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Abstract

Cantilevered thin structures are among the most common building block of micro-
resonators. In fluidic environments, the surrounding fluid dissipates energy from the
micro-resonator. The underlying viscous fluid-structure interaction is well understood
for slender resonator geometries. However, for non-slender resonator geometries deter-
mining fluid losses remains challenging with both analytical and numerical approaches.
Here, we present a semi-numerical method for determining the steady-state dynamics
of wide micro-plate resonators in viscous fluids. The method is based on the Kirchhoff
plate equation to solve for the plate’s dynamics, while the hydrodynamic force acting on
the plate is determined from the Stokes equations with a boundary integral formulation.
The boundary integral formulation avoids discretizing the entire fluid domain and thus
avoids multi-scale issues. Two fluid flow formulations are introduced here, the first in
which a two-dimensional fluid flow is assumed, and the second formulation allows for
a three-dimensional fluid flow. The equation of motion is solved with the finite element
method. In numerical examples, the method is convergent with an exponent of the con-
vergence rate equal to 2. We determine quality factors of micro-plates in liquids and
observe excellent agreement with experimental data. Since the proposed method goes
beyond existing semi-analytical methods by accounting for two-dimensional vibrational
modes, novel unseen effects are investigated. For instance, in gases, the Euler-Bernoulli
(EB) modes (modes with nodal lines only along the plate’s width) exhibit the lowest
Q-factors, while non-EB modes exhibit the highest Q-factors. The opposite is found in
liquids, as EB modes show the highest Q-factors, and non-EB modes lower Q-factors.
We name this opposite Q-factor pattern in gases and liquids the gas-liquid-Q-inversion
(GL-Q-inversion). Experiments in water and air showed a Q-factor agreement with the
GL-Q-inversion, and differences in Q-factor between simulation and experiments were
below 25%. Differences in the resonance frequency are high for the EB modes in water
due to the two-dimensional fluid flow approximation. The second method is proposed,
inwhich a three-dimensional fluid flow is investigated using the unsteady Stokeslet. Re-
sults with the 3D fluid flow method exhibit even better agreement between simulation
and experiments. The results and methods shown here will pave the way to efficiently
exploit the two-dimensional vibrational modes of non-slender resonators to improve
MEMS performance in gaseous and liquid environments.
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1 Introduction

Chapter Contents
1.1 MEMS resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 MEMS resonators in fluids . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Modeling the dynamics of micro-beams and micro-plates in fluids . . 6

1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 MEMS resonators

Microelectromechanical systems (MEMS) are micrometer-scale devices that feature as
basic elements electrical and mechanical sensitive transducers integrated into individ-
ual components. Silicon MEMS are fabricated using well-established integrated circuits
(IC) and other batch processing techniques, e.g., physical and chemical vapor deposi-
tion, lithography as well as dry and wet etching. The batch fabrication process incurs
the potential for mass production at low cost and ease of integration with complex inte-
grated circuits at the chip level. Further advantages of siliconMEMS over macro-devices
include low power consumption, reliability, and, of course, small dimensions [1, 2, 3].

MEMS connect the physical world with the digital domain by converting the motion
of a micro-structure to electrical signals [4]. Most MEMS sense or actuate their envi-
ronment through the use of the dynamic response of a micro-structure, rather than its
static response, because dynamic MEMS transducers usually outperform static MEMS
transducers in responsivity, sensitivity, and accuracy [3]. In the cases of MEMS op-
erating at the elastic structure’s resonance frequencies, the devices are called MEMS
resonators, or resonant MEMS [5]. Resonant MEMS cover a wide range of applications
such as atomic force microscopy (AFM) [6, 7, 8], energy harvesting [9], bio-mimetic
robotic propulsion [10, 11, 12], viscosity sensors [13, 14, 15], micro-pumps [16], gas
composition sensors [17, 18] and micro-fanning [19].

While resonant MEMS span a wide range in geometric layout, materials, circuits
and packaging, they all employ three main principles based on the structure’s dynamic
response. They are: resonant amplification, resonance frequency shifting and Q-factor
alteration [2, 5].

1



Chapter 1 | Introduction
To introduce these three principles, we approximate the dynamic response of an

elastic structure with the damped harmonic oscillator (DHO) [20] equation, yieldinĝ = ̂/2 − 20 + j 0/ , (1.1)

where ̂ is the structure’s spectral displacement, ̂ is the applied force, is the struc-
ture’s mass, is frequency, 0 is the structure’s resonance frequency, j is the imaginary
unit and is the quality factor. Resonant amplification is the increase in the amplitude
of the spectral displacement ̂ per applied force ̂ when the structure is excited at the
resonance frequency 0. The resonant amplification is shown in the spectral displace-
ment shown in Fig. 1.1a for a Q-factor equals 100 which results in resonance amplifi-
cation of 100 at = 0. One example of a resonant amplification device is AFM, where
a laser beam is reflected on the surface of a slender cantilever vibrating at 0. From the
measurement of the reflected light, the tip-surface force is reconstructed which allows
determining the sample’s surface [7, 21, 22].

Resonance shifting is the alteration of the structure’s resonance frequency 0 by an
amount Δ 0 as exemplified in Fig. 1.1b. This effect is used to measure, for example,
particle suspension in a fluid [23, 15] and fluid’s density variation [17, 18], among other
applications. Q-factor variation refers to the change in the spectral response ̂ without
(or with small) variation in 0 as shown in Fig. 1.1. Different quantities, such as a fluid’s
viscosity for instance, can be determined by MEMS resonators by quantifying the Q-
factor alteration of the structure’s spectral response around 0 [24, 25].

For most MEMS resonators, a high Q-factor is desired. A higher Q-factor leads to
an enhanced resonant amplification, thus yielding a higher signal-to-noise ratio [26]. A
higher Q-factor also means a sharper resonance peak in the frequency spectrum, crucial
for measurements based on the resonance frequency shift such as in chemical [27] or
particle sensing [15]. Furthermore, a higher Q-factor is desirable for methods based on
the Q-factor variation.

The Q-factor is the ratio of the maximum energy stored in the MEMS resonator st
and the energy dissipated in one cycle of oscillation d [28] as= 2 std . (1.2)

Different dissipation mechanisms contribute to d and therefore limit the Q-factor
of MEMS resonators. Dissipation mechanisms are categorized as intrinsic and extrin-
sic. The intrinsic dissipated energy encompasses surface losses d,surface, material losses

2



1.1. MEMS resonators

a) Resonant amplification

10−1 100 10110−2
100
102 100×

/ 0

̂ /̂ [mN
−1 ] b) Resonance frequency shift

10−1 100 10110−2100
102 Δ 0

/ 0
̂ /̂ [mN

−1 ] Initial
Final

c) Q-factor alteration

10−1 100 10110−210
0

102

/ 0

̂ /̂ [mN
−1 ] = 5 = 10= 20 = 100

Figure 1.1: Different effects explored in MEMS resonators as a) resonant amplification, b) res-
onance frequency shift and c) Q-factor alteration shown in the spectral displacement ̂ as a
function of the normalized frequency / 0.
d,material, anchor losses d,anchor and thermoelastic dissipation (TED) d,TED [26, 28]. An-

chor losses refer to the energy loss of the vibrating structure to the substrate through
the anchoring region as shown in Fig. 1.2a. Thermoelastic dissipation is the energy loss
resulting from the heat flux between compressive-stressed and tensile-stressed regions
of the structure [29] as depicted in Fig. 1.2b.

Extrinsic dissipation mechanisms include all losses which occur outside the MEMS
resonator. MEMS resonators are commonly immersed in a fluid (either gas or liquid).
As the elastic structure of the MEMS resonator moves through the fluid, a fluid flow
is induced as shown schematically in Fig. 1.2c. The fluid dissipates energy through
viscous and acoustic losses [5, 30], quantified by d,viscous and d,acoustic, respectively. The
dissipated energy is the result of the summation of all different energy losses, which
yields = 2 std,surface + d,material + d,anchor + d,TED + d,viscous + d,acoustic . (1.3)

While specific MEMS applications require low-pressure environments due to the
absence of fluidic viscous and acoustic losses, a significant number of applications nec-
essarily occur in liquids or gases at ambient conditions. At the dimensions regime of

3



Chapter 1 | Introduction
a) Anchor losses

Min T

Max T
b) Thermoelastic losses c) Fluidic losses

Figure 1.2: Common forms of energy dissipation in MEMS resonators include a) anchor losses,
b) thermoelastic losses and c) fluidic losses. In a), a beam exhibits displacement in opposite
directions in blue and red, and the beam’s displacement generates elastic waves into the sub-
strate (in dark gray), which dissipate energy from the beam to the substrate as anchor losses.
In b), the beam’s displacement generates regions of higher temperature and regions of lower
temperature and the heat between these regions acts as a dissipation mechanism. In c), a beam
is represented with a torsional mode and the fluid flow is represented around a cross-section of
the beam. Maximum velocity is represented by yellow and minimum by dark blue.

the elastic structures of MEMS resonators, which range from a couple of micrometers
wide to hundreds of micrometers, when the resonators are immersed in a liquid, the
viscous fluidic losses dominate over intrinsic loss mechanisms, e.g., surface, material,
anchor, and thermoelastic losses, and the Q-factor of the MEMS resonator is defined
mainly through the fluidic viscous losses. In gases at ambient conditions, viscous fluidic
losses are expected of the same magnitude as other dissipation mechanisms [31, 32, 33].
Therefore, for MEMS resonator’s applications in fluids, determining the fluidic viscous
losses and strategies to minimize such losses are essential.

1.2 MEMS resonators in fluids

Different elastic structureswere investigated to develop highQ-factorMEMS resonators
in fluids [4, 34]. These micro-structures are typically based on thin structures, e.g.,
beams, plates, membranes, and strings. Beams are slender, thin structures and are the
most commonly used. When beams are clamped at one end and free at all others, they
are called cantilevered beams or cantilevers. Because of the cantilever’s geometric fea-
tures, their vibrational modes are restricted to effectively one-dimensional modes, e.g.,
transverse, torsional, lateral and extensional. Transverse and torsional are out-of-plane
modes, whereas lateral and extensional are in-plane modes. The out-of-plane modes
are characterized by the beam’s displacement predominantly in the normal direction to
its larger surface ( -direction) as illustrated in Fig. 1.3a and 1.3b. The transverse mode
has a displacement ( ), which is constant along the beam’s width ( -direction), while
torsional modes are described by their torsion angle ( ) around the -axis. Lateral

4



1.2. MEMS resonators in fluids

in-plane bending exhibits displacement ( ) in -direction primarily, while extensional
in-plane modes exhibit predominantly velocity ( ) in -direction.

a) Transverse b) Torsional

c) Lateral d) Extensional

Figure 1.3: One-dimensional vibrational modes of beams are the a) transverse, b) torsional, c)
lateral or d) extensional modes.

The transverse modes of cantilevers are widely used in gas environments where the
viscous dissipation is small and the Q-factors are high. However, in liquids, transverse
modes of cantilevers show a remarkably low Q-factor. For instance, in water, transverse
modes exhibit Q-factors ranging from 1 to 10 in the first vibrational modes and below 50
for higher-order modes [35, 19, 36, 37], as shown in Fig. 1.4. Torsional and lateral modes
exhibit similar Q-factors to the transverse modes at a similar frequency range, as seen in
Fig. 1.4. Extensional modes are the highest Q-factor modes of slender beams. However,
their resonance frequencies are much higher than the other modes. A further limitation
intrinsic to all the beam-based resonators is the small surface area of beams, which
limits the output signal height and the interaction surface, thus preventing applications
such as chemical and particle sensing. From data in Fig. 1.4, it is evident that achieving
high Q-factors (in order of hundreds) in liquids is cumbersome when using slender, thin
beams.

