0 ≥ ky − nx > −v} (19)
v > |ky − nx| (20)

For given k and n there are different solutions to (20). We
set k = n− 1 for the reasons mentioned in Section I. Hence,

v > |n(y − x)− y| (21)

A closer look at (21) and constraint n > v reveals that no
solution is possible for y ≤ x−1 and y ≥ x+2 because both
equations result in a contradiction:

for y ≤ x− 1 → y = x− 1−m

v > |n(y − x)− y| y=x−1−m
= | − n−mn− y| ̸< v (22)

for y ≥ x+ 2 → y = x+ 2 +m

v > |n(y − x)− y| y=x+2+m
= |2n+mn− y| ̸< v (23)

with {m ≥ 0|m ∈ N}
Next, we find explicit solutions for x, knowing that the only
possible values for y in (21) are (I.) y = x and (II.) y = x+1.

v > |ky − nx| = |ny − y − nx| (24)
for (I) y = x

v > |nx− x− nx| = x → x < v (25)
for (II) y = x+ 1

v > |nx+ n− x− 1− nx| = |n− x− 1| (26)
x<n
= n− 1− x

k=n−1
= k − x → x > k − v (27)

Therefore, 1s in SAND only appear in the beginning and end
(x < v and x > k−v). Substituting for y in (12) leads to (30)
and (33) that describe 1s of SAND, if both factors have v 1s.

y=x→ {nx ≤ i < nx+ v and kx ≤ i < kx+ v} (28)
= {max(nx, kx) ≤ i < min(nx+ v, kx+ v)} (29)

= {nx ≤ i < kx+ v} for x < v (30)

y=x+1→ {nx ≤ i < nx+ v and kx+ k ≤ i < kx+ k + v} (31)
= {max(nx, kx+ k) ≤ i < min(nx+ v, kx+ k + v)} (32)

= {k(x+ 1) ≤ i < nx+ v} for x > k − v. (33)

SAND[i] =

������
1 {nx ≤ i < kx+ v} (a)

for 0 ≤ x < v
1 {k(x+ 1) ≤ i < nx+ v} (b)

for k > x > k − v
0 else (c)

(34)

We will follow the common notation |I| for the length of
interval I . The length of an interval is the absolute value of
the difference between the two endpoints. The minimal interval
with property {{nx ≤ i < kx + v} for x < v} ⊂ Ibegin that
includes all sections of (34,a) is

Ibegin = [0, k(v − 1) + v) (35)
|Ibegin| = kv + v − k = nv − k. (36)

In the same manner, we define Iend for (34,b) and get

Iend = [k(k − v + 2), n(k − 1) + v) (37)
|Iend| = nv − n− k. (38)
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Observe that |Ibegin| is greater than |Iend| regardless of v.

max(|Ibegin|, |Iend|) = |Ibegin| = nv − k (39)

Both Ibegin and Iend contain a certain percentage of 1s
proportional to the values of factors. On the contrary, IF,major

contains 0s only and is between Ibegin and Iend.

IF,major = [nv, n(k − v + 1))

= [nv, n(n− v)) (40)
|IF,major| = n(n− v)− (nv)

= n2 − 2nv. (41)

Knowing q · vn ≥ |Ibegin| (1 ≤ q|q ∈ N), a relative delay
of q · vn bits between two summands avoids overlap between
their Ibegin. As a result of |Ibegin| > |Iend| it also avoids
overlap between their Iend. Delays of form q ·vn will be called
major delays. We write SAND,q for major-delayed products and
Ibegin,q , Iend,q , IF,major,q for their right-shifted intervals:

SAND,q[i] = SAND[i− q · vn] (42)

The task is now to find maximum qmax = Nmajor that
Ibegin,Nmajor does not intersect with Iend of other products.

|IF,major| − (vn)Nmajor ≥ 0 (43)

Nmajor ≤ |IF,major|
vn

(44)

Nmajor ≤ n− 2v

v
(45)

It follows that interval Ibegin,q (1 ≤ q ≤ Nmajor) is
in IF,major,q−1 and Iend,q is right-shifted out of SAND,q−1.
Therefore, Nmajor + 1 =

�
n−v
v

�
major-delayed products do

not create overlap in logic-disjunction, when each of them is
uniquely delayed.

We can now consider the derivation of Nminor and factor
⌊ v
n⌋ in (3). By definition of logic-AND, 0s in Sn,k (and Sk,n)

also appear in SAND. Substituting i → i − q · vn into (7,b)
shows that applying major delays extend and do not disturb the
periodicity of 0s. Therefore, SAND,q and the logic-disjunction of
them share a regular occurring pattern of 0s, denoted IF,minor.

SAND,q[i] = 0 for {n(x+ qv) + v ≤ i < n(x+ 1 + qv)} (46)

IF,minor = [n(x+ qv) + v, n(x+ 1 + qv)) (47)
|IF,minor| = n(x+ qv + 1)− (n(x+ qv) + v) (48)

= n− v (49)

Let Itwo−level be a recurring interval that does not intersect
with IF,minor. Itwo−level has 1s proportional to the input
values and contains all 1s of SAND,q. The exact positions of
1s are not required for this proof.

