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A B S T R A C T

In healthcare, a growing number of physicians and support staff are striving to facilitate personalized
radiotherapy regimens for patients with prostate cancer. This is because individual patient biology is unique,
and employing a single approach for all is inefficient. A crucial step for customizing radiotherapy planning and
gaining fundamental information about the disease, is the identification and delineation of targeted structures.
However, accurate biomedical image segmentation is time-consuming, requires considerable experience and is
prone to observer variability. In the past decade, the use of deep learning models has significantly increased in
the field of medical image segmentation. At present, a vast number of anatomical structures can be demarcated
on a clinician’s level with deep learning models. These models would not only unload work, but they can offer
unbiased characterization of the disease. The main architectures used in segmentation are the U-Net and its
variants, that exhibit outstanding performances. However, reproducing results or directly comparing methods
is often limited by closed source of data and the large heterogeneity among medical images. With this in
mind, our intention is to provide a reliable source for assessing deep learning models. As an example, we
chose the challenging task of delineating the prostate gland in multi-modal images. First, this paper provides
a comprehensive review of current state-of-the-art convolutional neural networks for 3D prostate segmentation.
Second, utilizing public and in-house CT and MR datasets of varying properties, we created a framework for
an objective comparison of automatic prostate segmentation algorithms. The framework was used for rigorous
evaluations of the models, highlighting their strengths and weaknesses.
1. Introduction

Prostate cancer (PCa) is one of the most common non-cutaneous
malignancies diagnosed in men in Europe, and there is an urgent
need to reduce the rate of mortality (Marhold et al., 2022). Radiother-
apy (RT) is one type of curative treatment option that has advanced
tremendously, ranging from implementation of advanced diagnostics
in staging and treatment planning, up to precise delivery of ablative
RT doses in fewer fractions (Spohn et al., 2021; Zamboglou et al.,
2021). In RT, medical images play a key role in the complete process,
from diagnosis to treatment planning, including patient care after the
required clinical procedures. The high volume of applied doses de-
mands precise and accurate identification of tumours and surrounding
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tissues (Spohn et al., 2021). Therefore, prior to executing PCa clinical
tasks, it is essential to locate and segment the prostate gland from medi-
cal images (Thompson et al., 2016). However, the correct identification
and segmentation of the anatomical structures is a time-consuming
approach, that demands proficiency in healthcare (Steenbergen et al.,
2015). Furthermore, exactness in delineation of the region of interest
(ROI) during manual segmentation is still hampered by inter-observer
variability (Steenbergen et al., 2015).

The rise of deep learning (DL) in recent years revolutionized the
field of medical image segmentation (Litjens et al., 2017b; Singh et al.,
2020; Isensee et al., 2021; Santoro et al., 2022). DL algorithms, in par-
ticular convolutional neural networks (CNNs) have shown outstanding
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Fig. 1. Year-wise number of publications while searching for 3D medical deep learning, 3D U-Net segmentation, 3D prostate segmentation, and 3D U-Net prostate segmentation in the
PubMed registry.
segmentation performances for almost every anatomical site (Litjens
et al., 2017b; Isensee et al., 2021). In certain facets of computer vi-
sion, CNNs have even surpassed the classification accuracies of human
observers (Hekler et al., 2019; Pham et al., 2021). Over the years,
numerous DL works have performed 3D medical image segmentations,
including the prostate (Gillespie et al., 2020), as evident in Fig. 1. A ma-
jor factor that promoted the research on prostate segmentation is the or-
ganization of challenges, such as, the Prostate MR Image Segmentation
2012 challenge (PROMISE-12) (Litjens et al., 2014b), the NCI-ISBI 2013
Challenge (Bloch et al., 2015), the SPIE-AAPM-NCI Prostate MR Clas-
sification Challenge (PROSTATEx) (Litjens et al., 2014a, 2017a), the
medical segmentation decathlon (MSD-prostate) (Simpson et al., 2019)
and the Prostate Imaging: Cancer AI challenge (PI-CAI) (Saha et al.,
2022). These platforms provided separate datasets, and a leaderboard
for comparing performances of networks.

Among the top performing methods of the challenges, the majority
use a 3D U-Net (Çiçek et al., 2016; Litjens et al., 2017b; Ghavami
et al., 2019; Singh et al., 2020; Isensee et al., 2021) based architecture.
However, the comparison and the subsequent selection of a single
algorithm based on the leaderboards is limited due to various factors.
First, the leaderboards show only the results for one dataset, and many
teams participate in one challenge. A ranking across different datasets
would reflect how an algorithm can deal with heterogeneous data, but
this does not exit. Second, the challenges prior to the year 2018 did not
require the publication of source code for participation. This makes it
almost impossible to reproduce results from the leaderboards, as incom-
plete documentations are recorded in the corresponding manuscripts.
Third, the challenges organized so far have mainly focused on magnetic
resonance imaging (MRI) data, however, the treatment of prostate
cancer might involve information attained from multi-modal images,
such as, computed tomography (CT) or transrectal ultrasound (TRUS).
Therefore, it is virtually infeasible to objectively measure which algo-
rithm is ideal for the task of prostate segmentation. A common platform
for the evaluation across multiple modalities would be of importance.

Ghavami et al. (2019) tackled the problem by evaluating six DL
algorithms (out of which four were U-Net variants) on a common
dataset. In their results, they show that the original U-Net is outper-
formed by its variants. However, the work by Ghavami et al. (2019)
has its limits. The networks were trained on a dataset comprising
T2 weighted MR images from 232 patients, and the evaluation was
done by utilizing a hold-out test set. The MRI scans were obtained
from three different trials that shared the same imaging protocols, and
the prostate boundaries were annotated by the same clinical group.
Additionally, since the publication of Ghavami et al. (2019), medical
image processing has undergone an enormous change by the introduc-
tion of state-of-the-art (SOTA) frameworks such as nnU-Net (Isensee
et al., 2021). Moreover, recent algorithms such as Attention U-Net
(inspired by the success of attention gates in natural language pro-
cessing) (Oktay et al., 2018), SegResnet (uses residual connections
within each encoder–decoder block) (Myronenko, 2019), and U-Net++
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(using deep supervision to extract important features using densely con-
nected nested decoder subnetworks) (Zhou et al., 2019), have achieved
tremendous performances in medical image segmentation tasks.

Santoro et al. (2022) conducted a survey of 921 research articles
and analysed the recent applications of artificial intelligence (AI) in
clinical RT. The authors considered the phase of the RT workflow
based on the AI approaches to improve patient care coordination and
optimization, image registration and segmentation, synthetic image
generation, treatment planning, and outcome prediction. Most of the
segmentation algorithms reviewed in Santoro et al. (2022) used the
U-Net architecture (Ronneberger et al., 2015; Çiçek et al., 2016), and
the networks were trained to delineate different anatomical areas, such
as the brain, head, neck, thorax, and female or male pelvis (including
the prostate glands and tumours). These methods were also applied in
the clinical RT setting across different image modalities to pinpoint the
exact locations of lesions and organs at risk throughout several parts
of the human body (Choi et al., 2020; Nemoto et al., 2020; Jeong
et al., 2021; Zhong et al., 2021). The U-Net architectures showcased
promising results with improved accuracy, efficiency, and robustness.
During our investigation, we found multiple DL-based CNN algorithms
that were deployed either as commercial or open-source research tools
for automatic ROI segmentation tasks (Estienne et al., 2020; Wong
et al., 2020; Consortium, 2020).

Despite the noteworthy contributions, several professionals have
raised concerns about the involvement of AI in healthcare, including
the need for harmonization while overcoming barriers (Santoro et al.,
2022). There are several major difficulties that block the AI models
like U-Nets from real clinical use. One of the major difficulties is
the need for more standardization in imaging and contouring proto-
cols across different clinics and institutions (Haga et al., 2019). This
can lead to variations in the data quality used to train and validate
the AI models, making it difficult to generalize the results to other
clinical settings (Syed et al., 2020). Another obstacle is the need for
high-quality data to train and validate the models, which can be time-
consuming and expensive (Litjens et al., 2017b; Singh et al., 2020).
Furthermore, the black-box nature of these models makes it challenging
for clinicians to trust their predictions and understand their reason-
ing (Vayena et al., 2018). The uncertainty in quantification makes it
challenging to know when the model may fail or produce unreliable
results (McBee et al., 2018; Korreman et al., 2021), which raises one
of the main ethical concerns: ‘‘if AI fails to deliver the correct output,
who will take responsibility for the mistake?’’ It is paramount that the
biomedical imaging community addresses these shortcomings before
AI models can be adopted in clinical practice. Therefore, there is a
need for rigorous testing and validation of the AI models, to ensure
their safety and effectiveness before they can be implemented in the
clinical workflow (Goldenberg et al., 2019; Isensee et al., 2021; Punn
and Agarwal, 2022; Saha et al., 2022; Santoro et al., 2022).