One alternative to slender beams for MEMS resonators in fluids is non-slender ge-
ometries, whose most simple example is micro-plates. Micro-plates are thin planar
structures that, different than beams, are not required to have small width. As a result,
the transverse vibrational modes of a micro-plate are not effectively one-dimensional
but rather two-dimensional. For instance, Fig. 1.5 shows fifteen transverse modes of a
cantilevered square plate. The vibrational modes are shown using Leissa’s notation [43],

5



Chapter 1 | Introduction

0.01 0.1 1 10
f [MHz]

50

150

250

350

Q
[-
]

Transverse - beam
Lateral - beam
Extensional - beam
Transverse - Plate

Figure 1.4: Experimental Q-factor of beams and plates in water. Beam data: transverse modes
from [35, 36], lateral modes from [27, 38, 39] and extensional modes from [40]. Plate data:
transverse modes from [41, 42].

which categorizes the vibrational modes according to their nodal lines as x ∶ y. x is
the number of nodal lines perpendicular to the plate’s length, and y is the nodal lines
perpendicular to its length as depicted in Fig. 1.5. Note that the transverse vibrational
modes of plates encompass Euler-Bernoulli (EB) modes which are x ∶ 0modes, as well
as torsional modes, which are x ∶ 1. Vibrational modes with two or more nodal lines
parallel to the plate’s length ( y ≥ 2) and only one nodal line parallel to the plate’s
width ( x = 1), are the roof tile-shaped (RTS) modes. Other plate modes, with y ≥ 2
and x ≥ 2, we name higher-order plate (HOP) modes.

Recently it has been discovered experimentally that the transverse modes of wide
micro-plates exhibit very high Q-factors in liquids [41, 42, 24, 30]. Experimentally, a
Q-factor of 360 was obtained in water at three MHz as shown in Fig. 1.4. Due to the
complexity of the experimental analysis, the experiments with wide micro-plates fo-
cused on the roof tile-shaped modes. Despite the experimental findings of the high
Q-factor of roof tile-shaped modes, the application of micro-plates in liquids has been
so far limited to only a few studies [41, 15, 30, 24]. One reason for the yet limited use
of micro-plates for liquid applications is the lack of methods for efficiently predicting
micro-plates’ dynamics in viscous fluids.

1.3 Modeling the dynamics ofmicro-beams andmicro-plates

in fluids

For modeling the dynamic of slender micro-beams in viscous fluids, numerous semi-
analytic methods exist and are summarized in Table1.1. Semi-analytic methods are here
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Torsional
modes

Euler-Berounlli
modes

Roof tile-shaped
modes

Higher-order plate
modes

Figure 1.5: Fifteen vibrational modes of a cantilevered square plate identified using Leissa’s
notation. The black solid line represents the nodal line at the clamped region. Blue dashed lines
are the nodal lines perpendicular to the plate’s length, and green dashed lines are parallel to the
plate’s width.

defined as methods in which the vibrational mode of the elastic structure is obtained
analytically (usually in vacuum). In contrast, a numerical method is applied to deter-
mine the force acting on the structure due to the fluid flow. This fluid force acting on the
structure in the context of MEMS-fluid interaction is usually named the hydrodynamic
force [31, 44, 32]. One of the first semi-analytic methods used to determine beam-fluid
dynamics accounted for solely the inertial forces (IF) in the fluid (inviscid fluid model),
which reduces the resonance frequency of an immersed cantilever due to the added-
mass effect [45, 46]. Due to the inviscid assumption, Chu’s model can only predict the
beam’s resonance frequencies 0 of the beam in fluids, not the Q-factor.

Sader [31] proposed a landmark semi-analytic method to determine the dynamics
of a slender micro-beam vibrating in transverse modes in a viscous fluid. The hydro-
dynamic force, composed of inertial forces and viscous forces (VF), on the beam, is
calculated by introducing a correction to the hydrodynamic force on a circular cylin-
der. The fluid velocity along the beam’s length is considered negligible, allowing for
a two-dimensional (2D) formulation of the fluid flow as illustrated in Fig. 1.6. Subse-
quent semi-analytic methods (which also used the EB vibrational modes) incorporated
more aspects in the scope of the micro-beam fluid interaction problem for the two-
dimensional fluid flow formulation. For instance, semi-analytic methods were proposed
for determining the dynamics of a beam near rigid or elastic surfaces [48, 49, 50], or
even for determining the dynamics of arrays of cantilevers in the fluid [51, 52, 53].
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Geometry Semi-analytic methods
and mode 2D 3D

Beam - Transverse Inertial forces (IF) + Inertial forces (IF)[45, 46]
Viscous Forces (VF) [31] IF + VF [47, 44]
IF + VF + nearby surfaces[48, 49, 50] IF + VF +
IF + VF + array of beams[51, 52, 53] compressibility [54]

Beam - Torsional IF + VF[33, 55] IF + VF [47]
IF + VF + nearby surface[32] IF + VF +
IF + VF + Nearby wall [48, 56, 57] compressibility [54]

Beam - Extensional IF +VF [38, 27]

Beam - Lateral IF + VF [38, 27, 58, 59]

Plate - Transverse IF + VF + Infinitely wide
plate [60, 61]

Table 1.1: Summary of existing semi-analytic methods for micro-beams and micro-plates in flu-
ids. IF stands for inertial forces, and VF for viscous forces. 2D and 3D stand for two-dimensional
and three-dimensional fluid flow formulation, respectively.

Figure 1.6: a) Illustration of the fluid flow around a plate. Blue arrows represent regions with
higher fluid velocities. Red arrows represent where the fluid flow can have higher axial velocity.
b) Fluid flow around a cross-section of a beam that vibrates in a flexural mode. Bright yellow is
the maximum velocity, and purple is the minimum.

A more recently proposed semi-analytic method for transverse modes of cantilevers
considered the three-dimensional (3D) nature of the fluid flow for incompressible [47]
and compressible flow [54]. The extent of validity of the two-dimensional fluid flow
approximation was the target of several studies, which use purely numerical methods
to investigate the beam-fluid interaction problem [62, 35, 63, 19]. By purely numer-
ical methods, here we define the methods in which the fluid and elastic domains are
both discretized, which leads to large computational costs. Comparison between purely
numerical and semi-analytic methods show that the 2D flow formulation accurately
predicts the hydrodynamic force on the plate everywhere except near the cantilever’s
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free edge [64]. The two-dimensional fluid model overestimates the hydrodynamic force
near the cantilever’s free edge. Consequently, 2D fluid flow approximation is expected
to underestimate both the beam’s resonance frequency and the Q-factor compared to
purely numerical predictions. These differences were smaller than 5% up to the third
transverse mode and increased to 20% in the sixth transverse mode [35].

For torsional modes also, there are semi-analytic modes that consider inertial and
viscous forces in 2D [33, 55] and 3D [47] fluid flow formulations, as well as the ef-
fect of nearby surfaces [32] and compressibility effects [54] as summarized in Table1.1.
Recently semi-analytic methods focusing on the viscous forces were also proposed for
extensional modes [38, 27] and lateral modes [38, 27, 58, 59].

For non-slender geometries in viscous fluids, existing semi-analytic methods are
applicable only for infinitely wide plates, which limits the vibrational modes to trans-
verse modes similar to those present in Euler-Bernoulli beams [60]. The limits of the
semi-analytic methods are more clearly made visible through the radar plots in Fig. 1.7,
which summarizes the semi-analytic methods for the transverse modes of micro-beams
and micro-plates in terms of the fluid flow approximation (2D or 3D formulations); the
structure is categorized in beams (slender structures) or plates (wide structures); and
the vibrational modes are divided in EB, torsional, RTS and HOP. Note that the RTS
and HOP modes are not predicted by any semi-analytic method.

The lack of semi-analytic methods for non-slender MEMS resonators in viscous flu-
ids occurs because solving for the dynamics of wide resonators in arbitrary modes im-
plies a departure from the assumptions that make the semi-analytic approaches possi-
ble. For instance, to solve for the plate dynamics, either an elasticity theory or a plate
theory is required. In either case, for cantilevered boundary conditions, analytic solu-
tions are unknown and thus numeric techniques are required [65], thus preventing the
existence of a semi-analytic method for plate-fluid interactions. Due to the complexity
of solving the plate-fluid interaction problem, a few studies favored solving this fluid-
structure interaction problem with the Finite Element Method (FEM) in a monolithic
form (by discretizing both the elastic domain and the fluid domain [66, 42, 64, 67])1. Re-
sults obtained with FEM agree with experimental data within 10% for low order modes
both using 2D and 3D fluid flow [66, 66, 67]. However, due to the high computational
cost, only the 2D fluid flow simulations were capable of solving RTS and HOP modes
and an agreement within 50% with experimental data was reported for the eighth RTS
mode [42, 66]. Solving the plate-fluid interaction problem in a monolithic form with

1In [42, 66, 64] the transient dynamics of the plate is solved with the software ADINA or Comsol
Multiphysics when a single vibrational mode is imposed as an initial condition. In [67], the eigenvalue
problem is solved with Comsol Multiphysics.
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(a) Semi-analytic methods [31, 48, 49, 50, 51, 52,
53].
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(b) Semi-analytic methods [45, 46, 47, 44, 54].
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(c) Semi-analytic methods [33, 55, 32, 48, 56, 57]
.
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(d) Semi-analytic methods [47, 54].
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(e) Semi-analytic methods [60, 61] .

Figure 1.7: Semi-analytic methods for the transverse modes of slender and non-slender MEMS
resonators in viscous fluids.
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FEM requires fine fluid meshing over a huge volume compared to the size of a fluid
mesh cell. Moreover, micro-plates’ in-plane dimensions are much larger than the oc-
curring transverse deflections. This multi-scale character of the problem results in dis-
cretization requirements that are difficult to fulfill [68]. Also, the pressure gradient near
the edges of the micro-plate is high [69] which imposes additional discretization re-
quirements in these regions. These aspects limit the applicability of purely numerical
methods for solving the plate-fluid interaction problem.

1.4 Objective

The objective of this thesis is to numerically investigate the dynamics of non-slender
MEMS resonators in viscous fluids, thus expanding the scope of geometries available for
fluidic operatingMEMSdevices. For that purpose, we propose a semi-numericalmethod
for determining the steady-state dynamics of micro-plate resonators immersed in vis-
cous fluids. Fig. 1.8 highlights graphically the objective of the proposed semi-numerical
methods. The proposed method overcomes the limitations of the existent beam-based
semi-analytic methods by accounting for two-dimensional vibrational modes (roof tile-
shaped modes and higher-order plate modes) of non-slender MEMS resonators, whose
dynamics in viscous fluids remain elusive. Given that several semi-analytic methods for
beams assume a two-dimensional fluid flow, in this thesis we investigate a 2D fluid flow
formulation, as well as a 3D fluid flow formulation. Using both formulations allows for
determining the limits of the two-dimensional flow approximation and its effects on
MEMS resonators.

With the proposed semi-numerical methods, we seek to determinewhich vibrational
modes exhibit the highest Q-factor in liquids and gases and the underlying dynamics
leading to the high Q-factor. Also, since the method is valid in the entire range from
slender beams to plates, investigating the structure’s dynamics and the fluid flow as the
elastic structure changes dimensions is of great interest, as it provides insight into cru-
cial differences between slender and non-slender resonators. Moreover, we aim to find
novel effects in the micro-resonator-fluid interaction that are not present in the beam-
fluid interaction. Note that this range of analysis in non-slender MEMS resonators is
not feasible with a purely numerical method, given the huge computation cost asso-
ciated with this multi-scale fluid-structure interaction problem, and is only with the
proposed methods made possible.
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(a) 2D fluid flow formulation.
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(b) 3D fluid flow formulation.

