
In-Core Level-Of-Detail
Generation For Point Clouds On

GPUs Using CUDA

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Philip Klaus, BSc
Matrikelnummer 01407087

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Projektass. Dipl.-Ing. Dr.techn. Markus Schütz, B.Sc.

Wien, 30. Oktober 2023
Philip Klaus Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

In-Core Level-Of-Detail
Generation For Point Clouds On

GPUs Using CUDA

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Philip Klaus, BSc
Registration Number 01407087

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Projektass. Dipl.-Ing. Dr.techn. Markus Schütz, B.Sc.

Vienna, 30th October, 2023
Philip Klaus Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Philip Klaus, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. Oktober 2023
Philip Klaus

v

Danksagung

Ich möchte mich hiermit bei all jenen Personen bedanken, die mir diese Arbeit ermöglicht
und mich dabei auch laufend unterstützt haben. Es freut mich sehr, dass ich meine
Masterarbeit an der TU Wien in Kooperation mit meiner Arbeitsstelle, dem AIT Austrian
Institute of Technology GmbH durchführen konnte. Auf Seiten der TU Wien möchte
ich mich bei meinem Betreuer Michael Wimmer bedanken, der mir diese Masterarbeit
erst ermöglichte. Außerdem möchte ich ihm für sein schnelles Korrekturlesen meiner
schriftlichen Arbeit danken. Weiters gilt mein Dank meinem zweiten Betreuer Markus
Schütz – dem Entwickler von Potree – insbesondere für das Zurverfügungstellen von 3D
Daten und die anregenden inhaltlichen Diskussionen. Auf Seiten des AITs möchte ich
mich bei meinem Vorgesetzten Markus Clabian bedanken, der es mir ermöglichte meine
Masterarbeit kooperativ mit dem AIT durchzuführen. Außerdem möchte ich mich bei
Nicole Brosch für die Betreuung auf Seiten des AITs und ebenfalls für ihr Korrekturlesen
bedanken. Abschließend möchte ich mich bei meiner Familie und insbesondere bei meiner
Lebensgefährtin für die mentale Unterstützung während meines Studiums und meiner
Masterarbeit bedanken.

vii

Acknowledgements

I would like to thank all those people who made this work possible and also supported me
continuously. I am glad that I could do my master thesis at the TU Wien in cooperation
with my workplace, the AIT Austrian Institute of Technology GmbH. On the part of
the TU Wien I would like to thank my supervisor Michael Wimmer, who made this
master thesis possible for me in the first place. I would also like to thank him for his
quick proofreading of my written work. Furthermore, I would like to thank my second
supervisor Markus Schütz – the developer of Potree – especially for providing 3D data
and stimulating discussions about the content. On the part of AIT, I would like to thank
my supervisor Markus Clabian, who made it possible for me to conduct my master’s
thesis cooperatively with AIT. Furthermore, I would like to thank Nicole Brosch for her
supervision on the AIT side and also for her proofreading. Finally, I would like to thank
my family and especially my partner for the mental support during my studies and my
master thesis.

ix

Kurzfassung

In dieser Masterarbeit stelle ich PotreeConverterGpu vor, eine GPU-basierte Software
zur Erzeugung von Octree-basierten Level-Of-Detail Strukturen (LOD) aus Punktwol-
ken. Die resultierenden LODs sind vollständig kompatibel mit Potree [Sch16], einem
Punktwolken-Renderer zur Darstellung von großen Punktwolken im Webbrowser.
In der Vergangenheit wurden bereits verschiedene Algorithmen zur Erzeugung von
Punktwolken-LODs vorgeschlagen. Obwohl diese Lösungen unterschiedliche Schwerpunk-
te, Vor- und Nachteile hatten, zielten sie alle auf einen hohen Punktedurchsatz, sowie
eine hohe visuelle Qualität der erzeugten Detailabstraktionen ab. Die implementierten
LOD-Generierungsalgorithmen in dieser Masterarbeit basieren hauptsächlich auf Potree-
Converter [SOW20], wurden aber vor allem in Bezug auf den Punktedurchsatz und der
visuellen Qualität der generierten LODs verbessert. PotreeConverterGpu erreicht einen
Punktedurchsatz, der - abhängig von der gewünschten visuellen Qualität der generierten
LODs - 13-mal (höchste Qualität) bis 85-mal (niedrigste Qualität) höher ist als bei
PotreeConverter 2.x. Diese Leistungssteigerung ist das Ergebnis einer hochoptimierten
GPGPU-Implementierung auf der Basis von CUDA. Während LODs die mit der aktuellen
PotreeConverter-Implementierung erzeugt werden unter Aliasing-Artefakten leiden, löst
PotreeConverterGpu dieses Problem, indem die Software eine abstandsbasierte Farbfilte-
rung für Punktwolken bereitstellt. Dies ermöglicht hochwertige Punktwolken-Renderings
mit deutlich verminderten Aliasing-Artefakten, bei gleichzeitiger Beibehaltung von Tex-
turdetails.
Aufgrund seiner wohldefinierten Software-API und Architektur ermöglicht PotreeCon-
verterGpu außerdem eine einfache Integration der LOD-Generierung für Punktwolken
in industriellen Anwendungen. Ein Beispiel für eine solche Applikation ist Inline Com-
putational Imaging [GBT22] (ICI), eine Hochgeschwindigkeits- und Hochpräzisions-
3D-Sensortechnologie des AIT Austrian Institute of Technology GmbH. Um eine ICI-
kompatible LOD-Generierung zu ermöglichen, wurde diese Masterarbeit in Kooperation
mit dem AIT durchgeführt.

xi

Abstract

In this master’s thesis, I present PotreeConverterGpu, a GPU-based software for gen-
erating octree-based Level-Of-Detail Structures (LOD) structures from point clouds.
The resulting LODs are fully-compatible with Potree [Sch16] a point cloud renderer for
viewing large point clouds in the web browser.
In the past, several different point cloud LOD generation algorithms have been proposed.
Although these solutions had different focuses, advantages, and disadvantages, they
all aimed at providing a high point throughput as well as a high visual quality of the
generated detail abstractions. In this thesis, the implemented LOD generation algorithms
rely mainly on PotreeConverter [SOW20] but have been improved especially in terms of
point throughput and the visual quality of the generated LODs. PotreeConverterGpu
achieves a point throughput that is – depending on the desired visual quality of the
generated LODs – 13 times (highest quality) up to 85 times (lowest quality) higher
than within PotreeConverter 2.x. This performance improvement is the result of a
highly-optimized GPGPU implementation based on CUDA. While LODs generated with
the current PotreeConverter implementation suffer from aliasing artifacts, PotreeCon-
verterGpu solves this problem by providing distance-based color filtering for point clouds.
This enables high-quality point cloud renderings with significantly reduced aliasing arti-
facts while preserving textural details.
Due to its well-defined software API and architecture, PotreeConverterGpu also enables
easy integration of LOD generation for point clouds into industrial applications. One
example for such an application is Inline Computational Imaging [GBT22] (ICI), a
high-speed and high-precision 3D sensing technology of the AIT Austrian Institute of
Technology GmbH. To provide an ICI-compatible LOD generation, this master thesis
was conducted in cooperation with the AIT.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contribution . 3
1.4 Thesis Outline . 4

2 Fundamentals and State-of-the Art of LOD generation 5
2.1 State-of-the-Art of Point Cloud Rendering 5
2.2 Applications of Point Cloud Rendering 6

2.2.1 ICI - Inline Computational Imaging 7
2.3 Fundamentals and Related Work of LOD Conversion 9

2.3.1 LOD Structures for Point Clouds 10
2.3.2 PotreeConverter . 12

2.3.2.1 PotreeConverter 1.X vs PotreeConverter 2.x 12
2.3.2.2 PotreeConverter 2.x in Detail 13

2.3.3 Color Filtering for Point Clouds 14
2.3.3.1 Replacement LOD Scheme 15

2.4 GPGPU Programming: The CUDA Framework 16
2.4.1 An Introduction to CUDA . 16
2.4.2 CUDA Programming by Example 17

2.4.2.1 A Simple CUDA Kernel 18
2.4.2.2 GPU Memory Management 19

2.4.3 Atomic Functions . 20
2.5 Counting Sort . 21

3 Software Architecture 23
3.1 Requirements . 23
3.2 Software Architecture . 25

xv

3.3 Algorithmic Overview . 26

4 Generating an LOD Structure on the GPU 29
4.1 Point Cloud Import . 30
4.2 Preparation Phase . 31

4.2.1 Allocating the Cloud Buffer . 32
4.2.2 Allocating the Output Buffer 32

4.3 Point Chunking . 33
4.3.1 Point Counting . 34

4.3.1.1 Initial Point Counting 36
4.3.1.2 Point Count Propagation 37

4.3.2 Node Merging . 39
4.3.2.1 Octree Allocation and Initialization 40
4.3.2.2 Leaf Node Initialisation 41
4.3.2.3 Hierarchical Node Merging 41

4.3.3 Point Distribution . 46
4.4 Point Subsampling . 49

4.4.1 The Subsampling Order . 51
4.4.2 Subsample Evaluation and Intra-cell Color Filtering 52

4.4.2.1 Intra-Cell Color Filtering 53
4.4.2.2 Implementation Details 55

4.4.3 Inter-Cell Color Filtering . 58
4.4.3.1 Extension: Distance Weighting 60

4.4.4 Random Point Calculation . 62
4.4.5 Random Subsampling and Data Distribution 63

4.5 LOD Data Export . 67
4.5.1 Generating octree.bin . 67
4.5.2 Quantizing Coordinates and Colors 67
4.5.3 Generating hierarchy.bin . 68
4.5.4 Potree Metadata . 68

5 Results and Evaluation 71
5.1 Laboratory Setup . 71
5.2 Qualitative Result Evaluation . 72

5.2.1 Point Cloud Color Filtering: a Visual Comparison 72
5.2.2 Implicit vs. Explicit Random Subsampling 74
5.2.3 PotreeConverterGpu vs. PotreeConverter 2.1: a Visual Comparison 74

5.3 Quantitative Result Evaluation . 77
5.3.1 Runtime Evaluation . 77

5.3.1.1 PotreeConverterGpu vs. PotreeConverter 2.1 79
5.3.2 GPU Memory Consumption . 81

6 Conclusion 85
6.1 Limitations and Future Work . 86

List of Figures 87

List of Tables 89

List of Algorithms 91

Bibliography 93

CHAPTER 1
Introduction

1.1 Motivation

Over the past two decades, numerous 3D point-cloud rendering solutions have been
proposed. Due to limitations in hard- and software, the real-time rendering of point
clouds with millions of points was previously only possible using standalone desktop
applications. However, the development of 3D capable mobile devices and technologies
like WebGL [Grob] or WebGPU [Con] now enable developers to stream and render
large amount of points to virtually any device with a web browser. The advantage
of rendering point clouds directly in the browser is that it is device and platform
independent and requires no installation. Thus, web-based viewing of point clouds
is used in several applications, such as product presentations, geological surveys (e.g.,
Entwine [Sur] or Sketchfab [Ske]), or for viewing 3D reconstructions in an industrial
setting (e.g., ICI 3D data [GBT22]). To this end, several web-based point-cloud viewers
with real-time capabilities have been proposed, e.g., Potree [Sch16], Plasio [Ver] and
Leica Tru View [Geo]. They impress with incredible viewing speeds and an immediate
graphical response, but they typically also take trade-offs considering the quality of the
viewed data (e.g., aliasing artifacts, decimated or lower LOD models, etc.). To be able
to stream and render huge point clouds in real time, it is necessary to pre-process the
original clouds into an LOD structure beforehand. This conversion is performed with
time-consuming processing steps and hence, can be considered as a bottleneck in a user’s
workflow.

The fundamental goal of this master thesis is to increase the accessibility of real-time
web-based viewing of detailed 3D point clouds in two aspects. First, we propose a CUDA-
based LOD generation process that reduces preprocessing times and simultaneously
increases visual quality by applying color filtering in lower levels of detail. Second, the
usage in an industrial context shall be facilitated by providing a flexible and easy-to-

1

1. Introduction

integrate software library that is capable of converting 3D reconstruction data such as
Inline Computational Imaging (ICI) 3D data [GBT22].

1.2 Problem Statement
This thesis addresses the problem of efficiently converting unstructured point clouds to
LOD structures that can be viewed and explored in web browsers. The basis for the
approaches in this master thesis lies in the PotreeConverter [SOW20], which prepares
point clouds for the Potree [Sch16] point cloud renderer.

Potree is a high-performance point-cloud renderer that is capable of displaying datasets
with up to hundreds of billions points of in real time in a web browser. Potree makes this
possible by not displaying all points at once, but only those that are currently needed.
Based on the viewport and distance between the point cloud and the camera, only those
points are loaded and rendered that are required to provide the user with a satisfactory
representation of the entire point cloud. According to this, if the camera-to-point-cloud
distance is de-/ or increased, more points (and thus more details) or fewer points are
displayed. In order to make it possible to show and hide certain details, it is first necessary
to convert point clouds into an LOD (Level-of-Detail) structure. Such a structure consists
– as the name suggests – of different hierarchical levels, where each higher level contains
a more detailed point-subset of the original point cloud, showing more or less detail.
Another advantage of transforming point clouds into an LOD structure is that Potree can
download and render only sub-parts of the cloud with a desired resolution independently.
Thus, Potree can provide a quick initial graphical response to the user with point-cloud
resolution increasing over time as higher LODs are streamed in and added to lower LOD
data. [Sch16] [SOW20]

However, the generation of these LOD structures is a time- and memory-consuming,
computationally intensive process. Depending on the area of application, point clouds
may consist of up to billions of points, resulting in large amounts of data and requiring a
scalable, memory-efficient and fast method for LOD generation. Although PotreeCon-
verter is highly optimised, there is still potential to speed up the entire conversion process
since it runs on the CPU. Even though certain parts of the code are implemented in
parallel, a large part of the software still works sequentially, which leads to a bottleneck.
Another common problem is the quality of the converted point cloud data, in particular in
relation to aliasing artifacts caused by the lack of color filtering. In contrast to textured
meshes, where color filtering is well studied, color filtering for point clouds turns out to be
more difficult due to the lack of a two-dimensional neighbourhood relation between points,
which makes approaches such as mip mapping infeasible (commonly applied anti-aliasing
strategies for point clouds are described in Section 2.3.3). The aliasing artifacts are
caused by a sampling rate that is too low, i.e., when creating lower LODs, primarily
too little color information is encoded in the lower levels. Increasing the sampling rate
would counteract this problem, but would also increase the amount of points in lower
LODs, which would introduce a longer response time during rendering. Although Potree

2

1.3. Contribution

applies high-quality splatting [BSHZK05] – a method for reducing aliasing artifacts during
rendering – the artifacts are still perceptible.

The usage of web-based 3D point-cloud viewers in an industrial context is often hindered
by the fact that it is not possible to integrate the necessary point-cloud LOD generation
tools directly into proprietary industrial applications. One example for such an application
is Inline Computational Imaging (ICI), which is a novel single-sensor technology for
2D / 3D inline inspection (see Section 2.2.1), developed by AIT Austrian Institute of
Technology GmbH. In the case of ICI, the rendering of reconstructed 3D point clouds
should be shifted from traditional desktop-based software to a web-based solution, more
precisely to Potree. The problem is that PotreeConverter does not expose an API and
thus, cannot be simply integrated into the ICI processing pipeline. Moreover, ICI’s
processing pipeline is implemented in CUDA and is executed entirely on the GPU. In
order to be able to generate Potree-compatible LOD data within ICI efficiently while
avoiding costly GPU-to-CPU memory transfers, the LOD generation would also have
to be carried out on the GPU. Thus, this master thesis is conducted in cooperation
with AIT to solve these problems and to provide a software library which can be easily
integrated into ICI and which converts 3D point clouds to LOD data entirely on the
GPU.

1.3 Contribution
We propose PotreeConverterGpu, an in-core GPGPU-based implementation of PotreeCon-
verter that improves the previous LOD generation algorithm for Potree in terms of runtime
and visual quality of the resulting multi-resolution point clouds. Further, PotreeConvert-
erGpu was designed to be easily integrated into third-party software for automatic LOD
generation. Basically, PotreeConverterGpu proposes the following contributions:

• A highly-optimized LOD generation for point clouds based on a replacement scheme
using GPGPU-programming (CUDA). For this, the LOD generation algorithms
based on [SOW20] have been re-designed to process point clouds on the GPU in a
fully-parallelized manner. This enables processing of point clouds residing either
in CPU (host) or GPU (device) memory with an increased point throughput in
LOD generation ranging from 64M points (highest quality) to 418M points (lowest
quality) per second. Compared to PotreeConverter 2.1, PotreeConverterGpu has a
throughput that is 13 times or 85 times higher.

• Color filtering for point clouds. Based on suggestions from Rusinkiewicz and
Levoy [RL01] and Wand et al. [WBB+08], PotreeConverterGpu significantly im-
proves the visual quality of the generated multi-resolution point clouds. In detail,
a baked-in anti-aliasing strategy based on color filtering (similar to mip-mapping)
is applied during point subsampling. We distinct between inter-cell color filtering,
considering more and intra-cell color filtering, considering less neigbouring points.
Both approaches significantly minimize high-frequent color noise and reduce the

3

1. Introduction

occurrence of aliasing artifacts while preserving texture details. Especially in
combination with the complementary high-quality splatting approach [BSHZK05],
this effect becomes visible when the converted point clouds are rendered in Potree.
Additionally, inter-cell color filtering allows to calculate distance-weighted color
averages, further improving the preservation of textural details.

1.4 Thesis Outline
The thesis is organised in 5 chapters. This chapter discussed the fundamental motivation,
the problem statement and the contributions of this thesis. The remaining chapters are
briefly described below:

• Fundamentals and State-of-the Art (Chapter 2)
This section introduces the topics of 3D reconstruction and point cloud rendering. In
particular, Inline Computational Imaging, GPGPU programming and the current
state of Potree and PotreeConverter are addressed. In this context, relevant
algorithms and data structures are also covered.

• Software Architecture (Chapter 3)
The goal of this chapter is to provide a basic overview of the proposed and improved
LOD generation approach from a software engineer’s perspective. This helps to get
the big picture of the goals and concepts in this master thesis before getting into
detailed information about the applied algorithms.

• Generating an LOD structure on the GPU (Chapter 4)
This is the main part of the master thesis. It comprises detailed descriptions
of all relevant aspects and steps regarding the LOD generation. This includes
implemented algorithms as well as data structures, necessary for giving a clear and
comprehensible explanation of the LOD generation.

• Results and Evaluation (Chapter 5)
Beside different measurements (runtime, memory consumption, etc.), this chapter
also contains a discussion explaining different interrelationships within the LOD
generation. Special attention is paid to different subsampling configurations and
their effects on runtime, memory consumption, result size, visual LOD quality etc.

• Conclusion and Future Work (Chapter 6)
This last chapter provides suggestions for improvement of the LOD generation in
terms of quality and quantity. Quality targets the actual quality of the generated
multi-resolution point clouds with respect to anti-aliasing and point distribution,
whereas quantity targets different LOD generation metrics, such as runtime.

4

CHAPTER 2
Fundamentals and State-of-the

Art of LOD generation

This chapter gives an overview of existing point cloud rendering algorithms and viewers
and, if applicable, their LOD generation methods. Special emphasis is put on a specific
web-based point cloud viewer and converter, i.e., Potree and PotreeConverter [Sch16],
which are the basis of this thesis.

2.1 State-of-the-Art of Point Cloud Rendering
In general, there are several possibilities to view and explore 3D point clouds. An obvious
choice is standalone desktop software such as CloudCompare [GM] which is available as
open source. As point cloud visualisation becomes more and more popular, 3D editing
programs such as Blender [Fou] or 3D Studio Max [Aut] nowadays also offer the possibility
to render point clouds in addition to conventional mesh data. Moreover, point clouds can
also be used in established game engines such as Unity [Tec] or Unreal Engine [Gam].
As those programs are installed directly on a PC or workstation, they can efficiently
utilise all of the computer’s resources and can therefore provide high load and render
performance. The disadvantages, on the other hand are, that stand-alone solutions are
often not available for multiple platforms and that they require an installation.
Web-based point cloud viewing is a light-weight alternative to conventional standalone
software. Since web-based renderers do not require any installation and run purely in the
web browser, they are completely platform-independent and enable an unprecedented
possibility of distributing interactive visualizations to the widest possible audience.
Nowadays, there exist several web-based point cloud rendering solutions, many of them
are proprietary software like Faro Scene Web Share [FAR] or Leica Tru View [Geo],
whereas only a few of them are provided under an open-source license, e.g. Potree [Sch16],
Plasio [Ver] or Cesium [CG].

5

2. Fundamentals and State-of-the Art of LOD generation

(a) The Heidentor data set rendered in CloudCompare [GM].

(b) The Heidentor data set rendered in Potree [Sch16].

Figure 2.1: Point cloud visualisation: a dataset from the Heidentor in Carnuntum
(Austria), provided by the Ludwig Boltzmann Institute (LBI ArchPro) [Insb], visualised in
CloudCompare [GM] (standalone application) and in Potree [Sch16] (web-based renderer)

2.2 Applications of Point Cloud Rendering
Point cloud rendering plays an important role in various fields. The discrete mathematical
representation of three-dimensional objects using a finite number of points, enables a
wide range of applications, ranging from research over industrial to geological ones. Due
to the fact that several 3D scanning technologies produce very large point clouds (up

1PotreeDesktop [Sch] is a portable desktop version of the Potree [Sch16] web-based point cloud
renderer. At the time of writing this thesis, the latest PotreeDesktop version is 1.8.0.