A successful transfer of AI models to clinical routine could enable
new treatment techniques that have not been feasible until now due
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Fig. 2. 3D architecture of the U-Net re-created from Çiçek et al. (2016).
to complex processing tasks. One example might be online adaptive
radiotherapy (ART) using hybrid linear accelerators (linac) (Hall et al.,
2021). ART is a novel technique where the CT or MR volumes are
obtained as part of the treatment delivery process. Simultaneous beam
treatment with imaging enables the adaptation of the irradiated volume
to account for changes in the physical properties of the organ and
tumour (Hall et al., 2021). Kawula et al. (2023) trained a 3D U-Net
to segment bladder, rectum, and clinical target volume for prostate
cancer patients treated with 0.35 𝑇 MR-linacs. The experiments were
conducted using a total of 332 in-house images, and demonstrated that
CNNs can enhance automatic segmentation for MR-guided RT (Kawula
et al., 2023). A possible scenario in the future could be the usage of
DL techniques to tailor ART parameters in real time as required, while
simultaneously minimizing the risk of side effects (Hall et al., 2021;
Kawula et al., 2023).

In this work, we evaluated and benchmarked five CNNs: U-Net
(Çiçek et al., 2016), V-Net (Milletari et al., 2016), Attention U-Net (Ok-
tay et al., 2018), SegResNet (Myronenko, 2019) and U-Net++ (Zhou
et al., 2019), on the task of segmenting the prostate from 3D medical
images across different settings. To elaborate, initially, we scrutinized
the recent developments in DL-based biomedical image segmentation
techniques, and based on this review, we chose the best-suited algo-
rithms for further evaluation. In the next part, we created a frame-
work for investigating the performance of the algorithms, contingent
on network architecture and the influence of factors such as dataset
size, imaging protocols and image modality. The studies were carried
out on two private and two public datasets (the medical segmenta-
tion decathlon-prostate set (Simpson et al., 2019) and PROMISE-12
dataset (Litjens et al., 2014b)) with varying training sample sizes and
two modalities; CT and MRI. We also conducted the same experiments
using the nnU-Net framework to establish a baseline. Additionally, we
performed a statistical analysis to facilitate a fair comparison, and to
determine networks with pronounced improvement in segmentation
accuracies. Finally, we discussed in detail the merits and limitations
of the U-Net variants on their ability to segment the prostate.

The proposed comparison framework1 is open-source, and although
our work focused on prostate related segmentation tasks, it can be
easily extended for other ROIs as well. We believe that this would
eventually lead to trustworthy deep learning methods, that are reliable
and acceptable to doctors and physicians (Goldenberg et al., 2019;
Singh et al., 2020; Isensee et al., 2021; Hall et al., 2021; Santoro et al.,
2022).

2. A brief history of U-Nets

Since this paper explicitly deals with the U-Net architecture, it is
crucial to understand its origin, structure, and why it is important
in the context of 3D image segmentation. When AlexNet (Krizhevsky

1 Source code at https://github.com/Shrajan/Prostate-Segmentation.
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et al., 2012) achieved a top-5 error of 15.3% in the ImageNet-2012
classification challenge (Deng et al., 2009), the field of deep learn-
ing and subsequently, convolutional neural networks (CNNs) became
the de-facto routine to solve computer vision tasks. This influential
2D architecture spurred numerous articles that employed CNNs and
graphical processor units (GPUs) to accelerate DL (Singh et al., 2020).
Since then, CNNs have been deployed in a variety of computer vision
applications in real-world scenarios such as robotics, self-driving cars,
and healthcare (Goldenberg et al., 2019; Singh et al., 2020; Isensee
et al., 2021). Three years later, 2D U-Net (Ronneberger et al., 2015) was
created to segment neuronal structures in electron microscopic stacks,
and was the highest ranking algorithm in the competition.

The architecture of the 2D U-Net has two symmetric pathways; a
contracting path to capture the essence of an image, and an expanding
path that enables precise localization of the required target. Although
the contracting path is made up of the same structure as that of the
AlexNet, the U-Net improved by inserting skip connections between
both the paths. If we closely inspect all the work since the success of the
CNNs, the 2D U-Net was instrumental in reshaping the field of medical
image analysis, by being a superior and objective tool. A year later, in
2016 a 3D version of the U-Net was created (Çiçek et al., 2016); Fig. 2
illustrates the architecture of the 3D U-Net. The 3D U-Net was taught to
learn dense volumetric segmentation by replacing all 2D operations in
the network with their 3D counterparts. This opened up a completely
new avenue in the application of DL as most medical images such as
MRI, CT, and positron emission tomography (PET) are 3-dimensional
in nature.

Fig. 1 showcases a gradual increase in the number of publications
of different 3D-medical image based techniques since the introduc-
tion of the 3D U-Net. Currently, U-Net is one of the most popular
biomedical segmentation architectures that has approximately, 28 000
citations (both 2D and 3D combined). It is still one of the top ranking
models in several grand challenges (Litjens et al., 2017b; Isensee et al.,
2021; Singh et al., 2020), surpassing new DL approaches such as,
recurrent neural networks, generative adversarial networks, and trans-
formers (Crimi and Bakas, 2022). Since its introduction, a huge number
of models, with the U-Net as their architectural backbone (template),
have been deployed. Many of these variations propose extensions and
advances, and have achieved SOTA performances: Attention U-Net (Ok-
tay et al., 2018), U-Net++ (Zhou et al., 2019), SegResNet (Myronenko,
2019) and nnUNet (Isensee et al., 2021).

3. Related work

3.1. Prostate segmentation without any U-Nets

As mentioned earlier, Fig. 1 gives a clear picture that a lot of
research has been done to improve the task of automatic prostate
segmentation. A significant portion of it was carried out with network
architectures other than the U-Net. Here we give an outline of a few of
those methods, focusing on the representative ones.

https://github.com/Shrajan/Prostate-Segmentation
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A CNN and training strategy based on statistical shape models was
developed for prostate segmentation from MRIs in Karimi et al. (2018).
This method consisted of a dataset with T2-weighted axial images in
which the prostate was manually labelled by a radiologist. To overcome
the insufficiency of training data, the subtle modes of variation in
prostate shapes were learned in a process known as statistical shape
modelling. Furthermore, synthetic images were generated to expand
the training set, provided these examples were plausible representa-
tions of real data, such as translated, rotated, mirrored, or deformed
shapes. This method achieved an overlap of 88% between the ground-
truth and the prediction; the result was calculated using a metric
called Dice-Sørensen Coefficient (DSC = 0.88). The proposed method
put forward an innovative data augmentation technique by taking
advantage of the prostate shape and out performed the V-Net (Milletari
et al., 2016). That being said, the CNN model used fully-connected
layers after the encoder blocks to predict the final output. This strategy
creates a bottleneck, and reconstruction of the target region to original
image size is not always accurate.

A semi-automatic prostate segmentation method from CT images
was introduced by Shahedi et al. (2018). Their approach utilized local
texture classification and statistical shape modelling, and attained a
mean DSC of 0.88. Although the proposed work surpassed the other
procedures, overall time required for segmenting a 3D image was
considerably more than U-Net based networks. As mentioned by Sha-
hedi et al. (2018), another limitation was that the semi-automatic
prostate segmentation method was tested on a small size of the non-
brachytherapy dataset (10 images).

Lei et al. (2020) put forward a CNN architecture that first created
synthetic MRIs (sMRI) from CT images using a cyclic generative adver-
sarial network. Then, the sMRIs were given as input to a deep attention
fully convolution network (DAFCN) to segment the prostate contours.
The authors reported DSC, Hausdorff-Distance (HD) and mean surface
distance of 0.92 ± 0.09, 4.38 ± 4.66, and 0.62 ± 0.89 mm, respectively,
on the test set. In the work by Comelli et al. (2021), a segmentation
network, based on a popular natural image classification architecture
called Efficient Net (ENet), was created to predict the prostate gland
from MR scans. The ENet achieved a mean DSC of 0.908 with cross-
validation on 85 samples. However, the performances of the ENet and
U-Net (Çiçek et al., 2016) were statistically identical.