Figure 1.8: Two different semi-numerical methods are proposed for investigating the dynamics
of non-slender geometries in viscous fluids: a) assuming a two-dimensional fluid flow and b)
assuming a three-dimensional fluid flow.

1.5 Thesis outline

This thesis is divided into three main sections. Section I comprises chapters 2 to 5 and
refers to developing the 2D fluid flow method. In Chapter 2, a dimensional analysis
is performed, and the mathematical formulation for the micro-plate-fluid interaction
problem is defined. In Chapter 3, numerical methods to solve the plate dynamics (with-
out a fluid) are defined, and in Chapter 4, the boundary integral formulation for the
2D fluid flow is introduced. Chapter 5 presents the convergence and validation of the
proposed method with literature data.

Section II of this thesis applies the proposed method and reports on the results and
limitations found. In Chapter 6, the method is applied to determine the Q-factor and
added-mass effect as the structure ranges from a beam to a plate and the resulting fluid
flow in each case to understand the beam-plate transition. In Chapter 7, a wide plate is
considered in gases and liquids. This analysis revealed the existence of a phenomenon
that we define as the Gas-Liquid modal Q-factor inversion. An experimental analysis
is carried out in liquids and gases in Chapter 8, indicating the 2D flow’s validity and
limits.

Section III of this thesis overcomes the limit of two-dimensional fluid flow formula-
tion and the three-dimensional fluid flow around plate resonators is investigated. Chap-
ter 9 introduces the three-dimensional fundamental solution to the Stokes equations,
and the semi-numerical method, which accounts for the three-dimensional fluid flow,
is defined. Chapter 10 concerns the convergence and validation of the new proposed
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method. Chapter 11 analyzes the two semi-numerical methods proposed to identify
the limits of the 2D and 3D fluid flow and its effects on the Q-factor prediction for
the different plate vibrational modes. Chapter 12 is the conclusions and outlook of the
thesis.

Parts of this thesis were published in similar form in the author’s works [70, 71, 72].
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Part I

A semi-numerical method for
micro-plates in viscous fluids with a

two-dimensional fluid flow
formulation
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2 Mathematical formulation

To define a suitablemathematical formulation for themicro-plate-fluid interaction prob-
lem, a dimensional analysis is necessary. With the dimensional analysis, we define the
governing equation for the fluid flow dynamics and for the elastic body dynamics, as
well as the interface conditions between the elastic body and fluid. Throughout the di-
mensional analysis, an elastic body with width , length and thickness ℎ, completely
immersed in a viscous fluid as illustrated in Fig. 2.1 is considered.

Figure 2.1: Elastic structure immersed in a viscous fluid. The structure has a length , width
and thickness ℎ and is represented vibrating in a torsional mode. A fluid flow is represented

around a cross-section of the structure. Maximum fluid velocity is represented by bright yellow
and minimum by dark blue.

2.1 Elastic body dynamics

The dynamics of an elastic body of arbitrary shape are commonly determined using a
linear elasticity equation. However, most MEMS structures are rather simple in geome-
try. For example, beams, membranes and plates are common structures used in MEMS
resonators [4]. For such structures, simplified elastic models exist which facilitate the
development of methods for solving the structure’s dynamics.

A classic example of simplified elasticitymodels for elastic bodies is the Euler-Bernoul-
li beam theory. The Euler-Bernoulli beam theory is valid for long slender beams whose
length greatly exceeds the beam’s width and thickness ℎ. The Euler-Bernoulli beam
theory assumes that a cross-section of the beam remains perpendicular to the beam’s
neutral axis when deformed as represented in Fig. 2.2a. The resulting partial differen-
tial equation (PDE) for the out-of-plane displacement of the beam with the Euler-
Bernoulli theory is 4 + ℎ 2 2 = , (2.1)

where is the Young’s modulus, is the moment of inertia, is the beam’s density and
is the external force.
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Figure 2.2: Representation of the neutral axis and cross-sections in a) Euler-Bernoulli beam and
b) Timoshenko beam. The beam is in both cases considered cantilevered on the left edge.

If the beam’s thickness is increased, the effect of shear forces along the beam’s thick-
ness must be considered, resulting in a cross-section no longer perpendicular to the
neutral axis as depicted in Fig. 2.2b where Θ is the deformation angle due to the shear
forces. The simplified theory for thick beams is the Timoshenko beam theory. A non-
dimensional quantity that is typically used to classify the beam as a thin beam or thick
beam is the shear coefficient Sf given bySF = 3 ℎ22 , (2.2)

where is Timoshenko shear coefficient (5/6 for rectangular cross-sections) and is the
shear modulus. SF is obtained from the static Timoshenko beam equation and we apply
it here as a guide, not as a strict rule since the dynamic effects alter the limit between the
thin beam and the thick beam theory. For SF > 0.01, Timoshenko’s beam theory must
be applied, otherwise, SF ≤ 0.01 the beam is considered thin and the Euler-Bernoulli
equation accurately predicts the beam’s dynamics.

Note that SF does not account for the beam’s width , since both theories assume<< . If the beam becomes wider, the Euler-Bernoulli beam theory and Timoshenko
beam theories are no longer valid and a two-dimensional simplified elasticity theory
must be used. The generalization of Euler Bernoulli’s theory for a wide structure is the
Kirchhoff plate theory. The assumptions in the Kirchhoff plate theory are that the per-
pendicular straight lines before deformation (in blue in Fig. 2.3) remain straight after
deformation, and they experience no elongation. Furthermore, the transverse normalp are perpendicular to the plate’s neutral plane Ωp (also called midplane) either in the
undeformed or in the deformed states [65]. With these assumptions, the displacement
of the plate’s midplane ( , ) fully describes the plate dynamics and the displacement
is independent of the -direction. The Kirchhoff plate theory is also known as the clas-
sical plate theory, or thin plate theory [65]. For an isotropic plate undergoing purely
out-of-plane displacement , the Kirchhoff plate equation isℎ3(1 − 2)12 ( 4 4 + 2 42 2 + 4 4 ) + ℎ 2 2 = , (2.3)
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where is the Poisson coefficient.

Figure 2.3: Representation of a) deformed and b) undeformed thin plate. p is the neutral
plane’s normal vector.

When the plate’s thickness is increased, shear forces in each cross-section may no
longer be neglected and the Kirchhoff-Love plate theory is no longer valid. A simplified
elasticity theory for thick plates is the Reissner-Mindlin plate theory [65]. The Reissner-
Mindlin plate theory is the generalization of the Timoshenko beam theory for wide
structures.

To determine the more appropriate simplified elasticity equation for the micro-plate
fluid interaction problem let us introduce different geometries used in previous studies
in MEMS resonators whose dimensions are listed in Table 2.1. The thickness of the elas-
tic structures used in the micro-resonators ranges from hundreds of nanometers to tens
of micrometers, whereas their in-plane dimensions (length and width) vary between
tens of micrometers to millimeters [5].

Along with the dimensions, also the structures’ aspect ratio a = / and the thick-
ness ratio t = ℎ/ are given in Table 2.1. Thin plate theory must be used when the
plate’s aspect ratio a is smaller than 10 [65] and the thickness ratio is small enough so
that SF<0.01. For Silicon, SF = 0.01 occurs for a thickness ratio of t = 0.12 using the
properties given in Table 2.2.

Fig. 2.4 shows the shear coefficient Sf as a function of the aspect ratio a and thick-
ness ratio t for a silicon structure. Also in Fig. 2.4 a gray dash-dotted line marks the
aspect ratio of 10 which divides the structures into beams and plates. Points in white
in Fig. 2.4 stand for the a and t pair of different geometries used in MEMS resonators
whose dimensions are listed in Table 2.1. Note that the majority of resonators are in
the thin plate regime with a < 10 and t < 0.12. Fig. 2.4 highlights that even beam res-
onators that vibrate in conventional Euler-Bernoulli modes would be more accurately
modeled using a plate theory due to their high aspect ratio.

From the analysis here presented, it is evident that a thin plate theory accurately
models the elastic structure’s dynamics of a wide range of micro-resonators geometries
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Letter Study Length [µm] Width [µm] Thickness [µm] a [-] t [-]
a Kim [73] 150 10 0.2 15 0.02
b Tung [48] 250 25 1 10 0.04
c Clark [53] 197 29 2 6.8 0.068
d Chen [22] 90 35 2 2.57 0.057
e Chen [22] 130 35 2 3.71 0.057
f Chen [22] 250 35 2 7.14 0.057
g Chen [22] 350 35 2 10 0.057
h Kim [73] 458 51 2 8.9 0.04
i Ruiz-Diez [42] 500 300 11.5 1.67 0.04
j Patocka [15] 1250 1000 21 1.25 0.02
k Kucera [41] 2524 1274 22 1.98 0.17

Table 2.1: Dimensions of selected beams and plates used in MEMS resonators in previous stud-
ies. Arranged in the order of increasing width.

Property Young’s modulus Poisson coefficient Shear modulus
Variable E G

Value 169 GPa 0.064 79 GPa

Table 2.2: Silicon properties approximated as an isotropic material [74].

Figure 2.4: Shear coefficient Sf as a function of the aspect ratio a and thickness ratio t. The
gray dash-dotted line marks the limit between beam and plate theories. The black dashed line
serves as a guide to define the limit between thin and thick elasticity theories. Points a to k refer
to different beams and plates used in previous studies of MEMS resonators.

A thin plate theory not only allows for the modeling of two-dimensional vibrational
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modes of plates but is also more accurate for determining the dynamics of the slender
structures with aspect ratio a < 10 which are encountered in MEMS.

2.2 Fluid flow dynamics

The fluid flow around micro-plates occurs in different flow regimes depending on the
structure’s dimensions and the fluid properties [75]. In essence, these regimes are due
to the rarefaction, compressibility and ratio of inertial per viscous forces in the fluid
flow. Depending on the type of fluid flow, a different set of governing equations is used
to determine the fluid flow.

2.2.1 Rarefaction

The rarefaction of the fluid flow around MEMS is associated with the mean free path
length mfp in the fluid. Rarefaction effects occur when the gasmolecules are so far apart
from each other that the fluid can not be considered a continuum. The mean free path
length is the average distance a particle moves between two consecutive collisions with
other fluid particles. The non-dimensional parameter that characterizes the rarefaction
of the fluid flow is the Knudsen number Kn, defined asKn = mfpchar (2.4)

where char is a characteristic length of the system [76, 75].
Kn is used to determine whether the flow regime is in the free molecular flow, transi-

tion flow, slip flow or continuum flow. The four types of flow regimes due to rarefaction
are represented in Fig. 2.5 for a free stream flow with velocity 0 around a structure
with characteristic length char. For Kn < 0.01 the fluid flow is considered in the con-
tinuum, the fluid particles constantly hit each other and transfer momentum among
themselves. As a result, the fluid is described with average fluid properties such as den-
sity f , dynamic viscosity f and kinematic viscosity f . In the continuum regime, the
Navier-Stokes equations accurately describe the fluid flow dynamics [75, 76]. Further-
more, the no-slip boundary condition is valid, thus the fluid flow velocity at the wall
of the structure wall is zero and a boundary layer is formed in which the fluid velocity
ranges from 0 at the wall to the free-stream velocity 0.