Itwo−level = [n(x+ qv), n(x+ qv) + v) (50)
for 0 ≤ x < v and k > x > k − v

with Itwo−level ∩ IF,minor = {}
|Itwo−level| = v (51)

According to (49) and (51), S�
AND,q consists of an alternat-

ing pattern of v logical-undetermined bits, followed by n− v
bits being guaranteed 0s. Assuming |IF,minor| ≥ |Itwo−level|,

a relative minor-delay of |Itwo−level| = v between SAND,q
avoids overlap at logic-disjunction, because IF,minor exclu-
sively has 0s. We now proceed similar to (45) and compute
the number of unique minor-delays Nminor.

|IF,minor| − |Itwo−level| ·Nminor ≥ 0 (52)

Nminor ≤ |IF,minor|
|Itwo−level| =

n− v

v
. (53)

The delay for each summand is computed with two variables
0 ≤ q ≤ Nmajor and 0 ≤ p < Nminor with Delay(q, v) =
q · vn+ p · v. In its final form SAND,q,p[i] = SAND,q[i− p · v] =
SAND[i− q · vn− p · v] is defined as

SAND,q,p[i] =������
1 {nx+ q · vn+ p · v ≤ i < kx+ q · vn+ (p+ 1) · v}

for x < v
1 {k(x+ 1) + q · vn+ p · v ≤ i < nx+ q · vn+ (p+ 1) · v}

for x > k − v
0 else

(54)

The result of MAC operation is

SSUM [i] =

Nmajor,Nminor�
q=0,p=0

SAND[i− q · vn− p · v] (55)

Counting the number of different available delays (N ∈ N),
that is the possibilities for q and p leads to the claim in (3):

N ≤ (Nmajor + 1)(Nminor + 1) (56)

N ≤
�
n− 2v

v
+ 1

��
n− v

v
+ 1

�
=

�
n− v

v

��
n

v

�
(57)

The maximum integer function in (57) is required because
Nminor and Nmajor are naturals. Solving (57) for v is possible
because of the property Nminor = Nmajor + 1. Since N is
the product of two consecutive integers we call N a pronic
number (N = x(x+1) with x = Nmajor+1). By analogy with
the square root of N , the pronic-root of N is x =

√
4N+1−1

2 .
Knowing N we can calculate its Nmajor with

Nmajor + 1 =

�√
4N + 1− 1

2

�
(58)

Next, we solve (45) for natural v and substitute for
Nmajor + 1. The result is equal to claim (4).

v ≤
�

n

Nmajor + 2

�
(59)

v ≤
�

n

⌈
√
4N+1−1

2 ⌉+ 1

�
(60)

In the following section, we discuss the behavior of the
proposed technique when the maximum input constraint (4)
is not satisfied. We derive a maximum error-bound and prove
that the error is less than Eupper from (5).
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V. PROOF OF THE UPPER ERROR BOUND

This section proves that inputs representing greater values
than (4) cause a maximum error given in (5). So far, we
have been working under the assumption that the system was
designed for N summands and input values are in the [0, v

k ]
interval. Now suppose that the allowed input interval expands
to [0, v+c

n ] and N is not reduced. To account for greater input
values, we substitute v → v+c in (34,a) and (34,b), and write
S′
AND for products (summands) with increased input values.

S�
AND =

������
1 {nx ≤ i < kx+ (v + c)} (a)

for 0 ≤ x < (v+c) ↔ x ∈ {x0, x1}
1 {k(x+ 1) ≤ i < nx+ (v + c)} (b)

for k > x > k − (v+c) ↔ x ∈ {x3, x4}
0 else (c)

(61)

Partitioning index x (0≤x<k) into five shorter indexes (x =
x0∪x1∪x2∪x3∪x4) simplifies the subsequent error analysis.

0 ≤ x0 < v (62)
v ≤ x1 < (v + c) (63)

(v + c) ≤ x2 < k − (v + c) + 1 (64)
k − (v + c) + 1 ≤ x3 < k − v + 1 (65)

k − v + 1 ≤ x4 < k (66)

Whenever we analyze one specific section of SAND, we
abbreviate intervals of SAND with side condition x = xi ∈
{x0, x1 . . . x6} to S′

AND,xi
:

S′
AND,xi

= SAND and x = xi (67)

Logic-1s within previously assumed logic-0 intervals produce
error at logic-OR, because they can overlap with 1s of other
delayed summands. The proposed upper-error bound assumes
all extra 1s to cause error and sums the individual components.
In what follows, the error is calculated by intersecting both
intervals ((47) and (40)) with 1s in S′

AND (61,a) and (61,b).
The intersection between intervals is defined as Ii ∩ Ij . We
use variable Mi,j for the number of bits in the intersections.

I1 ∩ I2 = [a, b) ∩ [c, d) (68)
= [max(a, c),min(b, d)) (69)

M1,2 = |I1 ∩ I2| (70)
= min(b, d)− max(a, c) (71)

There is no intersection between IF,major and SAND,x0,
because max(SAND,x0) < min(IF,major). Same technique for
x1 shows that in the worst case, S′

AND,x1 is in IF,major, so all
1s of S′

AND,x1 could cause error. We sum all bits of |S′
AND,x1|

using Gauss-Sum for natural numbers:

Mx1,Fmajor = |S′
AND,x1

∩ IF,major| (72)

=
�
x=x1

min(kx+ (v + c), n(n− v))

− max(nx, nv) ≤
�

|S′
AND,x1

| (73)

=
�
x=x1

|[nx, kx+ v + c)| (74)

=

v+c−1�
x=v

v + c− x =
c(c+ 1)

2
(75)

By definition S′
AND,x2

[i]=0 regardless of inputs and Mx2,Fmajor

is zero as a result. In worst case, S′
AND,x3 is completely in

IF,major, which can be seen when comparing their maximum
and minimum. Hence, we again sum bits in S′

AND,x3
.

Mx3,Fmajor = |S�
AND,x3

∩ IF,major| ≤
�

|S�
AND,x3

| (76)

=
�
x=x3

|[k(x+ 1), (k + 1)x+ (v + c))| (77)

=

k−(v)�
x=k−(v+c)+1

(v + c)− k + x =
c(c+ 1)

2
(78)

Similar to x0 there is no error for x4, because
max(IF,major) < min(S′

AND,x4
). In (47) we showed that

IF,minor does not intersect with 1s in SAND and contains 0s
only. For x1, x2, x3, IF,minor is in IF,major, so error within
this interval are already covered. Substituting v → (v + c) in
(50) leads additional error for x0 and x4:

Mx0,Fminor = |IF,minor ∩ |S�
AND,x0

| (79)

=
�
x=x0

[nx+ v, n(x+ 1)) ∩ [nx, kx+ (v + c)) (80)

=
�
x=x0

min(n(x+ 1), kx+ (v + c))

− max(nx+ v, n(x+ 1)) (81)

=
�
x=x0

kx+ (v + c)− nx− v (82)

=

v−1�
x=0

c− x ≤ c(c+ 1)

2
(83)

Repeating the same concept for IF,minor ∩ S′
AND,x4

with
max(nx+ v, k(x+ 1)) = nx+ v gives Mx4,Fminor .