6

2.2. Applications of Point Cloud Rendering

(a) ArcGIS scene. Image taken from [Insa]. (b) ICI 3D coin data set

Figure 2.2: Point cloud rendering applications:
a) An ARCGis [Insa] point cloud scene layer.
b) The ICI [GBT22] 3D coin data with 5.3 million points rendered in PotreeDesk-
top [Sch] 1. The reconstruction was performed based on an ICI acquisition with a
sampling of approximately 20µm/pixel. The coin data set is available on the project
GitHub repository [Kla].

to billions of points), there is a need for point cloud rendering applications which can
handle and display these amounts of points efficiently while preserving high quality
rendering results. One of these technologies for acquiring large point clouds, mostly used
in a geological context is Light Detection And Ranging (LIDAR). The resulting point
clouds can consist of millions or even billions of points and thus pose a great challenge in
terms of data storage, streaming and rendering. LIDAR scans are used, for example, in
archaeological research or for the visualization of Geographic Information System (GIS)
data. One example for such a GIS application is ArcGIS [Insa] which can be seen in
Figure 2.2a. On the other hand there exist also several image based 3D reconstruction
methods which fall into the category of photogrammetry. The goal of photogrammetric
methods is to obtain the 3-dimensional surface structure of an object via images from
multiple viewpoints. For instance, classical stereo-based 3D reconstrucion approaches
extract depth information about an object by correlating two or more rectified images
of this object [Sze11]. To obtain better 3D results, several image-based reconstruction
approaches can also be combined. For example, for the ICI [GBT22] setup and software,
we use light field technology and photometric stereo to perform depth estimation of
surfaces in an industrial environment (see Figure 2.2b). This setup is explained in the
next section 2.2.1.

2.2.1 ICI - Inline Computational Imaging
This master thesis is conducted in corporation with the AIT Austrian Institude of
Technology GmbH. We at AIT have developed Inline Computational Imaging (ICI), a high-

7

2. Fundamentals and State-of-the Art of LOD generation

Figure 2.3: The ICI (Inline Computational Imaging) principle: a camera continuously
acquires images from an object which is moved on a conveyor belt. Additionally, the
object is alternately illuminated from multiple light sources. The result is an image stack
consisting of acquisitions from the object from different viewing angles and under different
illuminations. These images are processed with the ICI 3D pipeline and a 3D point cloud
is created from the final depth model at the end. Figure is taken from [GBT22].

speed and high-precision 3D-reconstruction technology performing surface reconstruction
on the GPU [GBT22, TGBB21]. In future, we want to use Potree for visualizing large
ICI 3D point cloud data sets and we want to integrate the LOD generation directly
into the ICI 3D-reconstruction pipeline. Thus, this master thesis is aligned to ICI and
targets to provide high-performant LOD generation on the GPU in form of a software
library. In addition to the performance advantages, this also allows to directly process
ICI data residing on the GPU without additional device − to − host copies. This section
is dedicated to ICI and explains the basic concepts behind this technology.

Where former 3D sensing technologies suffer from inaccuracies on fine surface details
or lack global consistencies, we at AIT propose ICI, which performs solid in macro
(millimeter) as well as in microscopic scales (one-digit micrometer resolutions). The key
point to achieve this depth range and accuracy is, that ICI exploits the sensitivity of
light fields [LH96] on (large) surface structures and the sensing ability of photometric

8

2.3. Fundamentals and Related Work of LOD Conversion

stereo [Woo92] for fine surface deviations without the need for visible structures.

The ICI technology consists of the ICI hardware setup, including an acquisition software
and the ICI 3D processing pipeline. We distinguish between MultilineICI [ASV+17]
and AreaICI [GBT22]. Both technologies have several commonalities but also differ in
some crucial aspects (e.g. hardware setup and image acquisition). Depending on the ICI
variation a working ICI hardware setup consists of a multi-line (for MultilineICI) or area
camera (for AreaICI), a defined number of light sources and a mechanism like a conveyor
belt for a guided movement (see Figure 2.3). The number of mounted light sources has
developed over time and depends on the acquisition mode. Typically two, four or six
lights are used within the setup. During the acquisition, an object is constantly moved
under the camera in one direction. This object is illuminated by multiple light sources,
and a range of images is taken from the object from different viewing angles. These images
form a light field structure, spanning over 3 dimensions (two spatial and one directional)
and can be represented in an image stack in which each image shows the object of interst
from a different viewing angle and under a different illumination. The images are passed
through the ICI processing pipeline which performs the 3D-reconstruction. The result
of the reconstruction is a final depth model that is converted to a 3D point cloud. The
entire 3D reconstruction pipeline is implemented in CUDA and performs processing
on the GPU in four steps. Here we focus on the ICIArea processing pipeline which is
described in particular in [GBT22]:

1. Multi-view stereo matching

2. Disparity map fusing

3. 3D model generation (see [BSA18])

4. Applying Total Generalized Variation (TGV) for regularizing the 3D model (see
[ASP18])

One of the goals of this master thesis is to provide a modular LOD conversion library
which can be integrated into any third-party application. In our case, we use the resulting
library to convert the point clouds that ICI generates with CUDA into a LOD structure
directly on the GPU, without the need to move it to system memory or hard disk first.

2.3 Fundamentals and Related Work of LOD Conversion
Many web-based point cloud viewers use an LOD structure to efficiently stream and
render large point cloud data. The lowest LOD contains only a very rough representation
of the overall point cloud, whereas higher LODs contain more detailed versions at a
higher resolution. These multi-resolution data structures enable rendering engines such
as Potree to quickly stream-in a coarse representation of the actual point cloud and to
increase the amount of details over time by loading higher LODs. The goal of this thesis is

9

2. Fundamentals and State-of-the Art of LOD generation

to improve the state-of-the art LOD generation from Potree and PotreeConverter [Sch16]
in terms of runtime and visual quality of the generated multi-resolution point clouds.
For that purpose, previously proposed data structures and algorithms are used. These
fundamentals are discussed below.

2.3.1 LOD Structures for Point Clouds
Converting point clouds into LOD structures and rendering them continuously is a
wide-studied topic in the area of computer graphics. While several approaches have
been proposed in the last years, this section focuses on approaches which form the basis
for Potree, its multi-resolution point cloud conversion and thus also for PotreeConvert-
erGpu. The first system which rendered point clouds based on an LOD structure was
QSplat [RL01] (see Figure 2.4a) which was proposed in 2001. Qsplat converts arbitrary
point data (point clouds, mesh vertices, etc.) to a binary tree and rearrange the actual
points into the leaf nodes of the tree. Each further inner node contains a representative
bounding sphere as well as averaged point properties (such as colors or normals) of the
underlying subtree. During rendering, Qsplats traverses the binary tree and draws a
single representative splat for each bounding sphere. Splatting is further discussed in
Section 2.3.3. Although, Qsplat performed tree traversion and rendering on CPU side
and was therefore limited in performance, it lays the foundation for several future point
cloud LOD conversion and rendering systems.

One of these successors was an LOD rendering system called Sequential point trees (see
Figure 2.4b) which aimed to completely shift workload from CPU to GPU. The concept of
Sequential point trees was proposed by Dachsbacher et al. [DVS03] and targets to avoid
traversing the point tree hierarchy on CPU side during rendering the point cloud on GPU.
For this purpose the tree is flattened into a non-hierarchical list of nodes. Additionally,
every node gets an r_min and r_max value assigned which indicate a distance range for
which the actual node should be rendered. The entire node list is afterwards sorted for
r_max. During rendering, based on the camera distance r it is decided for each point
if it is in the boundary of [r_min, r_max]. This decision is performed directly in the
vertex shader. Points that do not meet this requirement are culled, otherwise they are
displayed as splats. To further optimize this process, not the entire node list is passed to
the GPU. Instead, the CPU performs pre-culling for r_max and just passes the resulting
segment to the GPU.

Another popular concept is that of Layered Point Clouds (see Figure 2.4c) which was
proposed by Gross et al. in [GM04] in 2004. They propose to generate a point cloud
LOD structure by building a binary tree in a top-down fashion. The final tree has exactly
the same amount of points as the input point cloud model and each node stores M points
where M < N (N is the point amount in the cloud). The root node contains a coarse
representation of the entire point cloud, whereas each tree branch divides the point cloud
spatially. To get the model at a spesific resolution, all nodes above a predefined cut are
merged. The idea behind Layered point clouds is to provide a system to load and render
large point clouds either from a local hard disk or to stream them over the network. For

10

2.3. Fundamentals and Related Work of LOD Conversion

(a) QSplat: Image taken from [RL01]
(b) Sequential point tree: Image taken
from [DVS03]

(c) Layered point clouds: Image taken
from [GM04]

(d) Nested octree: Image taken
from [WS06]

Figure 2.4: Related work: trend-setting point cloud LOD structures in the order of
their publication: starting top left with QSplat and ending down right with the Nested
Octree.

this purpose the system builds an index tree (containing the traversal data) and a point
cloud repository which contains the actual octree nodes. During rendering, a specific
model resolution is loaded from the point cloud repository by the use of the metadata
stored in the index tree.

Two variations of the Layered Point Clouds were proposed by Wand et al. in [WBB+08]
and also by Scheiblauer in [Sch14] which propose concepts to convert point clouds into
editable multi-resolution point clouds. Although, both works are based on the idea of
converting a given point cloud into an LOD structure using an octree, they differ in
crucial aspects such as how points are inserted into the tree or how the tree is updated
after point insertion or deletion. This thesis adopts a color filtering concept for point
clouds which was first proposed by Rusinkiewicz and Levoy [RL01] and later by Wand
in [WBB+08] (see Section 2.3.3). In addition, PotreeConverterGpu is based on Potree’s
octree structure from Schütz [Sch16], which is a slightly adapted version of the Modifiable
Nested Octree (MNO) from Scheiblauer [Sch14]. Originally, the MNO was proposed to
compensate for the weaknesses of the Nested Octree [WS06] (see Figure 2.4d) in terms of
subsequent point editing (adding, deleting). The basic principle behind an MNO is, that
it stores different resolutions of the same point cloud, whereas the root node contains
the lowest resolution. Points are inserted into the MNO sequentially. For each point,
the target index in a regular grid is evaluated which is placed over the point cloud. If
the evaluated cell is empty, then the point is stored there, if not, a child node index
is calculated and the same validation is performed. This process is continued until an
empty cell is found.

11

2. Fundamentals and State-of-the Art of LOD generation

PotreeConverter 1.x PotreeConverter 2.x
Building strategy top-down bottom-up

Subsampling Poisson-disk
(per node)

Poisson-disk
(node and ancestors)
(improved blue-noise)

Binary output One file per node
(up to millions) One file for whole octree

Performance Up to 1M Points / sec Up to 10M Points / sec

Table 2.1: Comparison between PotreeConverter 1.x and PotreeConverter 2.x

2.3.2 PotreeConverter

In order to generate point cloud LODs for rendering with Potree, Schütz proposed
PotreeConverter in [SOW20], which loads point clouds (e.g. from LAZ files) and converts
them to a Potree-compatible LOD structure. In this master thesis the state-of-the-art
LOD generation process from PotreeConverter is improved in terms of runtime and in
terms of the visual quality of the resulting LOD data (reduction of aliasing artifacts).
Furthermore, the resulting LOD generation software, called PotreeConverterGpu shall
be easily integrateable into third-party applications. This section explains the theoretic
fundamentals of PotreeConverterGpu and its related work.

2.3.2.1 PotreeConverter 1.X vs PotreeConverter 2.x

The current version of PotreeConverter is 2.1 and was proposed in [SOW20]. Table 2.1
lists several key differences between version 2.x and its predecessor. Although both
versions are based on the MNO, the way it is built up is very different. PotreeConverter
1.x propagates points from the root node (lowest level of detail) to higher levels of detail
- so the octree is built in a top-down fashion. The goal thereby is to limit the number
of points in a node to a certain number, while minimizing the overall node amount.
PotreeConverter 2.x on the other builds the octree in a bottom-up way. For this it first
distributes points into leaf nodes and then propagates points upwards into lower levels of
detail.

In fact, the main goal of PotreeConverter 2.x was to improve point subsampling and data
export of the multi-resolution point cloud. Whereas PotreeConverter 2.x still relies on
Poisson-disk sampling, it enforces point sets with a blue noise characteristics [YGW+15]
which implies (i) a minimum distance between subsampled points, (ii) avoidance of
gaps between subsampled points and (iii) avoidance of regular sampling patterns in the
subsamplings. In previous PotreeConverter 1.x versions these properties have only been
applied within the boundaries of individual nodes. PotreeConverter 2.x improves the
overall quality of the point subsamples by enforcing blue noise also between internal
and child nodes. Moreover, the data export has also been improved by the fact, that
PotreeConverter 2.x exports the multi-resolution point cloud into a single binary file

12

2.3. Fundamentals and Related Work of LOD Conversion

Figure 2.5: PotreeConverter 2.x overview. Figure taken from [SOW20].

rather than storing each octree node in a separate file. The disadvantage of creating
a separate file for each node is, that the number of exported files can quickly lead
to multiple millions, which reduces the data export speed and introduces problems
during file system operations (copy, delete, transfer, etc.). This has been overcome
by PotreeConverter 2.x by storing all binary octree nodes in one file and by storing
descriptive node metadata in another separate file. More on the Potree data export
format in Section 4.5. Another important aspect is, that PotreeConverter 2.x features a
significant better runtime performance. Where PotreeConverter 1.x was able to process
up to 1 million points per second, PotreeConverter 2.x is able to process up to 10 million
points per second.

2.3.2.2 PotreeConverter 2.x in Detail

In addition to the improved blue-noise sampling strategy, PotreeConverter 2.x aims to
optimise the export of the multi-resolution point cloud and thus to minimize the amount
of generated binary output files. Furthermore, PotreeConverter 2.x generates an octree
in a bottom-up way using an out-of-core approach. This process can be described in 3
steps:

1. Chunking
Initially, the point cloud is partitioned into cubic chunks by applying a hierarchical
variation of counting sort (further described Section 2.5). This means to place a
three-dimensional, regular grid (e.g., 5123 cells) on the point cloud and to project the
points to grid cells. Afterwards, sparsely populated cells are merged hierarchically
in a process that is similar to the creation of image pyramids [AAB+83]. For this
purpose, cells are compared in groups of 2 ∗ 2 ∗ 2. If the accumulated point count
in those groups is lower than a specified threshold, their cells are merged into one
bigger cell. The last step within the Chunking pass is to actually distribute the
points from the source point cloud to the chunk files. For this, a chunk lookup table
is created which maps the original cells of the full resolution grid to the merged

13

2. Fundamentals and State-of-the Art of LOD generation

cells. Afterwards, the points are distributed and exported to the chunk files. Those
files contain cubic point chunks, which align to a node in the octree.

2. Indexing
After all points have been distributed, the resulting chunk files are loaded and
local octrees are built in parallel (one thread per chunk/octree) – thus, multiple
resoultions for a single chunk are created. For this, the chunk is processed in nearly
the same way as during the Chunking pass, but this time in-core and a smaller
counting grid of 323 cells is used, which results in an octree with 5 levels. If leaf
nodes in the resulting local octree contain too many points (more than 10k), they
are recursively processed into 5 more octree levels.
When the local octree structure is created, subsampling can be performed. This
means to extract coarser representations from finer octree levels and propagate
them upwards in a bottom-up fashion. Starting at the bottom, all nodes are visited
in a post-order depth-first traversal and if a node is an internal one, subsampling
is executed for all direct child nodes. Extracted points are deleted from child
nodes, which are then considered as finished and exported to the single output file
(octree.bin).

3. Merging
After all local octrees have been generated from chunks, the global octree can be
created and exported. At the beginning, the global octree’s leaf nodes are assembled
of the root nodes from the local octrees. Creating the global octree requires to
subsample and export its nodes in the same way as for the local octrees. After this
step the octree is completely generated and exported.

2.3.3 Color Filtering for Point Clouds
Aliasing artifacts are a common problem in computer graphics, especially in point cloud
renderers. A well known solution which targets this problem is Surface Splatting. This
approach minimizes aliasing artifacts by blending overlapping points [ZPBG01]. The
idea behind this algorithm is to weight the projected pixels of a point using a Gaussian
filter. The filtered output of all contributing points is accumulated and afterwards
normalised by the sum of all weights. The problem is that surface splatting relies on
oriented splats, which requires the presence of normals or radii in the point cloud data.
As these properties are often not present in common point cloud data sets, Potree blends
screen-aligned rather than oriented splats, as originally suggested by Scheiblauer and
Pregesbauer [SP11]. Despite this, aliasing artifacts are still perceptible, especially when
rendering points from coarser LODs because the small number of subsampled points in
lower LODs is insufficient to build a meaningful average color value that is representative
of all the hidden points that are stored in higher levels of detail.

Similar to QSplat [RL01], which stores average color values in lower LODs of its bounding
sphere hierarchy, and following a suggestion of Wand et al. [WBB+08] who suggest to do
the same for their LPC-like structure, we implement color filtering in our octree generator

14

2.3. Fundamentals and Related Work of LOD Conversion

in order to improve the visial quality of lower levels of detail. The main modifications to
the approach of PotreeConverter are:

1. Switching from an additive LOD scheme to a replacing LOD scheme.

2. Performing color filtering during subampling (similar to mip maps)

2.3.3.1 Replacement LOD Scheme

This section explains the difference between the additive LOD scheme used by LPC,
MNO, and Potree, and the replacement scheme, which has been advised by [WBB+08] to
provide color filtering for point clouds. Consider an octree containing a multi-resolution
point cloud. Additive refers to schemes where points in higher levels of detail are added
to points from lower levels of detail during rendering (see Figure 2.6a). The advantage
of this structure is that it is sufficient to reorder the original points into a hierarchical
structure, and does not require additional or duplicate data. The idea of replacement
schemes, on the other hand, is that higher levels of detail replace lower levels of detail
during rendering. These schemes require additional memory (see Figure 2.6b) for each of
the lower levels of detail, but they have the advantage that points in lower levels of detail
can be representative averages rather than selected samples. The difference in quality
between additive and replacement LOD schemes for point clouds is akin to the difference
between nearest-neighbor sampling and a linear minification filter for textures.

PotreeConverter 2.x [SOW20] uses an additive approach - points are subsampled from finer
to coarser octree levels without any averaging or quantization, i.e. one representative point
is chosen from the underlying child nodes per subsampling grid cell. What [WBB+08]
suggests is not to just take over subsampled points as they are, rather they suggest to
accumulate point attributes (e.g. color values) from all points within a grid cell and to
assign them to the subsampled point. Furthermore, the amount of points per cell is also
stored. This enables to normalize subsampled point values during quantization. In fact
this approach suggests to apply an unweighted average filter on subsampled points. To
my best knowledge this method has not yet been applied in modern, GPU-friendly, point
cloud rendering structures. One reason might be the relatively high effort to calculate
the averages per subsample for hundreds of millions of points..

15

2. Fundamentals and State-of-the Art of LOD generation

Additive Replacement

Level 0

Level 1

Level 2

(a) Additive vs. replacement LOD
scheme during rendering

Additive Replacement

Level 0
Level 1
Level 2

(b) Additive vs. replacement LOD
scheme in data storage

Figure 2.6: a): Using the additive scheme, points from lower LODs are added to
the points from higher LODs during rendering. When applying the replacement
scheme, points from higher LODs replace points from lower LODs.
b): To be able to replace points from lower LODs during rendering, points are
stored redundantly using the replacement octree scheme.

2.4 GPGPU Programming: The CUDA Framework
General Purpose Computation on the Graphic Processor Unit (GPGPU) programming ex-
tends the usage of GPU devices from graphics processing tasks to general high-performance
applications with a focus on parallelization. Especially the rise of different GPU pro-
gramming paradigms such as Compute Unified Device Architecture (CUDA) [NVF] and
Open Computing Language (OpenCL) [Groa] has enabled a range of completely new
applications in different areas, including image processing and machine learning. The
next Section provides a general comparison of CPU and GPU devices and how latter
ones are utilized by CUDA for high-performance GPGPU programming.

2.4.1 An Introduction to CUDA
CUDA is a computing platform and programming model which was introduced by Nvidia
in 2006. Its purpose is to exploit the massively parallel nature of GPUs to solve complex,
parallel and computationally intensive tasks. This section gives a rough overview about
the CUDA framework and how it used, where the focus lies especially on those aspects
that are relevant to this master thesis. The explanations in this section are mainly based
on the CUDA Programming Guide [NVIa].

When comparing CPUs with GPUs, one has to keep in mind that both devices were
designed for different areas of applications. Although both device types share common

16

2.4. GPGPU Programming: The CUDA Framework

Figure 2.7: Comparing CPUs and GPUs: CPUs and GPUs use a different number
of transistors for data processing. GPUs utilize more transistors for cores than CPUs.
Figure is taken from [NVIa].

features and are based on the same technologies, the available amount of transistors are
dedicated for different purposes. As the main focus of CPUs lies on high-performance and
task-parallel workload, a high amount of transistors is used for complex control logic and
for a large set of data caches to minimize memory latencies (see Figure 2.7). GPUs on
the other hand, feature a different hardware architecture where the goal is to maximize
the computational capability in terms of data-parallelism while minimizing the amount
of hardware resources for caching and flow control. Thus, the majority of transistors in
GPUs are dedicated for arithmetic logics components [HCZ16]. For example, modern
high-end consumer CPUs like the Intel Core i9 Extreme Edition Processor [Int] feature
an amount of 18 cores, where actual GPUs like the RTX 4090 [NVIb] have a core
amount around 16k. Further, GPUs feature a Single Instruction Multiple Threads (SIMT)
architecture which allows to execute workloads embarrassingly parallel. In particular,
this allows to execute the same function (even with multiple branches) onto millions
of data sets simultaneously. This has the advantage that GPUs highly outperform
CPUs in terms of parallel data processing and computation performance [HCZ16, NVIa].
CUDA utilizes the GPU’s parallel compute engine and leverages its functionalities using
application programming interfaces for various languages, such as: C, C++, Fortran, etc.
As describing CUDA’s architecture would exceed the boundaries of this master thesis the
next section directly explains the practical usage of CUDA in a C/C++ environment.
For more information about the CUDA architecture and its programming model refer to
the CUDA Programming Guide [NVIa].