For 0.01 < Kn < 0.1, the fluid flow is categorized as slip flow. In the slip flow regime,
the Navier-Stokes equations are still valid to solve for the fluid dynamics, however, the
no-slip boundary condition does not provide a good agreement between experimental
and theoretical results. A slip boundary condition must be applied in which wall ≠0 [77, 75]. The transition regime is defined for 0.1 < Kn < 10. In the transition regime,
free stream particles collide with reflected particles transferring momentum to each
other, however, the continuum and thermodynamic assumptions break down and the
Navier-Stokes equations are no longer valid [76]. For 10 < Kn, the flow is considered free
molecular flow and the collisions between free stream particles and reflected particles
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Figure 2.5: Fluid flow regimes around a structure with characteristic length char divided in
a) continuum flow, b) slip flow, c) transition flow and d) free-molecular flow according to the
Knudsen number Kn. The solid black line represents the boundary layer, and the red solid line
the velocity profile inside the boundary layer. Black circles represent free stream particles and
red circles the reflected particles.

are negligible, that is, the free stream particles are influenced by the structure only after
the particle collides with the wall.

The flow around MEMS resonators immersed in air at standard ambient tempera-
ture and pressure (SATP)1 is in the continuum regime for structures whose characteristic
length is above 6.5 µm ( char > 6.5 µm), as shown in Fig. 2.6. MEMS with 0.5 µm < char <6.5 µm in air at SATP are in the slip flow regime. Non-continuum flows occur more
commonly in gases because mfp is larger in gases than in liquids. For instance, air at
SATP has a mean free path equals to 61.1 nm, while water’s mfp is 0.13 nm [78]. Table
2.3 summarizes the properties of air and water at SATP.

For micro-beams and micro-plates, the characteristic length is usually the struc-
ture’s width [76]. Fig. 2.6 shows the points a to k in black dots which refer to the
Knudsen number of different beams and plates used in previous studies of MEMS res-
onators whose dimensions are shown in Table 2.1. From this analysis, it is evident that
the flow around micro-plates is most commonly in the continuum regime both in air
and in water. The exception is for very small structures ( char < 6.5µm) in gases2.

2.2.2 Compressibility

Compressibility is the effect that the fluid’s density f alters depending on applied pres-
sure. If the applied pressure is dynamic, it leads to a pressure wave that propagates
through the fluid. There are two aspects to determine whether a flow is compressible

1In SATP, the standard temperature is 298.15 K and the standard pressure is 100 kPa.
2Certain MEMS applications do not occur at SATP, but rather in gases at low-pressure conditions. For

these applications, the validity of the method must be verified given that the mean free path is inversely
proportional to the pressure
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Figure 2.6: Knudsen number of the fluid flow around micro-plates with different char in air.
Points a to k refer to different beams and plates used in previous studies of MEMS resonators.

Property Variable Air Water

Mean free path mfp 61 nm 0.37 nm

Density f 1.223 kgm−3 997 kgm−3
Dynamic viscosity f 18.1 µPa s 890 µPa s

Kinematic viscosity f 15.08 mm2 s−1 0.892 mm2 s−1
Speed of sound s 343 m s−1 1500 m s−1

Table 2.3: Properties of air and water at SATP used in the dimensional analysis of the fluid flow
regimes around MEMS resonators [78, 79].

or incompressible. First, if the Mach number Ma is higher than 0.3, the flow is consid-
ered compressible. Second, if the acoustic wavelength ac is smaller than the spatial
wavelength of the MEMS structure st, compressibility effects are considered signifi-
cant [79].

The Mach number is the ratio of a characteristic velocity of the structure char and
the speed of sound in the fluid s as Ma = chars . (2.5)

The characteristic velocity char for beams and plates can be defined from the character-
istic length char assuming harmonic oscillation resulting in char = 2 char, where is a
constant. Here, we consider = 0.01, which means the plate’s maximum displacement
is 1% the characteristic length). With these assumptions, plates with char ≤ 100 µm in
air at SATP are in the incompressible regime up to 10 MHz as shown in Fig. 2.7. The
flow around a wide MEMS resonator with char = 1000 µm is in the compressible regime
for frequencies higher than 1.7 MHz. Thus, for wide structure at > 1.7 MHz acoustic
losses may no longer be neglected as a dissipation mechanism [30].

A high Ma number is uncommon in MEMS resonators and the most common sce-
nario for acoustic losses is due to the match between acoustic and structural wave-
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Figure 2.7: Mach number of the fluid flow around MEMS resonators as a function of frequency.

lengths. The acoustic wavelength is inversely proportional to frequency as [79]

ac = s . (2.6)

Hence, at low frequencies, ac is large and is usually larger than st, until a frequency c
is reached in which ac = st. c is the limiting frequency of the incompressible flow.

The flexural wavelength st depends on the structure of the MEMS resonators and
on the vibrational mode. For a cantilevered beam or plate vibrating in the EB modes, st
approximated for each mode as st,i ≈ 42 − 1 (2.7)

where is a positive natural number that denotes the mode number. Fig. 2.8 shows the
lowest three EB modes and the resulting st.

a) st,1 = 4 b) st,2 = 4 /3 c) st,3 = 4 /5
Figure 2.8: Structural wavelength st of the first three modes of a cantilevered plate vibrating
in only Euler-Bernoulli modes.

Since st depends on the mode number while ac is frequency dependent, it is nec-
essary to define the resonance frequency of each Euler-Bernoulli mode in a fluid. Limit-
ing the vibrational modes of the plate to the Euler-Bernoulli modes and determining the
plate’s dynamics with the Euler-Bernoulli theory results in the resonance frequencies
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in vacuum vac as

vac,i = 12 22 √ ℎ212 p , (2.8)

where is the -th root of the transcendental equation 1 + cos cosh = 0 [31]. Note
that with the Euler-Bernoulli equation, the plate’s width does not alter the mode’s
resonance frequencies. The resonance frequencies of the Euler-Bernoulli modes in fluidsf are approximated using an inviscid fluid flow model [45, 46] as

f = vac(1 + f4 pℎ)−1/2 , (2.9)

where f is the fluid’s density.

Considering micro-plates with different lengths = 10 µm, = 100 µm and l=1000 µm
results in the st over frequency shown in Fig. 2.9. The plate’s material is isotropic
silicon with properties given in Table 2.2. For this analysis, air is considered at SATP
conditions with properties as in Table 2.3. The plate’s width is set to be half the length
( = /2) and the plate’s thickness ℎ is /100. For the shortest plate with = 10 µm, st
and ac are equal for c ≈ 80 MHz. Therefore, only for frequencies lower than 80MHz,
compressibility effects are negligible for this beam with = 10 µm. For a longer plate
with = 100 µm, this limiting frequency is 8 MHz, and for a very long plate with =1000 µm the fluid is compressible for > 0.8 MHz. Therefore, longer plates have lowerc than shorter plates.

Using the dimensions of plates and beams used in previously studied (whose di-
mensions are given in Table 2.1 it is possible to obtain the limiting frequency c for the
Euler-Bernoulli modes of these structures in air which results in Fig. 2.10a. Structures a
to h are in the incompressible regime up to at least 2 MHz, while the longer structures
i, j and k are in the incompressible regime only up to a few hundred kilohertz in air. In
parenthesis in Fig. 2.10 is shown the mode number at which c occurs. In water at SATP
conditions, the acoustic wavelength is larger than in air due to water’s higher speed of
sound. In addition, the resonance frequencies of structures in liquids are smaller than
in air due to the added-mass effect. For instance, using the same beams and plates as
in the previous example in air renders a much higher limiting frequency c as shown in
Fig. 2.10b. In water, minimum limiting frequencies of 30 MHz are obtained.

Here we established that the fluid flow around micro-plate-resonators is in the in-
compressible regime provided the Mach number is smaller than 0.3, and in frequencies
where st < ac. In water, the incompressible regime extends to tens of Megahertz, while
in air micro-plates may leave the incompressible regime in frequencies below 1 MHz.
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Figure 2.9: Acoustic and flexural wavelengths of different plates with a) = 10 µm,b) = 100 µm
and c) = 1000 µm, in air. st is shown for each mode, starting from the first ( = 1) at the lowest
frequency.

2.2.3 Inertial and viscous forces

The governing equations for an incompressible Newtonian fluid are the Navier-Stokes
equations [80] + ( ⋅ ∇) − f∇2 = − 1f∇ ,∇ ⋅ = 0, (2.10)

where is the velocity field, is pressure, f is the fluid’s dynamic viscosity and f is
the fluid’s density.

It is possible to write the Navier-Stokes equations in non-dimensional form using
the characteristic velocity char and characteristic length char, using

′ = char , ′ = charchar , ∇′ = char∇, ′ = charf char , (2.11)

which yields [80] Re ′′ + Re( ′ ⋅ ∇′) ′ − ∇′2 ′ = −∇′ ′, (2.12)∇′ ⋅ ′ = 0. (2.13)
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Figure 2.10: Limiting frequency c of the different plates in a) air and b) water. In parenthesis,
the mode number at which c occurs is given.

The terms with prime correspond to the non-dimensional variable without prime in
Eq. 2.13. Re stands for the Reynolds number, defined asRe = f char charf . (2.14)

The Reynolds number Re characterizes the ratio of viscous forces to inertial forces.
As the characteristic length char of a structure decreases, the Reynolds number and the
ratio between viscous forces and inertial forces in the fluid flow around the structure
also decrease, which leads to different regimes of viscous flows. When Re << 1, the flow
is known as creeping flow or Stokes flow and the governing equations are simplified toRe ′′ − ∇′2 ′ = −∇′ ′, (2.15)∇′ ⋅ ′ = 0. (2.16)
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The transition from Stokes flow to Navier-Stokes flow is defined at Re = 0.01[75]. For
Re > 0.01, the convective terms in the Navier-Stokes equations may not be neglected
and Stokes equations are not applicable [78, 75].

Fig. 2.11 shows the Stokes flow limit of Re ≤ 0.01 considering different amplitude
oscillations with a characteristic velocity char as a function of the length in air and
in water. In air, considering a characteristic velocity char = 10 µm s−1 (represented by
a dashed black line in Fig. 2.11) even structures with = 5000 µm are in the Stokes
flow regime. In water, Re is below the 0.01 threshold considering char = 10 µm s−1 for
structures with characteristic length smaller than 900 µm. Considering small amplitude
oscillations with a characteristic velocity char = 1 µm s−1 yields a small Reynolds numberRe ≤ 0.01 both in air and in water for structures whose characteristic length is even as
large as 5000 µm.

Figure 2.11: Characteristic velocity char for the limiting Reynolds number of 0.01 in air and
water. The black dashed line represents char = 10 µm s−1 as a reference value.

Given the different non-dimensional numbers here introduced (Ma, Re and Kn), it is
interesting to note that for gases it is possible to write Kn in terms of Re and Ma, given
that the three parameters are non-dimensional numbers of the fluid flow and geometry
of the micro-plate-resonator. The Knudsen number is defined as a function of the Mach
number and Reynolds number according toKn = mfpchar

√ f2 MaRe , (2.17)

where f is the ratio of the specific heat of the fluid. Fig. 2.12 summarizes the different
flow regimes that can occur around micro-plates undergoing small amplitude oscilla-
tions of char = 1 µm s−1 in air in SATP.

From the dimensional analysis in this section, we conclude that the flow around
micro-plates is typically in the continuum regime, the fluid is incompressible and the
inertial forces are much smaller than the viscous forces (small Re). Therefore, the Stokes
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Figure 2.12: Classification of the fluid flow around micro-plates in terms of Re and Kn in air.

equations are the most appropriate governing equations to determine the fluid flow
dynamics around micro-plates.

