
Absolute orientation of Galileo orbits from simulated VLBI and
GNSS observations
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Abstract The possibility of observing Galileo satel-lites with Very Long Baseline Interferometry (VLBI)telescopes may become possible in future as thereare plans to put VLBI transmitters on these satellites.This would not only bring improvements for products,such as the International Terrestrial Reference Frame(ITRF), but would also allow to determine the absoluteorientation of the satellite orbit with respect tothe celestial frame. In this study, we investigate thedetermination of the right ascension of the ascendingnode Ω of a Galileo satellite orbit using simulatedVLBI observations to quasars and a Galileo satellite.Therefore, a schedule including VLBI observations to asatellite covering an ultra short orbit arc of 40 minutesof the satellite surrounded by quasar observationsis created, simulated and analysed. There are twodifferent analysis options examined, first estimating
Ω in a shorter interval of ten minutes and secondlyestimating only one value for the whole 40 minutesatellite period. The repeatability of Ω by estimatingit in a ten minute interval is between 0.3 and 0.5 maswhich corresponds to 4.5 cm and 7.5 cm at the altitudeof the orbit. If there is only one value estimated therepeatability is below 0.2 mas which corresponds toapproximately 3 cm at the altitude of the orbit.
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1 Introduction

The mounting of a Very Long Baseline Interferometry(VLBI) transmitter (VT) on one or more Galileo satel-lites enables to observe both, satellites and quasars,with VLBI antennas. Observing a satellite with morethan one space geodetic technique permits to deter-mine and use so called space ties. This allows highprecision tying of the space geodetic techniques if thetie vectors on the satellite are known with high accu-racy. Wolf and Böhm (2023) showed that having VTon Galileo satellites will contribute to an improvementof the International Terrestrial Reference Frame (ITRF)(Altamimi et al., 2023), which is a product of combiningall four space geodetic techniques, namely VLBI, Satel-lite Laser Ranging (SLR), Global Navigation Satellite Sys-tems (GNSS) and Doppler Orbitography by Radioposi-tioning Integrated on Satellite (DORIS). Currently, theITRF’s accuracy is still limited due to errors in local tieson ground (Altamimi et al., 2016).Further, VLBI observations to satellites and quasarsallow Precise Orbit Determination (POD) of the satel-lites (Klopotek et al., 2020). This can be realized by es-timating the position of the satellite in the orbit fixedsatellite system (NTW-frame). For that, three so-calledDilution of Precision (DOP) factors representing thesensitivity of a VLBI observation towards the individ-ual components of the satellite position are introduced(Wolf et al., 2022).However, as VLBI is observing distant celestial ob-jects and therefore realizing the celestial reference sys-tem, VLBI observations to satellites permit connectingthe satellite orbit with this frame. This allows the de-termination of the absolute orientation of the satelliteconstellation with respect to the International CelestialReference Frame (ICRF) (Charlot et al., 2020).
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Fig. 1 Illustration of VLBI radio telescopes observing a satellitein its orbit.

Currently, satellites are routinely observed withGNSS, SLR and DORIS but VLBI observations are stillmissing in satellite geodesy. Anyway, there are plans tomount a VLBI transmitter on board of Galileo satelliteswhich would enable to carry out VLBI observationsto these satellites. Moreover, the European SpaceAgency (ESA) plans the launch of a co-location satellitecalled Genesis for 2027/2028. This satellite will com-bine all four space geodetic techniques orbiting theEarth in a polar orbit with 6000 km altitude (Delva etal., 2023).This study investigates the estimation of the orbitalparameter right ascension of ascending node Ω whichis related with the absolute orientation of the satellitearound the polar axis. This is done using simulated VLBIobservations and partial derivatives of the state vec-tor with respect toΩ obtained from the Bernese GNSSSoftware (Dach et al., 2015). These partial derivativesare introduced in the VLBI analysis and used for esti-mating the right ascension of the ascending node inthe least squares adjustment. In section 2 we describethe network and settings of the scheduling, simulationand analysis of the VLBI observations and the determi-nation of the partial derivatives. Section 3 shows theresults and section 4 provides the summary, discussionand outlook.

2 Method

The study is based on a network of nine VLBI GlobalObserving System (VGOS) (Petrachenko et al., 2012)type stations (Fig. 2) and considers one satellite of theEuropean Global Navigation Satellite System GalileoGSAT0101 (E11). The session starts on January 1, 202100:00:00 UTC with a 24 hour duration. We investigatethe scenario of covering an ultra short orbit arc withVLBI observations by applying two different analysisoptions.

2.1 Scheduling

The creation of the schedules is done using thesoftware VieSched++ (Schartner and Böhm, 2019).This software has been equipped with a satellitescheduling module which allows to schedule quasarobservations together with satellite observations inan either manual or automatic fashion (Wolf, 2021).In this study the generation of the schedule includingsatellite observations covering the ultra short orbitarc is done manually. Therefore, during a 40 minuteperiod, from 10:20 UTC to 11:00 UTC, for all fivestations for which the satellite is visible satellite scansare scheduled every 90 seconds. For all the stationsfor which the satellite is not visible during that timequasar scans are scheduled and also the remainingpart of the schedule is filled with quasar scans. Asthe network consists only of VGOS type stations thescan length of satellite and quasar scans is set to 10seconds in order to meet the VGOS approach of alarge number of short scans well distributed over thesky at the individual stations.