2.4.2 CUDA Programming by Example
Basically, the CUDA workflow is to define algorithms in CUDA kernels first and to
let CUDA execute those kernels on one or more GPU devices with a given launch
configuration, afterwards. These kernels can be implemented using CUDA C++, which is
a C++ extension that has to be compiled using the NVIDIA CUDA Compiler compiler

17

2. Fundamentals and State-of-the Art of LOD generation

1 // A cuda kerne l , which i s execu ted on the GPU
2 __global__ void Sca la rMul t ip ly (f loat ∗A, f loat Sca l a r)
3 {
4 int idx = threadIdx . x ;
5 A[idx] = A[idx] ∗ Sca l a r ;
6 }
7
8 // Host−func t i on t h a t invokes the CUDA ker n e l N−times
9 int main ()

10 {
11 // . . . Create and copy an array ’A’ to GPU (dev i c e) memory
12
13 Sca larMult ip ly <<<1, N>>>(A, Sca l a r) ;
14
15 // . . . Copy the array back to CPU (hos t) memory
16 }

Listing 2.1: A minimalistic CUDA kernel example code

(nvcc) in order to be executable. It is also possible to define kernels using the CUDA
instruction set architecture (PTX) but NVIDIA highly recommends the use of CUDA
C++ for this purpose.

2.4.2.1 A Simple CUDA Kernel

Listing 2.1 contains a minimalistic example that shows how a CUDA kernel is embedded
into a regular C++ application. The example multiplies the elements of a floating point
array by a single scalar value in parallel. The CUDA kernel definition starts at Line 2
with the __global__ declaration, denoting that this kernel function can be called from
host side. The opposite would be __device__, meaning that the function cannot be
called from host code. After the declaration of the return type (which is always void)
and the function name, the parameters passed from the host to the device are listed.
Restrictions on what types of parameters can be passed to CUDA kernels can be found
in CUDA Programming Guide [NVIa]. The given example dispatches the CUDA kernel
with N threads, and each invocation then uses the thread index to identify the array
element that it should process. This can be seen on Line 4 in the example. Based on
the index, the executing thread accesses different data or executes different operation.
Referring to Figure 2.8, CUDA threads are organized in blocks of threads, where these
blocks are again organized in a grid of blocks. Threads inside a block can be identified in
a multi-dimensional way, up to three dimensions and thread blocks can also be arranged
in a one-dimensional, two-dimensional or three-dimensional grid. This allows to obtain
natural thread indices suitable for several data structures such as vectors or matrices.
The amount and layout of the executed threads are specified within the angle brackets

18

2.4. GPGPU Programming: The CUDA Framework

Figure 2.8: Thread blocks arranged in a grid. Figure is taken from [NVIa].

during kernel invocation (see Line 13). The maximum amount of threads per block is
always bound to 1024, so in order to process larger arrays, CUDA-kernels need to be
launched with an appropriate number of blocks, containing multiple threads.

2.4.2.2 GPU Memory Management

This section focuses on the memory management in CUDA as an integral component
within the CUDA framework. CUDA considers two separate memory spaces: host and
device memory. This results from the fact that CUDA uses heterogenous programming
and assumes CUDA kernels to be executed on a separate physical device. The host on the
other hand executes the actual C++ program and refers to the device as a coprocessor.
Memory management such as allocation, deallocations and copies are triggered by the
host through the CUDA runtime. Each CUDA thread has access to a range of different
device memory types which can be seen in Figure 2.9:

• Private local memory: restricted access - Only accessible to a single thread

• Shared memory: restricted access - shared by threads in a block

• Global memory: can be accessed by every thread in any block
Parameters which are passed to CUDA kernels (see Listing 2.1, Line 1) have to reside
in global device memory to be accessible for CUDA threads. Thus, device memory has
to be allocated and initialized beforehand. Listing 2.2 provides an example for typical

19

2. Fundamentals and State-of-the Art of LOD generation

Figure 2.9: The CUDA memory hierarchy. The figure shows the dedicated context of
each device memory type. Figure is taken from [NVIa].

CUDA memory management. To be able to process host data on the GPU, the host data
(data_host) has to be copied to the device. For this purpose it is necessary to allocate
GPU memory (data_device) with BYTESIZE bytes using cudaMalloc function (see
Line 6). Afterwards, the host data can be copied to the GPU using cudaMemcpy function
with the argument cudaMemcpyHostToDevice. After data processing on the GPU
has finished, it might be necessary to copy data back to host for further processing. This
can be seen in Line 11, where an additional cudaMemcp is performed, but this time
using the cudaMemcpyDeviceToHost argument. Finally, reserved GPU memory has
to be released, which is performed on Line 15 using the free function. As one can see in
Listing 2.2, CUDA memory management introduces a significant amount of boilerplate
code. Thus, allocating and deallocating of GPU memory has been abstracted inside a
separate class in this master thesis.

2.4.3 Atomic Functions
Sometimes, parallel running CUDA threads may need to be synchronised across block
boundaries. A suitable solution for this is provided by CUDA’s atomic functions. Accord-
ing to the NVIDIAs Programming guide [NVIa], concurrently executed atomic operations

20

2.5. Counting Sort

1 int main ()
2 {
3 // . . . Generate hos t data . . .
4
5 int ∗ data_device ;
6 cudaMalloc ((void ∗∗)&data_device , BYTESIZE)) ;
7 cudaMemcpy(data_device , data_host , BYTESIZE,

cudaMemcpyHostToDevice) ;
8
9 // . . . CUDA ker n e l i nvoca t i on . . .

10
11 cudaMemcpy(data_host , data_device , BYTESIZE,

cudaMemcpyDeviceToHost) ;
12
13 // . . . Further hos t p roce s s ing . . .
14
15 cudaFree (data_device) ;
16 }

Listing 2.2: A typical CUDA memory management example

consisting of (read / modify / write) are serialised and executed in a non-deterministic
order one after the other. In PotreeConverterGpu, the most used atomic functions are
atomicAdd and atomicSub. Those functions increment or decrement a variable in an
atomic way and return the previous stored value. This mechanism is therefore highly
suitable for generating globally coherent indices. Those indices can be either used for
e.g. accessing array data or to execute special commands based on the index value. For
example, a thread may need to execute a special function if it is the first to atomically
access a specific array or grid element (i.e., atomicAdd returned 0).

2.5 Counting Sort
In PotreeConverter 2.x, [SOW20] suggests a cloud chunking algorithm that is based on a
hierarchical variant of counting sort [CLRS09]. With counting sort n integer values can
be sorted in a value range from 0 to k. Unlike comparison sort algorithms, the runtime
complexity of this integer-sort algorithm is O(n). The common way to implement the
algorithm is to provide an input array input which is sorted using a counting array
counters, where the sorted values are finally stored in an output array output. Thus,
counting sort is only applicable, if it is possible to allocate a counting array with an entry
amount that match the amount of possible keys. As shown in Algorithm 1, counting sort
is performed in several steps. First, the counting array counters [0, k] is created for the
input array input[1, n] and its elements are set to zero (Lines 1-3). Then each element

21

2. Fundamentals and State-of-the Art of LOD generation

in input is iterated over and is taken as an index for the counting array counters. The
indexed entry in counters is incremented afterwards. After the last iteration, counters
contains the number of occurrences for each element in input (Lines 7-9). The next step
ranges from Line 7 to 9. Here, the goal is to determine for each element in input, how
many elements are equal or less. For this, counters is iterated over and a running sum is
calculated which is stored within each counters[i]. The last step is to distribute the sorted
values from input to output, which is shown on Lines 10-13. The counting array counters
can be directly used for indexing the output array output. However, the corresponding
entry in counters has to be decremented in each iterations. The proposed hierarchical
counting sort algorithm in PotreeConverter 2.x [SOW20] is an adapted version of the
original counting sort algorithm, in the sense that sorting is performed cell-wise rather
than point-wise.

Algorithm 2.1: The Counting Sort algorithm [CLRS09]

/* Reset counting grid */

1 for i ← 0 to k by 1 do

2 counters[i] = 0;

3 end

/* 1. Phase: Counting */

4 for i ← 0 to n by 1 do

5 counters[input[i]] = counters[input[i]] + 1;

6 end

/* 2. Phase: Calculate bucket offsets */

7 for i ← 1 to k by 1 do

8 counters[i] = counters[i] + counters[i-1];

9 end

/* 3. Phase: Value distribution */

10 for j ← (n − 1) to 0 by −1 do

11 output[counters[input[j]]-1] = input[j];

12 – counters[input[j]];

13 end

22

CHAPTER 3
Software Architecture

PotreeConverterGpu1 is a re-implementation of PotreeConverter that generates point
cloud LOD entirely on the GPU using CUDA. Whereas the concepts implemented in
PotreeConverterGpu are mainly based on [Sch16] and [SOW20], its algorithms and
internal processes have been re-designed to be executed efficiently on the GPU. To better
understand the core concepts in Chapter 4, the current chapter provides a high-level
introduction to PotreeConverterGpu, focusing on the software requirements, architecture
and basic workflows/algorithms from a software engineering perspective.

3.1 Requirements
The flow chart in Figure 3.1 lists the processing steps within PotreeConverterGpu
sequentially. These processing steps are used to deduce the functional and non-functional
requirements for PotreeConverterGpu, which are listed in Table 3.1. Requirements
describe the expected basic functionality of a software, i.e., what the software is supposed
to do.

The main functional requirement for PotreeConverterGpu is that it should be possible
to convert point clouds residing on either host or device memory into LOD data of
the Potree 2.x format. Further, the conversion should be done entirely on the GPU.
Finally, the software shall export the generated LOD data in Potree format 2.0 and
should additionally generate statistics about the octree.

The non-functional requirements describe general attributes such as quality attributes,
i.e., how a system should be designed. PotreeConverterGpu shall be fully integratable
into (proprietary) third-party software – thus, a properly designed software interface is
necessary. Nevertheless, it shall be possible to use PotreeConverterGpu as a stand-alone

1PotreeConverterGpu is freely available on Github under an open source license [Kla]

23

3. Software Architecture

Import Point clouds Convert point clouds on
the GPU

Export LOD data to
Potree format 2.0 Export octree statistics

Figure 3.1: PotreeConverterGpu flow chart

Functional requirements Non-functional requirements
Shall import point clouds from host or
device memory

Shall be integratable into
third-party-software

Shall convert point clouds to LOD data
entirely on the GPU Shall be used as a stand-alone software

Shall export LOD data in Potree format 2.0 Shall be compatible with ICI 3D point clouds
Shall export octree statistics such as point
distribution and GPU memory consumption Shall perform the LOD conversion in core

Shall perform the LOD conversion of 100 Mio
points in an amount of time ≤ 1 second
Shall provide color filtering for point clouds

Table 3.1: PotreeConverterGpu: functional and non-functional requirements

application. In order to be able to integrate PotreeConverterGpu into the ICI pipeline,
the software shall be able to process ICI 3D data sets. To increase the LOD conversion
performance, processing is entirely done in core on GPU using CUDA. In core means that
all relevant data structures are kept in memory during processing, and that no data is
buffered on hard disk. This requirement limits the size of the point clouds to be processed,
as the point clouds and all data structures required for processing must be kept in GPU
memory at the same time. On the other hand, this simplifies and accelerates point-cloud
processing. In comparison to the former PotreeConverter 2.x, which is able to process
~10M points per second (see [SOW20]), we expect a minimum performance improvement
of factor 10 from PotreeConverterGpu. Thus, a non-functional requirement is to be able
to process 100M points per second. The last non-functional requirement targets the
quality of the generated LOD data. As mentioned in Section 1.2, PotreeConverterGpu
shall increase the visual quality of the produced LOD data by providing color filtering.

24

3.2. Software Architecture

3.2 Software Architecture
This section introduces PotreeConverterGpu’s basic software architecture based on the
requirements described above. It is summarised in the UML component diagram in
Figure 3.2.

According to Table 3.1, PotreeConverterGpu may be used as a stand-alone application or
as library for third-party applications. The key consideration to achieve this is modularity.
This architectural principle shall provide flexibility by separating concerns, while minimis-
ing tight-coupling between components. Following this principle, PotreeConverterGpu is
separated into three independent components (Figure 3.2), each fulfilling its own purpose
in a separated context (Separation of Concerns design principle). The communication
with other components is performed over a well-defined interface. The following listing
explains the purpose of each of the three software components.

• OctreeLibrary
OctreeLibrary encapsulates the core functionality and data structures within
PotreeConverterGpu. Thus, it contains all relevant CUDA kernels for gener-
ating the actual LOD structure for a given source point cloud. It is designed as
a static library which gets linked to OctreeAPI and exposes a single C++ class
API. Chapter 4, which explains the core algorithms in PotreeConverterGpu, mainly
refers to this software component.

• OctreeAPI
It is considered as an intermediate layer for exposing functionality from OctreeL-
ibrary within a classical C API. To save state between consecutive API calls, a
session object is is generated at the beginning and afterwards passed to each API
call. This type of library interface in combination with the fact that OctreeAPI
is compiled into a shared library, enables an easy integration into other software.
Wrapping a C API additionally enables the integration into other programming
languages such as Python or MATLAB.

• PotreeConverterGpu Executable This component represents the actual exe-
cutable and consumes the OctreeAPI to convert point clouds into LOD structures.
It provides flexible parametrisation of the LOD generation by accepting a variety
of command line arguments.

25

3. Software Architecture

«Executable»
PotreeConverterGPU

«Shared library»
OctreeAPI

«Static library»
OctreeLibrary

«Executable»
ICI Pipeline
(proprietary)

PotreeConverterGPU

Figure 3.2: PotreeConverterGpu UML component diagram: PotreeConverterGpu is
split into independent software components. By default, PotreeConverterGPU is built
as an executable that can be used from the command line. Alternatively, external
applications may include OctreeAPI to integrate the functionality directly into their own
executable.

3.3 Algorithmic Overview
This section briefly describes the core functionality and the processing pipeline of
PotreeConverterGpu. As shown in Figure 3.3, PotreeConverterGpu performs several
processing steps sequentially either on the CPU or the GPU. Tasks which are performed
on the GPU are implemented inside one or more CUDA kernels. Although GPU program-
ming requires a certain amount of CPU interaction in practice, e.g., starting of CUDA
kernels, this is not shown in the activity diagram for simplicity. The core algorithms and
data structures for each processing step are described in particular in Chapter 4. The
following listing summarises each of those steps and refers to the individual sections.

1. Point cloud import (Section 4.1)
A point cloud is imported for further processing either from host or device memory.

2. Preparation phase (Section 4.2)
After data import, all relevant data structures are created. The idea is to perform
as many memory allocations on the GPU side as possible during this phase. The
reason for this is to be able to reuse once allocated GPU memory and to separate
memory allocations from processing.

26

3.3. Algorithmic Overview

CPU

Point cloud on
device memory

Point cloud import

LOD data export

yes

no

GPU

Point cloud import

Preparation phase

Subsampling

Point counting

Node merging

Point distribution

Chunking

Figure 3.3: PotreeConverterGpu UML activity diagram: PotreeConverterGpu performs
the point cloud to LOD conversion in multiple steps. These processing steps are either
performed on the CPU or on the GPU side. Processing on GPU is performed in CUDA
kernels which are executed from the host side.

3. Chunking (Section 4.3)
Its main purpose is to split the source point cloud into cubic chunks and to generate
the basic octree structure. During this process, the following tasks are performed:

a) Point counting (Section 4.3.1)
b) Node merging (Section 4.3.2)
c) Point distribution (Section 4.3.3)

4. Subsampling (Section 4.4)
Subsampling is the process of extracting points from finer to coarser octree levels.
Here, multiple resolutions of the original point cloud are created.

5. LOD data export (Section 4.5)
PotreeConverterGpu exports multi-resolution point clouds together with necessary
metadata files in Potree 2.x format.

27

CHAPTER 4
Generating an LOD Structure on

the GPU

This chapter describes PotreeConverterGpu, a GPGPU-based approach for converting
point clouds into Potree compatible LOD data. PotreeConverterGpu significantly speeds
up the octree generation process (13 times up to 85 times depending on subsampling
quality) that is proposed in [SOW20] (PotreeConverter 2.x) through targeted performance
optimisations and massive parallelization on the GPU. In addition, PotreeConverterGpu
proposes anti-aliasing for point clouds, an approach which is based on [WBB+08] and
performs color filtering during subsample generation, similar to mip-maps. Although
the core concepts are mainly based on [Sch16] and [SOW20], this requires a complete
re-design and re-implementation of the point cloud conversion process and algorithms to
be executed efficiently on the GPU.

The focus in this chapter lies on describing PotreeConverterGpu in detail, while putting
particular attention to the mentioned adjustments of algorithms and data structures that
are required for its highly optimised GPU implementation. The explanations follow the
processing pipeline mentioned in Figure 3.3, whereas each processing step is described in
a separate section and with a combination of figures and pseudo code. Here, a particular
focus is put on the runtime improvement within PotreeConverterGpu in comparison to
PotreeConverter 2.x, and how it could be achieved. As PotreeConverterGpu provides
baked-in anti-aliasing for point clouds, which significantly improves the visual quality of
the generated LOD data, this topic will also be discussed.

According to Figure 3.3, we first describe how supported point cloud formats are load-
ed/imported (Section 4.1), followed by the preparation phase that describes essential
pre-processing steps such as GPU memory allocations (Section 4.2). The actual gener-
ation of the octree structure is covered in the Chunking Section 4.3 and explains how
the initial point cloud is partitioned into leaf nodes. Generating the final LOD structure

29

4. Generating an LOD Structure on the GPU

requires to subsample previously generated octree nodes. The corresponding explanations
can be found in the Subsampling Section 4.4, which also explains the proposed color
filtering strategy for point clouds in detail. The last processing step is the LOD Data
Export, which is covered in Section 4.5 and explains how the actual LOD data is exported
to a Potree-compatible data format.

4.1 Point Cloud Import
Point cloud import is the first step in the processing pipeline (Figure 3.3). Contrary
to PotreeConverter 2.x, which only processes data from disk, PotreeConverterGpu also
supports processing data that already resides in GPU memory. This allows PotreeCon-
verterGpu to be integrated into 3D reconstruction software that generates point cloud
data directly on the GPU, and thereby avoids additional round-trips to disk storage and
back into memory.

In its simplest form, point clouds consists of an array of 3D points, each of them
describing the position of one point in the 3D space (x,y,z). Depending on the acquisition
or generation technique, each point may have additional properties, such as color or scalar
values. As a minimum requirement in our implementation, each point has to consist of
an (x,y,z) coordinate value and an (r,g,b) color value. Currently, PotreeConverterGpu
supports coordinate values of type float or double, and (color) attribute values of
type uint8 per channel. Additional attributes in the input data set are currently ignored
and not added to the resulting LOD structure.

To be able to process point clouds with an arbitrary amount of input attributes, the
knowledge of the data stride is essential to access/ignore the correct attributes (see
Figure 4.1). This value is equal to the sum of bytes per point, here referred to as
attributeSize:

stride =
k

i=1
attributeSizei (4.1)

Using the stride, we can retrieve the coordinate and color values of each point n in the
cloud by following byte offsets (where coordByteSize is the byte size of one coordinate
component):

byteOffsetcoord = stride ∗ n

byteOffsetcolor = stride ∗ n + 3 ∗ coordByteSize
(4.2)

Supporting arbitrary attributes and strides is essential because commonly used formats
differ in their layout. For example, the smallest stride for points with colors in Potree,
LAS [fPS], and ICI are 16, 26 and 15, respectively. The difference between Potree and
ICI stems from the fact that Potree pads the rgb attribute to 4 bytes, while ICI does not.

30

4.2. Preparation Phase

Point 0

x y z r g b scalar
0

scalar
n

Point 1

x y z r g b scalar
0

scalar
n

Point n

x y z r g b scalar
0

scalar
n

Stride

uin
t8_

t

uin
t8_

t

uin
t8_

t

flo
at

/ d
ou

ble
flo

at
/ d

ou
ble

flo
at

/ d
ou

ble

uin
t8_

t

uin
t8_

t

uin
t8_

t

flo
at

/ d
ou

ble
flo

at
/ d

ou
ble

flo
at

/ d
ou

ble

uin
t8_

t

uin
t8_

t

uin
t8_

t

flo
at

/ d
ou

ble
flo

at
/ d

ou
ble

flo
at

/ d
ou

ble

Figure 4.1: PotreeConverterGpu supported point cloud data layout: a single block
of memory containing points in a linear, consecutive order. Each point has to contain
coordinate (x, y, z) and rgb color values.

Points in the LAS format are larger because they contain more than just coordinate and
color attributes, and because colors are stored with two bytes per channel.