2.3 Mathematical formulation of a micro-plate in a viscous
fluid

We consider a micro-plate with width , length and thickness ℎ, as shown in Fig. 2.13.
The Cartesian coordinate system has along the plate’s length, along the plate’s
width, and along its thickness. The plate undergoes purely out-of-plane displace-
ment ( , ), while lateral movement in - and -directions are negligible. We use the
Kirchhoff plate equation for thin plates to determine ( , ), and represent the three-
dimensional resonator by its two-dimensional mid-plane Ωp according to the Kirchhoff
plate theory.

ℎ Ωp p

Ωf

hydro

Figure 2.13: Representation of a thin micro-plate immersed in a viscous fluid and subject to an
arbitrary load . The shown transverse displacement ( , ) of the plate corresponds to a roof
tile-shaped vibrational mode.
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The plate is fully immersed in a fluid of density f , dynamic viscosity f and kine-
matic viscosity f . The fluid acts on the plate’s surfaces, which results in a hydrodynamic
force hydro acting on the plate’s midplane Ωp. The micro-plate dynamics in a fluid are
determined with the Kirchhoff plate equation with an added hydrodynamic force hydro
yielding ℎ312(1 − 2) ( 4 ( , )4 + 2 4 ( , )2 2 + 4 ( , )4 )+ ℎ 2 ( , , )2 = ( , ) + hydro( , ). (2.18)

To determine hydro, it is necessary to find the fluid stress acting on each surface of
the plate, which will be explained in Chapter 4. Besides the fluid stress acting on the
plate, kinematic conditions also play a role in the fluid-plate interaction problem. The
kinematic interface condition for the fluid-plate interaction relates the motion of the
plate with the fluid velocity at the plate’s surfaces. Since the fluid flow around micro-
plates is in the continuum regime, the no-slip and no-penetration boundary conditions
are the valid kinematic interface conditions.

The governing Eq. 2.18, with the kinematic boundary conditions along with the
Stokes equations, form the mathematical model for the micro-plate fluid interaction
problem. Since these equations are linear, their Fourier transforms do not contain cou-
pling terms between different frequencies. We focus on periodic solutions to this system
of equations, thus the Fourier transform of the governing equation Eq. 2.18 is usedwhich
yields ℎ312(1 − 2) ( 4 ̂ ( , )4 + 2 4 ̂ ( , )2 2 + 4 ̂ ( , )4 ) − 2 ℎ ̂ = ̂( , ) + ̂hydro( , ).̂ and ̂ refer to the Fourier transform of the respective time-dependent variables. The
unsteady Stokes equations in the frequency domain are [80]j ̂ − f∇2 ̂ = − 1f∇ ̂,∇ ⋅ ̂ = 0, (2.19)

where ̂ and ̂ are the Fourier transform of and , respectively.

To determine ̂hydro, it is necessary to find the fluid stress ̂ acting on each surface
of the plate. A cantilevered plate has five surfaces in contact with the fluid, those are
top ( = +ℎ/2), bottom ( = −ℎ/2), left ( = − /2), right ( = + /2) and free end ( = ),
denoted respectively by Σt, Σb, Σl, Σr and Σf as shown in Fig.2.14a.

Since the fluid flow is in the continuum, the resulting fluid force of the plate’s sur-
faces ̂ surf is the result of the fluid stress ̂̂̂ aŝ surf = ̂ ⋅ p. (2.20)
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Midplane Ωp External surfaces

hydrop tsurf
b

a) b)

ΣtΣl Σb ΣrΣf
t t

f
Figure 2.14: Representation of a) the five surfaces in contact with a fluid in a cantilevered plate
and b) the fluid stress acting on each surface.

The fluid stress ̂ in an incompressible Newtonian fluid iŝ = − + 2 f ̂ , (2.21)

where is the 3 by 3 identity matrix, and ̂ is the strain rate tensor, defined aŝ = 12 (∇ ̂ + ∇ ̂ ) . (2.22)

The fluid stress acting on the top, bottom, left, right and free-end surfaces of a micro-
plate is denoted respectively, ̂ t, ̂ b, ̂ l, ̂ r and ̂ f respectively as depicted in Fig. 2.14b.
Since the plate is thin, the lateral surfaces Σl, Σr and Σf are much smaller than Σt and Σb,
the contribution of the fluid stress on these surfaces may be neglected [10] resulting in̂ surf as ̂ surf = ( ̂t − ̂b) ⋅ p, (2.23)

assuming the normal p to be in the positive -direction.

In thin plate theory, the elongation along the -direction is negligible, which means
surfaces forces are transmitted without any loss of amplitude to the plate’s midplane,
therefore ̂hydro is simply the projection of surf in the -direction aŝhydro = ̂ surf ⋅ (0, 0, 1)T = [( ̂t − ̂b) ⋅ p] ⋅ (0, 0, 1)T, (2.24)

where the T superscript stands for transpose. Furthermore, since small amplitude oscil-
lations are considered, the plate normal p does not alter greatly during one oscillation
period and is approximated as p = (0, 0, 1)T, which together with the stress definition
in Eq. 2.21 results in ̂hydro = ( ̂t − ̂b) + f ( ̂ tz − ̂bz) , (2.25)
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where ̂t and ̂b is the pressure at the top and bottom plate surfaces, and ̂ tz and ̂bz are
the fluid’s velocity in direction at the top and bottom surfaces.

Besides the fluid stress acting on the plate, kinematic conditions also play a role
in the fluid-structure interaction problem. The kinematic interface condition for the
fluid-plate interaction relates the motion of the plate with the fluid velocity ̂ at the
plate’s surfaces. Since the fluid flow around micro-plates is in the continuum regime,
the no-slip and no-penetration boundary conditions are the valid kinematic interface
conditions. With the thin plate assumptions, the plate elongation along the plate’s
thickness is zero. As a result, at the plate’s top surface Σt and the plate’s bottom surfaceΣb, the plate moves with the same velocity which is equal to ̂p = (0, 0, j ̂ ), that is the
velocity of the plate’s midplane Ωp. With the no-slip and no-boundary conditions, the
fluid velocity at the plate’s top and bottom surfaces, ̂ tf and ̂bf respectively as depicted
in Fig. 2.15, are equal to ̂p, resulting in̂ tf = ̂bf = (0, 0, j ̂ ) . (2.26)

which is equal to the fluid velocity at the plate’s top surface ̂ tf . Applying the conti-

External surfacesMidplane Ωp
tfp
bf

Figure 2.15: Kinematic interface conditions of the fluid flow around a micro-plate.

nuity equation (Eq. 2.16) to the plate’s top and bottom surfaces with the no-slip and
no-penetration boundary conditions (Eq.2.26) yields ̂ tz/ = ̂bz / = 0. Thus, the
hydrodynamic force given by Eq. 2.25 becomeŝhydro = ̂t − ̂b = Δ ̂. (2.27)Δ ̂ is typically called the pressure jump. Thus, for a micro-plate undergoing purely
out-of-plane displacement with small amplitude oscillations, the hydrodynamic force is
simply the result of the pressure difference between the top and bottom surfaces.
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2.4 Conclusions

Here we presented a dimensional analysis of the micro-flow around micro-plates with
typical fluids to define a proper set of governing equations. We conclude that the gov-
erning equations to predict themicro-plate dynamics are a) the Kirchhoff-plate equation
for the elastic body dynamics and b) the Stokes Equations for fluid dynamics. These
equations are coupled through the non-slip and no-penetration boundary conditions
and the hydrodynamic force. We defined the set of governing equations for the micro-
plate-fluid interaction problem in the frequency domain and determined the hydrody-
namic force as a pressure difference between top and bottom plate surfaces. In the next
chapters, we develop the semi-numerical method to solve this system of equations.
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3 Numerical methods for the plate equation

In this chapter, numerical methods to solve the Kirchhoff plate equation (in the absence
of the hydrodynamic force) are introduced and results between different methods are
compared in order to determine a suitable numerical method to solve the micro-plate-
fluid interaction problem.

3.1 Isotropic and anisotropic material models

In Chapter 2 the Kirchhoff plate equation for isotropic material was introduced. How-
ever, silicon is the most common material for MEMS resonators [5], and silicon is an
anisotropic material [74]. Hence, a modification to the plate equation is required to
account for the material anisotropy. This modification is achieved using a fourth-order
elasticity tensor and writing the plate equation in Einstein’s summing notation with
the indices , , , and to represent − and -directions, yieldingℎ312 ̂ , − 2 ℎ ̂ = ̂. (3.1)

are the elements of the fourth-order elasticity tensor and the indices following a
comma in the sub-scripted variables represent spatial derivatives in the index direction.

The non-zero values of the fourth-order elasticity tensor and density of silicon are
shown in Table 3.1 for a silicon wafer in the standard (100) orientation [74]. Throughout
the thesis, when the plate is defined with orthotropic properties, we refer to Table 3.1
for silicon’s elastic properties.

Parameter Value

, [GPa] 194.5
, [GPa] 35.7

, , , [GPa] 50.9
[kgm−3 ] 2330

Table 3.1: Material properties of silicon as anisotropic material [74].

For comparisons with previously existing methods for beams, it is preferable to ap-
proximate silicon as an isotropic material. For these cases, the fourth-order constitutive
tensor for an isotropic material is written from the isotropic values of Young’s
modulus and Poisson coefficient as= [ ( + )2(1 + ) + 1 − 2 ], (3.2)

where is the Kronecker delta. For silicon, the isotropic values are presented in Ta-
ble 2.2.
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From hereon the plate equation is shown using the index notation with the elasticity
tensor , which allows both for the isotropic and anisotropic formulation. In addition,
index notation is compact which makes it easier for the following definitions.

3.2 Boundary conditions

The boundaries of the plate’s mid-plane Ωp are denoted by Ωp. Ωp is, in itself, divided
into four regions depending on the boundary conditions applied in such a region. The
region of Ωp in which the displacement ̂ is restricted to is defined as Γc, yieldinĝ = on Γc. (3.3)

Regions of the plate’s boundaries where the rotation angle is restricted to are defined
as Γ . At Γ , the boundary condition is written in summing notation aŝ , b = on Γ . (3.4)b denotes the component of the unit outward normal at the boundaries Ωp as shown
in Fig. 3.1. Fig. 3.1 shows a cantilevered plate whose left edge at = 0 is clamped and
free at all other edges.

b
ΓQΓc
ΓMΓ

Ωp
Figure 3.1: The plate’s left boundary Γc and Γ is clamped and all others are free ΓM and ΓQ
(dashed line).

When a plate is considered with a clamped edge, both the rotation angle and the
displacement are zero at this edge, and Γ = Γc. A cantilevered plate is clamped at one
edge and free at the other edges. The free edge boundary conditions are defined asℎ312 ̂ , b b = on ΓM, (3.5)

and ℎ312 ̂ , b = s on ΓQ. (3.6)

Eqs. 3.5 and 3.6 impose the momentum and shear forces at the edges ΓM and ΓQ to be
and s, respectively. Free edge conditions imply that ΓQ = ΓM.
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3.3 Finite element method for the plate equation

An analytic solution to the strong form of the Kirchhoff PDE (Eq. 3.1) with cantilevered
boundary conditions is not known [65], and therefore a numerical technique to solve
the plate dynamics is required. A family of methods to numerically solve a PDE is the
Galerkin method, in which the equation’s weak form is solved instead of the PDE’s
strong form. The weak form of the Kirchhoff PDE is obtained introducing a Hilbert
function space W , and stating the problem as: Find ̄ ∈ W such that( ̄ , ) = ( ), ∀ ∈ W . (3.7)( ̄ , ) is known as the bilinear form of the PDE, and ( ) the linear form.