IF,minor ∩ S�
AND,x4

= [nx+ v, n(x+ 1))

∩{[k(x+ 1), nx+ (v + c)) for k > x > k − v} (84)
= min(n(x+ 1), nx+ (v + c))

−max(nx+ v, k(x+ 1)). (85)

Mx4,Fminor = |IF,minor ∩ S�
AND,x4

| (86)

=
�
x=x4

(nx+ (v + c))− (nx+ v) (87)

=

k−1�
x=k−v+1

c = (v − 1)c (88)

Mtotal is the sum of individual error contributing intersections.

Mtotal =
�

Mxi =
3

2
c(c+ 1) + c(v − 1) (89)

Up to this point we considered only one summand having
extra 1s that cause error. This is the result of two MAC inputs
having v+c instead v 1s. When L (L ∈ N) summands exceed
the allowed input range, the error increases proportional to L.
The number of potential error bits is converted to the positional
binary representation Eupper by scaling with 1

nk .

Eupper =
3
2c(c+ 1) + c(v − 1))

nk
· L (90)

The upper error limit Eupper increases linear w.r.t. v and L,
and quadratic with c. Note that Eupper = 0 (the computation
is accurate), when c = 0 (Equation (4) is satisfied).
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Fig. 6: Two common SC MAC: (a) AND gate followed by a
multi-input MUX, (b) AND gate followed by a multi-input OR.

VI. EXPERIMENTAL RESULT

In this section, we verify our theory by using circuit
implementations of the proposed technique. We compare the
proposed unary bit-stream-based MAC with three state-of-
the-art designs which represent data using Sobol-based low-
discrepancy (LD) bit-streams [20] while perform the summa-
tion using either MUX or OR gates. Since all four designs use
AND gates for multiplication, we distinguish them by their data
representation and summation method, and call them SobolMUX,
SobolMUX/TFF, SobolOR and UnaryOR. Below, we discuss the
MUX-based methods (SobolMUX and SobolMUX/TFF) and OR-
based method (SobolOR) and their corresponding equations and
compare them to our proposed technique.

A. Traditional summation

Fig. 6(a) shows the most common SC design for MAC units.
Multiplications are performed using AND gates and summation
is implemented with MUX unit [3] [21] [22]. A MUX-based
adder divides the sum by the number of data inputs N . The
MAC function is described as follows:

zMUX =

�
1≤i≤N xiyi

N
(91)

where xi and yi are inputs, and zMUX is the output. OR gates
replace the MUX unit in an alternative MAC circuit [23] [16]
(see Fig. 6(b)). OR gates find the union of input bit-streams.
For example, the result of a three-input OR is zOR = a1 ∪
a2 ∪ a3 = a1 + a2 + a3 − a1a2 − a1a3 − a2a3 + a1a2a3. In a
two-stage stochastic MAC, ais are the outputs of AND gates
(ai = xiyi and i = 1, 2, . . . N ).

Recent works on deterministic methods of SC [8] [7] [5]
showed that completely accurate computations can be done
using SC designs. Different deterministic approaches were
proposed based on LD [24], pseudo-random [5], and unary
bit-streams [8]. All these methods produce completely accurate
output when processing bit-streams with a specific length (i.e.,
2N×M bits where N is the number of inputs and M is the
precision of data) and decrease in accuracy when shorter
bit-streams are processed. Among these, Sobol-based LD
methods [20] [25] have shown minimum random fluctuations
and fastest convergence to the expected output [5]. The authors
in [5] showed exact and fast converging multiplication with
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Fig. 7: MAC outputs for OR-based and MUX-based as well as
the proposed UnaryOR as a function of input value and number
of inputs. Up to the vertical line (thresholds from Table I), the
proposed UnaryOR is exact and provides the same output as a
non-scaled MAC, shown as diagonal line.

AND gates and scaled addition with MUX when processing
Sobol-based bit-streams. The required independence between
Sobol bit-streams is provided by generating each bit-stream
based on a different Sobol sequence. When used with OR
gates, Sobol bit-streams produce the union of the inputs with
improved latency compared to pseudo-random and unary bit-
streams. We compare our proposed MAC design with three
baseline designs processing bit-streams of this form.

Fig. 7 presents the outputs for approximate OR-based
MAC, scaled MUX-based MAC and the proposed UnaryOR
to show the input-ouput behavior of each method. Note that
the number of MAC inputs is twice that of N due to the
pairwise multiplication before summation. The 5-bit precision
(n = 32, k = 31) input values are marked on the X-axis
and are equally increased until the reference MAC output,
shown on the y-axis, reaches 1 (z =

�N
i=1 xiyi

!
= 1). The

non-scaled reference MAC output is a diagonal line because
MAC is a linear operation. While each of the implemented
methods exhibits some degree of deviation compared to the
reference, MUX-based methods diverge the most from the
non-scaled reference, because a MUX unit performs scaled
rather than normal addition. Traditional OR-based methods
perform comparably to the proposed UnaryOR design for small
input values but falls behind at larger ones. UnaryOR is closer
to the non-scaled reference MAC than MUX-based and OR-
based designs regardless of the number of inputs (e.g., 4, 12,
and 24) and is the only method that can provide completely
accurate results for small input values. The thresholds in which
the proposed method stops producing exact result is marked by
vertical lines in Fig. 7. These match the thresholds from Table I
after quantization. For example, the computed threshold for
n = 32 and N = 2 is 0.52 that, after rounding to the next
representable value, becomes 0.5. A 32-bit unary bit-stream
represents 0.5 with 16 1s followed by 16 0s. For input values
greater than the threshold, the proposed method guarantees the
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upper-error bound (5) discussed in Section V.