PotreeConverterGpu is able to process point clouds residing on host as well as on device
memory. In practice this means that OctreeAPI has to be provided with a data pointer,
pointing to a continuous block of memory (no matter whether on CPU or GPU) which
contains the point cloud data. If the point cloud resides on host memory, it is copied
to device memory for further processing during the Preparation phase 4.2. Otherwise,
the point cloud can be imported directly from GPU memory without any time-costly
copy operation, which speeds up the overall processing time. To be able to provide
OctreeAPI with a pointer to a host point cloud, the PotreeConverterGpu executable
reads the cloud from a binary file with the proposed data layout. The buffer on the GPU
that contains the imported point cloud is referred to as cloudBuffer (see Table 4.1). To
save GPU memory, CUDA kernels within PotreeConverterGpu avoid additional copies of
the original point cloud data. In fact, the data is only copied once, i.e., during exporting
(discussed in Section 4.5).

4.2 Preparation Phase

According to the activity diagram in Figure 3.3, the Preparation phase is the second step
in the processing pipeline. Its purpose is to reserve and initialize the required amount of
GPU memory using CUDA’s blocking cudaMalloc function. The reason is two-fold:
First, initially reserved GPU memory can be reused during processing. The second reason
to reserve as much GPU memory as needed during Preparation phase is that this enables
a separate time measurement of memory allocation time and pure processing time. This
section comprises the two most important data structures (listed in Table 4.1) which are
allocated on the GPU during the Preparation phase.

31

4. Generating an LOD Structure on the GPU

Variable Datatype Size
cloudBuffer uint8_t[] pointAmount * inputDataStride
outputBuffer uint8_t[] pointAmount * outputDataStride * outputFactor

Table 4.1: Relevant data structures pre-allocated during preparation phase

4.2.1 Allocating the Cloud Buffer
If the input point cloud resides on host (CPU) memory it is necessary to copy it to the
device (GPU) memory beforehand. If it already resides in GPU memory, we will simply
take a pointer to the GPU memory location and avoid additional allocations and copy
operations. The destination buffer for the input point cloud on the GPU is referred to as
cloudBuffer and is listed in Table 4.1. The size of cloudBuffer depends on the amount
of points (pointAmount) in the input cloud and its inputDataStride (see Section 4.1).
Thus, the required amount of GPU memory for cloudBuffer can be calculated as follows:

cloudBuffer = pointAmount ∗ inputDataStride (4.3)

4.2.2 Allocating the Output Buffer
octree.bin is a file which is created within the Data Export phase and is described in
Section 4.5. After export, it contains the multi-resolution point cloud which is going to
be rendered by Potree. Unlike [SOW20], which exports point data directly to octree.bin
already during processing, PotreeConverterGpu holds exported point data in an output
buffer. This buffer resides on the GPU and is copied from there to the host (CPU) after
all points of the finished LOD data structure are stored in it. Only then the contents of
the buffer (here referred to as outputBuffer) is written to octree.bin on disk.

The outputBuffer is allocated on the GPU during the preparation phase. As the exact
amount of exported points is unknown at this stage (the replacing LOD approach generates
an unkown amount of additional points), the size of the outputBuffer is estimated using
the pointAmount of the source cloud, the outputDataStride and an empirically chosen
factor – the outputFactor. This outputFactor heavily depends on certain configuration
and processing parameters and is set to 2.2 per default. The following equation shows
how the amount of memory for the output buffer is calculated:

outputMem = pointAmount ∗ outputDataStride ∗ outputFactor (4.4)

The stride for the output data together with its structure is explained in Section 4.5 and
can be seen in Figure 4.16. In general, the layout of the outputBuffer is very similar to
the one of the inputBuffer. Specifically, all points are stored one after the other, each
of them consisting of three coordinate and three color values (rgb). Besides the data
types of the exported point attributes, the output buffer also differs in another aspect:
additional point attributes such as scalar values are not present anymore. The reason
for not exporting scalar values is that processing in PotreeConverterGpu is done in-core

32

4.3. Point Chunking

and thus, we have to save as much GPU memory as possible while focusing only on
rgb color values. In consequence, the stride of the output data can be assumed fixed
to be of a size of 18 Bytes. This stride is the sum of the amount of Bytes per point
coordinate (coordinateBytes), which is 12 Bytes, and the amount of Bytes per point
color (colorBytes), which is 6 Bytes (2 Bytes per color channel):

stride = 3 ∗ (coordinateBytes + colorBytes) (4.5)

For a source point cloud with, e.g., 100 million points and using an outputFactor of 2.2,
the approximated amount of memory for the output buffer would be:

outputMem = 100,000,000 ∗ 18byte ∗ 2.2 = 3.96GB (4.6)

4.3 Point Chunking
During the Point Chunking phase, the hierarchichal structure of the octree is created
and all points from the source point cloud are distributed to the octree’s leaf nodes. This
forms the starting point for the subsampling phase.

3

32

2 3 4 4 33 1

3

3

2

3

2

1

3

3 2 1

3

3

3

2

3 4 4 3

4

3

3

2

3

4

1

3

3 3

3

Figure 4.2: Point chunking overview: at first, the input point cloud is spatially divided
into cells within a high-resolution grid. These cells correspond to potential leaf nodes.
The partition is done by counting the amount of points per cell. To avoid empty octree
nodes and nodes with only a few points later on, empty cells are eliminated, whereas
any 8 adjacent cells with too few points (lower than a threshold) are merged. This step
is done in a hierarchical way until all cells contain enough points. Finally, points are
distributed from the point cloud to the resulting leaf nodes of an octree.

The applied chunking algorithm is based on [SOW20] and uses a hierarchical variant of
counting sort [CLRS09]. As shown in Algorithm 1 in Section 2.5, the original counting
sort algorithm is performed in 3 steps. Our point chunking approach is basically modelled
after these 3 steps, but with crucial adjustments. The individual steps are:

33

4. Generating an LOD Structure on the GPU

2D 4 x 4 Counting grid
layed over point cloud

Counting grid
(as 1D memory block) 3 3 6 6 4 6 6 2 7 7 4

150 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10
150 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 63 6 4 6 6 2 7 7 4
0 1 2 3 4 5 6 7 8 9 10

Dense-to-Sparse
LUT

Nodes in octree
(as 1D memory block)

12

8

4

0

9

13

5

1 2 3

6 7

10 11

14 15

Figure 4.3: Point counting: a schematic representation of a 2-dimensional 4x4 counting
grid placed over a point cloud. Occupied cells with a point amount greater than zero
are marked green. A dense-to-sparse lookup table (LUT) maps dense counting cells to
sparse octree nodes.

1. Point Counting
The Point Counting algorithm can be found in Section 4.3.1 and works basically
the same as the Counting phase in Algorithm 1. This pass places a 3-dimensional
high resolution grid over the point cloud and counts how many points fall into each
cell. The resulting counters are then used to reserve the exact amount of required
memory for each leaf node.

2. Node Merging
During this phase, the actual sparse octree structure is created. To avoid nodes
with only few points in them, neighbouring nodes are merged together into one
bigger node if their point sum is lower than a threshold (see Figure 4.2). Node
merging is done recursively until no more nodes can be merged.

3. Point Distribution
The third and last phase during chunking is the point distribution phase. It
corresponds to the Value distribution phase in Algorithm 1 and is described in
Section 4.3.3. The purpose of this last step is to distribute the points to the octree’s
leaf nodes.

4.3.1 Point Counting
The goal of Point Counting is to partition the source point cloud into cubic chunks. For
this purpose, a 3-dimensional high-resolution grid with equal side length is placed over
the entire point cloud. Afterwards, it is evaluated how many points fall into each of the
grid cells. Those point counts are then propagated upwards and are used for creating the
actual octree data structure in the next phase – Node Merging in Section 4.3.2.

Table 4.2 contains an overview of relevant data structures for this section:

34

4.3. Point Chunking

Variable Datatype Size
countingGrid uint32_t[] 13 + 23 + 43 + 83 + ... + gridSize3

denseToSparseLUT int[] 13 + 23 + 43 + 83 + ... + gridSize3

sparseCellCounter uint32_t 1

Table 4.2: Relevant data structures for point counting

• countingGrid
Initially, the point cloud is divided into several cubic chunks (see Figure 4.3). This
fragmentation is done by placing a 3-dimensional grid with equal side length over
the whole point cloud and by assigning points to the grid cells. For this purpose,
the amount of points inside the grid cells have to be evaluated. The side length
of this grid is referred to as chunkingGridSize (e.g. 4 in Figure 4.3) and allows a
conclusion about the number of octree levels. If chunkingGridSize is, for example,
512 (that means 512 cells per side), then the following equation is true:

2levels3 = 5123 (4.7)

Solved for levels this results in: levels = 9 and an octree that will have 9 levels
starting from root node with level 0. Each of these octree levels correspond to
one level of detail. The counting grid corresponds to potential octree nodes at the
highest level of detail, and the root corresponds to the lowest level of detail. During
the node-merging phase, point counts are summed up level-by-level starting from
the initial counting grid. Thus, a counting grid has to exist for every octree level.
The actual propagation is done in an image pyramid like fashion. This means that
every grid in a lower pyramid (octree) level has a resolution lowered by a specific
factor [AAB+83]. As the goal is to create an octree, this factor is set to 23. Thus, if
the grid at the highest LOD level (bottom of the octree) has the resolution of 5123,
the grid of the next lower LOD level has a resolution of 2563. To simplify data
handling, all of the grids are stored in one array named countingGrid on the GPU
during the Preparation phase (see Section 4.2). Thus, the size of countingGrid is
for example: 5123+ 2563 + ... + 13 (for an octree with 9 levels).

• denseToSparseLUT
The denseToSparseLUT is a lookup table that provides a mapping from the dense
voxel coordinate of the grid to the index of the encompassing octree node. This is
necessary as PotreeConverterGpu generates a sparse octree for faster processing
and for saving GPU memory. In a sparse octree, an internal node may have up to
8 child nodes, but not necessarily. The idea is that the octree should only contain
relevant nodes and avoid empty nodes if possible. The denseToSparseLUT allows
accessing correct nodes in constant time, which requires just a single look-up instead
of an octree traversal. To detect if a dense-to-sparse mapping exists for a given
cell, denseToSparseLUT is initialized with −1 values.

35

4. Generating an LOD Structure on the GPU

• sparseCellCounter
For the dense to sparse mapping, unique sparse indices have to be generated. The
sparseCellCounter is a helper variable which is used to generate those indices, as
well as to determine the sparse node amount of the octree.

4.3.1.1 Initial Point Counting

Figure 4.3 visualizes the initial subdividing of the point cloud, how point counts are
stored and how cells are mapped from dense to sparse. The cells’ point amounts are
stored in the countingGrid at their dense indices. Each occupied cell gets an individual
sparse index starting from zero. Afterwards, an entry with the cell’s sparse index is
stored in denseToSparseLUT at the cell’s dense index position. The figure also shows
how these nodes are stored continuously in the octree memory without any empty nodes
in between. To explain the process of point counting in more detail, the point counting
CUDA kernel is summed up in Algorithm 4.1. In contrast to PotreeConverter [Sch16],
where counting is performed sequentially, counting in PotreeConverterGpu is done fully
parallelized. Thus, instead of iterating through all the points sequentially, a CUDA
thread is spawned for each point in the point cloud. After the actual point data is fetched
from the cloud, it is mapped to 3d voxel grid coordinates, and afterwards to a linear
cell index using the mapPointToGrid() function (see Algorithm 4.2). The evaluated cell
index is then used to increment the counter at the respective cell (see line see lines 1-3).
As all threads might access the countingGrid simultaneously, the increments have to be
performed in an atomic way. Lines (4-6) create new sparse cells if the current point was
the first to fall inside the dense grid. The old value of the sparseNodeCounter is used as
the sparse index for the cell and stored in the denseToSparseLUT.

Algorithm 4.1: CUDA kernel: point counting
/* Increment point count */

1 point = cloud[index];
2 denseIndex = mapPointToGrid(point);
3 previous = atomicAdd(countingGrid[denseIndex], 1);
/* Create dense to sparse mapping */

4 if previous == 0 then
5 sparseIndex = atomicAdd (sparseNodeCounter, 1);
6 denseToSparseLUT[denseIndex] = sparseIndex;
7 end

36

4.3. Point Chunking

Algorithm 4.2: The mapPointToGrid() device function maps points to a 3D
grid.
1 cellSize = boundingBoxSize / gridSize;
2 uX = (point.x - boundingBoxMin.x) / cellSize;
3 uY = (point.y - boundingBoxMin.y) / cellSize;
4 uZ = (point.z - boundingBoxMin.z) / cellSize;
5 ix = cast< int64_t > (fmin (uX, gridSize - 1.0));
6 iy = cast< int64_t > (fmin (uY, gridSize - 1.0));
7 iz = cast< int64_t > (fmin (uZ, gridSize - 1.0));
8 return cast< uint32_t > (ix + iy * gridSize + iz * gridSize * gridSize);

4.3.1.2 Point Count Propagation

After all point counts have been determined, we propagate them down to the root node.
This is necessary to merge nodes with few points, and to determine how many potential
sparse nodes the final octree will have. Assuming that the octree has two levels (exclusive
root), as shown in Figure 4.4, the initial point counting is performed on the highest
level with a 4 ∗ 4 ∗ 4 grid. After that, the point counts are propagated to the next lower
hierarchy level – a counting grid with the dimensions: 2 ∗ 2 ∗ 2. This process is then
continued until level 0 (corresponding to the root node of the octree) is reached. Count
propagation is executed in parallel within a CUDA kernel for each cell of the counting
grid for a specific level. This means that when propagating the point counts from, e.g,.
Level 2 (with 4 ∗ 4 ∗ 4 cells) to Level 1 (with 2 ∗ 2 ∗ 2 cells), 23 = 8 CUDA threads are
spawned simultaneously. As this hierarchical spawning of kernels is a recurring task in
PotreeConverterGpu, it is further explained in Algorithm 4.3.

The actual point count propagation is explained in Algorithm 4.4. In the first half
(Lines 2-7) the dense indices of the matching eight cells in lower hierarchy level must
be determined (Line 2). In a further step, the point counts of those cells are summed
up and stored in the current cell of the counting grid. The remaining Lines 8-11 deal
with the dense to sparse mapping as already known from Algorithm 4.1. Dense to sparse
mapping only takes place if the propagated point amount is greater than zero. This is
necessary to avoid empty nodes in the octree and thus to generate a sparse octree.

37

4. Generating an LOD Structure on the GPU

50 50

200 250

150 100

300

400

250

650

600

1500

2D representation
of countingGrid:

Level 2: 2^2^3 = 4*4*4

2D representation
of countingGrid:

Level 1: 2^1^3 = 2*2*2

2D representation
of countingGrid:

Level 0: 2^0^3 = 1

Propagate Propagate

Figure 4.4: Hierarchical point count propagation: the figure shows a 2-dimensional
representation of the countingGrid at three different levels. The point counts are
propagated downwards, from the highest to the lowest level. The point count of the
lowest cell is equal to the overall point amount in the point cloud. Occupied cells with a
point amount greater than zero are highlighted in green.

Algorithm 4.3: Hierarchical kernel execution: shows how to call a CUDA
kernel for each level in the octree, starting from the second highest. The
number of spawned threads is equal to the number of possible (dense) nodes of
a hierarchy level in the octree.

An example: chunkingGridSize = 512
Here kernel is executed 9 times (including the root level) spawning 2563 threads,
then 1283 and so on.

1 gridSideLength = chunkingGridSize / 2;
2 while gridSideLength > 0 do
3 numThreads = pow(gridSideLength, 3);
4 cudaKernel<numThreads>();
5 gridSideLength / 2;
6 end

38

4.3. Point Chunking

Algorithm 4.4: CUDA kernel: point count propagation
Input : level

/* Iterate over all children and sum up their point counts */

1 pointSum = 0;

2 childIndices = getChildIndices();

3 for i ← 0 to 7 by 1 do
4 childIdx = childIndices[i];

5 pointSum += countingGrid[level + 1][childIdx];

6 end

/* Assign the point sum from the children to the actual cell */

7 countingGrid[level][denseIndex] = pointSum;

/* Create dense to sparse mapping */

8 if sum > 0 then

9 sparseIndex = atomicAdd(sparseNodeCounter, 1);

10 denseToSparseLUT[denseIndex] = sparseIndex;

11 end

4.3.2 Node Merging

Variable Datatype Size
octree Node[] Amount of sparse cells
globalOffsetCounter uint32_t 1

Table 4.3: Relevant data structures for node merging.

After all point counts have been determined and propagated, the actual octree structure
can be generated. This requires to allocate the octree on the GPU device memory at first,
and then to initialize all octree nodes. Initializing the octree is performed in a bottom-up
approach and consists of two processing steps:

1. The leaf nodes in the newly allocated octree are initialised

2. Nodes with a point amount smaller than a mergingThreshold are merged. Merging
of nodes is necessary to prevent many octree nodes with only few points in them,
as this would negatively impact the performance during LOD generation as well as
during rendering in Potree.

39

4. Generating an LOD Structure on the GPU

4.3.2.1 Octree Allocation and Initialization

As already explained in Section 4.3.1.1 and 4.3.1.2, a sparse index is generated for
each non-empty cell during Point Counting. To generate these indices, the variable
sparseCellCounter (see Table 4.2) stores the respective current number of sparse cells.
For saving GPU memory, PotreeConverterGpu allocates a sparse octree instead of a
dense octree. This octree is internally realized as an array of the Node structure which
can be seen in Listing 4.1. The length of this array corresponds to the amount of sparse
cells stored in sparseCellCounter and each entry corresponds to an octree node. The
octree datastructure is referred to as octree and can be seen in Table 4.3.

1 struct Node
2 {
3 uint32_t pointCount ;
4 uint32_t parentNode ;
5 bool i s F i n i s h e d ;
6 uint64_t dataIdx ;
7 int chi ldNodes [8] ;
8 bool i s I n t e r n a l ;
9 } ;

Listing 4.1: The C++ Node struct

Each node stores a set of data properties which are described in Table 4.4. These
properties store a reference to the actual cloud points and make it possible to traverse
the octree, regardless if the octree data reside on host or device memory.

Variable name Description
pointCount The amount of points in the node
parentNode Sparse index of the parent node in the octree
isFinished Marks if the node is mergeable (false) or not mergeable / finished (true)
dataIdx Determines the start position for the node’s point data in the outputBuffer
childNodes The sparse indices of all connected child nodes in the octree
isInternal Marks if the node is an internal node or not

Table 4.4: The C++ Node struct: this table shows the layout of the C++ Node struct
and explains its public accessible members.

Referring to Table 4.3, the following enumerations describes all relevant data structures
necessary to explain the node merging phase:

• octree
The actual sparse octree data structure. In contrast to other octree implementations
such as [SOW20], the individual nodes are not linked directly via pointers, but
store the position to connected nodes with the help of indices. This is a necessity

40

4.3. Point Chunking

to ensure the proper function of node connections, even if the octree is copied from
the device memory to the host memory or vice versa.

• globalOffsetCounter
During Distribution phase, which is explained in Section 4.3.3, points are assigned
to nodes. All of the distributed points are stored directly to the output buffer. To
be able to read or write a node’s point data from or to the buffer, each node gets a
continuous amount of memory space within the buffer. This space is specified by
an index (offset) which is calculated by the help of globalOffsetCounter.

4.3.2.2 Leaf Node Initialisation

In order to merge nodes starting from leaf nodes (Figure 4.5, nodes on highest hierarchy
level), it is necessary to initialise those leaf nodes first. This initialisation process is
executed in parallel in a CUDA kernel. Since the number of sparse leaf nodes is unknown,
one CUDA thread is created per dense leaf node. For example: if chunkingGridSize is
512, then the theoretical amount of dense nodes is 5123.

Algorithm 4.5 gives a short overview about the initialisation process for one node.
First, the node’s sparse indexed is looked up. If this is −1, then no sparse index exists
and therefore no corresponding sparse node. The thread will be terminated immediately.
Otherwise, the sparse node is fetched from octree and its pointCount is set to the value
stored in the corresponding countingGrid cell (Lines 5 and 6).

Algorithm 4.5: CUDA kernel: initialization of leaf node for sparse octree
1 sparseIndex = denseToSparseLUT[denseIndex];

2 if sparseIndex == -1 then
3 return;

4 end

5 node = octree[sparseIndex];

6 node.pointCount = countingGrid[denseIndex];

4.3.2.3 Hierarchical Node Merging

As already mentioned, node merging is for combining nodes with too few points into one
bigger node. Another important task performed in this phase is initialising all internal
nodes and connecting them to their child nodes. Furthermore, the memory location for
each node’s point data is also determined.

The cell merging algorithm is summarised in Algorithm 4.6. For better understanding
the algorithm is explained together with Figure 4.5. The complete merging is performed

41

4. Generating an LOD Structure on the GPU

100 100 100100 100 100 100 100

300

100

200 400

0 400

0

600

0

0

. . . Internal node (new)

. . . Leaf node (new)

. . . Merged nodes

Node
uint32_t pointCount
uint32_t parentNode
int childNodes[8]
uint64_t dataIdx
bool isFinished
bool isInternal

(Level 3)

(Level 2)

(Level 1)

(Level 0)

Figure 4.5: Hierarchical node merging: the mergingThreshold is set to 500 in this
example. Octree nodes containing too few points (< 500) are merged, whereas nodes
with enough points are marked as finished. Those finished nodes act as new leaf nodes.
Later, during Point distribution phase, the points from the point cloud are assigned to
those leaf nodes. Point counters in internal nodes are set to zero and will be populated
later on during the subsampling phase.

in a single CUDA kernel. This kernel is executed hierarchically for each octree level,
starting from one level above the bottom (level 2 in the Figure). Starting the kernel is
the same as in Section 4.3.2.2, i.e., in each level, a CUDA thread is started for each dense
node. The complete algorithm can be divided into 5 steps:

1. Lines 1-3:
The first step is again to look up the sparse index for the current node and to check
if the entry exists. If this is not the case, the thread terminates immediately.