The Galerkin method consists in the dimension reduction from the Hilbert function
space W to finite function spaces W h ⊂ W and V h ⊂ W , and defining the problem as:
Find h ∈ W h such that ( h, h) = ( h), ∀ h ∈ V h. (3.8)

W h is called the test function space, h the test function, V h is the trial function space,h the trial function. If the test and trial function spaces are the same, the resulting
bilinear form is symmetric and themethod is called a Ritz-Galerkinmethod [81]. Among
the Ritz-Galerkin methods, the finite element method (FEM) is one of the most known.
Here we use FEM to determine the plate’s dynamics numerically since the solution of
the Kirchhoff plate equation with FEM is the object of several studies [82, 83, 84, 85, 65,
86] and good agreement between FEM and analytic solutions were obtained.

In FEM, the most commonly used function space is the function space of the La-
grangian FE shape functions of degree . A function space is defined considering a
partitioning of the plate’s mid-plane P(Ωp) in triangular elements , = 1,… , t. t is
the total number of triangles of the partitioning, equals to 4 y x where y and x are
the number of quadrilateral elements in - and -direction, respectively. Each quadri-
lateral element is divided into four triangles as shown in Fig. 3.2. A structured mesh is
considered because of its simplicity, but any unstructured mesh could be used without
loss of generality. The union of all internal edges of the partitioning P(Ωp) is denoted
by Γ̃, and the union of internal edges and external boundaries is denoted by Γ = Γ̃ ∪ Ωp.

Using the partitioning P(Ωp) a trial function space W h is defined as

W h = { ̂ h ∈ 2(Ωp) ∶ ̂ h| ∈ ( ) ∀ ∈ P(Ωp), ̂ h|Γc = 0}, (3.9)

and the test function space V h is

V h = { h ∈ 2(Ωp) ∶ h| ∈ ( ) ∀ ∈ P(Ωp), h|Γc = 0}. (3.10)( ) are the 0 continuous Lagrangian finite element (FE) shape functions of degree
defined on the element . The Dirichlet boundary condition at Γc appears as a direct

restriction of the trial function space W h.
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P(Ωp) ΩpΓ̃

Figure 3.2: Partitioning of the plate’s mid surface Ωp in x by y quadrilateral elements, each
one divided into four triangles. The union of all internal edges is Γ̃, and the external are denoted
by Ωp.

0 continuity means the functions h are continuous, but the derivatives of h are
discontinuous at the edges Γ. To exemplify the discontinuity of the derivative of the
basis functions, let us define a partitioning of the plate’s domain in 3 by 3 quadrilateral
elements as depicted in 3.3. The non-dimensional axes ∗ and ∗ are introduced as ∗ =/ and ∗ = / .

∗
∗ −1 e

a) b)

Figure 3.3: a) Example of the partitioning of the plate’s mid surface Ωp in 3 by 3 quadrilateral
elements, each one divided in four triangles. b) Single element with the enclosing edges
and normal e.

Fig. 3.4 shows examples of the basis functions h of the two-dimensional Lagrange
FE shape functions with degrees 1, 2 and 3 in this partitioning with 3 x 3 quadrilateral
elements. The basis functions are depicted with a maximum at the domain’s geometric
center, that is ∗ = 0.5 and ∗ = 0. Fig. 3.4 shows the test function h and the -derivative
of h at the position ∗ = 0. The blue line marks the position of the edges of the element

in which the basis function is defined. Note that the function h is continuous over
the entire plate domain and at the edges . The derivatives of h, on the other hand,
are discontinuous at the edges of the element on which h is defined. Here, these
discontinuities occur at ∗ = 0.33333, ∗ = 0.5 and ∗ = 0.66666.
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a) = 1 b) = 2 c) = 3

Figure 3.4: Example of Lagrangian polynomial basis functions and the -derivatives of different
degrees equals to a) 1, b) 2 and c) 3. On the top, the solid blue line represents the edges of the
quadrilateral element. On the top, the basis function in two dimensions, on the middle the basis
function at ∗ = 0, and on the bottom the -derivative of the basis function at ∗ = 0, where the
dashed blue lines represent the location of the triangular element’s edges.

To solve the Kirchhoff plate equation, the solution function space in a conformal
FEM setting is required to be 2 [83, 85], i.e., the Sobolev space of functions with square-
integrable generalized second derivatives. In essence, 1 continuity of the basis func-
tions in the solution function space is required, so that no discontinuities in the slope
of the displacement ̂ exist. 1 continuity means the first derivatives of the basis func-
tions are continuous. However, 1 continuous basis functions in two dimensions are
very challenging to implement [85, 65].

An alternative to 1 basis functions are continuous/discontinuous Galerkin meth-
ods [85, 87, 88, 89]. Continuous/discontinuous (C/DC) methods combine standard La-
grangian 0-continuous basis functions from the defined function spaces V h and W h
with discontinuous methods such as interior penalty (IP) methods [85, 89, 82] or lifting
operator (LO) methods [83, 90, 84, 91] to enforce 1 continuity of the solution.

The weak form of Eq. 3.1 with C/DC methods is obtained considering a single trian-
gular element , and noting that the triangulation of the entire plate domain Ωp is the
sum of all internal elements as P(Ωp) = ∑ t=1 . The local weak form of Eq. 3.1 on the
element is: find ̂ h in W h such that∫ ℎ312 ̂ h, h dΩ − ∫ 2 ℎ ̂ h h dΩ = ∫ ̂ hdΩ ∀ h ∈ V h. (3.11)
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Here the integral with dΩ stands for two-dimensional surface integrals. Using Green’s
theorem, Eq. 3.11 is written in terms of one surface integral and two edge integrals as∫ ℎ312 ̂ h, h, dΩ − ∫ ℎ312 ̂ h, h, e ed + ∫ ℎ312 ̂ h, h ed−∫ 2 ℎ ̂ h h dΩ = ∫ ̂ hdΩ ∀ h ∈ V h, (3.12)

where d is the line integral at the edges around the element . e stand for the
components of the normal vector at the edges . The normal vector e is usually defined
in the direction of the element with lower index to the higher index as shown in
Fig. 3.3 from element −1 to .

Note in Eq. 3.12 that the edge integrals take into account derivatives of the test h
and trial ̂h function at the edges . Using the 0 functions as defined in the function
spaces V h and W h, this poses a challenge since the derivatives of these functions are
not continuous at the edges as seen in Fig. 3.4.

To account for discontinuities in h and ̂ h, C/DC methods use the average ⟨⋅⟩ and
the jump [[⋅]] operators at the internal edges to measure the discontinuities. For two
internal elements and −1 that share an edge as shown in Fig. 3.3 the average operator
of the derivative of the test function h in the direction at the edge is⟨ h, ⟩ = 1/2 ( h,, + h, −1, ), (3.13)

where the and − 1 superscripts mean evaluation of the derivative at the edge in the
elements and −1, respectively.

The jump of the derivative of h in the normal direction e at the edge is[[ h, ]] = h,, − h, −1, . (3.14)

The jump and average operator at the left edge of an element (as depicted in Fig. 3.3)
are represented in Fig. 3.5 for a polynomial function of degree = 2. Since e at the
left edge is simply (1, 0) , the average and jump operator takes into account only the
derivative in -direction.

[[ h, ]] ⟨ h, ⟩
Figure 3.5: Jump and average operators representation at the left edge of element for a
test function of degree = 2.
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Expanding Eq. 3.12 to consider the entire plate partitioning P(Ωp) = ∑ t=1 and
applying the jump operator at all the internal edges Γ yields∫Ωp ℎ312 ̂ h, h, dΩ − ∫Γ̃ ℎ312[[ ̂ h, h, ]] ed + ∫Γ̃ ℎ312[[ ̂ h, h]] ed−∫ Ωp ℎ312 ̂ h, h, bd + ∫ Ωp ℎ312 ̂ h, h bd−∫Ωp 2 ℎ ̂ h h dΩ = ∫Ωp ̂ hdΩ ∀ h ∈ V h,(3.15)
where note that Ωp are the external edges of the plate domain, and Γ̃ are all internal
edges of the plate triangulation.

Using the identity [[ ]] = [[ ]]{ } + [[ ]]{ }, (3.16)

Eq. 3.15 is expanded in terms of individual jump and average operators as∫Ωp ℎ312 ̂ h, h, dΩ − ∫Γ̃ ℎ312[[ ̂ h, ]]{ h, e}d − ∫Γ̃ ℎ312{ ̂ h, } [[ h, e ]]d+ ∫Γ̃ ℎ312[[ ̂ h, ]] { h e]}d + ∫Γ̃ ℎ312{ ̂ h, } [[ h e]]d− ∫ Ωp ℎ312 ̂ h, h, bd + ∫ Ωp ℎ312 ̂ h, h bd−∫Ωp 2 ℎ ̂ h h dΩ = ∫Ωp ̂ hdΩ ∀ h ∈ V h.(3.17)
The solution ̂ is continuous in the entire plate domain, and therefore also the nu-

merical approximation ̂ h must be continuous for consistency [82, 85]. As a result, the
integrals containing the jump operators with the derivatives of ̂ h (second and fourth
terms in Eq. 3.17) are zero. In addition, the test function h is 0 continuous, therefore
the jump of h is also zero. Eq. 3.17 is simplified to∫Ωp ℎ312 ̂ h, h, dΩ − ∫Γ̃ ℎ312{ ̂ h, } [[ h, e ]]d− ∫ Ωp ℎ312 ̂ h, h, bd + ∫ Ωp ℎ312 ̂ h, h bd−∫Ωp 2 ℎ ̂ h h dΩ = ∫Ωp ̂ hdΩ ∀ h ∈ V h. (3.18)

The shear force boundary condition defined in Eq. 3.6 is strongly imposed in Eq. 3.18
at ΓQ. In Γc, ̂h is zero resulting in a zero value for the integral containing ̂ h, . The
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moment boundary condition can also be strongly imposed to Eq. 3.18, resulting in∫Ωp ℎ312 ̂ h, h, dΩ − ∫Γ̃ ℎ312{ ̂ h, } [[ h, e ]]d− ∫Γc ℎ312 ̂ h, h, bd − ∫Ωp 2 ℎ ̂ h h dΩ= ∫Ωp ̂ hdΩ + ∫ΓQ s hd + ∫ΓM h bd ∀ h ∈ V h. (3.19)

Solution of the Eq. 3.19 requires the implementation of a method to impose C1
continuity, that is, [[ h, e]] = 0. Among the different C/DC methods for the Kirch-
hoff plate equation, we explore here two established methods: the interior penalty (IP)
method [82] and the lifting operator (LO) method[83].

3.3.1 Interior Penalty Method

The IP method consists of adding terms to Eq. 3.19 to obtain a symmetric bilinear form
and to penalize the jumps [[ h, e]] over all the internal edges Γ̃. The resulting weak form
is∫Ωp ℎ312 ̂ h, h, dΩ − ∫Γ̃ ℎ312{ ̂ h, } [[ h, e ]]d − ∫Γ̃ ℎ312[[ ̂ h, ]] {[ h, e}d+∫Γ̃ ℎ312 ipℎE [[ ̂ h, ]] [[ h, ]]d + ∫Γc ℎ312 ip2ℎE ̂ h, h, d−∫Γc ℎ312 ̂ h, h, bd − ∫Ωp 2 ℎ ̂ h h dΩ = ∫Ωp ̂ hdΩ+∫ΓQ s hd + ∫ΓM h bd ∀ h ∈ V h.(3.20)
The third term in Eq. 3.20 was added for symmetry purposes. The fourth integral term in
Eq. 3.20 is the penalization term, which ensures [[ ̂ h, ]] → 0 for a suitable ip and im-
poses 1 continuity of ̂ h and h [82]. The slope boundary condition is weakly imposed
with the integral of the fifth term on Γc. The bilinear form ( ̂ h, ̂h) of the Kirchhoff
PDE with the IP method is the left-hand side (LHS) of Eq. 3.20, and the linear form ( ̂h
is the right-hand side (RHS) of Eq. 3.20.