B. Practical Implementation

So far we distinguished the individual methods by their
summation technique (OR-based or MUX-based) and the
SNGs used. In this section, we further refine our MAC
techniques and introduce SobolMUX/TFF, UnaryOR/REG and
UnaryOR/SEQ. The latter two are alternative designs for the
proposed MAC technique, which achieve the same accuracy
results as UnaryOR, but require different resources. Hence, we
will not discuss them in accuracy comparisons. However, their
differences will be discussed in the resource comparison sec-
tion (Section VII). SobolMUX/TFF is a specific implementation
of MUX-based addition that does not require an additional
select input. The method is extensively discussed in [14].
Both, the accuracy and the resource requirements differ from
SobolMUX, so it will be separately discussed in our accuracy
and resource comparisons. The three UnaryOR methods reflect
three examples of making relative delays between summands:

1) UnaryOR uses a separate SNG (consists of a counter and
a comparator) for each MAC input. The SNGs are enabled
pairwise at the clock cycles calculated with Algorithm 1 for nk
clock cycles. Two SNGs that are connected to the same AND
gate form one pair. The counters have relative prime periods
n and k = n − 1. The bit-streams are 0, when the SNGs are
disabled. The computation architecture is equal to Fig. 2(b).
Fig. 3 visualizes the concept of summing delayed bit-streams.
Each SNG is enabled for 240 clock cycles in unique intervals
and disabled (logic 0) for the remaining time.

2) UnaryOR/REG differs in both bit-stream generation and
cause of relative delays. It uses a pair of two counters instead
of one per MAC input (i.e., a total of 2N counters). The values
of the two counters are compared with each pair of factors.
The relative delays are caused by bit-shift registers of different
lengths between the outputs of the AND gates and the inputs of
the OR gates. The length of the shift register for summand i is
equal to Delays(i) computed with Algorithm 1. In Fig. 2(b),
the length of the shift register after AND gate with inputs x1, y1
is Delays(1) (always 0), after AND gate with inputs x2, y2 is
Delays(2), and so on. It is important that the output bit stream
of a SNG is 0, when the bit-stream generation is finished.

3) UnaryOR/SEQ uses one SNG pair (one for each relatively
prime length bit-stream) and the architecture in Fig. 2(a).
The MAC works sequentially and the summands are added
to the accumulator one after another. To achieve the same
accuracy and output sequence the following two properties
are required. First, the inputs to the SNG pair must change
N times during MAC operation (once for each summand).
Second, the SNG pair must be disabled for the correct number
of cycles between generating bit-streams for different inputs,
so that the new summand is added to the accumulator at
the right time. The accumulator is a shift register of length
nk+Nmajor·vn+ Nminor·v (the LCM of inputs plus the
maximum delay from Algorithm 1). The SNGs must be stalled
for Nmajor ·vn+Nminor ·v cycles between generating the bit-
streams of two subsequent input pairs. Simulations show that
it is possible to use a different buffer size and avoid stalling

T Q

x
y

clk

s

1

0
z

Fig. 8: Toggle flipflop based scaled adder implementation
(SobolMUX/TFF) that does not need an additional RNG for the
select input of the MUX [14].

the bit-stream generation (i.e., immediately generate the next
bit-stream when the previous is done). However, finding a
formula for optimal buffer sizes or proofing 100% accuracy
for sequential computation without separately controlling the
bit-stream generation requires further investigation and is part
of our future work.

All Sobol-based methods use the architecture in Fig. 2(b),
but could also be adapted to use the sequential architecture of
Fig. 2(a).

1) SobolOR approximates non-scaled summation with a
multi-input OR gate and requires N SNGs, because the AND
gates as well as the OR gate require uncorrelated inputs.

2) SobolMUX uses a multi-input MUX unit for scaled sum-
mation. The select input comes from a separate RNG that
produces uniformly distributed random integer variables in
the [0,N − 1] interval. The inputs of each multiplication
operation need to be uncorrelated, but the MUX inputs can be
correlated [3]. Hence, two RNGs can be shared to generate all
inputs of multiplication operations [5]. This method therefore
requires three uncorrelated streams of random numbers. Two,
to make the factor bit-streams (connected to AND gates)
uncorrelated and one for the select input of the MUX.

3) SobolMUX/TFF uses multiple 2-to-1 multiplexer stages
shown in Fig. 8 for scaled summation without requiring an
additional input (and RNG) for the select bit-stream. The cir-
cuit consists of a toggle flipflop and an XOR gate. SobolMUX/TFF
requires two streams of random numbers, which is the least
of all methods in the parallel architecture.

C. Accuracy Comparison

a) SobolMUX and SobolMUX/TFF: The accuracy of a
stochastic MUX-adder decreases when the length of bit-stream
is fixed but the number of inputs increases [26]. For input
values close to 1, the 1

N factor in (91) helps keeping the result
in the [0, 1] interval. For input values close to zero, however,
the result tends to be too small for accurate representation.
SobolMUX produces additional occurs if the select input of the
MUX is correlated to its inputs. As argued in [24], different
Sobol sequences should be used to generate independent bit-
streams and avoid the correlation error.

b) SobolOR: The accuracy of the OR-based adder is low
when input values are close to one (xi ≈ x2

i ) and is high
when input values are close to zero (xi >> x2

i ). Additional
error occurs if input bit-streams are correlated; any overlap
between the location of 1s in the input bit-streams decreases
the accuracy.
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TABLE II: Mean Absolute Error (MAE) (%) comparison of the proposed UnaryOR with state-of-the-art design approaches for
different number of summands N and different ranges of (5 bit precision) uniformly distributed random input values. The
result of MUX-based methods is rescaled by constant N in a second processing step to compensate the MUX scaling

Mean Reference MAC Output 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

4 Inputs
(N=2)

Range of Input Values
[0,0.31] [0,0.54] [0,0.71] [0,0.84] [0,0.95] [0,1.05] [0,1.14] [0,1.22] [0,1.31] [0,1.38]