2. Lines 5-8:
Next, all relevant data is fetched. This means that both, the propagated number of
points (from countingGrid), as well as all child nodes are determined. In order for
Potree to be able to spatially index the child nodes during rendering, it is necessary
to store them in a certain order in the parent node. Therefore, getChildNodes()
follows a strict mapping from the logical 3D space to the physical 1D space in
memory, as shown in Figure 4.6.

3. Lines 9-10:
After data fetching, the actual node can be initialised. The first step is to determine
whether the current node is already finished. This is the case if its corresponding
entry in countingGrid is greater than a certain mergingThreshold. Depending on
this, initializeNodes() sets the node attributes isInternal and isFinished to true or
false. The child nodes’ indices are also stored in the node’s childNodes attribute. If
a child does not exist, −1 is stored. Depending on whether the node is finished, its
pointCount is set to 0, otherwise to the current value in countingGrid. Nodes that
are marked as finished are not mergeable any more.

42

4.3. Point Chunking

6
4

Logical 3D space

0 1 2 3 4 5 6 7

Physical 1D memory space
(childNodes)

3 7
5

2
0

1

Figure 4.6: Child node mapping: from logical 3D space to physical memory space.
Child nodes are stored in their parent’s node in this order.

4. Lines 11-14:
The next step is to connect the child nodes to their parent node. This is done within
the connectChild() function by setting every child node’s parentNode attribute to
the parent sparse index. Further, the isFinished attribute is set in every child
node. To be able to determine the data position in the next step, it is necessary to
accumulate all child node point counts in pointSum.

5. Lines 16-20
In a final step, the global position in the outputBuffer is determined for each child
node (dataIdx) if the actual node is considered as finished. As one can see in
Figure 4.7, an internal node’s child nodes reside continously in the outputBuffer,
starting at globalOffsetCounter. To evaluate the current value of globalOffsetCounter
and to add an additional offset (pointSum of all child nodes), globalOffsetCounter is
incremented using CUDA’s atomicAdd function. Using this approach it is possible
to generate a global position for each node, even if multiple threads try to access
globalOffsetCounter in parallel. The current value of globalOffsetCounter is buffered
in globalDataIndex. This variable is used to assign a dataIdx for each child node.
After each assignment, globalDataIndex is incremented by the child’s pointCount.

43

4. Generating an LOD Structure on the GPU

c 0 c 3 c 7

node x

globalOffsetCounter

globalOffsetCounter+ pointSum

outputBuffer

p 0 p1 p2 p 3 p n

child nodes

points

child.dataIdx localOffset

Figure 4.7: Child nodes in output buffer: an internal node’s existing child nodes are
stored continuously in a block of memory in the outputBuffer. This memory block starts
at globalOffsetCounter and ends on globalOffsetCounter + pointSum. Each child consists
of a number of points which are linearly stored starting at the child’s dataIdx. Thus a
point’s position can be described as child.dataIdx + localOffset.

44

4.3. Point Chunking

Algorithm 4.6: CUDA kernel: node merging

/* 1. Check if sparse node exists */

1 sparseIndex = denseToSparseLUT[denseIndex];

2 if sparseIndex == -1 then
3 return;

4 end

/* 2. Fetching data */

5 pointCount = countingGrid[denseIndex];

6 node = octree[sparseIndex];

7 childDenseIndices = getChildIndices();

8 childNodes[] = getChildNodes(childDenseIndices);

/* 3. Initializing node */

9 isFinished = (pointCount >= threshold);

10 initializeNode(node, childDenseIndices, isFinished);

/* 4. Initializing child nodes */

11 pointSum = 0;

12 foreach child ∈ childNodes do
13 connectChild(child, node);

14 pointSum += child.pointCount;

15 end

/* 5. Assign data index */

16 if isFinished && pointSum > 0 then

17 globalDataIndex = atomicAdd (globalOffsetCounter, pointSum);

18 foreach child ∈ childNodes do
19 child.dataIdx = globalDataIndex;

20 globalDataIndex += child.pointCount;

21 end

22 end

45

4. Generating an LOD Structure on the GPU

4.3.3 Point Distribution
After the merging phase, the octree is built and the position for writing point data to
the outputBuffer per node is evaluated, but no points are actually assigned to the nodes.
During distribution, we will transfer all points to the memory regions that were reserved
for each of the leaf nodes. After this pass, all leaf nodes’ points are exported to the
outputBuffer (see Section 4.5). To be able to access the original point data within the
source cloud, the point indices are also assigned to each node. This is necessary to be
able to access the original points rather than the quantized and exported points during
subsampling to preserve floating-point precision.

As processing is done in-core, it is absolutely necessary to minimize the memory consump-
tion. Thus, storing original point data for each octree node should require a minimum of
GPU memory and should avoid physical memory copies. Rather than to store and copy
point data entries for each node, the indices of the points in the original point cloud are
stored in a separate lookup table, here referred to as pointLUT. Applying this approach
requires an additional register lookup for each point access afterwards but reduces the
memory consumption by up to 85 %. Assuming a point cloud with 3 double coordinates
and 3 uint8_t color values, the necessary memory amount to store such a single point is:

memory = 3 ∗ (sizeof(double) + sizeof(uint8_t)) = 27 byte (4.8)

Referring to Section 3.1, one of the requirements for this master thesis is to process up to
100 millions of points. Thus, the lookup table necessary to store the points’ indices, can
be of type uint32_t, as it would be theoretically possible to index 232 = 4,294,967,296
points, which is more than enough. The necessary amount of memory to store a point’s
index is therefore only 4 bytes, resulting in a memory saving of 85 %. Referring to
Table 4.5, allocating the pointLUT requires to use the empirical outputFactor. This
factor has already been used and explained in Section 4.2 during outputBuffer allocation.
To be able to assign each point within a node to a memory space in parallel, localOffset
keeps track of these local memory offsets.

Variable Datatype Size
pointLUT uint32_t[] pointAmount * outputFactor
localOffset uint32_t[] Amount of sparse cells

Table 4.5: Relevant data structures for point distribution

Algorithm 4.7 shows the single steps which are performed during Point distribution. In
contrast to [SOW20], where points are distributed sequentially, PotreeConverterGpu
distributes all points in parallel. For this, a single CUDA thread is started for each point
in the source point cloud, executing the following operations:

46

4.3. Point Chunking

1. Lines 1-3:
At first, the point with a specific index is fetched from the cloud and mapped to
a dense position within the 3D grid of the lowest octree level. Additionally the
sparse index is also looked up.

2. Lines 4-7:
All points should be stored in a leaf node. Since nodes can be merged, it is not
possible to simply store the point in the originally mapped node. Instead, it must
be evaluated whether the respective node represents a valid leaf node in the octree
(see Figure 4.5). If this is not the case, the leaf node must be searched for iteratively.
For this, first the mapped node is assumed to be the targetNode. Then it is checked
whether isFinished is true in the targetNode. If this is true, then targetNode is
a valid leaf node and the search can be finished. However, if isFinished is false,
the parent node of the examined node is determined, assumed as targetNode and
the same check is performed. This process is repeated until a valid targetNode is
determined.

3. Line 9:
After the target node has been determined, the output position (outputPosition)
for each point can be calculated as follows:

outputPosition = globalOffsetCounter + localOffset (4.9)

In this equation globalOffsetCounter is the node’s assigned dataIdx and the localOff-
set is the position of the point within the node. localOffset is calculated by
atomically incrementing the localOffset for the actual node. Thus, its possible to
calculate the outputPosition for every point in parallel.

4. Lines 10-11:
The last step is the actual distribution of points using the previously calculated
outputPosition. To be able to access original point values later on, the points’
indices are stored in a lookup table called pointLUT. Furthermore, the points
are also exported to the outputBuffer. For this purpose the coordinate and color
values are quantized first and then written to the buffer at the outputPosition. The
quantization of exported point data is described in particular in Section 4.5.2.

47

4. Generating an LOD Structure on the GPU

Algorithm 4.7: CUDA kernel: point distribution
Input : index

/* Initialising */

1 point = cloud[index];

2 denseIndex = mapPointToGrid(point);

3 sparseIndex = denseToSparseLUT[denseIndex];

/* Searching for target node */

4 targetNode = octree[sparseIndex];

5 while !targetNode.isFinished do
6 sparseIndex = octree[sparseIndex].parentNode;

7 targteNode = octree[sparseIndex];

8 end

/* Evaluate output position */

9 outputPosition = node.dataIdx + atomicAdd(localOffset[sparseIndex], 1);

/* Store point data */

10 pointLUT[outputPosition] = index;

11 outputBuffer[outputPosition] = quantizePoint(point);

48

4.4. Point Subsampling

4.4 Point Subsampling

Figure 4.8: ICI Coin dataset: different levels of detail generated through subsampling.
The resolution of the point cloud increases with each higher octree level.

Subsampling is the process of extracting point samples from finer levels to populate the
lower levels of detail. At this point within the PotreeConverterGpu processing pipeline,
all points reside within the octree’s leaf nodes. During subsampling, the remaining octree
nodes are filled with points and the actual LOD structure is finished. Subsampling is
done in a bottom-up way and for each internal node separately. Afterwards, viewed from
the root node (lowest LOD) the level of detail increases with each higher octree level
(see Figure 4.8). Basically, subsampling works by visiting all internal nodes within the
octree, starting from the bottom. Then, for each internal node, points within their direct
child nodes are chosen and stored within the parent. As PotreeConverterGpu implements
the replacement LOD scheme (see Section 2.3.3.1), the selected points are copied to
the parent node. This approach ensures a higher sampling rate and helps to counteract
aliasing artifacts during rendering. Continuing this process up to the root node creates
the final LOD structure.

In PotreeConverterGpu, points are subsampled using a random subsampling method
that is inspired by the uniform random subsampling approach from [KJWX19] and is
applied in [SOW20]. In detail, a 128 ∗ 128 ∗ 128 grid – the subsamplingGrid with the size
of the internal node’s bounding box – is placed over all direct child nodes. Afterwards,
a single point within each grid cell is chosen randomly and propagated upwards. In
PotreeConverterGpu we distinguish between implicit and explicit random subsampling.
Implicit random subsampling utilizes the undeterministic order in which CUDA spawns
the threads to choose a random point. Explicit random subsampling on the other hand,
chooses points based on generated random numbers.

One of the novelties introduced by this master thesis is that subsampling is combined with
a color filtering strategy for point clouds. This approach was already suggested in [RL01]
and [WBB+08] and has been introduced in Section 2.3.3. The basic concept behind
this idea is to generate lower LODs using a replacement scheme (see Section 2.3.3.1)
in combination with color filtering for subsampled points. In PotreeConverterGpu
we distinguish between intra-cell and inter-cell color filtering. Whereas the intra-cell
approach considers only points within the boundaries of a subsamplingGrid cell during

49

4. Generating an LOD Structure on the GPU

color filtering, the inter-cell approach also considers points from neighbouring cells. In
the implementation, random subsampling is performed within the randomSubsampling
function. This function is displayed simplified in Algorithm 4.8. As one can see in the
Lines 4-11, the following processing steps are performed sequentially for each internal
node within the octree:

1. Line 5: First, the bounding box for the actual internal node is calculated to be able
to create an appropriately sized subsamplingGrid. Calculating the bounding box is
crucial for creating the subsamplingGrid, which is a virtual 3-dimensional regular
grid. The idea is to place the grid over the currently processed node and to extract
one point per grid cell from the child nodes. The world-size of the subsamplingGrid
is equal to the actual node’s bounding box. In PotreeConverterGpu, a default
amount of 1283 cells is considered for the grid. Thus, a maximum amount of
1283 = 2,097,152 points can be subsampled per internal node, but in practice
the amount of sampled points is closer to 1282 due to the surfacic nature of the
(non-volumetric) input data.

2. Line 6: The CUDA kernel kernelEvaluateSubsample evaluates subsample data for
the given internal node within its child nodes. Furthermore, if activated, intra-cell
color filtering is also performed within this step. If implicit random subsampling
is performed without any color filtering, this step can be omitted. A detailed
explanation can be found in Section 4.4.2.

3. Line 7: The CUDA kernel kernelInterCellColorFiltering performs inter-cell color
filtering, which means to average color information over the boundaries of the
subsamplingGrid cells. Section 4.4.2.1 explains this concept in detail.

4. Line 9: The CUDA kernel kernelGenerateRandom generates a single random
number for each occupied subsamplingGrid cell. The generated numbers act as
point indices for the explicit random subsampling approach, which picks a single
random point per cell based on these indices. The CUDA kernel is described in
particular in Section 4.4.4.

5. Line 11: The CUDA kernel kernelPointSubsampling performs the actual sub-
sampling of the previously selected points. This includes propagating the points
upwards to the actual internal node, quantizing of (averaged) color and point values
and exporting the points to the outputBuffer. This is the last processing step within
the random subsampling approach and can be found in Section 4.4.5.

PotreeConverterGpu’s subsampling phase can be parametrized to perform either implicit
or explicit random subsampling and further to execute intra-cell, inter-cell or no color
filtering. Thus, it is not always necessary to execute all of the described processing steps
in Algorithm 4.8. Table 4.6 shows which processing steps (CUDA kernels) are executed
under which subsampling configuration.

50

4.4. Point Subsampling

Implicit Explicit
CUDA kernel Intra Inter None Intra Inter None
kernelEvaluateSubsamples yes yes no yes yes yes
kernelInterCellColorFiltering no yes no no yes no
kernelGenerateRandoms no no no yes yes yes
kernelPointSubsampling yes yes yes yes yes yes

Table 4.6: Executed CUDA kernels during implicit and explicit random subsampling
when either intra-/inter-cell or no color filtering is performed.

Algorithm 4.8: Random subsampling overview: the randomSubsampling()
function recursively executed for each octree node, starting at the root node

Input : node, level, isExplicit
/* Call order: post-order depth-first */

1 foreach child ∈ node do
2 randomSubsampling(child, level+1);
3 end
/* Node visiting & subsampling */

4 if node.isInternal then
5 boundingBox = calcNodeBoundingBox(node);
6 kernelEvaluateSubsamples(...);
7 kernelInterCellColorFiltering(...);
8 if isExplicit then
9 kernelGenerateRandoms(...);

10 end
11 kernelPointSubsampling(...);
12 else
13 return;
14 end

4.4.1 The Subsampling Order

According to Section 4.4, subsampling is the process of extracting point samples from finer
levels and populating them upwards. As a result, an LOD structure in which the level of
details increases from top (root node) to bottom (leaf nodes) is created. To construct
this LOD structure correctly, it is necessary to subsample octree nodes in a specific
order. In PotreeConverterGpu, a post-order depth-first traversal is applied to create the
subsamples. These are created in a bottom-up way starting with the highest level of
detail at the octree bottom. To achieve this kind of subsampling order it is necessary in
a first step to go from the root node downwards to find the lowest possible internal node.
This can be seen in Algorithm 4.8 at Lines 1-3, where randomSubsampling() is called
recursively for all child nodes of a internal starting at the root node. Figure 4.9 visualizes

51

4. Generating an LOD Structure on the GPU

1

Visit order

2 3 12

4 6

7 8 11

9 10

5

4

1 3

2

Subsample order... Node visited
... Leaf node
... Internal node with subsampling order

5

Figure 4.9: Octree traversal order: the image on the left shows the order in which nodes
are visited. However, leaf nodes are not directly processed. The subsample procedure is
only called for internal nodes in the order shown at the right. Each internal node’s direct
children, which can be leaf nodes or previously populated internal nodes, are the input,
and the output is the subsample for the currently processed node.

the order in which nodes are visited at the left side. When the program actually reaches
Line 4, the node variable points either to a leaf or an internal node. If it is a leaf node
nothing happens, otherwise random subsampling is performed.

4.4.2 Subsample Evaluation and Intra-cell Color Filtering

Subsampling in PotreeConverterGpu works by placing a 3-dimensional grid – the sub-
samplingGrid – (1283 cells per default) over the currently processed node and extract
one point per cell from all the points of all child nodes (see Figure 4.10). One of the
novelties within this master thesis over other layered-point-cloud-based approaches is
that the RGB color values of the subsampled points do not correspond to their original
values, but are created by averaging the color values of surrounding points – similar to
the texture filtering in mip mapping. In particular, we distinguish between intra-cell and
inter-cell color filtering. Intra-cell color filtering averages colors of points within the same
cell, whereas inter-cell color filtering also takes adjacent cells into account. This section
focuses on intra-cell color filtering.

Subsample evaluation is done within a single CUDA kernel (kernelEvaluateSubsamples).
During this phase, the subsamplingGrid is placed over the currently processed node’s
child nodes (max. 8 nodes) and multiple steps are performed according to the subsample
configuration:

• Point counting per grid cell

• Intra-Cell color filtering: encoding and accumulating all points mapped to a cell

52

4.4. Point Subsampling

0 1 2 3 4 5 6 7

1
7

4

n

Octree representation Grid representation

without subsampling grid with subsampling grid
(4x4x4 cells)

74

Figure 4.10: Subsampling overview: this conceptual representation shows the basic
Subsampling procedure: a node’s existing child nodes (missing nodes are displayed in
grey) are mapped from octree space to grid space. Afterwards a regular Subsampling
grid (viewed in red) is placed over those nodes to extract points.

• Selecting the subsample points (only when implicit random subsampling is per-
formed)

The point counting works the same way as during the Chunking phase described in
Section 4.3.1. Each point within the child nodes is mapped to a cell of the subsampling
grid and a value within the corresponding countingGrid is incremented. The point
amount per cell is crucial to be able to generate a random number for the explicit
random subsampling and to calculate color averages. During Intra-cell color filtering the
color values from all points within a grid cell are accumulated within a corresponding
averagingGrid. If implicit random subsampling is performed, the points for subsampling
(one point per cell) are also chosen within the kernel.

4.4.2.1 Intra-Cell Color Filtering

This Section gives a detailed explanation about the intra-cell color filtering approach
applied in PotreeConverterGpu. The implementation details are explained in the next
Section 4.4.2.2. The principle of the color filtering approach is based on [RL01] and
[WBB+08] and has already been explained in Section 2.3.3. The idea of this approach
is to combine color values of merged/downsampled points to produce a blended color
value that is representative of the chosen but also the discarded points. This procedure
is similar to the mip-map generation for textures and aims to reduce aliasing artifacts,
which result from a too low subsampling rate during LOD generation.

Figure 4.11 visualizes the basic subsampling procedure together with the intra-cell color
filtering approach. In detail, an octree is displayed with 3 levels, where r is the root
node and r0 is one of its child nodes. r0 itself has also four child nodes which have a
total point amount of 18. According to the subsampling order (see Section 4.4.1) r0
is the first internal node for which subsamples are generated. To perform subsampling
on r0’s child nodes a subsamplingGrid is generated and placed over the child nodes. In

53

4. Generating an LOD Structure on the GPU

1 2

5
3

4

P1: 100, 100, 100, 1

P3: 100, 100, 100, 1
P4: 100, 100, 100, 1
P5: 100, 100, 100, 1

+P2: 100, 100, 100, 1
P6: 500, 500, 500, 5
P7: 100, 100, 100, 3
P8: 100, 100, 100, 4
P9: 100, 100, 100, 6

6

7 8

9
6

7 8

9

+
P10: 800, 800, 800, 18

r0
r

r0: r0:

r:

... Point mapped to cell

... Subsampled point

... Point selected for subsampling

Figure 4.11: Intra-cell color filtering: the figure shows a 2-dimensional example of the
intra-cell color filtering approach. A 2 ∗ 2 subsampling grid is placed over r0’s child nodes
and one represantative point is chosen per cell. The color values of all points inside a cell
are accumulated and assigned to the subsampled point.

the 2-dimensional example, this grid has a dimension of 2 ∗ 2. After determining the
target cell for each point, the color values of all points inside a cell are accumulated. The
example figure shows how the color values of P 1 − P 5 in the left bottom cell are summed
up. In general terms, summing color values (pointColorn) to a single accumulatedColor
can be expressed as follows:

accumulatedColor =
pointsInCell

i=1
pointColori (4.10)

Afterwards, a single representative point is chosen per cell (marked with a yellow circle).
These points form the actual subsampling points. Thus, their coordinate values are
copied and stored inside r0. Instead of assigning the points’ original color values to the
subsampled points, the accumulatedColor values are stored together with the amount of
points per cell as a tuple of the form: (accR, accG, accB, pointAmount). In the case of
r0, exactly four points are subsampled which form P 6 − P 9. Afterwards the subsamples
for r are generated. In this case, r0 itself is a child node. Thus, the color values of the
newly created points P6 − P9 are accumulated and one representative point (P9) is
chosen. This forms another subsampling point P10 which has an RGB color value of
800, 800, 800 and an accumulated point amount of 18 which is equal to the amount of
points in r0’s child nodes. The actual color value of a subsampled point (averagedColor)

54

4.4. Point Subsampling

is evaluated as follows:

averagedColor = accumulatedColor

pointsInCell
(4.11)

The intra-cell color filtering implementation within PotreeConverterGpu differs slighty
from the previous explanation. For simplicity and to reduce memory usage, our actual
implementation does not propagate the sums of colors and point counts through the
hierarchy. Instead, it directly assigns the average color value inside the subsampled
points. Subsampling in lower LODs therefore treats points in child nodes with the same
weight, even though some points might represent the average of a larger amount of points
than others.