The source-code of all the research work described in this subsection
is not publicly available, which makes it impossible to replicate the
results. Moreover, most of the experiments described in the literature
were carried out using private datasets with tuned parameters, such
as the learning rate. The performances of these technologies could
be improved by utilizing robust data processing and augmentation
techniques. Finally, to conduct a fair and rigorous evaluation, all the
models should be trained using the same hyperparameters and settings.

3.2. Prostate segmentation with SOTA U-Net variants

As discussed in Section 1, the 3D U-Net architecture is one of the top
performing models in most prostate segmentation challenges. Similarly,
the U-Net variants that we selected were also used in some of these
challenges, and have made it to the top of the leaderboards. To the best
of our knowledge, except for the V-Net, the remaining U-Net variants
that we selected have not been deployed to prostate segmentation tasks.
Moreover, the V-Net architecture has been employed numerous times
on both private and public datasets.

Lei et al. (2019) trained a V-Net with reliable contour refinement
on TRUS images of 44 patients, and achieved a prostate volume DSC
and HD of 0.92±0.03 and 3.94±1.55 mm, respectively. Lee et al. (2020)
used an ellipsoid formula to compare the predictions of their V-Net with
the ground-truth labels. The dataset contained 330 image samples, and
the mean DSC for the entire prostate was 0.87, whereas, the mean DSC
for the transition zone was 0.77. A recent method by Jin et al. (2021)
4

extended the V-Net with bi-cubic interpolation technique to train and
test 106 clinical prostate MR volumes, and attained a mean DSC of 0.97,
and a mean HD of 0.93 mm.

We were unable to find published articles on the applications of At-
tention U-Net or SegResNet or U-Net++ to segment the prostate zones.
However, there are a few publications available involving these models
that show promising results for segmentation of prostate tumours in
multi-modal MRI scans (Machireddy et al., 2020; Saha et al., 2021).
Nonetheless, the aforementioned works provide sufficient evidence that
even now, CNN based U-Nets are still the top contenders for segmenting
ROIs from 3D medical images.

3.3. Surveys of the past

Several surveys and reviews pertaining to 3D medical segmentation
and their applications have been conducted in the past few years. Since
not all of them are relevant to our objectives of comparing 3D U-Nets,
we have narrowed down to a few works that closely resemble the
practices we envisioned for this study.

As mentioned in Section 1, Ghavami et al. (2019) surveyed six
CNNs, and assessed their performances using an in-house 3D MRI
dataset. The results show that there exists a statistically significant
difference in the performances of these models.

Gillespie et al. (2020) did a general review of deep learning in
prostate segmentation that enumerated and compared the
performances of diverse algorithms, including the SOTA. The experi-
ments in the manuscript also evaluated a 2D U-Net on four publicly
available datasets. Moreover, the results outlined the performance of
the U-Net on the testing data obtained from other datasets. Although,
this work does a good job of eliciting the strengths and weakness of the
U-Net, the comparison appears to be incomplete, since only one model
and one modality were used.

The creators of the popular nnU-Net (Isensee et al., 2021) frame-
work did a thorough research on the diverse biomedical image segmen-
tation tasks across 53 datasets. The robust nnU-Net segmentation algo-
rithm scored the top places in almost all the challenges. The prostate
segmentation tasks were trained on the two public MRI datasets: MSD-
prostate (Simpson et al., 2019) and PROMISE-12 (Litjens et al., 2014b).
The authors recommend using the original U-Net architecture, as it
generalizes well across all the tasks. However, when considering the
results of Ghavami et al. (2019), it would be unwise to use the generic
U-Net for a specific task (such as prostate segmentation) without com-
paring it against other network variations across different modalities.
One minor drawback of the nnU-Net as compared to other frameworks
is longer training times that depends on several factors, such as the
model configuration (2D, 3D or cascaded), and large number of epochs
(the default value is 1000).

Singh et al. (2020) reviewed the important research ideas in the
field of 3D medical imaging analysis using 3D CNNs (and its variants)
in different vision application areas such as classification, segmen-
tation, detection, and localization. The article discusses the current
challenges associated with the use of 3D CNNs in the medical imaging
domain, and the possible future trends in the field. Punn and Agarwal
(2022) presented a thorough analysis of the U-Net variants for different
medical imaging modalities such as MRI, X-ray, CT, ultrasound, PET,
etc. Unfortunately, both manuscripts conducted pure surveys, and no
experiments were performed to substantiate the results.

3.4. Public databases

In this work, we evaluated the U-Net variants on prostate segmenta-
tion tasks using two public MRI datasets: MSD-prostate (Simpson et al.,
2019) and PROMISE-12 (Litjens et al., 2014b). These databases were
obtained from biomedical imaging grand-challenges, particularly the
Medical Segmentation Decathlon (Simpson et al., 2019), and the MIC-
CAI Grand Challenge: Prostate MR Image Segmentation 2012 (Litjens
et al., 2014b), respectively. Over the years, both the challenges have
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attracted numerous participants, who have submitted a wide range of
computational works and approaches to automatically segment distinct
ROIs from an assortment of imaging modalities. Some examples of
computational methods include U-Net based models, deep adversarial
networks, multi-stage models and hybrid approaches that combined
CNNs with other machine learning algorithms, such as support vector
machines (SVMs) or random forests (Litjens et al., 2014b, 2017b; Singh
et al., 2020; Isensee et al., 2021; Hatamizadeh et al., 2022a).

MSD-prostate: The aim of the medical segmentation decathlon is
to provide a comprehensive benchmarking platform for general pur-
pose algorithmic validation and testing that covers a large span of
challenges (Simpson et al., 2019). This is achieved through the open
sourcing of large medical imaging datasets on several highly different
tasks, and by standardizing the analysis and validation process. For this
survey, we only used the sub-set of medical images from the prostate
segmentation task. Presently, the MSD leaderboard reports the ranks
of 54 unique participants, however, it is not possible to ascertain the
names of all the associated works or authors. Nonetheless, two out
of the top-five are based on the U-Net architecture. Unfortunately,
we could not find any research articles corresponding to the works
occupying the fifth and the fourth positions (mean positions = 12.8 and
12.5, respectively) on the MSD leaderboard. When the nnU-Net (Isensee
et al., 2021) was first published, it was the top ranking algorithm,
but it is now in the third spot (mean position = 12.3). The nnU-Net
framework is a flexible segmentation method that automatically adapts
to a given dataset using 2D, 3D and cascaded U-Nets, and a robust data
processing pipeline.

Inspired by the success of transformers for natural language pro-
cessing, Hatamizadeh et al. (2022b) proposed a new architecture called
UNEt TRansformers (UNETR). With a U-Net backbone (but without
pure convolutional layers for feature extraction), the UNETR used
a pure vision transformer as its encoder. With the further develop-
ment and success of shifted windows (Swin) transformers (Liu et al.,
2021), an advanced version of the UNETR called Swin UNETR was
developed (Hatamizadeh et al., 2022a). The Swin UNETR achieved
exceptional results on multiple segmentation tasks, and gained the
second place with a mean position of 10.1. Liu et al. (2023) created
a universal model for organ segmentation and tumour detection using
embeddings learned from contrastive language–image pretraining. The
model was developed with 3410 CT scans collated from 14 datasets,
and attained the first rank on the public leaderboard of the MSD (mean
position = 12.3). However, for tasks of the MSD challenge that have MR
images (for example the prostate segmentation task), Liu et al. (2023)
submitted the output predictions obtained directly using the nnU-Net.
As the universal model and the Swin UNETR are transformer based, we
did not investigate them further in our work.

PROMISE-12: The Prostate MR Image Segmentation (PROMISE12)
challenge was set up to evaluate interactive and automatic prostate
segmentation algorithms on the basis of performance and robustness.
The challenge dataset consists of transversal T2-weighted MR images
from multiple centres, with differences in scanner manufacturers, field
strengths and protocols. The leaderboard has over 350 submissions
(including duplicate entries), and all the top-five algorithms use some
form of CNN-based architectures. With a score of 89.5858, the fifth
position is occupied by a boundary-weighted domain adaptive neural
network (BOWDA- Net) (Zhu et al., 2019). BOWDA-Net was trained to
focus more on the boundaries during segmentation using a boundary-
weighted segmentation. The nnU-Net framework used an ensemble
approach consisting of 2D and 3D U-Nets to win the fourth rank (score
= 89.6507) in the leaderboard (Isensee et al., 2021).