UnaryOR 0.0 0.0 0.3 1.4 3.2 5.5 8.1 10.0 12.4 14.4
SobolOR 0.1 0.5 1.5 3.1 5.1 7.5 10.1 12.1 14.4 16.4

SobolMUX/TFF-rescaled 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
SobolMUX-rescaled 0.4 0.7 0.9 1.0 1.2 1.3 1.4 1.4 1.5 1.5

12 Inputs
(N=6)

Range of Input Values
[0,0.18] [0,0.31] [0,0.41] [0,0.48] [0,0.55] [0,0.60] [0,0.66] [0,0.71] [0,0.75] [0,0.80]

UnaryOR 0.0 0.0 0.2 1.0 2.6 4.6 7.2 10.5 14.8 19.6
SobolOR 0.4 1.1 2.5 4.7 7.7 10.9 15.1 19.6 25.1 30.9

SobolMUX/TFF-rescaled 0.5 1.5 2.6 3.6 4.6 5.5 6.6 7.6 8.7 9.8
SobolMUX-rescaled 0.9 1.6 2.1 2.4 2.8 3.1 3.3 3.5 3.8 4.0

24 Inputs
(N=12)

Range of Input Values
[0,0.13] [0,0.22] [0,0.29] [0,0.34] [0,0.39] [0,0.43] [0,0.46] [0,0.50] [0,0.53] [0,0.56]

UnaryOR 0.0 0.0 0.0 0.6 1.8 3.6 6.1 9.0 12.5 16.5
SobolOR 0.8 1.6 3.3 5.6 8.7 12.1 16.6 21.3 26.7 32.5

SobolMUX/TFF-rescaled 0.8 1.4 2.0 2.7 3.4 4.1 4.8 5.5 6.3 6.8
SobolMUX-rescaled 1.3 2.4 3.1 3.7 4.1 4.6 4.9 5.3 5.7 5.9

c) UnaryOR: The proposed method is accurate (4) for
input values less than

v

k
≤

�
n

⌈
√
4N+1−1

2 ⌉+ 1

�
1

k
. (92)

The accuracy decreases for input values greater than this
threshold. A requirement for exact computation is applying
the relative delays from Algorithm 1 before summation. The
proposed method has a maximum error of (5) for input
values greater than (92). As shown in Table I, this threshold
highly depends on N , the number of summands. Note that
Algorithm 1 must be modified for input values closer to 1.
We restrict our modifications to decreasing v until Algorithm 1
returns enough delays. It is likely that a better adaption exists,
but we leave the study of this aspect for future works.

D. Evaluation Results

In this section, we use 5-bit precision (n=32, k=31) unary
bit-streams of length nk=992 and 10-bit precision Sobol-based
bit-streams of length 210 = 1024, unless stated otherwise. We
stop processing of bit-streams in the MUX-based and SobolOR
designs after n2 cycles (here, 1024 cycles). Although this
introduces some truncation inaccuracy [5] in the computation,
the required number of processing cycles to produce high ac-
curacy results with these MAC designs exponentially increase
with increasing the number of inputs, which is not feasible in
practice. We discuss the differences in the latency of different
SC MAC designs in more detail in Section VIII.

Table II compares the mean absolute error (MAE) (in
percent) of the implemented MAC designs for different ranges
of input values. We stop increasing the range of input values
when the reference output reaches 1. The reference computes
on double precision and is listed in the first row. SobolMUX-
rescaled is equivalent to SobolMUX but with compensation of
the scaling inherent to the MUX-based adder. In a second
processing step, after converting back to positional binary
representation, the result of the scaled SobolMUX is multiplied

by N to get the correct order of magnitude (SobolMUX-rescaled
= SobolMUX ·N ). The same is true for SobolMUX/TFF-rescaled.
All listed designs perform the multiplication part of the MAC
operation accurately. Their summation part, however, can
cause error. SobolOR calculates the union of inputs and suffers
from a systematic error when compared to reference sums. The
MUX-based designs implement scaled MAC operations and
hence have a systematic deviation to non-scaled MAC results.
Random fluctuations in the select input [15] of SobolMUX and
the fact that the MUX unit discards N − 1 bits (through
multiplexing) each clock cycle leads to further accuracy loss.
In general, SobolMUX-rescaled has the potential to produce
accurate results for all input values and number of inputs as the
systematic deviation of the SobolMUX gets compensated when
multiplying with N . However, it would take more than 1024
processing cycles to converge to the correct result.

As can be seen in Table II, the proposed UnaryOR design is
the only MAC design that can compute completely accurate
results. It is significantly more accurate than the traditional
OR-based approaches. When compared to SobolOR, the error
decreases between 10% to 100% depending on the range
and number of input values. The proposed design achieves
a minimum error decrease of 37% for the case of processing
four inputs in the [0, 0.95] interval ( 5.1−3.2

5.1 ×100 ≈ 37%) and
100% decrease when the proposed method is exact.

When comparing the UnaryOR technique to rescaled MUX-
based methods the table shows two trends. The proposed
UnaryOR design performs better for small input ranges, and
medium input ranges with large number of inputs. For 24-
input MAC the proposed method has lower error for input
values in the [0, 0.43] interval. The MAC error decreases by
100% for input values in the [0, 0.29] interval and decreases
by a minimum of 4.1−3.6

4.1 × 100 = 12% for input values
in range [0.0.43]. In contrast, higher error is observed for
input values greater than 0.45. For 12 inputs, UnaryOR is
more accurate than both MUX-based MAC designs for input
values less than 0.55. For four inputs, SobolMUX/TFF-rescaled,
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in most cases, computes more accurate results than UnaryOR
and SobolMUX-rescaled. The proposed UnaryOR is more accu-
rate than SobolMUX-rescaled for inputs values less than 0.71.
Nevertheless, considering the first row of Table II, if the mean
reference result is below 0.25, our proposed technique achieves
either exact results or a mean absolute error close to zero.