2.2 Simulation

The schedules are simulated 1000 times using theVienna VLBI and Satellite Software (VieVS) (Böhm etal., 2018). These simulations are carried out by usingthree main error sources, which are troposphericturbulence, clock errors, and the thermal noise(Pany et al., 2011). The tropospheric refractive indexstructure constant Cn of all stations is set to 1.8 ×10-7 m -1/3 with a scale height of 2000 m (Nilsson et
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Fig. 2 VGOS station network considered in this study and ground track of the satellite GSAT0101 (E11) during 24 hours starting onJanuary 1, 2021 at 0 UT. The dots represent the ground track of the satellite at a fifteen-minute interval. The asterisks represent theposition of the satellite during the observation period.

Fig. 3 Illustration of the scheduling approach. The scheduleconsists of a 40 minute period of satellite scans surrounded byquasar scans.

al., 2007). The stochastic error of the station clockis simulated as the sum of a random walk and anintegrated random walk assuming an Allan StandardDeviation of 1 × 10 -14 after 50 minutes (Herring etal., 1990). Additionally, white noise of 10 ps for quasarand satellite observations is added.

2.3 Partial Derivatives

The determination of the partial derivatives of theobservable τ with respect to Ω is shown in Figure 4.Therefore, files obtained from the Bernese GNSS Soft-ware (FSO and FRP files) are loaded in VieVS. Thesefiles include the orbits of the satellites as state vectorsand the derivatives of the state vectors with respectto the orbital parameters among other parameters.Within VieVS the partial derivative of the observable
τ with respect to the position vector of the satellite isdetermined. Further, it is used to form the dot product

with the partial derivative of the position vector withrespect to Ω in order to retrieve the partial derivativeof the observable τ with respect to Ω , see Eq. 1.
∂τ

∂ r(t)
· ∂ r(t)

∂Ω
=

∂τ
∂Ω

(1)
This parameter is introduced in the least squares ad-justment and used to estimate piecewise linear offsets(PWLOs) of the Right Ascension of Ascending Nodefrom the a-priori orbit.

Fig. 4 Flowchart of the concept determining the partial deriva-tives of the observable τ with respect to Ω in VieVS using datafrom Bernese and estimating piecewise linear offsets from thea-priori orbit.
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2.4 Analysis

The simulated observations are analysed using VieVSby estimating Ω as PWLOs from the a-priori orbit. Thea-priori orbit is introduced by using SP3 files. Duringthe analysis the station and source coordinates arefixed to their a priori values and all five Earth orienta-tion parameters are estimated as constant parametersper session. The precision of the estimated right ascen-sion of ascending node of the orbit arc is assessed andevaluated in terms of the repeatability and the meanformal error. Ω is estimated either in shorter, e.g. tenminute intervals, or one value for the whole satelliteobservation period which has a duration of 40 min-utes.

3 Results

Figure 5 shows the repeatability and the mean formalerror of the estimated piecewise linear offsets for Ωfrom the a-priori orbit. If it is estimated within a tenminute interval the repeatability and the mean formalerror are higher than if there is only one value esti-mated for the whole 40 minute period.This is due to the smaller amount of observationsused for the estimation applying a shorter estimation

Fig. 5 Repeatabilities (blue) and mean formal errors (yellow) ofthe estimated PWLO ofΩ by either estimating it in a ten minuteinterval (solid lines) or only one value for the whole observationperiod (dashed lines).

interval rather than using all observations as it is doneif only one offset is estimated.For the shorter estimation interval both, repeata-bility and mean formal error, have a peak in the mid-dle of the interval. This is related to the worse estima-tion of the troposphere parameters (zenith delays andgradients) coming from the worse sky coverage at theindividual stations as these only observe the satelliteduring that time period.However, when estimating Ω in a ten minute in-terval the repeatability is below 0.5 mas which corre-sponds to approximately 7.5 cm at the altitude of theorbit. The repeatability for estimating one value for thewhole period is below 0.2 mas which corresponds toapproximately 3 cm at the altitude of the orbit.

4 Summary and Discussion

In this study, the absolute orientation of a Galileosatellite orbit is estimated using simulated VLBIobservations to one satellite and quasars. This ispossible as VLBI enables the connection between thesatellite orbit and the celestial frame. Therefore, aschedule including VLBI observations to the Galileosatellite GSAT0101 (E11) covering an ultra short orbitarc using a nine station VGOS network is created andsimulated. Further, in the analysis partial derivativesof the observable τ with respect to Ω are retrievedusing data obtained from the Bernese GNSS Software.These parameters are introduced in the least squaresadjustment for estimating piecewise linear offsetsfrom the a-priori orbit for Ω . The analysis is done byusing two different estimation intervals, on the onehand a shorter interval with ten minutes and on theother hand estimating only one value for the whole40 minute satellite observation period.The estimates are assessed based on the repeata-bility and the mean formal error. The results clearly in-dicate that the repeatability is higher, between 0.3 and0.5 mas, if the parameter is estimated in a shorter in-terval than only once for the whole time period, whenit is between 0.15 and 0.35 mas. This is linked withthe amount of observations used for the estimation asthere is only a part of the observations used for the in-dividual estimates if the interval is shorter and all ob-servations are used in case only one value is estimatedfor the overall time period.
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This study also indicates that quasar scans are im-portant for the determination of the troposphere asthe repeatability and the mean formal error becomehigher in the middle of the interval. This is related tothe missing quasar scans as the stations only observeone satellite and the therefore worse sky coverage dur-ing that time.In future, the results from VieVS and Bernese couldbe combined based on the normal equation level byusing the ADDNEQ2 module from Bernese. This wouldallow to retrieve fully consistent results based on VLBIand GNSS observations.
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