In third place with a total score of 90.3441, the Hybrid Discrimina-
tive Network (HD-Net) (Jia et al., 2019) consists of a shared encoder,
a segmentation decoder and a boundary decoder. It also incorporates
cascaded pyramid convolutional blocks and residual refinement blocks
along with attention blocks to extract contextual information. Qin
(2019) first trained a ResNet101 (He et al., 2016) on a private MRI
5

Fig. 3. Structure of the framework.

dataset, and then used transfer learning to achieve the second spot
with 90.7993 points. The method proposed by Qin (2019) designed
a multi-level edge attention module to overcome the difficulties of
ambiguous boundary in prostate MRI segmentation tasks. The highest
ranked network, called as a multi-scale synergic discriminative network
(MSD-Net) (Jia et al., 2022), reached an overall score of 91.9072. The
MSD-Net is a successor of the HD-Net with near identical components
and internal workings. Unfortunately, since the MSD-Net (Jia et al.,
2022), Qin (2019), HD-Net (Jia et al., 2019) and BOWDA-Net (Zhu
et al., 2019) are not U-Net based architectures, we did not consider
them for our evaluation.

4. Materials and methods

To ensure an objective comparison between the selected networks,
we created a framework as illustrated in Fig. 3. The framework serves as
a complete segmentation pipeline, where only the network architecture
varies. Each experiment begins with the selection of a model and a
dataset by the user. Since we want to achieve the finest possible results,
it is paramount to utilize the best parameters and settings. To handle
this, our framework provides an all-inclusive data-processing pipeline
(including formatting and data augmentations), automatic hyperparam-
eter selection based on modality, training-and-test procedures, and a set
of carefully selected evaluation metrics. Each part is described in detail
in this section.
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Fig. 4. Selection criteria for assessing SOTA models.
Table 1
Original information of the datasets.

Dataset name Voxel spacing (in mm3) [Min/Max] Volume shape [Min/Max]

Internal CT 1.099 × 1.099 × 3.0 [353∕636] × [353∕636] × [80∕642]
Internal MRI [0.260∕1.786] × [0.260∕1.786] × [2.0∕6.6] [112∕768] × [112∕768] × [22∕46]
MSD-prostate [0.600∕0.750] × [0.600∕0.750] × [3.0∕4.0] × 1 [256∕384] × [256∕384] × [11∕24] × 2
PROMISE-12 [0.273∕0.750] × [0.273∕0.750] × [2.2∕4.0] [256∕512] × [256∕512] × [15∕54]
Table 2
Configurations of dataset used in the experiments after processing and conversiona.

Dataset name #Samples (Train and Test) Voxel spacing (in mm3) Patch shape Batch size

Internal CT Train = 135, Test = 49 1.099 × 1.099 × 3.0 128 × 128 × 64 2
Internal MRI Train = 209, Test = 0 0.781 × 0.781 × 3.0 176 × 176 × 16 4
MSD-prostate Train = 32, Test = 0 0.625 × 0.625 × 3.6 228 × 228 × 16 2
PROMISE-12 Train = 50, Test = 0 0.613 × 0.613 × 3.6 224 × 224 × 16 2

aIn case of the MSD-prostate and PROMISE-12, the original datasets do not provide labels for the test set. Furthermore, the Internal MRI dataset does
not have a test set. In these instances, we calculated the metrics of the validation samples.
4.1. Selection of U-Net variations

The literature review showed clearly that, the U-Net and its variants
achieve SOTA performance in many applications. With these insights,
we determined the criteria for the model selection process.

Fig. 4 depicts the strategy we used to select the models based on
the following factors:

• The official source code of CNN’s architecture in PyTorch (Paszke
et al., 2019) was publicly available at https://paperswithcode.
com (Stojnic et al., 2021).

• The algorithm has an auto-encoder structure that resembles the
3D U-Net, or is a variant/expansion of the 3D U-Net network.

• The model’s experimental (training and testing) results should be
majorly based on 3D medical image segmentation tasks. A higher
preference was given to data concerning the prostate and PCa.

• The research introduced a novel multi-view and/or multiscale
network that aims to enhance its receptive fields and reduce
bottlenecks.

• Any alterations of network architecture should be limited to the
encoder–decoder blocks of the U-Net variations.

We subjected a substantial number of papers through the selection
riteria, and after an exhaustive inspection, four U-Net variants were
ominated (Model Selection block in Fig. 3). Their unique features are
6

elineated in the remaining part of this subsection.
The V-Net architecture replaced pooling layers of the U-Net with
down (strided) and up convolutions, so that there is a smaller memory
footprint during training (Milletari et al., 2016). It also used skip
connections within every encoder block to learn residual functions,
which further helped to expedite network convergence. In the original
publication, the V-Net was trained on 50 MRI volumes (with their
respective ground-truth annotations) of the PROMISE-12 challenge.

The authors of the attention U-Net (Oktay et al., 2018) found that by
employing the attention gate (AG) model in the U-Net, the network au-
tomatically learned to emphasize on target structures of varying shapes
and sizes. Initially, this model was trained and evaluated using two
separate abdominal 3D CT scans with a focus on segmenting pancreatic
boundaries. The attention U-Net was able to perform better than the 3D
U-Net by highlighting the important features, and therefore, effectively
suppressing the irrelevant regions in the images.

U-Net++ (Zhou et al., 2019) is a variation of the U-Net that intro-
duced additional convolutional layers on the skip pathways, intended
to bridge the semantic gap between encoder and decoder feature maps.
In addition, it also incorporated dense skip connections on the skip
pathways to improve gradient flow, and it also offered deep supervision
capable of pruning the model.

SegResNet (Myronenko, 2019) has a segmentation architecture
identical to the V-Net, with skip connections and strided convolutions.
In addition, due to a limited training dataset size, a variational auto-

encoder (VAE) branch was added to reconstruct the input image itself,

https://paperswithcode.com
https://paperswithcode.com
https://paperswithcode.com
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Table 3
Hyperparameter ranges used in the configuration search. MD stands for model
dependent, that is, the dropout rate used in the original implementation.

Parameter Lower bound Upper bound Default value

Starting 𝑙𝑟 10−6 0.1 10−4

𝛽1 of Adam optimizer 0.1 0.9 0.9
Dropout rate 0.0 0.7 MD
No. of initial channels 16 48 32
Weight decay 10−6 0.0 10−5

Table 4
Robustness of U-Net architectures on four separate prostate datasets using DC and HD95
metrics.

Dataset name Model name DC (↑) HD95 (↓)

U-Net 0.832 ± 0.053 3.434 ± 1.099
Internal CT Attention U-Net 0.835 ± 0.048 3.488 ± 1.014
Train = 135 SegResNet 0.832 ± 0.045 3.315 ± 0.671
Test = 49 V-Net 0.814 ± 0.053 3.774 ± 1.456

U-Net++ 0.834 ± 0.052 3.322 ± 0.959
nnU-Net 𝟎.𝟖𝟑𝟖 ± 𝟎.𝟎𝟓𝟎 𝟑.𝟐𝟒𝟓 ± 𝟎.𝟖𝟗𝟔

U-Net 0.843 ± 0.165 3.176 ± 10.439
Internal MRI Attention U-Net 0.848 ± 0.150 2.897 ± 9.852
Train = 209 SegResNet 0.845 ± 0.153 2.971 ± 9.726
Test = 0 V-Net 0.840 ± 0.164 3.442 ± 14.388

U-Net++ 0.848 ± 0.152 2.911 ± 9.705
nnU-Net 𝟎.𝟖𝟓𝟎 ± 𝟎.𝟏𝟒𝟗 𝟐.𝟖𝟐𝟓 ± 𝟗.𝟔𝟖𝟔

U-Net 0.826 ± 0.100 14.180 ± 5.349
MSD-prostate Attention U-Net 0.873 ± 0.077 𝟏.𝟗𝟓𝟖 ± 𝟏.𝟑𝟑𝟑
Train = 32 SegResNet 0.868 ± 0.085 2.414 ± 1.845
Test = 0 V-Net 0.820 ± 0.110 13.872 ± 8.515

U-Net++ 0.871 ± 0.109 1.970 ± 1.375
nnU-Net 𝟎.𝟖𝟕𝟔 ± 𝟎.𝟏𝟏𝟕 15.078 ± 75.203

U-Net 0.865 ± 0.141 2.861 ± 0.830
PROMISE-12 Attention U-Net 0.900 ± 0.091 𝟏.𝟒𝟑𝟔 ± 𝟎.𝟕𝟒𝟎
Train = 50 SegResNet 0.893 ± 0.085 1.573 ± 0.909
Test = 0 V-Net 0.865 ± 0.142 2.844 ± 0.921

U-Net++ 0.878 ± 0.100 2.809 ± 0.825
nnU-Net 𝟎.𝟗𝟏𝟎 ± 𝟎.𝟏𝟐𝟏 9.735 ± 7.566

to regularize the shared decoder and impose additional constraints on
its layers. SegResNet ranked second in the validation stage of the Brain
Tumour Segmentation Challenge 2021 (Baid et al., 2021), and in doing
so outperformed a transformer-based network.