4.4.2.2 Implementation Details

Variable Datatype Size
averagingGrid uint64_t[] Amount of subsampling grid cells

Table 4.7: Relevant data structures for subsample evaluation and intra-cell color
filtering

Section 4.4.2.1 provided a detailed overview about the intra-cell color filtering algorithm.
This section focuses on the implementation details and describes how subsample evaluation
in combination with intra-cell color filtering is applied in PotreeConverterGpu.
Both steps are performed in a single CUDA kernel: kernelEvaluateSubsamples. Based
on the actual subampling configuration (implicit/explicit random subsampling) and
color filtering approach (intra-cell/inter-cell) a different version of the kernel is executed.
The actual mutations of kernelEvaluateSubsamples are displayed in Figure 4.12. As
described in the flow chart, the encoded and accumulated color values are stored in
averagingGrid (see Table 4.7). This data structure is allocated on the GPU memory
during the Preparation phase (see Section 4.2) and allows to accumulate color values
per subsamplingGrid cell. Under specific configurations it is required to explicitly store
the amount of points per subsamplingGrid cell in a separate data structure. For this
purpose, the countingGrid from the Point Counting phase (see Section 4.3.1) is reset
and reused. Furthermore, one can see that the actual selection of the subsample points
is also performed in the kernel if intra-cell color filtering is active.
kernelEvaluateSubsamples is explained according to Algorithm 4.9, which provides a
generalized overview. The CUDA kernel has to be executed for every point in each of
the internal node’s child nodes. Referring back to Figure 4.11, in this example the kernel
would have to be executed for each of the 18 points in the child nodes of r0. Given
the sparse nodeIdx and the local pointIdx within the child node the following Listing
explains the CUDA kernel within Alogrithm 4.9 in detail:

• Lines 1-5: These lines are essentially equal in all versions of kernelEvaluateSubsamples.
First, the actual parent (internal) and child nodes are retrieved from the octree.

55

4. Generating an LOD Structure on the GPU

Start

Random point
subsampling

Color filtering

Encode +
Accumulate Colors

(averagingGrid)

implicit explicit

Select (first) point
for subsampling

Count points per cell
(countingGrid)

Select (first) point
for subsampling

Color filtering

Encode +
Accumulate Colors

(averagingGrid)

Count points per cell
(countingGrid)

Count points per cell
(countingGrid)

End

intra-cell intra-cell inter-cellinter-cell

Figure 4.12: Subsample evaluation flow chart: processing steps performed within the
subsample evaluation based on the subsample configuration

Then the original point within the point cloud as well as the exported point data
within the outputBuffer are retrieved. Getting the original point data is necessary,
as we want to map the point to a subsamplingGrid cell with the original coordinate
floating-point precision. Accessing the exported point is required to get access
to the exported (averaged) point colors. The position of a point’s data can be
retrieved from the pointLUT (see Figure 4.15).

• Line 6: The actual point is mapped to a cell within the subsamplingGrid. This gen-
erates a denseIndex for the mapped cell, which is used to index the averagingGrid
and the countingGrid.

• Lines 7-9: If intra-cell color averaging is performed, the point’s RGB color values
are encoded into a single uint64 value. Afterwards this value is added to the
cell’s accumulated color values stored in averagingGrid[denseIdx]. As multiple
threads might try to accumulate averagingGrid simultaneously, this addition is
done atomically.

56

4.4. Point Subsampling

• Lines 11-12: If explicit random subsampling is performed, it is necessary to
additionally count the points per grid cell and to store the result in countingGrid
to determine the random point afterwards. The same applies if implicit random
subsampling in combination with inter-cell color filtering is performed. Incrementing
the value in countingGrid is done atomically, as multiple threads might access the
data structure simultaneously.

• Lines 14-21: These lines are only executed if the actual point is the first point in
the cell, determined by the old value.

– Lines 15-16: The parent node’s point counter is incremented. This operation
is done atomically as multiple threads might access the parent node simultane-
ously. The old value returned by atomicAdd corresponds to the sparse index
of the actual cell and is stored in denseToSparseLUT . This is necessary to
be able to find the unique consecutive writing position in the outputBuffer
afterwards.

– Lines 17-18: The idea of implicit random subsampling is to select the first
point per subsamplingGrid cell. Thus, if implicit random subsampling is
performed, the actual point is considered to be the selected one and the point’s
index is stored in pointLUT .

For intra and inter-cell color filtering, exported point RGB color values are re-imported
and are encoded into a single uint64 value. This is necessary to be able to easily
accumulate color values within the averagingGrid using a single CUDA atomicAdd
instead of three. The color encoding is implemented within a CUDA device function
and is explained in Listing 4.2. The idea is to encode the color values plus the point
count per cell in the uint64 value using an RGBA(18Bit − 18Bit − 18Bit − 10Bit)
schema, where the last 10 Bits are occupied for the counter. Applying this schema allows
to summarize the color values of 210 − 1 = 1023 points per cell. To pack the four values
into a single one, the RGB values are bit-shifted to the left respectively. Afterwards the
RGBA values are combined into a single uint64 by applying the logical OR operator.

1 __device__ uint64_t encodeColors (uint16_t r, uint16_t g, uint16_t b)
2 {
3 return
4 static_cast<uint64_t> (r) << 46 |
5 static_cast<uint64_t> (g) << 28 |
6 static_cast<uint64_t> (b) << 10 |
7 static_cast<uint64_t> (1);
8 }

Listing 4.2: CUDA device function for packing an RGB color together with a point
count into a single uint64 value.

57

4. Generating an LOD Structure on the GPU

Algorithm 4.9: CUDA kernel: subsample evaluation and intra-cell color filter-
ing. The kernel is executed for each point in a node’s child nodes.

Input : parentIdx, childIdx, pointIdx, isIntra, isImplicit
/* Get the octree node */

1 parent = octree[parentIdx]
2 child = octree[childIdx]
/* Get original and exported point data */

3 pointdataIdx = pointLUT[child.dataIdx + pointIdx]
4 originalPoint = cloud[pointdataIdx]
5 exportedPoint = outputBuffer[pointdataIdx]
/* Map point to cell and get dense index */

6 denseIndex = mapPointToGrid(originalPoint)
/* Encode point colors and accumulate them for intra-cell color

filtering */

7 if isIntra then
8 encoded = encodeColors (exportedPoint.r, exportedPoint.g, exportedPoint.b)
9 old = atomicAdd (averagingGrid[denseIndex], encoded)

10 end
/* Increase point count in cell and create dense-to-sparse entry */

11 if !isImplicit or !isIntra then
12 old = atomicAdd (countingGrid[denseIndex], 1)
13 end

/* The actual point is the first in the cell */

14 if old == 0 then
/* Create dense-to-sparse entry */

15 sparseIndex = atomicAdd (parent.pointCount, 1)
16 denseToSparseLUT[denseIndex] = sparseIndex

/* Store subsampled point index in pointLUT */

17 if isImplicit then
18 dst = parent.dataIdx + sparseIndex
19 pointLUT[dst] = pointdataIdx
20 end
21 end

4.4.3 Inter-Cell Color Filtering

In this master thesis we provide another novelty and extend the intra-cell color filtering
approach from [WBB+08] to work across cell boundaries. This approach is referred to as
inter-cell color filtering and is visualized in Figure 4.13. The goal is to further improve
anti-aliasing for lower LODs during rendering. Intra and inter-cell color filtering can
be applied interchangeably. In this section we show that inter-cell filtering is highly

58

4.4. Point Subsampling

3
4

P1: 100, 100, 100, 1

P3: 200, 200, 200, 1
P4: 200, 200, 200, 1

P2: 100, 100, 100, 1

P5: 300, 300, 300, 1
P6: 300, 300, 300, 1
P7: 400, 400, 400, 1
P8: 400, 400, 400, 1

+

6
5

7

8

1

2

9 14

12 13

10

11

P10: 2000, 2000, 2000, 8
P11: 2000, 2000, 2000, 8
P12: 2500, 2500, 2500, 9
P13: 2000, 2000, 2000, 8
P14: 1100, 1100, 1100, 3

... Point mapped to cell

... Subsampled point

... Point selected for subsampling

... Empty cell

Figure 4.13: Inter-cell color filtering: compute the average color of all points in the
current and adjacent cells. P10 comprises the sum of P1 to P8, but not P9 as it is not in
an adjacent cell.

parallelizable on a GPU within a CUDA kernel – kernelInterCellAvg. Figure 4.13
shows a cutout of a two-dimensional subsamplingGrid placed over child nodes. The
basic idea behind inter-cell color filtering is to sum up point attributes (colors) from
all adjacent subsamplingGrid cells. Thus, the subsampled point P10 for example
contains accumulated color values from the points P1-P8 but not from P9. The actual
implementation is documented in Algorithm 4.10. The basic idea is that each point
contributes its color value not just to its own but also to the adjacent cells. The reason
behind it is that points near the border of a cell might be close to the subsampled point
of an adjacent cell, and they should therefore also contribute. The following Listing
explains Algorithm 4.10 in detail:

59

4. Generating an LOD Structure on the GPU

• Lines 1-4: These lines are basically identical to Lines 1-5 in Algorithm 4.8
(kernelSubsampleEvaluation). In fact they describe how the original point data
within the point cloud, as well as the exported point data in the outputBuffer
are accessed.

• Line 5: The actual point is mapped to a subsamplingGrid cell. The cartesian
coordinates of this cell are stored in ix, iy and iz. The original point data is used
for the mapping to ensure the original floating-point precision.

• Line 6: The exported RGB colors are encoded into a single uint64 value. This
value is afterwards used for color accumulation.

• Lines 7-9: The goal is to add the encoded color value to each neighbouring cell.
In particular, the color should be accumulated within the averagingGridl cell of
each direct-adjacent neighbour. Thus, a double-nested for-loop is created which
corresponds to an iteration in each of the 3-D axis within an integer range of [−1; 1].

• Line 10: The actual dense index of the neighbouring cell is calculated from its
cartesian coordinates within the subsamplingGrid.

• Lines 11-15: Due to the iteration, it might by possible to index a neighbour-
ing cell which is not exisiting – in particular, which lies outside of the actual
subsamplingGrid. Thus, we have to check if cellIdx does not under-/ or overflow
the grid’s dimension.

• Lines 16-17: The last step is to perform the actual color accumulation for the
neighbouring cell. But before it is required to check if the adjacent cell is occupied
by any points to avoid unnecessary accumulations. This is done by ensuring that
the countingGrid entry for the actual cell is not zero. If it is zero, then no single
point has been mapped to the cell during subsample evaluation (see Section 4.4.2).
Otherwise, the encoded color value is accumulated to the averagingGrid entry for
the actual cell.

4.4.3.1 Extension: Distance Weighting

The disadvantage of inter-cell color filtering is that while this approach has been shown
to reduce aliasing artifacts (see Section 4.4.2) during rendering, it also loses fine texture
detail. To counteract this, we extended the approach to include a distance weighting. In
particular, point color values from adjacent cells are weighted based on their euclidean
distance to the target cell before they are accumulated: colors from nearer points
contribute more, colors from farther points contribute less to the color sum. As can be
seen in the Figure 4.14, the weighting function is modeled on the Gaussian bell curve –
featuring its maximum value 1 at 0 and converging against 0 at 1:

fweighting (x) = e− x2
0.1 (4.12)

60

4.4. Point Subsampling

Algorithm 4.10: CUDA kernel: inter-cell color filtering. The kernel is executed
for each point. The point’s color value is accumulated to each neighbouring cell
within the averagingGrid.

Input : childIdx, pointIdx, grid
/* Get the octree node */

1 child = octree[childIdx]
/* Get original and exported point data */

2 pointDataIdx = child.dataIdx + pointIdx
3 originalPoint = cloud[pointDataIdx]
4 exportedPoint = outputBuffer[pointDataIdx]
/* Calculate cartesian coordinates of actual cell in the grid */

5 ix, iy, iz = calculateCoordinates(originalPoint)
/* Encode colors for accumulation */

6 encoded = encodeColors (exportedPoint.r, exportedPoint.g, exportedPoint.b)
/* Iterate over all adjacent cells */

7 for ox ← −1 to 1 by 1 do
8 for oy ← −1 to 1 by 1 do
9 for oz ← −1 to 1 by 1 do

/* Calculate neighbour cell index */

10 cellIdx = calculateCellIdx(ix, iy, iz, ox, oy, oz)
/* Check if neighbouring cell exists */

11 underflow = cellIdx.x < 0 or cellIdx.y < 0 or cellIdx.z < 0
12 overflow = cellIdx.x >= grid or cellIdx.y >= grid or cellIdx.z >= grid
13 if underflow or overflow then
14 continue
15 end
16 if countingGrid[cellIdx] != 0 then
17 atomicAdd (averagingGrid[voxelIndex], encoded)
18 end
19 end
20 end
21 end

Thus, the weighted colors Cweighted for a point at P residing a certain distance from the
target cell T and considering a maximum point-to-cell distance of maxDist are calculated
as follows:

weight = fweighting

 −→
T − −→

P

maxDist

Cweighted = C ∗ weight

(4.13)

61

4. Generating an LOD Structure on the GPU

... Point selected for subsampling

... Target cell

... Empty cell

max dist.

Figure 4.14: Inter-cell color filtering with distance weighting: point color values are
accumulated based on their euclidean distance to the target cell.

Afterwards, the weighted colors as well as the weight are accumulated in gridRGBW
(see Table 4.8) instead of the averagingGrid. During the actual subsampling pass, where
point colors and coordinates are exported, the accumulated colors are divided by the
accumulated weights to get the final distance-weighted color values.

Variable Datatype Size
gridRGBW float[] Amount of subsampling grid cells

Table 4.8: Relevant data structures for inter-cell color filtering with distance weighting

4.4.4 Random Point Calculation
To perform explicit random subsampling it is necessary to generate a random value
per occupied subsamplingGrid cell. These values are used afterwards to pick a single
point per cell randomly. The random value generation is done inside a CUDA kernel
– kernelGenerateRandoms – which is executed for each subsamplingGrid cell and is
visualized in Algorithm 4.11. The corresponding data structures are listed in Table 4.9.
The idea is to generate a random value which represents a point index within the
cell. For this purpose a C++ array (randomStates) of 1024 curandState_t is used,
which is allocated during the Preparation phase. This variable is used for generating
a single random number per thread index (max. 1024 threads per thread block). In
order to generate this index value, the CUDA kernel needs to know how many points
are in the actual subsamplingGrid cell at position denseIdx. For this purpose the
kernel accesses countingGrid which holds the point counts per cell from the subsample
evaluation. Referring to Line 1, the first step is to fetch the actual point amount within

62

4.4. Point Subsampling

the subsamplingGrid cell. If this value (stored in pointsInCell) is greater than zero,
then the sparse index is fetched from denseToSparseLUT (see Line 3). For creating
the actual random variable, curand_uniform is used on Line 4 which generates a
uniformly distributed value between 0 and 1. In the last step (Line 5) this random
variable is multiplied with pointsInCell to generate an index variable ranging from:
(0, pointsInCell].

For more information about random number generation with CUDA, refer to [NVIa].

Variable Datatype Size
randomIndices uint32_t[] Amount of subsampling grid cells
randomStates curandState_t[] 1024

Table 4.9: Relevant data structures for the random point calculation

Algorithm 4.11: CUDA kernel: random point index calculation. The kernel
is executed for each cell within subsamplingGrid and generates a random point
index for each non-empty cell.

Input : denseIdx
1 pointsInCell = countingGrid[denseIdx]
2 if pointsInCell > 0 then
3 sparseIndex = denseToSparseLUT[denseIdx]
4 random = curand_uniform(randomStates[threadIdx.x])
5 randomIndices[sparseIndex]=ceil(random * pointsInCell)
6 else
7 return
8 end

4.4.5 Random Subsampling and Data Distribution
The last step within our proposed subsampling approach is to actually propagate points
from the child nodes to their parent node and to export these points to the outputBuffer.
This also requires to decode the accumulated color values and to calculate the actual
averaged colors. As described, PotreeConverterGpu performs random subsampling
either implicitly or explicitly. The subsampling logic is implemented in a CUDA kernel –
kernelPointSubsampling – of which there exist separate versions for implicit and explicit
random subsampling. Both approaches basically follow the same algorithm and only
differ in minor aspects. In fact, the only crucial difference between both approaches
is the way the actual subsampling points are selected from the subsamplingGrid cells.
In case of the implicit random subsampling approach, the undeterministic execution
order of CUDA threads is exploited for selecting a random point per cell. The explicit
approach on the other hand selects the points based on the generated random number
per subsamplingGrid cell (see Section 4.4.4), combined with the implicit randomness

63

4. Generating an LOD Structure on the GPU

behaviour. The complete random subsampling and point distribution procedure is
visualized in Algorithm 4.12. The following Listing provides a fine grained explanation
based on this Algorithm:

• Lines 1-6: These lines are essentially equal to the ones in kernelSubsampleEvaluation
(Algorithm 4.9). In fact, their purpose is to evaluate the actual parent (internal)
and child node. Furthermore, the actual point in the original point cloud as well
as in the outputBuffer are accessed and mapped to a subsamplingGrid cell to
retrieve the dense cell index.

• Line 7: The sparse index of the mapped subsamplingGrid cell is fetched, which
has been stored in denseToSparseLUT during subsample evaluation.

• Line 8: The subsampled points are stored continuously in the outputBuffer and
their corresponding indices are stored in pointLUT . The target position for each
point (outputDataIdx) is calculated as follows:

outputDataIdx = parent.dataIdx + child.sparseIdx (4.14)

.

• Lines 9-13: The goal is to select one point per subamplingGrid cell on a random
basis. In case of explicit random subsampling we want to select the nth point in
a cell (see Figure 4.15). To ensure a high point throughput and low run times
we do not enumerate points which fall into subamplingGrid cells. Instead, we
let the CUDA threads simultaneously decrement the point count value stored in
countingGrid using atomicSub. Using this approach, each thread gets assigned
a different descending value (stored in old). This value is the basis for selecting the
nth point. If old equals to the generated random number stored in randomIndices
than the actual point is considered as the randomly selected one. Otherwise the
CUDA thread exits.

• Lines 15-18: In case of implicit random subsampling the point selection has
already been done during subsample evaluation. No we have to check if the actual
point equals to the previously selected one. For his purpose we check if the point
index is identical to the one stored in the pointLUT for the actual cell. If this is
not the case, the actual point is not the selected one and thus the CUDA thread
exits.

• Lines 20-22: If explicit random subsampling is performed the point’s index value
is stored in pointLUT . This index is needed in a next subsampling pass during
subsample evaluation (see section 4.4.2). In the case of implicit random subsampling
this has already been done during subsample evaluation (see Section 4.4.2)

• Lines 23-25: The encoded color values are looked up from averagingGrid and
are decoded (see Listing 4.3). Afterwards the point data (coordinates and colors)

64

4.4. Point Subsampling

n0

n2 n3

n1

... Point mapped to cell

... Subsampled point

... Point selected for subsampling

0 1

32

n0 n1 n2 n3

i ... Sparse cell index

parentNode.dataIdx

pointLUT /
outputBuffer

... The nth randomly selected point

+0 +1 +2 +3

subsamplingGrid

nth

Figure 4.15: Random point subsampling: one random point n is chosen per
subsamplingGrid cell. Based on the cells’ sparse indices and their parent’s dataIdx as
offset, these points are stored in the pointLUT and the outputBuffer.

are quantized and are exported to the outputBuffer at the position stored in
outputDataIdx.

• Line 26: Finally, the required temporary data structures are reset for the next
subsampling pass.

Decoding of the packed colors works exactly the opposite way as the encoding. Each
uint64 value is decoded into three 18 Bit color values and a 10 Bit accumulator value
which stores the amount of points per subsamplingGrid cell. Decoding is implemented in
a CUDA device function (decodeColors) that is described in Listing 4.3. In addition
to the color decoding, this function calculates the actual color averages by dividing the
decoded color components by the amount of points in the cell. Afterwards the colors are
stored in three uint16 variables.

1 __device__ uint64_t decodeColors (const uint64_t &encoded, uint16_t
(&decoded)[3])

2 {
3 auto pointsInCell = static_cast<uint16_t> (encoded & 0x3FF);
4 decoded[0] = ((encoded >> 46) & 0xFFFF) / pointsInCell;
5 decoded[1] = ((encoded >> 28) & 0xFFFF) / pointsInCell;
6 decoded[2] = ((encoded >> 10) & 0xFFFF) / pointsInCell;
7 }

Listing 4.3: CUDA device function for decoding an packed RGB color.

65

4. Generating an LOD Structure on the GPU

Algorithm 4.12: CUDA kernel: random subsampling and point distribution.
The kernel is executed for each point in a node’s child nodes.

Input : parentIdx, childIdx, pointIdx, isExplicit
/* Get the octree node */

1 parent = octree[parentIdx]
2 child = octree[childIdx]
/* Get original and exported point data */

3 pointDataIdx = child.dataIdx + pointIdx
4 originalPoint = cloud[pointDataIdx]
5 exportedPoint = outputBuffer[pointDataIdx]
/* Get dense and sparse cell index */

6 denseIndex = mapPointToGrid(originalPoint)
7 sparseIndex = denseToSparseLUT[denseIndex]
/* Evaluate output position */

8 outputDataIdx = parent.dataIdx + sparseIdx
/* Decrease counter in countingGrid */

9 if isExplicit then
10 old = atomicSub (countingGrid[denseVoxelIndex], 1)
11 /* Check if the actual point is the selected point */

12 if old != randomIndices[sparseIndex] then
13 return
14 end
15 else
16 if pointDataIdx != pointLUT[outputDataIdx] then
17 return
18 end
19 end

/* Store point index in pointLUT */

20 if isExplicit then
21 pointLUT[outputDataIdx] = pointDataIdx
22 end

/* Decode encoded color and export quantized point to outputBuffer */

23 encodedColor = averagingGrid[denseVoxelIndex]
24 decodedColor = decodeColor(averagingGrid[denseVoxelIndex])
25 outputBuffer[outputDataIdx] = quantizePoint(originalPoint, decodedColor)

/* Reset temporary needed data structures */

26 reset(denseToSparseLUT, countingGrid, averagingGrid)

66

4.5. LOD Data Export

4.5 LOD Data Export
The LOD data export is the last step in the processing pipeline (Figure 3.3), thus deals
with already converted point clouds.