The value of IP has to be determined empirically such that the method is conver-
gent [85, 82, 92]. The procedure for determining IP is discussed in Section 3.4.

3.3.2 Lifting operator

An alternative C/DCmethod for the Kirchhoff plate equationwas proposed based on the
lifting operator (LO) [83, 84, 91]. The LO method consists in applying a lifting operation
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on the element edges between two elements and +1 as∫ + +1 dΩ = −∫ { } [[ h, e]]d , (3.21)

where and are trial and test functions defined from the function spaces

Rh = { | ∈ 2(Ωp) ∶ | ∈ ( ) ∀ ∈ P(Ωp)}, (3.22)

and
S h = { | ∈ 2(Ωp) ∶ | ∈ ( ) ∀ ∈ P(Ωp)}, (3.23)

respectively.
Introducing the lifting operation in all internal edges of the plate’s partitioning yields

a weak form as ∫Ωp ℎ312 ̂ h, h, dΩ + ∫Ωp ℎ312 ̂ h, ( h, e )dΩ+∫Ωp ℎ312 ( ̂ h, e ) h, dΩ + ∫Ωp LOℎ312 ( ̂ h, e ) ( h, e )dΩ+∫ c LOℎ312 ( ̂ h, e ) ( h, e )dΩ − ∫Ωp 2 ℎ ̂ h h dΩ= ∫Ωp ̂ hdΩ ∀ h ∈ V h, (3.24)

where stands for the elements at the clamped edges Γ . The bilinear form ( ̂ h, ̂h)
of the Kirchhoff PDE with the LO method is the LHS of Eq. 3.24, and the linear form( ̂h is the RHS of Eq. 3.24. For details on the derivation of the LO method, we refer
to [83, 84, 91]. The advantage of the LO method is that it is stable for any coefficientLO > 0. However, a limitation of the LO method is that the lifting operation requires
local projections of [[ h, e]] in pair-wise elements that share an internal edge, which
increases the computation time [84].

3.4 Numerical results

3.4.1 Static simply supported square plate

To check the implementation and convergence of both methods and their time perfor-
mance, we implement both methods for a plate under conditions whose analytic so-
lution is known. Consider a square plate simply supported on all sides as depicted in
Fig. 3.6. Simply supported plate on all edges means only the displacement and momen-
tum boundary conditions as defined by Eqs. 3.3 and 3.5 are imposed.

Material is considered silicon with the properties of isotropic material with values
defined in Table 2.2, and the plate has a length = 1 m, width = 1 m and thicknessℎ = 0.01 m. The plate is under the action of a static force distribution equals
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b
ΓM Γc

Figure 3.6: Simply supported square plate.

= sin sin . (3.25)

The analytic static displacement is analytic is [82]

analytic = 4 (1 − 2p) 12ℎ3 sin sin . (3.26)

Fig. 3.7 shows the analytic solution and the numerical results obtained with a 16 x
16 mesh in both methods and with constants IP = 100 and LO = 100. Both methods
result in similar displacement which is similar to the analytic solution.
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Figure 3.7: Static displacement of the simply supported static plate obtained a) analytically, b)
with the IP method and c) with the LO method.

To quantify the error between numerical and analytic solutions, we introduce the
error norm analytic as analytic = || h − analytic|| 2 , (3.27)

where || ⋅ || 2 denotes the 2 norm as|| || 2 = ∫Ωp | |2dΩ. (3.28)

.
For numerical methods, convergence between numerical solutions for consecutively

refined FE-meshes is required. convergence is introduced to quantify the convergence of
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the method with the number of mesh elements as

convergence = || ̂ +1 − ̂ || 2|| ̂ || 2 , (3.29)

where ̂ +1 and ̂ are solutions obtained with FE-meshes consistent of 2 x 2 ( x x y)
elements.

Fig. 3.8 shows the error analytic as well as the convergence difference convergence and
the computation time with the IP and LO methods. The degree of the polynomial spacesVh and Wh is two, which results in both analytic and convergence converging with an ex-
ponent equals two. While the convergence rates are similar with both methods, the
elapsed time of the two methods greatly differs. The simulation time of the LO method
grows with the square of x, while the IP method’s time increases only with 0.12x .

Figure 3.8: a) Error, b) convergence and c) elapsed time of the IP and LO methods for the simply
supported static plate. The degree of the polynomial space is 2.

Increasing the degree of the polynomial spaces Vh andWh to three results in higher
convergence rates equal 4 for both methods as seen in Fig. 3.9. These convergence
rates of 2 for = 2, and four for = 3 agree with the predictions reported previously
[82, 83, 84, 91].

Increasing the polynomial degree does not alter the slope of the elapsed time for
each method, however higher results in larger elapsed time as seen in Fig. 3.10. Thus,
time-wise, the most efficient method is the IP method, which is much faster than the
LO method.

In addition, the convergence rate with both methods is independent of the coeffi-
cients IP and LO as seen in Fig. 3.11. Provided IP and LO are greater than 1, both
methods converge with the same convergence rate.

Therefore, for the static plate, both methods converge provided the constants are
greater than 1 with a convergence rate equal to 2 for polynomial degree equals 2 and
a convergence rate equals 4 for = 3. Notably, the IP method is much faster than the
LO method. The elapsed time by the IP method increases with the FE-mesh as =0.12x , while the LO method increases with = 2x . This difference in time performance
occurs because of the additional function space and projections required by the lifting
operation, which in the IP method is not necessary.
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Figure 3.9: a) Error, b) convergence and c) elapsed time of the IP and LO methods for the simply
supported static plate. The degree of the polynomial space is 3.

Figure 3.10: Elapsed time for the a) IP and b) LO methods with different values of .

Figure 3.11: Error with the analytic solution for the a) LO method with different LO constants
and b) IP method with different IP constants. The degree of the polynomial space is 2.

3.4.2 Cantilevered plate with a sinusoidal force

With both methods implemented and validated for the static plate, we alter the condi-
tions to the cantilevered plate case with a sinusoidal force ̂ and with the inertia term
in both formulations. Since the Kirchhoff plate equation has no analytic solutions with
the cantilevered boundary conditions, a slender beam is an ideal example since the res-
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onance frequencies of a slender plate are approximately the frequencies of the slender
beam as determined by Eq. 2.8. Here, a slender plate with = 1000 µm, = 125 µm andℎ = 5 µm is considered as depicted in Fig. 3.12. The plate is clamped at its left edge at= 0 and free at all others.

= 1000 m
Γ ΓQΓc ΓM

Ωp = 1000 m
= 125 mΓ Ωp

Figure 3.12: Boundaries and dimensions of a cantilevered plate used in the convergence anal-
ysis. The plate is clamped at its left edge marked by a solid black line.

Applying a dynamic distributed sinusoidal force ̂ = 1 Pa results in the spectral dis-
placement of the plate’s free corner ̂ t at = , = /2 as shown in Fig. 3.13. Numerical
results here were obtained with a 64 x 8 mesh in both methods and with constantsIP = 100 and LO = 100. ̂ t obtained with both methods exhibit excellent agreement
with each other. Furthermore, the frequencies of maximum ̂ t are similar to the reso-
nance frequencies obtained with the EB theory according to Eq. 2.8.

10 100 1000[kHz]10−8
10−5
10−2
101

̂ t[m]

LO
IP
EB

Figure 3.13: Spectral dynamic displacement of the plate’s tip ̂ t of a slender beam obtained
with the IP and LO methods.

In addition to the validation shown in Fig. 3.13, both methods must be convergent
at a wide frequency range (up to units of megahertz regime) so that the methods can be
reliably used for the micro-plate-fluid interaction problem. Fig. 3.14 shows convergenvce
with the number of elements x at 10 kHz, 100 kHz and 1MHz for penalty parameters IP
between 5 and 1000. At the low frequency of = 10 kHz the IP method converges with a
mesh with x ≤ 64 elements. For finer meshes, the solution diverges for all values of IP,
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and higher IP exhibit a higher convergence error convergenvce than solutions with lowerIP. At the two selected high frequencies, convergenvce converges with a convergence rate
equal to 2 independently of IP for all meshes with x ≥ 32 elements.

Figure 3.14: Convergence of the IP method at different frequencies.

The LO method exhibits a convergent behavior for the low frequencies = 10 kHz
and = 100 kHz. At 10 kHz, the LO method actually diverges for LO = 1000. At the
high frequency simulation of = 1000 kHz, the LO method diverges for fine meshes
with x ≥ 64 with any value of LO.

Figure 3.15: Convergence of the LO method at different frequencies.

Furthermore, the LO method takes a greater computation time than the IP method,
as shown in Fig. 3.16 where the computation time as a function of the number of mesh
elements in -direction x.

Figure 3.16: Computation time of the IP and LO methods.

48



3.4. Numerical results

3.4.3 Generalized eigenvalue problem

Finally, we consider a wide plate with = 1000 µm, = 500 µm, that is, a plate with
aspect ratio a = 2/1 as depicted in Fig. 3.17. The plate has a thickness of ℎ = 5 µm.
As an additional step to validate the IP method for the plate equation we compare the
vibrational modes of the micro-plate obtained with the IP method and with a FEM
software, namely, COMSOL Multiphysics.

Γ ΓQ
Γc

ΓM
Ωp = 1000 m

= 500 mΓ Ωp
Figure 3.17: Boundaries and dimensions of a cantilevered plate used in the eigenvalue analysis.

The mode shapes with the IP method are obtained from posing the generalized
eigenvalue problem as Φ = 2 ΦΦΦ, (3.30)

where is the elasticity matrix, is the mass matrix, are the eigenvalues and ΦΦΦ the
eigenvectors (or mode shapes). The vacuum resonance frequency of the -th mode is
related to through vac = 2 , (3.31)

where is -th element of .
The elasticity matrix and the mass matrix are obtained from Eq. 3.20 without

the driving force term, respectively, as= ∫Ωp ℎ312 ̂ h, h, dΩ − ∫Γ̃ ℎ312{ ̂ h, } [[ h, e ]]d − ∫Γ̃ ℎ312[[ ̂ h, ]] {[ h, e}d+∫Γ̃ ℎ312 ipℎE [[ ̂ h, ]] [[ h, ]]d + ∫Γc ℎ312 ip2ℎE ̂ h, h, d ,(3.32)
and = ∫Ωp ℎ ̂ h h dΩ, (3.33)

for all test and trial functions.
Excellent agreement was obtained between the resonance frequencies vac obtained

with the IP method and a numerical simulation performed in FEM software, COMSOL
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Multiphysics, as seen in Fig. 3.18. A difference smaller than 0.3 % is seen up to the tenth
vibrational mode.

Figure 3.18: a) Resonance frequencies and b) difference between resonance frequencies ob-
tained with the IP method and COMSOL multiphysics software.