The original 3D U-Net and the four variations: Attention U-Net, Seg-
ResNet, V-Net and U-Net++, were used in our framework experiments
across all the datasets.

4.2. Datasets

In this work, four prostate datasets were used: the internal CT and
MRI datasets, the MSD-prostate set (Simpson et al., 2019), and the
PROMISE-12 (Litjens et al., 2014b) samples. All four datasets have
a different sample size of 135, 209, 32, and, 50 respectively. It was
imperative that each dataset, irrespective of the modality, was pre-
processed appropriately. To ensure this, we have provided detailed
information on the four datasets, and how they were individually cu-
rated in the following. Table 1 provides information about the original
voxel spacings, and the range of shapes for each dataset, prior to
processing and reformatting.

Internal CT dataset. For this study, the internal CT dataset comprised
of scans that were collated from three different centres. Each centre:
Medical Center – University of Freiburg (C1), Hannover Medical School,
Hannover, Germany (C2), and Medical School of Nanjing University,
Affiliated Drum Tower Hospital, China (C3), contributed 114, 21, and
49 samples, respectively. Two experts from C1 delineated prostate
volumes for all patients in consensus. Complete information about the
data collection and contouring process is described in Kostyszyn et al.
(2020). Datasets of the C1 and C2 were combined as the training set,
and the scans from C3 were utilized as an independent test set.
7
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Internal MRI dataset. The internal MRI dataset was collected by the
clinical collaborators from C1. This dataset consists of 209 volumes of
multimodal (T2, ADC) MRIs, and similar to the MSD-prostate volumes,
we only opted for the T2-weighted scans for the experiments. Manual
contouring of the prostate was done by the physicians of the group, and
the detailed description of the private MRI dataset can be found in the
work done by Gunashekar et al. (2022).

MSD-prostate dataset. The MSD-prostate (Simpson et al., 2019) dataset
consists of 48 (training = 32, testing = 16) multimodal (T2, ADC)
D MRI samples. The volumes were obtained from a single source,
owever, they have non-uniform voxel-spacings. We selected the MSD-
rostate dataset for our comparisons as it has an abundance of inter-
ubject variability. Since the ADC modality is often taken into account
or tumour characterization (detection, classification, or segmentation),
e only considered the T2-weighted modality of the MSD-prostate
ataset for our experiments. This is because T2-weighted images pro-
ide most of the important anatomical information required for the
ask. Additionally, the annotated labels of the original MSD-prostate
ataset are separated into two regions: the central prostate gland, and
he peripheral zone. Therefore, we combined the two areas into a single
OI, so that the networks could learn whole prostate segmentations.

ROMISE-12 dataset. The public, PROMISE-12 (Litjens et al., 2014b)
ataset provides 80 (training = 50, testing = 30) volumes of transversal
2-weighted MRIs with prostate contours. This dataset is a compilation
f scans acquired from multiple centres and vendors with different
cquisition protocols. Due to this, there is a difference in the voxel-
pacings and the slice thickness of the volumes. Though, unlike the
SD-prostate dataset, the PROMISE-12 dataset has only one modal-

ty, and the foreground annotations encompass the complete prostate
lands.

.3. Implementation

All the necessary source code for the framework was implemented
n PyTorch (Paszke et al., 2019), to objectively compare and evaluate
ifferent U-Net variants. The design principles were inspired from
he nnU-Net (Isensee et al., 2021) framework, and the scripts were
onstructed with a few modules from the Medical Open Network for
rtificial Intelligence (MONAI) (Consortium, 2020) framework. The
etwork architectures were altered to ensure that the feature maps
ad a minimum of four voxels in each dimension. We did not further
lter the original implementations of the SOTA networks, including
he convolution and normalization layers (Ioffe and Szegedy, 2015),
ctivation functions, and dropout layers and probabilities.

Other than the internal CT dataset, the volumes in the other three
atasets have varying voxel spacings, as shown in Table 1. CNNs
isregard information about heterogeneous spacings while operating
n the voxel grids. To handle this heterogeneity in the datasets, all the
mages and their corresponding ground-truth labels were resampled to
he median target voxel spacings of their respective datasets, as listed
n Table 2. We employed trilinear and nearest-neighbour interpolations
o resample the images and annotated labels, respectively. Due to
he large image sizes in most biomedical cases, it is not possible to
it the complete volume into a GPU. For that reason, 3D patches of
he foreground and background, as listed in Table 2, were randomly
ampled with equal probabilities. This was done to ascertain that the
rainings would be smooth, and the networks would converge faster.

In the CT dataset, a few of the patients had metal objects inside
heir bodies, such as markers, for instance. To avoid high Hounsfield
nit values (bright spots) and a badly distributed normalized space,
ach patch of a CT scan was clipped to its 0.5 and 99.5 percentiles, and
hen standardized with the z-score normalization. The resultant patch
𝑋′) was computed using Eq. (1).

′ 𝑋(𝑖)−𝜇 (1)
(𝑖) = 𝜎 , 𝑥𝑖 ∈ 𝑋 = 𝑥0,… , 𝑥𝑛
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Table 5
Friedmann test performed on predictions of the U-Net variants to determine the
disparities using DC and HD95 metrics.

Dataset name DC 𝑝-𝑣𝑎𝑙𝑢𝑒 HD95 𝑝-𝑣𝑎𝑙𝑢𝑒

Internal CT 0.0001 0.0000
Internal MRI 0.0000 0.0000
MSD-prostate 0.0000 0.0000
PROMISE-12 0.0000 0.0000

Table 6
Statistical comparison of U-Net variants on the internal datasets. Wilcoxon signed-
rank tests were performed to evaluate statistical differences in the CNNs’ segmentation
performances. A p-value lower than 0.005 indicates that the medians between the results
f two models differ significantly. To check which model performed superiorly, see
able 4.
Dataset name U-Net variant DC 𝑝-𝑣𝑎𝑙𝑢𝑒 HD95 𝑝-𝑣𝑎𝑙𝑢𝑒

U-Net vs. Attention U-Net 0.4647 0.8320
U-Net vs. SegResNet 0.0742 0.2393
U-Net vs. V-Net 0.0205 0.0997
U-Net vs. U-Net++ 0.9643 0.2764
U-Net vs. nnU-Net 0.0717 0.3402
Attention U-Net vs. SegResNet 0.0742 0.8209

Internal CT Attention U-Net vs. V-Net 0.0941 0.1051
Train = 135 Attention U-Net vs. U-Net++ 0.0977 0.3277
Test = 49 Attention U-Net vs. nnU-Net 0.0175 0.0193

SegResNet vs. V-Net 0.0973 0.0725
SegResNet vs. U-Net++ 0.2346 0.7804
SegResNet vs. nnU-Net 0.0159 0.0205
V-Net vs. U-Net++ 0.0828 0.0383
V-Net vs. nnU-Net 0.0078 0.0069
U-Net++ vs. nnU-Net 0.0120 0.0366

U-Net vs. Attention U-Net 0.1207 0.2520
U-Net vs. SegResNet 0.3131 0.3044
U-Net vs. V-Net 0.5457 0.6381
U-Net vs. U-Net++ 0.0972 0.3026
U-Net vs. nnU-Net 0.0534 0.2597
Attention U-Net vs. SegResNet 0.3004 0.4159

Internal MRI Attention U-Net vs. V-Net 0.4950 0.3400
Train = 209 Attention U-Net vs. U-Net++ 0.1972 0.7701
Test = 0 Attention U-Net vs. nnU-Net 0.2148 0.5492

SegResNet vs. V-Net 0.3160 0.4473
SegResNet vs. U-Net++ 0.2582 0.3860
SegResNet vs. nnU-Net 0.4168 0.4391
V-Net vs. U-Net++ 0.5433 0.5889
V-Net vs. nnU-Net 0.6947 0.3911
U-Net++ vs. nnU-Net 0.2407 0.6016

where 𝑋(𝑖) is a voxel value at position 𝑖, 𝜇 the mean and 𝜎 the standard
deviation of patch 𝑋. Although data clipping was not done for any
of the MRI datasets, z-score normalization was performed after each
patch crop. During training, additional samples were synthesized; the
data pipeline carried out augmentations such as, elastic deformations,
gamma correction, random Gaussian noise, blurring, rotations, and
scaling.