As mentioned in previous sections (i.e., Table 3.1), PotreeConverterGpu produces LOD
data in Potree format 2.0, as well as several optional debugging data files. The Potree
format 2.0 is based on the SCANOPY [Sch14] data format. Data sets which are exported
in this format require the following data files:

• octree.bin - a binary file, holding all point data.

• hierarchy.bin - a binary file, describing the octree hierarchy and the location of
each node’s point data within octree.bin

• metadata.json - a JSON file, containing metadata.

In Sections from 4.5.1 to 4.5.4, the structure of those files and their generation by
PotreeConverterGpu are discussed in detail.

4.5.1 Generating octree.bin
PotreeConverterGpu exports the converted multi-resolution point cloud into a binary
file named octree.bin. During subsampling, points are quantized (see Section 4.5.2) and
exported to a output buffer residing on device (GPU) memory. The exported points are
grouped by octree nodes, which are unsorted and arranged in an arbitrary order. To
export the data to the file system, the buffer is first copied from device to host memory,
and afterwards written to octree.bin without any additional processing. An auxiliary
binary file – hierarchy.bin – is also generated (see Section 4.5.3), which describes the
nodes and the location of their point data in octree.bin.

4.5.2 Quantizing Coordinates and Colors
Due to their coordinate range, georeferenced point clouds typically use double values
for processing. In order to preserve high coordinate precision with just 32 bits, all
exported coordinates are converted from their initial floating-point representation to
fixed-point coordinates with a 32-bit integer representation [Sch16]. The quantized integer
coordinates are computed as follows:

quantized = original − boxMin

scale
. (4.15)

boxMin is the coordinate vector of the minimum point of the cubic bounding box. scale
is a factor that defines the fixed-point precision, i.e., 10−3 if we want to preserve 3
fractional digits (millimeter precision). The coordinate quantization targets two aspects:

67

4. Generating an LOD Structure on the GPU

Point 0

x y z r g b

Point 1

x y z r g b

Point n

x y z r g b

Stride

uin
t16

_t

uin
t16

_t

uin
t16

_t

uin
t32

_t
uin

t32
_t

uin
t32

_t

uin
t16

_t

uin
t16

_t

uin
t16

_t

uin
t32

_t
uin

t32
_t

uin
t32

_t

uin
t16

_t

uin
t16

_t

uin
t16

_t

uin
t32

_t
uin

t32
_t

uin
t32

_t

Figure 4.16: Data layout of the binary outputBuffer: its structure is very similar to
the input data layout but with a few important changes

1. Point clouds are moved to the origin by subtracting the minimum of the cubic
bounding box. This step is done to avoid potential integer-overflows after scaling.

2. Coordinate values are scaled by 10−D to preserve D fractional digits during conver-
sation from floating-point to integers.

Finally, the quantized coordinates are cast to uint32_t. Note that all coordinates are in
the range of [0, boxSize/scale], where boxSize is the side length of the cubic bounding box.
Unlike coordinates, colors are stored in their original format but are cast to uint16_t –
the default color format of the LAS and Potree file formats.

4.5.3 Generating hierarchy.bin
After octree.bin has been generated and exported, hierarchy.bin is created on host (CPU)
side. As shown in Figure 4.17, for each node in octree.bin, a binary metadata entry
is stored in hierarchy.bin. Each entry contains information about the byte offset, the
amount of points, existing child nodes, etc.

In contrast to octree.bin, nodes in hierarchy.bin are stored in a specific order. In particular,
PotreeConverterGpu traverses the octree in a breadth-first-order starting with the root
node and stores each node’s metadata in hierarchy.bin sequentially. The reason of
adhering to this storage schemata is that it allows to store metadata in a compact way
without the need for additionally saving the metadata nodes’ positions. During rendering,
Potree can then traverse nodes within hierarchy.bin and can access the belonging point
data within octree.bin.

4.5.4 Potree Metadata
In order to render point clouds, Potree needs the data stored in octree.bin (Section 4.5.1),
hierarchy.bin (Section 4.5.3) and metadata.json. The latter file contains general infor-

68

4.5. LOD Data Export

r0 r7

r r0r

Logical octree structure Flattened Octree in hierarchy.bin
(breadth-first-order)

r00 r02

r000 r001

r70

r3

r3 r7 r00 r02 r70 r000 r001

r0 rr3 r7 r00 r02r70r000 r001

Corresponding point data in octree.bin
(arbitrary node order)

Figure 4.17: Logical octree structure vs. flattened, breadth-first ordered representation
in hierarchy.bin. The flattened version in hierarchy.bin additionally stores the byte offset
and the byte size for each node, necessary for indexing nodes within octree.bin.

mation about the exported multi-resolution point cloud and the octree data structure
behind it. Some of these metadata are, for example, the Potree file format version, the
global bounding box, the amount of exported points, or global flags denoting point cloud
properties. Furthermore, metadata.json additionally contains a section for two point
attributes, i.e., the coordinates (x, y, z) and the color (r, g, b).

In addition, PotreeConverterGpu introduces new global flag parameters to Potree [Sch16]:

• ADDITIVE: Is assigned when the additive LOD scheme was used during subsampling.
Assumed by default, since PotreeConverter 1.x and 2.x only produce additive LODs.

• REPLACING: Is assigned when the replacement LOD scheme was used during
subsampling.

• INTRA-CELL-COLOR-FILTERING: Is assigned when intra-cell color filtering was
performed.

• INTER-CELL-COLOR-AVERAGING: Is assigned when inter-cell color filtering was
performed.

• IMPLICIT-RANDOM-SUBSAMPLING: Is assigned when implicit random point sub-
sampling was performed.

• EXPLICIT-RANDOM-SUBSAMPLING: Is assigned when explicit random point sub-
sampling was performed.

69

CHAPTER 5
Results and Evaluation

PotreeConverterGpu offers several improvements over
PotreeConverter 1.x [Sch16] and PotreeConverter2.x [SOW20]. Beside color filtering and
faster LOD generation, PotreeConverterGpu also provides the ability of being used as a
library.

This section focuses on analysing PotreeConverterGpu in depth. In particular, we provide
a qualitative LOD evaluation (Section 5.2), as well as a quantitative performance and
memory analysis (Section 5.3). Both evaluations focus on the LOD generation under
different subsampling configurations, including implicit vs. explicit random subsampling
and intra-cell vs. inter-cell color filtering, as well as the comparison between PotreeCon-
verterGpu and PotreeConverter 2.1. Whereas the qualitative evaluation provides a visual
analysis of generated LOD results, the quantitative evaluation especially focuses on the
LOD generation runtime, the consumed amount of GPU memory and the executed CUDA
kernels.

5.1 Laboratory Setup
According to Table 5.1, the test system consists of a Dell Precision 5820 Tower equipped
with a NVIDIA TITAN RTX GPU. All tests and evaluations have been performed on
Microsoft Windows 10, and PotreeConverterGpu was built with CMake and CUDA 11.3.
All rendering experiments were conducted using PotreeDesktop 1.8 and Potree 1.8.

71

5. Results and Evaluation

Hardware / Software Description / Version

Dell Precision 5820 Tower
Intel Xeon W-2145 CPU with 8 cores
Windows 10
64 GB RAM

NVIDIA TITAN RTX 4608 CUDA Cores
24.6 GB Memory

CUDA 11.4
CMake 3.21.1
MSVC 14.28.29333
Potree / PotreeDesktop 1.8

Table 5.1: Laboratory setup: deployed hardware and software components

5.2 Qualitative Result Evaluation
This section focuses on the visual comparison of LODs generated with PotreeCon-
verterGpu. The differences between subsamples generated with different subsampling
configurations are visually represented and evaluated. During the comparisons, the main
focus will be on the ocurrence of aliasing artifacts. Furthermore, the LODs are compared
with those generated with Potreeconverter2.1.

5.2.1 Point Cloud Color Filtering: a Visual Comparison
In order to visually compare the quality of different conversions, we use point-cloud data
sets with high-frequent color information and fine texture details. These data sets are then
converted with PotreeConverterGpu and are rendered afterwards in Potree. To achieve
the best results, high-quality splatting is enabled in Potree which is complimentary to
color-filtering for point clouds. Figure 5.1 shows screenshots from these renderings which
were generated using explicit random point subampling with four different subsampling
configurations.

A clear quality increase can be noticed when comparing results generated without color
filtering against results generated with intra-cell color filtering. While LODs without
color filterings (Figures 5.1a , 5.1b) show clearly visible aliasing artefacts, the LODs
generated with intra-cell color filtering feature a significant lower amount of visible
artefacts (Figures 5.1c , 5.1d). Nevertheless, a certain amount of noise is still perceptible.
The reason for this effect is that intra-cell color filtering only considers local color values
within a single subsampling cell but completely ignores neighbouring points outside the
cell.

Investigating the results generated with inter-cell color filtering (Figures 5.1e , 5.1f),
one can see that considering points from neighbouring subsampling grid cells further
minimizes visible artifacts, genearting a noise-free and smooth representation. The
drawback with this approach is that fine texture details are mainly blurred and not
visible.

72

5.2. Qualitative Result Evaluation

(a) Without color filtering (b) Without color filtering

(c) Intra-cell filtering (d) Intra-cell filtering

(e) Inter-cell filtering (f) Inter-cell filtering

(g) Inter + distance weighting (h) Inter + distance weighting

Figure 5.1: Visual quality comparison of generated LOD data: LODs of the Retz [Sys]
and Lifeboat [AG] data generated with PotreeConverterGpu using different subsampling
configurations.

73

5. Results and Evaluation

Figures 5.1g , 5.1h show renderings from LODs generated with inter-cell color filtering in
combination with distance weighting. While noise and aliasing artifacts are equally well
reduced as in pure inter-cell filtering, fine texture details are still preserved and clearly
visible.

5.2.2 Implicit vs. Explicit Random Subsampling
The goal of this section is to evaluate the randomness of the point distribution within lower
LODs. For this purpose, the AIT coin data set was processed with PotreeConverterGpu,
once using implicit and once using explicit random point subsampling. The reason for
choosing exactly this data set is that points within ICI 3D data sets are arranged in
an equally sampled regular grid. This makes it easier to detect weak points regarding
the random point distribution during subsampling. Figure 5.2 shows cutouts from
three LODs generated from the coin data set, each processed once with implicit and
once processed with explicit random subsampling. The LODs are exctracted from the
generated Potree data sets using the Python tool potree_to_ply 1 and visualized in
CloudCompare. When comparing the LODs of level3 (Figure 5.2a and 5.2d), one can see
that the LOD generated with implicit random subsampling shows clearly visible regular
point structures as opposed to the one generated with explicit random subsampling. This
allows the conclusion that the non-deterministic execution order of the CUDA threads,
which is used for selecting random points within the implicit approach, does not feature
the expected randomicity. However, the undesired regular patterns decrease significantly
with lower LODs, as one can seen in the Figures (5.2b and 5.2c) and (5.2e and 5.2f).

5.2.3 PotreeConverterGpu vs. PotreeConverter 2.1: a Visual
Comparison

In order to compare the visual quality, we compare the root nodes of the octrees
generated by PotreeConverterGPU and PotreeConverter 2.1. Figure 5.3 shows three
different root nodes generated with PotreeConverterGpu in the top row and generated
with PotreeConverter 2.1 in the bottom row. It is clearly visible that our color filtering
approach implemented in PotreeConverterGpu efficiently reduces high-frequent color
information, thus significantly reduces the occurrence of high-frequency noise.

1potree_to_ply was implemented during this master thesis and generates a single PLY file for each
LOD in a Potree data set. It is available on the Github repository [Kla]

74

5.2. Qualitative Result Evaluation

(a) Implicit: LOD level 3 (b) Implicit: LOD level 2 (c) Implicit: LOD level 1

(d) Explicit: LOD level 3 (e) Explicit: LOD level 2 (f) Explicit: LOD level 1

Figure 5.2: Implicit (red) vs. explicit (blue) random point subsampling: comparing
LODs from three different octree levels, rendered in CloudCompare.

75

5. Results and Evaluation

(a) PotreeConverter2.1:
Testpattern data set

(b) PotreeConverter2.1: ICI
coin data set

(c) PotreeConverter2.1:
Lifeboat data set

(d) PotreeConverterGpu:
Testpattern data set

(e) PotreeConverterGpu:
ICI coin data set

(f) PotreeConverterGpu:
Lifeboat data set

Figure 5.3: Visual comparison: root nodes generated with PotreeConverter2.1 vs.
PotreeConverterGpu and visualized in PotreeDesktop with high-quality splats enabled.
The root generated by PotreeConverterGpu were converted using explicit random point
subsampling in combination with inter-cell color filtering and distance weighting.

76

5.3. Quantitative Result Evaluation

Chunking

Subsampling

Preparation phase

LOD data Exporting

Preparation phase

Chunking

Preparation phase

Chunking

Subsampling

Time measurement of
LOD generation

Figure 5.4: Time measurement: we focus on the raw LOD generation runtime in-
cluding chunking and subsampling, but neglecting GPU memory allocation and data
import/export.

5.3 Quantitative Result Evaluation
PotreeConverterGpu can be parametrized in different ways. In particular, it is possible
to configure:

• The size of the chunking grid and subsampling grid

• The subsampling method: implicit or explicit random point subsampling

• Color filtering: intra-cell and inter-cell color filtering

Thus, it is interesting to evaluate how different configurations affect the GPU memory
consumption and the runtime of the LOD generation. This is also crucial to find the
optimal parametrization in terms of runtime and visual rendering quality.

5.3.1 Runtime Evaluation
This section focuses on the runtime of the implemented LOD generation algorithm
within PotreeConverterGpu (see Figure 5.4). In particular, we want to measure the raw
computation time of the multi-resolution point cloud, while neglecting the host-to-device
memory transfer from the point cloud, as well as the time to export the generated LOD
data. We justify this by assuming that the point clouds in targeted use cases (such as
ICI) reside already in GPU memory. The experiments were conducted using a chunking
grid of size 5123, a subsampling grid of size 1283 and an input point cloud with 119.7M
points (Morrobay 2 data set). The time measurements have been conducted on the host

2The Morrobay data set is available on the GitHub repository [Kla]

77

5. Results and Evaluation

Implicit r. subsampling Explicit r. subsampling
Runtime Points/sec Runtime Points/sec

No color filtering 286.1 [ms] 418M 658.4 [ms] 182M
Intra-cell 401.5 [ms] 299M 668.7 [ms] 179M
Inter-cell 636.1 [ms] 188M 894.7 [ms] 134M
Inter-cell / dist. weighted 1596.7 [ms] 75M 1881.4 [ms] 64M

Table 5.2: PotreeConverterGpu runtime comparison: the LOD generation runtime [ms]
and the point throughput [points/sec] measured for the Morro Bay data set with 119.7M
points.

Kernel Invocations Runtime portion[%]
kernelInitRandoms 1 0.017
kernelPointCounting 1 0.998
kernelPropagatePointCounts 9 0.059
kernelInitLeafNodes 1 0.074
kernelMergeHierarchical 9 0.030
kernelDistributePoints 1 2.598
kernelEvaluateSubsamplesInter 8431 7.088
kernelInterCellFiltering 8431 66.066
kernelGenerateRandoms 8431 11.116
kernelRandomPointSubsample 8431 11.954

Table 5.3: CUDA kernel runtime distribution: the runtime portion of each CUDA
kernel in relation to the overall GPU computation time. The LOD generation has been
performed with inter-cell color filtering + distance weighting and with explicit random
point subsampling on a point cloud with 119.7M points.

side including a cudaDeviceSynchronize call at the end to ensure that all remaining
GPU tasks have finished.

Table 5.2 shows the LOD generation runtimes under different subsampling configurations.
The table compares the runtimes without color filtering, with intra-cell and with inter-cell
color filtering, as well as in combination with distance weighting. Additionally, each
measurement was performed once with implicit and once with explicit random point
subsampling. Beside the runtimes, the point throughput in points per second is also
listed. The targeted throughput of 100M points/sec has been clearly achieved in all
test cases except the one including distance weighting. Without any color filtering and
using implicit random subsampling, it was even possible to achieve a point throughput of
418M points/sec. Also with explicit random subsampling in combination with inter-cell
color filtering, a throughput of 134M points/sec could be achieved. Furthermore, a clear
runtime difference between implicit and explicit random subsampling was measured. In
fact, implicit random subsampling is approx. 60% and 40% faster than explicit random
subsampling when no color filtering or intra-cell color filtering is performed and approx.

78

5.3. Quantitative Result Evaluation

No color filtering Intra-cell Inter-cell Inter-cell + distance-weighting
0

50

100

150

200

250

300

350

400

P
o
in

t
th

ro
u
g
h
p
u
t

[M
il
li
o
n
 p

o
n
it

s
 /

 s
e
c
]

418

299

188

75

182 179

134

64

Implicit random subsampling

Explicit random subsampling

Figure 5.5: PotreeConverterGpu point throughput comparison. This diagram visualizes
the point throughput measurements per second from Table 5.2.

30% and 15% faster when conducting inter-cell color filtering and with distance weighting
respectively. The runtime measurements from Table 5.2 are visualized in Figure 5.5.

The time spent for generating the LOD data also includes some host ⇔ device memory
copies as well as some computations on the CPU side. As their contribution to the overall
LOD generation time are only minor, they are neglected. Therefore, we focus on the
raw GPU computation time – in particular on the CUDA kernel runtimes. Table 5.3
provides an overview of all executed CUDA kernels together with their invocations and
their accumulated runtime portion. Performing the LOD generation with explicit random
point subsampling and inter-cell color filtering + distance weighting on a point cloud with
119.7M points, 33,746 CUDA kernels are executed. One can see that the contribution
of chunking to the overall processing runtime is only approximately 3.8%, whereas the
rest of the runtime is spent for subsampling, especially for the kernelInterCellFiltering
(approx. 66.066%) which performs distance-weighted inter-cell color filtering (see also
Figure 5.6).

5.3.1.1 PotreeConverterGpu vs. PotreeConverter 2.1

It is not possible to measure the raw processing time within PotreeConverter 2.1 as the
converter is fundamentally designed for out-of-core processing. Thus, we conducted an
experiment for getting a rough estimation of the performance. Within this experiment we
wanted to measure the point throughput per second of PotreeConverter 2.1, but excluding
the time to load the point cloud from hard disk. For this, we performed a hot-start of

79

5. Results and Evaluation

3.8%

7.1%66.1%

11.1%

12.0%

CUDAKernels

All Chunking kernels

'EvaluateSubsamples'

'InterCellFiltering'

'GenerateRandoms'

'RandomPointSubsample'

Figure 5.6: CUDA kernel runtime distribution. This diagram visualizes the CUDA
kernel runtime distribution from Table 5.3. Chunking related kernels are displayed
aggregated.

PotreeConverter 2.1 before evaluating the point throughput. In particular, we executed the
converter twice on the same data set (Morrobay data set), but before the second execution
we ensured that the point cloud was cached in RAM using the program RAMMap [Mic].
After the second execution, PotreeConverter 2.1 responded with a point throughput of
4.9M points per second. When comparing the point throughput measurements from
PotreeConverterGpu (excluding IO operations) and PotreeConverter 2.1 (including IO
operation) we achieve according to Table 5.4:

• a minimum performance improvement of factor 13 (performing explicit random
subampling and inter-cell color filtering with distance weighting)

Performance gain (factor)
Implicit r.subsampling Explicit r.subsampling

No color filtering 85 37
Intra-cell 61 36
Inter-cell 38 27
Inter-cell / dist. weighted 15 13

Table 5.4: PotreeConverterGpu vs. PotreeConverter 2.1: the table shows the perfor-
mance gain of PotreeConverterGpu in comparison to PotreeConverter 2.1 under several
configurations.

80

5.3. Quantitative Result Evaluation

Figure 5.7: PotreeConverterGpu GPU memory consumption: the occupied GPU
memory in GB over time. Each data point corresponds to the actual GPU memory
occupancy when a data structure is allocated or de-allocated. The maximum occupied
memory is marked with a bigger dot.

• a maximum performance improvement of factor 85 (performing implicit random
subampling without any color filtering)

5.3.2 GPU Memory Consumption

PotreeConverterGpu performs LOD generation in-core on the GPU. Thus, the size of
processable point clouds is limited by the amount of available GPU device memory.
This section investigates the GPU memory consumption of PotreeConverterGpu when
performing explicit random subsampling in combination with inter-cell color filtering.
Processing is done for the Morrobay data set with 119.7M points and double precision
coordinates (3.2GB). The outputFactor (see Section 4.2) is set to 2.2. Figure 5.7 visualizes
the GPU memory consumption of PotreeConverterGpu over time – in particular, the
memory consumption whenever a data structure is allocated or deallocated. According
to the diagram, the maximum memory consumption is 10.3GB. As one can see in the
diagram as well as in Table 5.5, approximately 77% of the occupied GPU memory is
dedicated to the input point cloud and the output buffer. The rest of the memory
(~22.8%) is used for the LOD calculation and only ~0.2% is used to store the actual
sparse octree (hierarchy). One has to keep in mind that the size of the sparseOctree
data structure heavily depends on the spatial point distribution of the input point cloud.
Thus the value of 0.2% is only valid for the Morrobay data set.