To give an example for one table entry, a mean reference re-
sult of 0.125 with two summands (N = 2) requires uniformly
distributed random variables in range of 0 to 0.5 as input. In
that case, the inputs have an expected value of E(x) = 0.25.
Since the maximum input for this case is 0.5, the proposed
method will be exact as shown in Table II and Fig 7.

z = E(x1)E(y1) + E(x2)E(y2)
!
= 0.125 (93)

→ x1, y1, x2, y2 ∼ U(0, 0.5) (94)

z = 2 · 0.252 = 0.125 (95)

In the last four columns of Table II, the range of inputs
for N = 2 exceeds the [0, 1] interval. The upper bound (i.e.,
1) gives a maximum input mean of E(x) = 0.5, when the
input values are uniformly distributed. The maximum mean
reference of the MAC output is therefore z =

�N
i=1 xiyi =

0.52 + 0.52 = 0.5. However, we need outputs of greater than
0.5 to evaluate the accuracy for full possible range of the
results. To provide inputs with mean value greater than 0.5, we
generate uniformly distributed random values in the [0, 1.05],
[0, 1.14], [0, 1.22],[0, 1.31] and [0, 1.38] intervals, and round
the values down when the generated input is greater than 1.
This way, the mean of inputs increases to values greater than
0.5 as input values close or equal to 1 occur more often. For
example, when we generate 13 uniformly distributed random
values within the [0, 1.2] interval we get a mean of 0.6, with
on average two values greater than 1.0. If we clip the input
values to 1.0, the mean value becomes 0.57. The disadvantage
of clipping is a deviation from equal spreading of input values.
However, it allows using the same RNG in all evaluations.

Fig. 9 shows the MAE of the proposed technique for
different period lengths (n) and number of summands (N )
over the expected reference result (marked on the X-axis).
The inputs are scaled, uniformly distributed random values
equal to the numbers in Table II. As it can be seen, the
period length and the number of summands have a negligible
impact on the accuracy. The MAC error primarily depends
on the value of the reference result. Note that, the input-
output relation of MAC is linear, due to the linearity of both
multiplication and addition. We recall the threshold (92) for
input values and accurate computation derived in Section IV.
Fig. 9 shows that the accuracy threshold for the MAC result
is approximately 0.25. This can also be seen in the third
column of Table II, with the mean reference MAC output
listed in the first row. Beyond this exact threshold, the error
increases quadratically. This matches the quadratic increase
of Eupper derived in Section V. When the number of inputs
increases, the input ranges need to be decreased to keep
the mean reference result in the same interval and achieve
a similar accuracy with the case of fewer inputs. We show
the impact of increasing the number of inputs on accuracy in
Table III, where we compare UnaryOR, SobolOR, SobolMUX/TFF-

TABLE III: MAE (%) comparison for different number of
summands (N ) and input bit-stream lengths (n). One sum-
mand is in [0,1] interval and N -1 summands are below 0.252.

Reference MAC Output 0.26 0.33 0.33 0.42 0.43 0.55 0.55 0.70

n 16 32 64 128
# Inputs (2N ) 4 12 12 24 24 40 40 60

UnaryOR 0.5 1.5 1.3 2.4 2.4 4.1 4.3 7.6
SobolOR 0.5 2.9 2.3 5.7 5.3 10.3 10.3 17.7
SobolMUX/TFF-rescaled 0.5 7.9 8.0 8.0 8.0 14.9 15.0 3.4
SobolMUX-rescaled 2.2 5.3 2.7 4.5 2.2 3.3 1.6 2.3
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Fig. 9: The MAE (%) of UnaryOR versus the mean reference
output for different relative prime period lengths (n and k =
n − 1) and number of MAC inputs. The inputs of the MAC
are scaled, uniformly distributed random variables.

rescaled and SobolMUX-rescaled for different bit-stream lengths
and number of inputs. For the purpose of not exceeding an
output of 1 we limit the input range for 2N−2 MAC inputs to
the [0, 0.25] interval (the total number of MAC inputs is 2N ).
The remaining two inputs have values in the [0, 1] interval.
As a result, the MAC circuit needs to sum one summand
with average of 0.52=0.25 with N -1 summands with average
of 0.1252. As can be seen in Table III, all implementations
except SobolMUX/TFF-rescaled achieve a comparable MAE as
in Table II. SobolMUX/TFF-rescaled produces error if the input
values are significantly different (x >> y, or y << x). For
example, in Fig. 8, assume that x is close to 0 and y close
to 1. Since the select input is 0 most of the time, the result
is z ≈ y rather than z = x+y

2 . UnaryOR halves the MAE
of conventional OR-based approaches and in most cases has a
higher error than SobolMUX-rescaled. However, the MUX-based
approaches require adjustment of the scaling factor, whereas
UnaryOR already provides a non-scaled result. Our evaluations
confirm that the proposed method is accurate, even with large
number of inputs, as long as the input values are small enough.

E. A Case Study: Gray-scale

To evaluate the proposed technique in an end-application,
we perform gray scaling on true color images. Gray scaling is
an image processing task that requires a MAC operation for
each pixel. RGB values are converted to gray-scale values by
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(a) (b) (c) (d)

Fig. 10: (a) Original RGB image. Gray-scale using (b) refer-
ence design (c) UnaryOR and (d) SobolOR

forming a weighted sum of the R, G and B components as in

Gray = 0.2989 ·R+ 0.5870 ·G+ 0.1140 ·B. (96)

Gray-scale is well-suited for unipolar SC. All inputs and
results are positive values in the [0,255] interval that be scaled
to the [0,1] interval (as Q8 number format with eight fractional
bits). The MAC circuit has six inputs (N = 3 summands), with
three of them being constant and the other three changing
with each pixel. The images are shown in Fig. 10 with
sizes 512×512×3 for RGB and 512×512×1 for gray-scale.
Fig. 10(a) shows the original image and Fig. 10(b) is the
reference gray-scale result. The reference uses 5-bit precision
inputs and exact arithmetic. Fig. 10(c) and (d) show the gray-
scale results for UnaryOR, and SobolOR that also use 5-bit
precision inputs and therefore ignore the three least significant
bits of the 8-bit color values. Fig. 10(c) has a MAE of 1.6%
and Fig. 10(d) has a MAE of 10.8% when compared to the
output of the reference. The image in Fig. 10(d) appears darker
than Fig. 10(c) as OR-based MAC result values are smaller
than the results of the new UnaryOR (as shown in Fig. 7 too)
and smaller values mean less brightness. The average value of
the pixels in the reference gray-scale image is 125 (=0.49 in
Q8 number format). Table II lists a MAE of 2.6% for the
proposed method in the case of six summands at a mean
reference MAC output of 0.45. Since gray-scale only uses
three summands instead of six, we can halve this table entry
2.6/2=1.3%. A MAE of 1.3% is close to the 1.6% error of the
proposed UnaryOR in this case study.