Most of the 3D medical segmentation networks, including the U-Net
and its variants discussed so far, make use of one of these loss functions:
Binary Cross Entropy loss (BCE), or Dice Loss (dice) (Sudre et al., 2017)
or their combination (BCE-dice) (Milletari et al., 2016). For a predicted
segmentation 𝑃 and a ground-truth 𝐺, the loss functions are defined in
Eqs. (2), (3) and (4).

𝐿BCE = − 1
𝑁 ⋅

∑𝑁
𝑖=1 𝑔𝑖 ⋅ 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑔𝑖) ⋅ 𝑙𝑜𝑔(1 − 𝑝𝑖) (2)

dice = 1 −
∑𝑁

𝑖=1 𝑝𝑖𝑔𝑖+𝜖
∑𝑁

𝑖=1 𝑝𝑖+𝑔𝑖+𝜖
+

∑𝑁
𝑖=1(1−𝑝𝑖)(1−𝑔𝑖)+𝜖
∑𝑁

𝑖=1 2−𝑝𝑖−𝑔𝑖+𝜖
(3)

𝐿BCE-dice = 𝐿BCE + 𝐿dice (4)

where 𝑁 is the batch size, 𝑝𝑖 and 𝑔𝑖 are the predictions and ground-truth
labels for a given batch respectively, and 𝜖 = 10−6 (to avoid divide-by-
zero error). We used BCE-dice loss to evaluate the models, and then
computed the gradients.
8
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Table 7
Quantitative comparison of U-Net variants on the public datasets (an extension of
Table 6). The U-Net variant that has statistically significant values among all the
networks is marked in bold font. If a column does not have a value in bold, it means
there exists no statistical difference.

Dataset name U-Net variant DC 𝑝-𝑣𝑎𝑙𝑢𝑒 HD95 𝑝-𝑣𝑎𝑙𝑢𝑒

U-Net vs. Attention U-Net 0.0000 𝟎.𝟎𝟎𝟎𝟎
U-Net vs. SegResNet 0.0000 0.0001
U-Net vs. V-Net 0.7791 0.3272
U-Net vs. U-Net++ 0.0000 0.0000
U-Net vs. nnU-Net 0.0000 0.0000
Attention U-Net vs. SegResNet 0.0143 𝟎.𝟎𝟎𝟎𝟐

MSD-prostate Attention U-Net vs. V-Net 0.0000 𝟎.𝟎𝟎𝟎𝟓
Train = 32 Attention U-Net vs. U-Net++ 0.7593 𝟎.𝟎𝟎𝟎𝟗
Test = 0 Attention U-Net vs. nnU-Net 0.7248 𝟎.𝟎𝟎𝟎𝟗

SegResNet vs. V-Net 0.0006 0.0089
SegResNet vs. U-Net++ 0.0002 0.0710
SegResNet vs. nnU-Net 0.0004 0.0082
V-Net vs. U-Net++ 0.0000 0.0000
V-Net vs. nnU-Net 0.0000 0.0000
U-Net++ vs. nnU-Net 0.7648 0.0005

U-Net vs. Attention U-Net 0.0000 𝟎.𝟎𝟎𝟎𝟎
U-Net vs. SegResNet 0.0000 0.0000
U-Net vs. V-Net 0.0247 0.6115
U-Net vs. U-Net++ 0.0004 0.0002
U-Net vs. nnU-Net 𝟎.𝟎𝟎𝟎𝟎 0.0000
Attention U-Net vs. SegResNet 0.1876 𝟎.𝟎𝟎𝟎𝟎

PROMISE-12 Attention U-Net vs. V-Net 0.0000 𝟎.𝟎𝟎𝟎𝟎
Train = 50 Attention U-Net vs. U-Net++ 0.0000 𝟎.𝟎𝟎𝟎𝟎
Test = 0 Attention U-Net vs. nnU-Net 𝟎.𝟎𝟎𝟎𝟏 𝟎.𝟎𝟎𝟎𝟎

SegResNet vs. V-Net 0.0000 0.0000
SegResNet vs. U-Net++ 0.0000 0.0026
SegResNet vs. nnU-Net 𝟎.𝟎𝟎𝟎𝟏 0.0003
V-Net vs. U-Net++ 0.0096 0.0116
V-Net vs. nnU-Net 𝟎.𝟎𝟎𝟎𝟎 0.0036
U-Net++ vs. nnU-Net 𝟎.𝟎𝟎𝟎𝟎 0.0019

Throughout the training phases, we used the Adam optimization
algorithm with an initial learning rate of 1e−04, that decayed using
a polynomial scheduler (Myronenko, 2019) for 500 epochs. We used
L2 regularization on the convolution kernel parameters, with a weight
of 1e−05. The mini-batch sizes for all the datasets are listed in Table 2.
In the inference stages, we employed a sliding window approach with
an overlap of 25% to predict the prostate contours.

Several of the works discussed in Section 2 use DSC and HD metrics,
however, these metrics can be biased and limited (Maier-Hein et al.,
2018; Reinke et al., 2021). We selected the surface Dice similarity
coefficient (DC) (Nikolov et al., 2018), and the 95th percentile of
Hausdorff Distance (HD95) as metrics to measure the performances of
the U-Net variants. The metrics DC and HD95 are more stable to small
outliers, and are the current standard in the biomedical segmentation
community (Maier-Hein et al., 2022). The open-source implementation
of the DC metric can be found at DeepMind’s GitHub repository.2 The
HD95 metric is defined in Eq. (5).

𝐻𝐷95 = 95%
[

max
𝑝∈𝑃

(

min
𝑔∈𝐺

𝑑(𝑝, 𝑔)
)

+ max
𝑔∈𝐺

(

min
𝑃∈𝑃

𝑑(𝑔, 𝑝)
)

]

(5)

here 𝑑(𝑔, 𝑝) is the Euclidean distance between ground-truth tensor (𝑔)
nd predicted output (𝑝) of the network.

.4. Hyperparameter optimization

The hyperparameters settings can considerably influence the per-
ormance of a CNN. These parameters are not limited to the architec-
ural choices (e.g., the number of layers, initial weights) but are also
pplicable to learning rates, the optimizer’s momentum factors and reg-
larization techniques. Within the framework, we provide the option

2 Source code of surface Dice similarity coefficient: https://github.com/
eepmind/surface-distance.

https://github.com/deepmind/surface-distance
https://github.com/deepmind/surface-distance
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Table 8
Average inference time (in s) of each model required for predicting a label.

Model Internal MSD-prostate PROMISE-12 Internal
name CT dataset MRI dataset

U-Net 218.89 1.94 6.08 4.80
Attention U-Net 177.16 1.51 4.14 3.75
SegResNet 151.61 1.24 4.02 2.36
V-Net 180.75 1.87 5.17 4.38
U-Net++ 279.04 3.05 10.32 6.47
nnU-Net 250.39 1.53 4.47 3.01

of tuning the hyperparameters, such as the initial learning rate (𝑙𝑟),
Adam’s momentum parameter (𝛽1), the dropout rate (𝑑𝑟), the number
f initial channels in the convolutional layers, and weight decay. The
tate space of these hyperparameters is listed in Table 3. This was
mplemented using the Python package called HpBandSter (Falkner
t al., 2018). When needed, a total of 22 runs will be executed for each
odel, out of which 18 unique configurations are sampled for the final
eliberation of the parameters.

. Experiments and results

To analyse the capabilities of the networks, we examined the models
or all available volumes using a 5-fold cross-validation (CV). For the
nU-Net framework, we followed the steps detailed in Isensee et al.
2021). We ran our experiments on a NVIDIA Titan RTXs with 24 GB
emory. The CV method, for a single network on one dataset, was

ompleted in four and six days with our framework and the nnU-
et framework, respectively. In our study, we did not optimize the
yperparameters of the networks, however, for reference, each search
er model can be completed in approximately 5 − 7 days.