To estimate the maximum size at which point clouds can still be processed on a GPU
device, the GPU memory consumption is drawn as a function of the point amount in

81

5. Results and Evaluation

Data structure Memory size [GB] Percentage
outputBuffer 4.740 45.9%
pointCloud 3.232 31.3%
pointLUT 1.053 10.2%
countingGrid 0.614 5.9%
denseToSparseLut 0.614 5.9%
octreeSparse 0.025 0.2%
rgbaSum 0.034
randomIndices 0.008
tmpIndexRegister 0.002
randomStates 4.915e-05
tmpCounting 4e-09

0.6%

Table 5.5: GPU memory occupation: data structures residing in GPU memory with
their memory sizes [GB] and the percentages of the total memory occupied. The entries
are arranged according to their memory usage in descending order. The values where
measured while processing the Morrobay data set with 119.7M points.

Figure 5.8. The diagram shows the minimum required GPU memory for a given point
amount or vice versa, the maximum processable amount of points for a GPU with a given
memory. As the size for storing the sparse octree depends on the spatial distribution of
the points within the point cloud, it is not considered within the diagram. The memory
consumption also depends on the precision of the provided point coordinates. Thus, the
diagram differentiates between single and double precision coordinates. As one can see,
for an NVIDIA TITAN RTX with a memory size of 24.576 GB, it is possible to process
a point cloud with a maximum size of ~309M (double precision) and ~367M (single
precision) points or less. The diagram has been created considering an outputFactor of
2.2, a chunkingGrid of 5123 and a subsamplingGrid of 1283.

82

5.3. Quantitative Result Evaluation

0 50 100 150 200 250 300 350 400

maximum amount of points [10^6 points]

0

5

10

15

20

25

30

m
in

im
u
m

 m
e
m

o
ry

 c
o
n
s
u
m

p
ti

o
n
 [

G
B

]

NVIDIA TITAN RTX

double precision coordinates

single precision coordinates

Figure 5.8: PotreeConverterGpu GPU memory estimation: the diagram shows the
minimum memory consumption as a function of the point amount when generating an
LOD using an outputFactor of 2.2, a chunkingGrid of 5123 and a subsamplingGrid of
1283. The diagram has been generated with the memory_consumption.py Python script
which is available on the project GitHub repository [Kla].

83

CHAPTER 6
Conclusion

We present PotreeConverterGpu, an in-core GPGPU-based implementation of PotreeCon-
verter. PotreeConverterGpu is able to generate Potree-compliant LOD data from point
clouds, residing either on host or device memory. In addition to its function as a stand-
alone executable, PotreeConverterGpu can also be included as a library into third-party
software. For this purpose we additionally provide a C-API for simpler integration. To im-
prove the runtime and point throughput compared to previous PotreeConverter versions
(1.x and 2.x), we provide a GPU-optimized version of LOD generation algorithms based
on [SOW20]. Furthermore, we reduce the occurrence of aliasing artifacts by providing
color filtering for point clouds (similar to mip-mapping), which has been first proposed by
Rusinkiewicz et al. [RL01], in combination with a replacement LOD scheme (suggested
by [WBB+08] and [SOW20]). Color filtering is performed during subsampling, which
uses a 3-dimensional subsampling grid to randomly extract a single point per cell from
higher LOD nodes. We provide two color-filtering approaches – intra-cell, which averages
point colors on a cell basis, and inter-cell with distance-based weighting, which also
considers points from neighbouring cells. While both approaches significantly reduce high
color frequencies, inter-cell color filtering clearly outperforms the intra-cell approach but
leads to a higher runtime. Random point subsampling can be performed either implicitly
(exploiting the GPU’s random warp execution order) or explicitly (calculating a single
random number per cell). While the former provides a better runtime behaviour, the
latter one provides better randomicity during point selection, which can be perceived
especially in higher LODs.

We benchmarked our implementation with a point cloud data set consisting of 119.8M
points on a NVIDIA TITAN RTX and were able to achieve a point throughput ranging
from 64M points/second (inter-cell color filtering with distance-based weighting and
explicit random subsampling) up to 418M points/second (implicit subsampling without
color filtering), which is 13 and 85 times higher than with PotreeConverter 2.1. The

85

6. Conclusion

effect of the implemented color filtering approach is clearly perceptible, especially in
lower LODs, where high-frequent color information is effectively reduced.

6.1 Limitations and Future Work
In addition to the proposed improvements especially in terms of performance and
anti-aliasing, the actual PotreeConverterGpu implementation still provides room for
improvement. Thus, future work includes:

1. Processing of additional point attributes in addition to color values. Currently, other
attributes than color values (e.g., scalar values) are not considered during LOD
generation. In particular, these additional values are discarded during processing
and thus not exported to the generated multi-resolution point cloud.

2. LOD generation based on an out-of-core processing implementation. Through the in-
core processing, the size of the point clouds process-able with PotreeConverterGpu
is currently limited by the GPU memory. Implementing an out-of-core LOD
generation would eliminate this limitation.

3. Considering an alternative point distribution strategy. In PotreeConverterGpu,
points are iteratively propagated through the hierarchy until their target leaf node
is found. This procedure might be more efficient using a lookup table, which would
require just a single lookup for every point to determine the target leaf node. This
strategy was proposed by Schütz et al. in [SOW20].

4. Propagating the amount of contributing points during color accumulation. To save
GPU memory, subsampled points are directly exported and their color accumulation
data structures are reset after each subsampling pass. This implies that the point
amounts per cell are discarded when subsampled points are exported. When these
points contribute to another subsample later on, their exported and averaged
color values are used for accumulation and their amount of contributing points
is considered to be 1. This may lead to an imprecision in further color filtering
calculations.

5. A random sample heuristic which could give similar good results as explicit random
sampling, but has better random behaviour than implicit random subsampling.

6. Processing of more than one point per CUDA thread. In the current implementation
– independent from the processing step – each point is processed by a single CUDA
thread. To increase performance as well as scalability of the application it might
be more appropriate to assign and process multiple points per CUDA thread.

86

List of Figures

2.1 Point cloud visualisation: CloudCompare vs Potree 6
2.2 Point cloud rendering applications . 7
2.3 Inline Computational Imaging (ICI) principle 8
2.4 Related work: point cloud LOD structures 11
2.5 PotreeConverter 2.x overview . 13
2.6 Additive vs. replacement LOD scheme . 16
2.7 Comparing CPUs and GPUs . 17
2.8 Grid of thread blocks . 19
2.9 The CUDA memory hierarchy . 20

3.1 PotreeConverterGpu flow chart . 24
3.2 PotreeConverterGpu UML component diagram 26
3.3 PotreeConverterGpu UML activity diagram 27

4.1 PotreeConverterGpu supported point cloud data layout 31
4.2 Point chunking . 33
4.3 Point counting . 34
4.4 Hierarchical point count propagation . 38
4.5 Hierarchical node merging . 42
4.6 Child node mapping . 43
4.7 Child nodes in output buffer . 44
4.8 LOD structure generated through subsampling 49
4.9 Octree traversal order: post-order depth-first 52
4.10 Subsampling overview: a conceptual representation 53
4.11 Intra-cell color filtering . 54
4.12 Subsample evaluation flow chart . 56
4.13 Inter-cell color filtering . 59
4.14 Inter-cell color filtering with distance weighting 62
4.15 Random point subsampling . 65
4.16 Data layout of the binary outputBuffer 68
4.17 Octree representation: tree vs. flattened 69

5.1 Visual quality comparison of generated LOD data 73
5.2 Implicit vs. explicit random point subsampling 75

87

5.3 Qualitative evaluation: PotreeConvreter2.1 vs. PotreeConverterGpu . . . 76
5.4 Conduction of time measurements . 77
5.5 PotreeConverterGpu point throughput comparison 79
5.6 CUDA kernel runtime distribution . 80
5.7 PotreeConverterGpu GPU memory consumption 81
5.8 PotreeConverterGpu GPU memory estimation 83

88

List of Tables

2.1 Comparison between PotreeConverter 1.x and PotreeConverter 2.x 12

3.1 PotreeConverterGpu: functional and non-functional requirements 24

4.1 Relevant data structures pre-allocated during preparation phase 32
4.2 Relevant data structures for point counting 35
4.3 Relevant data structures for node merging. 39
4.4 The C++ Node struct . 40
4.5 Relevant data structures for point distribution 46
4.6 Executed CUDA kernels during implicit and explicit random subsampling . 51
4.7 Relevant data structures for subsample evaluation and intra-cell color filtering 55
4.8 Relevant data structures for inter-cell color filtering with distance weighting 62
4.9 Relevant data structures for the random point calculation 63

5.1 Laboratory setup . 72
5.2 PotreeConverterGpu runtime comparison 78
5.3 CUDA kernel runtime distribution . 78
5.4 PotreeConverterGpu vs. PotreeConverter 2.1 80
5.5 GPU memory occupation . 82

89

List of Algorithms

2.1 The Counting Sort algorithm . 22

4.1 CUDA kernel: point counting . 36

4.2 CUDA device function: mapping of a point to a grid cell 37

4.3 CUDA kernel hierarchical execution: kernel executed per octree level . 38

4.4 CUDA kernel: point count propagation 39

4.5 CUDA kernel: initialization of leaf node for sparse octree 41

4.6 CUDA kernel: node merging . 45

4.7 CUDA kernel: point distribution . 48

4.8 Random subsampling overview . 51

4.9 CUDA kernel: subsample evaluation and intra-cell color filtering 58

4.10 CUDA kernel: inter-cell color filtering 61

4.11 CUDA kernel: random point index calculation 63

4.12 CUDA kernel: random subsampling and point distribution 66

91

Bibliography

[AAB+83] Edward Adelson, Charles Anderson, James Bergen, Peter Burt, and Joan
Ogden. Pyramid methods in image processing. RCA Eng., 29, 11 1983.

[AG] Weiss AG. https://weiss-ag.com/de/. (Accessed: 2023-02-23).

[ASP18] Doris Antensteiner, Svorad Stolc, and Thomas Pock. Variational fusion of
light field and photometric stereo for precise 3d sensing within a multi-line
scan framework. 2018 24th International Conference on Pattern Recognition
(ICPR), pages 1036–1042, 2018.

[ASV+17] Doris Antensteiner, Svorad Stolc, Kristián Valentín, Bernhard Blaschitz,
Reinhold Huber-Mörk, and Thomas Pock. High-precision 3d sensing with
hybrid light field & photometric stereo approach in multi-line scan framework.
In Electronic Imaging, volume 2017, pages 52–60, 01 2017.

[Aut] Autodesk. 3DS MAX. https://www.autodesk.de/products/
3ds-max. (Accessed: 2023-02-11).

[BSA18] Bernhard Blaschitz, Svorad Stolc, and Doris Antensteiner. Geometric cali-
bration and image rectification of a multi-line scan camera for accurate 3d
reconstruction. Electronic Imaging, 2018:1–6, 01 2018.

[BSHZK05] M. Botsch, Alexander Sorkine-Hornung, Matthias Zwicker, and Leif Kobbelt.
High-quality surface splatting on today’s gpus. In Point-Based Graphics,
2005 - Eurographics/IEEE VGTC Symposium Proceedings, pages 17– 141,
07 2005.

[CG] Inc. 2021 Cesium GS. Cesium. https://github.com/CesiumGS/
cesium. (Accessed: 2023-02-11).

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[Con] W3C World Wide Web Consortium. WebGPU W3C Working Draft, February
2023. https://www.w3.org/TR/webgpu/. (Accessed: 2023-02-11).

93

https://weiss-ag.com/de/
https://www.autodesk.de/products/3ds-max
https://www.autodesk.de/products/3ds-max
https://github.com/CesiumGS/cesium
https://github.com/CesiumGS/cesium
https://www.w3.org/TR/webgpu/

[DVS03] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger. Sequen-
tial point trees. ACM Trans. Graph., 22(3):657–662, July 2003.

[FAR] FARO. Scene Web Share. https://www.faro.com/en/Products/
Software/WebShare. (Accessed: 2023-02-11).

[Fou] Blender Foundation. Blender. https://www.blender.org/. (Accessed:
2023-02-11).

[fPS] ASPRS American Society for Photogrammetry and Remote Sensing. LAS
Specification Version 1.4-r13. https://www.asprs.org/wp-content/
uploads/2010/12/LAS_1_4_r13.pdf. (Accessed: 2023-02-11).

[Gam] Epic Games. Unreal Engine. https://www.unrealengine.com/
en-US/. (Accessed: 2023-02-11).

[GBT22] Laurin Ginner, Simon Breuss, and Lukas Traxler. Fast inline microscopic
computational imaging. Sensors, 22:7038, 09 2022.

[Geo] Leica Geosystems. Leica Tru View. https://leica-geosystems.com/
products/laser-scanners/software/leica-truview. (Accessed:
2023-02-11).

[GM] Girardeau-Montaut. CloudCompare. https://www.danielgm.net/cc/.
(Accessed: 2023-02-11).

[GM04] Enrico Gobbetti and Fabio Marton. Layered point clouds: a simple and
efficient multiresolution structure for distributing and rendering gigantic
point-sampled models. Computers & Graphics, 28(6):815–826, 2004.

[Groa] KHRONOS Group. OpenCL. https://www.khronos.org/opencl/.
(Accessed: 2023-02-11).

[Grob] Khronos Group. WebGL 2.0 specification. https://www.khronos.org/
registry/webgl/specs/latest/2.0/. (Accessed: 2023-02-11).

[HCZ16] Liang Hu, Xilong Che, and Si-Qing Zheng. A closer look at gpgpu. ACM
Comput. Surv., 48(4), 2016.

[Insa] ESRI Environmental Systems Research Institute. Arcgis geographic infor-
mation system. https://www.arcgis.com/index.html. (Accessed:
2023-02-11).

[Insb] Ludwig Boltzmann Institute. Heidentor data set. https://archpro.lbg.
ac.at/. (Accessed: 2023-02-11).

[Int] Intel. Intel Core i9-10980XE Extreme Edition Prozessor. https://www.
intel.com/content/www/us/en/homepage.html. (Accessed: 2023-
02-11).

94

https://www.faro.com/en/Products/Software/WebShare
https://www.faro.com/en/Products/Software/WebShare
https://www.blender.org/
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://leica-geosystems.com/products/laser-scanners/software/leica-truview
https://leica-geosystems.com/products/laser-scanners/software/leica-truview
https://www.danielgm.net/cc/
https://www.khronos.org/opencl/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.arcgis.com/index.html
https://archpro.lbg.ac.at/
https://archpro.lbg.ac.at/
https://www.intel.com/content/www/us/en/homepage.html
https://www.intel.com/content/www/us/en/homepage.html

[KJWX19] Lai Kang, Jie Jiang, Yingmei Wei, and Yuxiang Xie. Efficient randomized
hierarchy construction for interactive visualization of large scale point clouds.
In 2019 IEEE Fourth International Conference on Data Science in Cyberspace
(DSC), pages 593–597, 06 2019.

[Kla] Philip Klaus. PotreeConverterGPU GitHub repository. https://github.
com/PhilipKlaus/octree-cuda. (Accessed: 2023-02-11).

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’96, page 31–42, New York, NY, USA, 1996. Association for
Computing Machinery.

[Mic] Microsoft. RAMMap v1.60. https://docs.microsoft.com/en-us/
sysinternals/downloads/rammap. (Accessed: 2023-02-11).

[NVF] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 12.0.
https://developer.nvidia.com/cuda-toolkit. (Accessed: 2023-
02-11).

[NVIa] NVIDIA. CUDA-C-Programming-Guide. https://docs.nvidia.com/
cuda/cuda-c-programming-guide. (Accessed: 2023-02-11).

[NVIb] NVIDIA. GEFORCE RTX 4090. https://www.nvidia.com/
de-de/geforce/graphics-cards/40-series/rtx-4090/. (Ac-
cessed: 2023-02-11).

[RL01] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point
rendering system for large meshes. Proceedings of SIGGRAPH, 2000, 10
2001.

[Sch] Markus Schütz. PotreeDesktop 1.8.0. https://github.com/potree/
PotreeDesktop. (Accessed: 2023-02-11).

[Sch14] Claus Scheiblauer. Interactions with Gigantic Point Clouds. PhD the-
sis, Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Favoritenstrasse 9-11/E193-02, A-1040 Vienna, Austria, 2014.

[Sch16] Markus Schütz. Potree: Rendering large point clouds in web browsers.
Master’s thesis, Institute of Computer Graphics and Algorithms, Vienna
University of Technology, Favoritenstrasse 9-11/E193-02, A-1040 Vienna,
Austria, sep 2016.

[Ske] Sketchfab. https://sketchfab.com/. (Accessed: 2023-02-11).

[SOW20] Markus Schütz, Stefan Ohrhallinger, and Michael Wimmer. Fast out-of-core
octree generation for massive point clouds. Computer Graphics Forum,
39(7):1–13, nov 2020.

95

https://github.com/PhilipKlaus/octree-cuda
https://github.com/PhilipKlaus/octree-cuda
https://docs.microsoft.com/en-us/sysinternals/downloads/rammap
https://docs.microsoft.com/en-us/sysinternals/downloads/rammap
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://www.nvidia.com/de-de/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/de-de/geforce/graphics-cards/40-series/rtx-4090/
https://github.com/potree/PotreeDesktop
https://github.com/potree/PotreeDesktop
https://sketchfab.com/

[SP11] Claus Scheiblauer and Michael Pregesbauer. Consolidated visualization of
enormous 3d scan point clouds with scanopy. In Proceedings of the 16th
International Conference on Cultural Heritage and New Technologies, pages
242–247, nov 2011.

[Sur] USGS United States Geological Survey. Entwine. https://usgs.
entwine.io/. (Accessed: 2023-02-11).

[Sys] Riegl Laser Measurement Systems. http://www.riegl.com/. (Accessed:
2023-02-23).

[Sze11] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer-
Verlag, 2011.

[Tec] Unity Technologies. Unity. https://unity.com/. (Accessed: 2023-02-
11).

[TGBB21] Lukas Traxler, Laurin Ginner, Simon Breuss, and Bernhard Blaschitz. Exper-
imental comparison of optical inline 3d measurement and inspection systems.
IEEE Access, PP:1–1, 04 2021.

[Ver] Butler Verma. Plasiso. https://github.com/verma/plasio. (Ac-
cessed: 2023-02-11).

[WBB+08] Michael Wand, Alexander Berner, Martin Bokeloh, Arno Fleck, Mark Hoff-
mann, Philipp Jenke, Benjamin Maier, Dirk Staneker, and Andreas Schilling.
Interactive editing of large point clouds. Chen, Baoquan; Zwicker, Matthias;
Botsch, Mario; Pajarola, Renato: Symposium on Point-Based Graphics
2007 : Eurographics / IEEE VGTC Symposium Proceedings, Eurogrpahics
Association, 37-46 (2007), 08 2008.

[Woo92] Robert Woodham. Photometric method for determining surface orientation
from multiple images. Optical Engineering, 19, 01 1992.

[WS06] Michael Wimmer and Claus Scheiblauer. Instant points: Fast rendering
of unprocessed point clouds. In Proceedings Symposium on Point-Based
Graphics 2006, pages 129–136. Eurographics, Eurographics Association, July
2006.

[YGW+15] Dong-Ming Yan, Jianwei Guo, Bin Wang, Xiaopeng Zhang, and Peter Wonka.
A survey of blue-noise sampling and its applications. Journal of Computer
Science and Technology, 30:439–452, 05 2015.

[ZPBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen Baar, and Markus Gross. Surface
splatting. Proceedings of the ACM SIGGRAPH Conference on Computer
Graphics, 2001, 08 2001.

96

https://usgs.entwine.io/
https://usgs.entwine.io/
http://www.riegl.com/
https://unity.com/
https://github.com/verma/plasio

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Contribution
	Thesis Outline

	Fundamentals and State-of-the Art of LOD generation
	State-of-the-Art of Point Cloud Rendering
	Applications of Point Cloud Rendering
	ICI - Inline Computational Imaging

	Fundamentals and Related Work of LOD Conversion
	LOD Structures for Point Clouds
	PotreeConverter
	PotreeConverter 1.X vs PotreeConverter 2.x
	PotreeConverter 2.x in Detail

	Color Filtering for Point Clouds
	Replacement LOD Scheme

	GPGPU Programming: The CUDA Framework
	An Introduction to CUDA
	CUDA Programming by Example
	A Simple CUDA Kernel
	GPU Memory Management

	Atomic Functions

	Counting Sort

	Software Architecture
	Requirements
	Software Architecture
	Algorithmic Overview

	Generating an LOD Structure on the GPU
	Point Cloud Import
	Preparation Phase
	Allocating the Cloud Buffer
	Allocating the Output Buffer

	Point Chunking
	Point Counting
	Initial Point Counting
	Point Count Propagation

	Node Merging
	Octree Allocation and Initialization
	Leaf Node Initialisation
	Hierarchical Node Merging

	Point Distribution

	Point Subsampling
	The Subsampling Order
	Subsample Evaluation and Intra-cell Color Filtering
	Intra-Cell Color Filtering
	Implementation Details

	Inter-Cell Color Filtering
	Extension: Distance Weighting

	Random Point Calculation
	Random Subsampling and Data Distribution

	LOD Data Export
	Generating octree.bin
	Quantizing Coordinates and Colors
	Generating hierarchy.bin
	Potree Metadata

	Results and Evaluation
	Laboratory Setup
	Qualitative Result Evaluation
	Point Cloud Color Filtering: a Visual Comparison
	Implicit vs. Explicit Random Subsampling
	PotreeConverterGpu vs. PotreeConverter 2.1: a Visual Comparison

	Quantitative Result Evaluation
	Runtime Evaluation
	PotreeConverterGpu vs. PotreeConverter 2.1

	GPU Memory Consumption

	Conclusion
	Limitations and Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