UnaryOR and SobolOR require almost the same number of
clock cycles per pixel. UnaryOR finishes after 1012 cycles
while SobolOR stops after n2 = 1024 cycles. The results
in Fig. 10(c) can be computed efficiently with UnaryOR and
UnaryOR/REG. We refer the readers to Section VI-B and Sec-
tion VII for an analysis of both implementations and a resource
consumption comparison.

VII. RESOURCE COMPARISON

In this section, we compare area and power consumption
of the state-of-the art methods with different implementations
of the proposed MAC technique. A SC system often consists
of some SNGs, a stochastic circuit that does the actual
computation and a probability estimator (for bit-stream to
binary conversion). We exclude the overhead of SNGs in
our evaluations as they are already discussed in the literature
extensively [2], [3], [5]. We also exclude the overhead cost
of compensating the scaling for the MUX-based methods
(multiplying by N ). Therefore, we don’t differentiate between
SobolMUX and SobolMUX-rescaled (same for SobolMUX/TFF and
SobolMUX/TFF-rescaled). The resource comparison includes the

stochastic circuit, a minimal control logic (receives start sig-
nals and transmits a done signal after completion) and the
probability estimator unit. All flipflops are synchronous with
synchronous resets. We synthesized the designs using the
Synopsys Design Compiler v2018.06 with a 45nm gate library.
The designs were synthesized for 100MHz frequency.

Table IV lists the area and power consumption of all
six implementations, with three of them being based on the
proposed MAC, for different number of inputs and input preci-
sions. The comparison shows that the implementations without
delay registers are significantly more efficient in both area
and power than implementations with registers (UnaryOR/REG
and UnaryOR/SEQ). The exception is UnaryOR/REG with four
inputs, as it requires comparable area and power but can be
implemented with fewer RNGs (see Section VI-B). Note that,
UnaryOR/REG is also viable for six inputs, because for four and
six inputs the proposed method only requires minor relative
delays. We refer to Section III-B for the definition of minor de-
lays and to Fig. 3 (first tree subplots) for an example of minor
delayed summands. All implementations except UnaryOR/SEQ
require approximately the same computation time. So, the
ratio of the required energy is similar to the ratio of the
required power. However, this is not true for UnaryOR/SEQ.
HDL simulations show that the sequential implementation
requires 2×, 7.8×, and 17.9× more computation time than
the Sobol-based methods for 4, 12 and 24 inputs, respectively.
This is primary due to the sequential processing of inputs and
secondary due to the stalled bit-stream generation, which is
required to achieve the same accuracy as UnaryOR/REG and
UnaryOR. As a result of the longer processing time, the energy
consumption is significantly higher for the UnaryOR/SEQ design
than for the other implementations. The resource consumption
of SobolOR, SobolMUX, and UnaryOR hardly changes for differ-
ent accumulator sizes and bit-stream lengths. The reason is that
the reported numbers does not include the cost of the SNGs,
and the changes only show different counter bitwidths, addi-
tional parallel AND gates for multiplication, and more inputs to
the OR gate (or the MUX unit) for summation. SobolMUX/TFF
shows more resource consumption with increasing MAC size.
This is because it needs additional toggle flipflops and XOR
gates to compute the MUX’s select bit-stream (see Fig. 8).
The required delay registers of UnaryOR/REG increases heavily
with the input count as each additional summand requires a
larger delay register. In contrast, UnaryOR/SEQ has a high base
resource consumption which barely changes with the number
of inputs as the overall feedback buffer size is similar for
all input counts. Since the number of delay elements heavily
depends on the bit-stream lengths, both UnaryOR/SEQ and
UnaryOR/REG, require significantly less resources for n = 16
than for n = 32.

Between the three implementations of the proposed tech-
nique (i.e., UnaryOR, UnaryOR/SEQ, UnaryOR/REG), UnaryOR is
selected if the number of MAC inputs is greater than six
and counters for bit-stream generation can be shared between
multiple parallel MAC units. If counters can not be shared,
or the number of MAC inputs is less than or equal six,
UnaryOR/REG could be more efficient, when taking bit-stream
generation into account. UnaryOR/SEQ uses the MAC architec-
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TABLE IV: Area (µm2) and Power consumption (µW) for three state-of-the-art SC MAC designs and for three implementations
of the proposed MAC technique.

4 Inputs 12 Inputs 24 Inputs 40 Inputs 60 Inputs
Area Power Area Power Area Power Area Power Area Power

n=32

SobolOR 413 1.24 429 1.67 450 2.16 487 2.74 521 3.52
SobolMUX/TFF 434 1.52 525 3.15 660 5.55 840 8.77 1069 12.7
SobolMUX 428 1.46 461 1.85 528 2.82 574 3.43 643 4.65
UnaryOR 451 1.44 520 1.75 542 1.71 664 2.07 743 2.01
UnaryOR/REG 596 1.48 11026 15.5 33755 47.9 62586 89.5 103730 0.147
UnaryOR/SEQ 10891 14.7 14355 19.6 16435 22.6 17154 23.4 17878 24.6