Since multiple groups based on different models are compared,
e used the Friedmann-test to check whether the repeated measure-
ents of the same volumes have the same distribution. When the

ppraisals were inconsistent, then a statistical analysis was done with
he Wilcoxon signed-rank test to identify the difference in performance
mong the networks. The Wilcoxon signed-rank test, which checks for
he null hypothesis that the median group difference is zero, was chosen
ue to the abnormal distribution and heteroscedasticity of the data. We
erformed a total of 120 statistical tests, between 120 pairs of models.
s the number of tests increased, so did the likelihood of a type I error,

hat is, a considerable number of false-negative differences could be
resent. This was accounted by adjusting the significance threshold
rom 0.05 to 0.005 using the Bonferroni correction. Consequently,
or our experiments, the confidence alpha was set to 0.5% for both
riedmann and Wilcoxon signed-rank tests.

.1. Segmentation accuracy and robustness

In Table 4, we have summarized the robustness of the U-Net and
ther SOTA networks with the help of the DC and HD95 metrics.
ig. 5 displays the predicted labels of each model for different datasets.
hroughout our experiments, we found out that the for datasets with

arger training sample size (greater than 100), all the U-Net variants
roduce nearly identical results. As evident in Table 4, for both the
nternal datasets, the segmentation accuracies of the nnU-Nets are
quivalent to that of the Attention U-Nets, SegResNets, and U-Net++.

For datasets with a smaller sample size (fewer than 100), such as
he MSD-prostate and PROMISE-12, we noticed a clear difference in
he segmentation accuracies of the U-Net variants. The nnU-Net outper-
ormed the other algorithms when the DC metric was considered. On
he contrary, the Attention U-Net appears to be the superior network,
hen assessed from the perspective of the HD95 metric. It can be noted

hat the generic U-Net and the V-Net architectures do not achieve good
9

esults for small sized datasets. l
.2. Statistical analysis

The results of the Friedmann tests for each dataset using DC and
D95 metrics are listed in Table 5. With a confidence level of 0.5%,

t can be inferred that there exists a difference in the performance of
he models across all the datasets. Subsequent statistical evaluation of
he different U-Net variants using the Wilcoxon test on the DC and
D95 values is shown in Tables 6 and 7. The details of the statistical
valuation for each dataset is described below:
Internal CT: In Table 6, for the DC metric the p-values range from

.0078 to 0.9643, and for the Hausdorff distance (95th percentile) the
-values range from 0.0069 to 0.8320. It is evident that there is no
ingle U-Net variant with a superior performance, however, it is worth
oting that the p-values for the nnU-Net when compared to the other
etworks is slightly better.
Internal MRI: Similar to the p-values for the internal CT dataset, the

odels do not exhibit significantly different behaviours for the in-house
RI volumes. Interestingly, the performance of the highest ranked nnU-
et model in Table 4 is similar to the networks in the lower position,
amely the V-Net and U-Net++. Overall, the range of p-values is 0.0534
o 0.6947 and 0.2520 to 0.7701 for DC and HD95 metrics, respectively.
MSD-prostate: In Table 7, the detailed pairwise multiple comparison

esults listed for DC and HD-95 metrics are contradictory. For the
C metric, although the p-values range from 0.0000 to 0.7791, the
erformances of almost all U-Net variants (except the U-Net and V-Net
ith lower accuracies) are similar. This is denoted by high p-values

or Attention U-Net, V-Net, U-Net++ and nnU-Net. On the contrary,
he p-values (range: 0.0000 to 0.3272) for the HD95 metric convey the
istinguished performance of the Attention U-Net (highlighted in bold).
s before, the U-Net and V-Net produce identical predictions, and the
-value of the SegResNet is greater than 0.005 against U-Net++ and
nU-Net, respectively.
PROMISE-12: The results of the Wilcoxon signed-rank test enumer-

ted in Table 7 resemble the segmentation accuracies of the U-Net
ariants recorded in Table 4. When considering the DC metric, the
nU-Net considerably outperforms the other networks, as indicated
y the low p-values. The other five U-Net based models showcase
omogeneous outcomes. Furthermore, it is also apparent the Attention
-Net surpasses the rest of the architectures for the HD95 metric.
nsurprisingly, the higher HD95 value for the nnU-Net diminished the
verall standing for the PROMISE-12 dataset.

To summarize, there is a substantial resemblance in the predicted
mages among all the networks for the internal datasets. Whereas, in the
ase of the public datasets, the nnU-Net and Attention U-Net secured
he top rankings, the SegResNet and U-Net++ occupied the middle
pots, and the U-Net and V-net were the worst performing models.

.3. Computation time

As outlined in Table 8, predicting using SegResNet, Attention U-Net,
nU-Net, and V-Net takes the least amount of time. U-Net takes slightly
ore time to produce the labels due to extra kernels in the auto-encoder

tructure. Also, the U-Net++ takes approximately 125% of time as
eeded for the U-Net as it contains multiple convolutional layers in the
kip connections. Even though the nnU-Net utilized deep supervision
uring training, it was disabled during inference, essentially, speeding
p the process. The required time to segment is large for the internal
T dataset, due to the large shapes of the images, and because each
olume is subjected to 5-folds using the sliding window approach.

. Discussion

CNNs have played a vital role in medical diagnosis and clinical
dvancements. Despite the efficiency of the U-Net and its variants
or prostate gland segmentation, they have flaws and associated chal-

enges. One such major challenge is the expense of data acquisition
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Fig. 5. A qualitative comparison of the accuracy of 3D U-Nets, Attention U-Nets, SegResNets, V-Nets, U-Net++ and nnU-Nets on the prostate-gland segmentation task.
and delineation, which ultimately leads to the limited availability of
the data. Furthermore, in most experiments, the patient images belong
to a particular study group, and due to ethical and privacy concerns,
the authors (owners) are unable to make them public. Another short-
coming is that, although large amounts of research get published, the
documentation needs to be improved to reproduce the performances.
Additionally, nearly all the openly available prostate annotated datasets
have MR modalities. Therefore, authors often limit their experiments to
in-house datasets. Consequently, these reasons make it almost impossi-
ble to judge the performances of multiple and make a fair comparison
objectively.

Another major obstacle to applying the outstanding anatomical
segmentation results of U-Nets in clinical routine (for example, prostate
contours before radiotherapy) is the complexity of medical software.
Generally, radiology and radiation oncology departments streamline
workflows for efficient reporting and image post-processing (Dias-
Santagata et al., 2022). Furthermore, we believe the local PACS (picture
archiving and communication system) and reporting platforms should
seamlessly integrate AI technologies for broader applications. But, at
the moment, there is a gap in AI training in the curriculum of medical
staff (Santomartino and Yi, 2022). If a comprehensive integration into
the clinical workflows is not provided, clinical departments would
need additional staff trained in imaging informatics to apply research-
based algorithms. We theorize that the acceptance of AI algorithms will
increase with the release of software that requires fewer manual steps
to obtain results in a clinical image viewer.

We tried to address all the aforementioned issues by introducing
a comprehensive evaluation framework covering the complete work-
flow, beginning with data pre-processing, data augmentation, training,
inference, and culminating with post-processing. Based on an extensive
review of the existing literature, we selected five SOTA architectures
for further evaluation. The properties of our chosen datasets com-
prised of different clinical settings with multi-modal data, varying
training samples, and homogeneous and heterogeneous datasets. A
crucial aspect of this study was the choice of evaluation metrics and
statistical comparison methods. We selected two of the foremost metrics
to validate the efficiency of the segmentation models, yet they provide
contradicting assessments in certain situations. For instance, when we
examined the DC and HD95 scores of the volumes from the private
datasets, we noticed that both the metrics endorse each other. However,
this consistency degrades when there are fewer samples in the datasets,
and then the nnU-Net and Attention U-Net compete with one another
for the highest rank. Therefore, we performed statistical analysis to
figure out whether there were noteworthy differences in performances.
10
With this, we were able to achieve conclusive proof and determine the
best networks.

Amongst the SOTA, the Attention U-Net and the nnU-Net are the
most versatile segmentation tools exhibiting generalizability, as they
top most of the tables, and consume less time to predict the labels.
It is worth noting that the models exhibit dissimilar performances
depending on the dataset properties. In the case of the internal datasets
and irrespective of the modality, all the models have indistinguishable
accuracies. With that being said, the DC metric standard deviations
for the MRI scans are greater than 0.1, and one reason is that a
sizeable number of MR volumes from this set have heterogeneous voxel
spacings. The large variances are also present in certain models for the
public datasets, including the nnU-Net, U-Net, U-Net++ and V-Net.

Additionally, we acknowledge that strengths and contributions of
other frameworks, such as MONAI (Consortium, 2020) and NiftyNet
(Gibson et al., 2018). We obtained the script for SegResNet from the
MONAI repository (contributed by the original authors of the model),
and integrated it in our framework. Although MONAI and NiftyNet
frameworks have a comprehensive list of networks, loss functions and
other APIs, our framework is built with an emphasis on prostate gland
segmentation from 3D images. Our work aims to contribute in the
direction of existing frameworks, so that we could collaborate and
collectively improve medical deep learning algorithms. Therefore, we
recommend not to directly deploy any of the SOTA architectures and
frameworks for a particular task, including the U-Net, Attention U-
Net and nnU-Net. Rather, thoroughly investigate the frameworks with
unique networks, analyse the performances of each combination for a
given dataset, and then pick the most suitable solution.

We thoroughly investigated the individual SOTA CNNs to the best
of their ability. However, we did not explore the combination of the
selected U-Net variants for clinical use. One possible option would be
to create a new architecture using the best features of the existing
ones, perhaps the attention-gate of the Attention U-Net (Oktay et al.,
2018) or the deep supervision technique of the U-Net++ (Zhou et al.,
2019). Another course of action would be to create a cascade of
two or three different (multi-stage) networks placed in conjunction to
one another. Several works have already implemented one or all of
these alternatives to exploit the spatial contextual information across
multiple modalities and extract semantically consistent features of
the prostate gland (Isensee et al., 2021; Jia et al., 2019, 2022). For
instance, depending on the properties of a given dataset, the model
configuration of the nnU-Net framework can be set to 2D, 3D-low
resolution, 3D-full resolution or 3D-cascade (two-stage: low resolution
plus full resolution) (Isensee et al., 2021). Furthermore, the nnU-Net
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has a modified version of the deep supervision technique to tune
the hidden layers of the decoder blocks. As stated in Section 2, both
the HD-Net (Jia et al., 2019) and MSD-Net (Jia et al., 2022) have
architectures with two decoders that share the same encoder. In ad-
dition, the HD-Net and MSD-Net use pyramid convolutional blocks and
residual refinement blocks in a cascaded fashion, as well as channel
attention blocks (loosely inspired by the V-Net Milletari et al., 2016,
SegResNet Myronenko, 2019 and Attention U-Net Oktay et al., 2018).
But, we could not find the original source-code of the MSD-Net and HD-
Net, and therefore were not able to reproduce the results. Regardless,
the impressive results of the nnU-Net (Isensee et al., 2021, 2022)
in the MSD challenge (Simpson et al., 2019) and the multi-modality
abdominal multi-organ segmentation (AMOS) challenge (Ji et al., 2022)
have demonstrated that DL algorithms can now achieve state-of-the-art
performance without human intervention for hyperparameter opti-
mization. These successes are beneficial as the images for both the
MSD and AMOS challenges were acquired across multiple institutions
and modalities during real-world clinical applications. Antonelli et al.
(2022) monitored the generalizability of the top ranked methods in
the MSD challenge for 2 years (since 2018), and surmised that precise
emantic segmentation networks can now be fully automated. The free
vailability of medical image segmentation methods permits clinical
esearchers with intermediate computer skills to use the software with
inimal or lack of AI specific knowledge.

As mentioned in Section 1, we analysed a few commercial prod-
cts for automatic medical images and extracting crucial informa-
ion (Estienne et al., 2020; Wong et al., 2020; Consortium, 2020). The
ccomplishments of the commercially available software tools have
roved that the AI driven systems can alleviate the workloads of the
ealthcare workers (Wong et al., 2021; D’Aviero et al., 2022; Radici
t al., 2022; Caba et al., 2023). The Division of Medical Physics at
reiburg is currently evaluating two different AI-systems (Estienne
t al., 2020; Wong et al., 2020) in a clinical setting. The results convey
hat the products can accurately contour different organs, for example,
he bladder, heart, and lungs. However, certain ROIs need minute
odifications to become clinically adaptable. This might stem from the

act that every clinic has its own distinctive procedures in the imaging
nd contouring process, that render the application of a general model
ifficult. These findings are in line with the results of our comparison
ramework, which showed that the best performing models depend
n the used dataset. It is our opinion that a full automation of the
orkflow is not yet credible. But with a thoroughly conducted network

election process or an additional fine-tuning step of vendor models,
egmentation performance could be further increased.

Most of our experiments with the four datasets for the prostate
creening application focused on diagnostic MR and CT sequences.
his, however, may not be applicable for real-world clinical phases.
ften low dose CT or fast MR sequences are used. For example, when
ositioning the patient and optimizing the treatment plan in ART. Such
echniques usually show increased noise and artefacts in the scanned
mages. One strategy to address this weakness was proposed by Gong
t al. (2022), who showed a generative adversarial network to restore
nd improve the image quality of the low-dose CT volumes. The authors
ntegrated a CT-linac platform with a DL algorithm to reconstruct
mages in order to meet the clinical feasibility requirements of ART.
ransfer learning can usher significant improvement in the delineation
f ROI and PCa, as evident in the study conducted by Kawula et al.
2023) with images collated from two MR-linacs. The use of ART for
ggressive tumours remains an essential component of organ-sparing
nd multimodality cancer treatment (Skup, 2010; Hall et al., 2021). By
mplementing automatic segmentation techniques in the context of an
nline adaptive workflow could help by shortening the re-contouring
ime and reducing inter-observer variability. Nevertheless, considerable
rospective evaluations are vital to substantiate that online ART with
utomatic DL approaches improve clinical outcomes for patients with
11

variety of malignancies (Hall et al., 2021). i
A potential robotic strategy consisting of a versatile automatic
egmentation algorithm in conjunction with ART could be used to
ptimize treatment planning and delivery. With the planned approach,
he DL network would provide feedback from imaging by localizing
nd capturing anatomical changes of the ROIs, so that the RT treat-
ent parameters could be customized for each patient (Hall et al.,
021; Kawula et al., 2023). There is a wide spectrum of hypothesized
dvantages, from shorter workflows (since manual contouring is time-
onsuming) (Kawula et al., 2023), to small toxicity improvements, and
opefully, meaningful gains in overall survival (Hall et al., 2021).

During the course of this research survey and evaluation, we discov-
red a difference in perspectives that computer scientists and clinicians
ave regarding the implementation of AI adjuncts for various manual
asks in clinical settings. For computer scientists, the focus may have
o shift from the pure development of algorithms to ongoing perfor-
ance monitoring, which would require collaboration with clinical

esearchers and epidemiologists. On the other hand, the algorithms
ould provide clinicians with an excellent opportunity to reduce the
ime spent on manual segmentations and cumbersome detection tasks,
uch as detecting small prostate metastases in a CT scan. Clinicians
an use this extra time to focus on more patient-centric work, such
s preparing multi-disciplinary meetings like in-hospital tumour con-
erences for optimal patient management, increasing patient–doctor
nteraction, and refocusing on diagnostic and therapeutic procedures
n radiology departments.

In the future, we plan to further carry out experiments on the
odels using samples from PROSTATEx (Litjens et al., 2014a), NCI-

SBI (Bloch et al., 2015), and PI-CAI (Saha et al., 2022) challenges, and
bserve how the models behave on intra-prostatic tumour segmentation
asks. We also hope to test these models on other modalities, such as
ET and multi-parametric MRI. With the required and appropriate mod-
fications, we aim to utilize these automatic segmentation algorithms
n various clinical applications, such as the diagnosis, prognosis, and
reatment of prostate cancer with an online adaptive workflow.

. Conclusion

This project explored the capabilities of five different variations
f U-Nets (including the original version), and applied them to seg-
ent the prostate gland from MR and CT images. We conducted

ur experiments on four prostate-contour-annotated datasets: inter-
al CT, MSD-prostate, PROMISE-12, and internal MRI. The networks
ere chosen based on criterias such as, source code availability and

eproducibility, and whether they were already applied in the biomed-
cal segmentation scenarios. This ease of integration opens a wide
pectrum of application for U-Net, with endless possibilities of novel
rchitecture designs. Considering the implementation strategies, most
uthors applied an end-to-end training-from-scratch tactic with mini-
al pre-processing, i.e. resizing and normalization. We also performed

tatistical analysis to compare the significance of the predictions of
ach model. Our results show that on volumes that were obtained from
mall sized source, the networks produce statistically different results.
owever, this difference in performance diminishes with a sufficiently

arge number of samples, irrespective of their modality. We investigated
nd benchmarked that the U-Nets can predict unbiased features of
he prostate biology from medical images. This combined with their
mpressive pace of operation could further help in the detection of
umours, and hopefully, alleviate the arduous procedure of radiation
herapy.
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