n=16

SobolOR 385 1.21 389 1.50 403 2.32 426 2.75 481 3.92
SobolMUX/TFF 405 1.62 495 4.11 585 4.93 765 8.16 993 12.4
SobolMUX 389 1.20 416 1.64 439 2.25 506 3.26 581 4.59
UnaryOR 444 1.40 502 1.76 502 1.72 557 1.94 640 2.49
UnaryOR/REG 490 1.39 3246 5.26 9114 14.1 16606 27.9 16470 28.9
UnaryOR/SEQ 3025 4.09 4012 6.35 4465 5.31 4717 6.87 4572 6.70

ture in Fig. 2(a) and is not efficient enough to compete with
the parallel architecture in Fig. 2(b), as the cost for large shift
registers outweighs potential savings. The proposed UnaryOR
design requires, on average, 21% more area than SobolOR due
to the overhead of stalling the SNGs to make relative delays
between bit-streams. Further, UnaryOR and SobolOR require
similar power and energy due to similar processing time. The
main difference is their distinct bit-stream generation. Both
UnaryOR and SobolOR require N SNGs, but UnaryOR requires
counters as RNG while SobolOR requires costly Sobol se-
quence generators [20]. Without the costs for SNGs, SobolMUX
consumes slightly less and SobolMUX/TFF more resources than
UnaryOR. However, we emphasize that MUX-based circuits
compute scaled results. Rescaling by N is not possible in
unipolar SC and the resource consumption of the weighted
binary multiplier is not included in this analysis.

VIII. FURTHER DISCUSSIONS

In this section, we discuss three properties of the proposed
technique in more detail. First, we examine the implications of
N (the number of possible summands) being pronic. Second,
we discuss the consequences of requiring bit-streams with
relative prime period lengths as inputs. Finally, we take a
closer look at the convergence behavior of the proposed
technique compared to the state-of-the-art methods.

1) In Section IV, we derived that the maximum al-
lowed number of summands is a pronic number (N =
2, 6, 12, 20, 30 . . .). The maximum allowed number of inputs
for the MAC unit is twice of that (2N = 4, 12, 24, 40, 60 . . .).
The number of inputs is often given by the application. The
proposed method also works for the number of inputs that
are not pronic. In that case, it is possible to use parts of the
delays from Algorithm 1 and leave the other unused. Then,
the accuracy threshold (92) and error (Table II) is similar as
if all possible inputs are used. Compared to prior methods,
the proposed design performs best when the number of inputs
equals the maximum allowed from (3).

2) The proposed MAC technique of this work guarantees un-
correlated inputs by using relatively prime bit-stream lengths.
The input bit-streams to the AND gates use relative prime
period lengths of n and k (n = k+ 1). Thus, one input value
needs to be converted to a unary bit-stream with a slightly
higher resolution than the other one. This difference in the

representation introduces a systematic quantization inaccuracy
during bit-stream generation particularly for small values of n
and k. For example, the bit-stream representation for 0.5 with
period lengths n = 8 and k = 7 is 11110000 and 1111000,
respectively. When converting back to positional binary the
values are v

n = 4
8 = 0.5 and v

k = 4
7 = 0.5714. We claim

that the proposed MAC design is deterministic and accurate
because its inaccuracy is predictable, systematic and occurs at
the bit-stream generation and not in the computation circuit.

The maximum number of 1s in a stochastic bit-stream is
limited by the length of bit-stream. A relative delay between
input bit-streams increases the length of the output bit-stream.
In the proposed MAC design, the output bit-stream has up to n·
k (the LCM of input lengths) plus Nmajor ·vn+Nminor ·v (the
maximum delay from Algorithm 1) bits. Assuming that the
maximum value (i.e., 1.0) is represented by n ·k bits of 1s, the
expanded bit-stream result may represent a value greater than
1, which needs to be considered when converting the output
back to the conventional weighted binary representation.

3) The number of processing cycles (i.e., latency) is dif-
ferent for different stochastic MAC designs. The first stage
of MAC operation is multiplication which is similarly im-
plemented in all MAC designs using standard AND gates.
Different MAC designs, however, are different in the second
stage of MAC operation which accumulates the multiplication
results. The inputs of each AND gate are two uncorrelated
bit-streams. For highest accuracy the inputs are 22B bit long
when multiplying two B-bit precision input values [5]. In
Section VI, we choose B = 5, so the multiplication latency is
210 = 1024 cycles (assuming each bit of the input bit-streams
are processed in one cycle) for the Sobol-based designs and
n · k = 992 cycles for the proposed design.

In SobolOR, the OR-based addition converges to the union
of its inputs after 2N ·2B = 2N ·10 cycles where N is the
number of summands. MUX-based MAC converges to the
scaled addition of the summands after 22×2B = 22×10 cycles
because the select input of the MUX must be uncorrelated to
the outputs of multiplications. The summation stage of the
proposed UnaryOR MAC technique does not introduce any
additional latency besides the extra cycles from the relative
delays. UnaryOR requires exactly nk, the LCM of inputs, plus
Nmajor · vn + Nminor · v cycles, the maximum delay from
Algorithm 1 to reach its maximum accuracy (the maximum
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latency is less than 2nk cycles). The MAE results of the MUX-
based methods in Section VI improve with longer processing
times. In contrast, running the proposed MAC technique for
the exact number of cycles is important, because the accuracy
decreases if the computation is stopped too early or too late.

IX. CONCLUSIONS

In this work, we proposed a novel SC MAC technique
based on deterministic unary bit-streams. We showed that the
proposed design can compute completely accurate non-scaled
MAC and calculates overall more accurate results than the
OR-based MAC design fed with Sobol-based LD bit-stremas.
It also achieves lower error compared to the rescaled MUX-
based MAC designs, except for the case of processing a small
number of large inputs where the inherent scaling of MUX
units is beneficial. We provided practical implementations that
show the proposed technique is suitable for applications with
low input counts that require exact computation as well as
large accumulator sizes that can tolerate small errors. Modi-
fication of the proposed algorithm and using additional logic
gates are potential solutions to further increase the threshold
for exact MAC operation and to enhance the accuracy for
large input values. Such solutions however require further
investigation and are part of our future work.
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