Furthermore, the vibrational modes obtained with both methods also show excellent
agreement, as seen in Fig. 3.19 for this micro-plate’s first ten vibrational modes.= 1 = 2 = 3 = 4 = 5

= 6 = 7 = 8 = 9 = 10
IP method

Comsol

IP method

Comsol

Figure 3.19: Ten lowest vibrational modes of a cantilevered wide plate obtained with the IP
method and with COMSOL Multiphysics.
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3.5 Conclusions

Here we introduced the mathematical formulation to solve the Kirchhoff plate equation
without the hydrodynamic force with FEM. Due to the fourth-order spatial derivatives
of the Kirchhoff plate equation, C/DC methods such as the IP and LO methods must
be implemented. Both methods exhibit similar convergence rates and give similar re-
sults for the spectral displacement of a plate. However, the LO method consumes much
longer for an equal number of elements, given the projections between different func-
tions and vector spaces required by the lifting operation. A drawback of the IP method
is the requirement to determine the parameter IP for stability, which we define from
the analysis in this chapter as equal to 5 for stable convergence behavior. An excellent
agreement between conventional FEM software and the IP method was obtained for a
wide micro-plate’s vibrational modes and resonance frequencies. For these reasons, the
IP method will be used throughout this thesis with IP = 5.
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4 Hydrodynamic forces on a micro-plate

The pressure difference Δ ̂ as a function of the plate’s displacement ̂ t is to be deter-
mined from the unsteady Stokes equations and the no-slip and no-penetration bound-
ary conditions as discussed in Chapter 2. There exist different methods which allow for
determining Δ ̂, one of which is using the boundary integral equation method (BIEM).
A key feature of BIEM is that Δ ̂ is calculated using a fundamental solution to the
unsteady Stokes equations without the necessity for solving the unsteady Stokes equa-
tions in the entire fluid domain Ωf . Thus, multi-scale issues which occur in monolithic
methods such as in FEM or in Finite Volumes are avoided.

4.1 Boundary integral equation method

The unsteady Stokes equations have different fundamental solutions, e.g., the Stokeslet
in two or three dimensions [93, 94] and the fundamental solution to the stream-function
formulation of the unsteady Stokes equations in two dimensions. One advantage of the
latter fundamental solution is that analytical solutions to the arising boundary integrals
are known [95], thus making the method very efficient. With a two-dimensional fluid
flow approximation, the fluid flow is confined in a plane, parallel to the - plane, as
shown in Fig. 4.1a. Thus the fluid moves only in - and -directions, with a zero velocity
in -direction.

Figure 4.1: a) The fluid flow is confined to a plane (in blue), which is parallel to the − plane.
b) Pressure and vorticity act both on the top and bottom surfaces of the plate. and stand for
normal and transverse directions at each surface.

The exact extent to which three-dimensional flow affects the beam’s and the plate’s
dynamics in fluids is yet an unsolved question. Comparison to purely numerical meth-
ods [63, 64] shows that a two-dimensional flow formulation accurately predicts theΔ ̂ acting on the plate everywhere except near the plate’s the completely free edge atc = [64]. In this end region (near c = ), the two-dimensional fluid model is ex-
pected to overestimate Δ ̂ because the fluid is forced to move farther in the direction
of the side edges of the plates ( = ± /2) instead of moving over the completely free
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edge of the plate ( c = ). As a consequence, the use of two-dimensional fluid flow
approximation underestimates both the plate’s resonance frequency and the Q-factor
in comparison to methods that assume a three-dimensional fluid flow, such as purely
numerical methods.

Here, the viscous flow is modeled with the two-dimensional fundamental solution
to the stream-function formulation. This formulation makes the present method very
efficient. However, it imposes two main limitations to the method’s applicability. The
plate’s aspect ratio a must be larger than 2 so that the fluid flow over the free edge
at c = of the plate does not dominate the fluid flow. In Chapter 10 of the present
thesis, a formulation that takes into account the three-dimensional flow is proposed and
implemented to establish the limit between two-dimensional and three-dimensional
fluid flow.

To solve themicro-plate fluid interaction problemwith the boundary integralmethod
using the two-dimensional fundamental solution, the stream-function formulation in
vector notation in the frequency domain is introduced. The fluid velocity along the
x-axis is assumed to be negligible ̂ T = (0, ̂y, ̂z). The vorticity vector ̂ is given bŷ = ∇ × ̂ , (4.1)

and the vector potential ̂ ̂ = ∇ × ̂ . (4.2)

Using the definition from Eq. 4.2 in Eq. 4.1 leads tô = −∇2 ̂ . (4.3)

Taking the curl of the Stokes equations Eq. 2.19 and writing the vorticity ̂ in terms of
the vector potential ̂ yields ∇4 ̂ − j f ∇2 ̂ = (0, 0, 0) . (4.4)

In the 2D fluid formulation, since the velocity in -direction and fluid velocity ̂ vari-
ations in -direction are neglected, the vorticity has only one non-zero component,̂ = ( ̂x, 0, 0), as well as the stream vector ̂ = ( ̂x, 0, 0). ̂x is the stream-function
for the two-dimensional flow field. The fundamental solution Ψ̂ to the −component of
Eq. 4.4 is defined as [95]Ψ = 12 2f2{ log (√( − ′)2 + ( − ′)2) + 0 (j √( − ′)2 + ( − ′)2)}, (4.5)

where 0 is the modified Bessel function of the third kind and order zero. ′ and ′ are
coordinate axes with coincident orientation to and , respectively.
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The fundamental solution Ψ is used to describe the fluid flow based on the fluid
stresses acting on the plate’s surfaces. Consider a plate’s cross-section positioned at
a position = c, whose lower edge is defined as b and top edge as t as shown in
Fig. 4.1b. With the application of the Green’s theorem at , the stream function ̂x atc is given by [95]̂x( c, ′, ′) = ∫ b 1f ̂b( c, ) Ψ̂ + ̂ bx( c, ) Ψ̂d+ ∫ t 1f ̂t( c, ) Ψ̂ + ̂ tx( c, ) Ψ̂d , (4.6)

where ̂ bx and ̂ tx stand for the x-component of the vorticity vector at the plate’s lower
edge and top edge, respectively. Similarly, ̂t and ̂b are the pressures on the top and
bottom edges, respectively. is the derivative in the direction of the edge normal and
the derivative with respect to is the tangential derivative along the plate’s width. As
depicted in 4.1b, and exhibit opposite directions in t and b, in essence on the top
surface = and = − , and on the bottom = − and = . Therefore, Eq. 4.6 is
rewritten as ̂x( c, ′, ′) = ∫ b 1f ̂b( c, ) Ψ̂ − ̂ bx( c, ) Ψ̂d+ ∫ t − 1f ̂t( c, ) Ψ̂ + ̂ tx( c, ) Ψ̂d . (4.7)

Given that the plate is a thin structure, one may use a slender body formulation to
define the fundamental solution Ψ in the integral equation in Eq. 4.7 at = 0 for the
pressure and vorticity defined on the top or bottom surfaces (rather than defining Ψ at= ±ℎ/2), which allows rewriting Eq. 4.7 in terms of the pressure jump ∇ ̂ and vorticity
jump ∇ ̂x = ̂ tx − ̂ bx aŝx( c, ′, ′) = ∫ /2− /2 ∇ ̂x( c, ) Ψ̂ ||| =0 − 1fΔ ̂( c, ) Ψ̂ ||| =0d . (4.8)

Applying Eq. 4.8 at the plate’s mid-plane at ′ = 0, and noting that Ψ ||| =0′=0 = 0 [95]

yields ̂x( c, ′, 0) = − 1f ∫ /2− /2 Δ ̂( c, ) Ψ̂ ||| =0′=0d . (4.9)

Differentiation of Eq. 4.9 with respect to ′ renders a relation between Δ ̂ with ̂z at
the plate’s mid-plane ′ = 0 aŝz( c, ′, 0) = 1f ∫ /2− /2 Δ ̂( c, ) 2Ψ̂ ′ ||| =0′=0d . (4.10)
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Given that the plate’s velocity at the mid-plane is ̂z( c, ′, 0) = j ̂ ( c, ′), a relation
between Δ ̂ and the plate’s transverse displacement ̂ arises as

∫ /2− /2 Δ ̂( c, ) 2Ψ̂ ′ |||| =0′=0d = fj ̂ ( c, ′). (4.11)

Note that the function 2Ψ̂/ ′ relates the pressure difference at a point , with the
displacement at another point , ′ in the same cross-section at a position .

Eq. 4.11 is known as a Fredholm integral equation since the unknown pressure jumpΔ ̂ is inside the integral. One efficient method to numerically evaluate Eq. 4.11 is to as-
sume Δ ̂ to be piece-wise constant in a certain discretization scheme. This is an appro-
priate strategy given if the variation of Δ ̂ between two grid points of the discretization
scheme is much smaller than the variation of 2Ψ̂/ ′. The numerical integration of
the LHS of Eq. 4.11 becomes then a sum of My integrals as

My∑=1 Δ ̂( c, ) ∫ (l)+1(l) 2Ψ̂ ′ |||| =0′=0d = fj ̂ ( c, ′ ) (4.12)

where the pressure difference Δ ̂( c, ) and the displacement ̂ ( c, ′ ) are discretized
in -direction according to the discretization scheme, and (l) and (l)+1 are the limits of
integration around the point .

One possible discretization scheme to determine Δ ̂ is the uniform discretization
scheme. With the uniform discretization scheme, the plate’s width is divided into y
segments, each with length Δ = / y. The quadrature discretization points is= −2 + 2 − 12 Δ , (4.13)

for = 1... y, and the limits (l) are
(l) = −2 + Δ , (4.14)

for = 0... y. The uniform discretization scheme is represented in Fig. 4.2.

Assuming Δ ̂ to be piece-wise constant allows for using the analytical evaluation of
each integral in Eq. 4.12 around as [95]

∫ (l)+1(l) 2Ψ ′ |||| =0′=0d = √ fj2 √ [F (√ f ( (l) +1 − ′ )) −F (√ f ( (l) − ′ ))] . (4.15)
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My

(l)

(l)0 = − /2
(l)
My = /2

Figure 4.2: Quadrature points (blue dots) and limiting points (l) (dashed lines) in the uniform
discretization scheme.

Evaluation of Eq. 4.15 depends on the position ′ as well as on the limits of integration(l)+1 and (l). The function F is defined as

F ( ) = 1 + Ker( ) + jKei( ) for > 0, (4.16)

F ( ) = 1 − Ker(− ) − jKei(− ) for < 0, (4.17)

where Ker and Kei are real and imaginary Kelvin Functions, respectively.
Eq. 4.12 is written as a matrix-vector product,Δ ̂Δ ̂Δ ̂ = fj ̂ . (4.18)

The matrix elements are given by the RHS of Eq. 4.15 as= √ fj2 √ [F (√ f ( (l) +1 − ′ )) −F (√ f ( (l) − ′ )) ]. (4.19)Δ ̂Δ ̂Δ ̂ and ̂ are the pressure difference and displacement vectors evaluated at all points
at the same cross-section at a fixed c. Multiplying Eq. 4.18 with the inverse matrix−1, a matrix-vector product for the pressure difference Δ ̂Δ ̂Δ ̂ is obtained asΔ ̂Δ ̂Δ ̂ = fj −1 ̂ . (4.20)

4.2 Hydrodynamic force due to different vibrational modes

It is crucial to understand how Δ ̂ behaves for the different vibrational modes of a
plate. Using the wide plate introduced in Section 3.4.3 whose vibrational modes and
resonance frequencies were previously determined, the pressure jump Δ ̂ is calculated
using Eq. 4.20 for the plate’s different vibrational modes. As a fluid, air is used at SATP
(properties given in Table 2.3). We select air for this example because the resonance fre-
quencies in the air are similar to the frequencies in the vacuum. Hence, one may directly
evaluate the pressure jump Δ ̂ at the vacuum resonance frequency as a representative
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example. In liquids, the resonance frequency in the fluid is different than the vacuum’s
resonance frequency due to the high added-mass effect.

Mode 2:0

Figure 4.3: Imaginary component of the plate’s velocity I p, real component of the pressure
jump R(Δ ̂) and imaginary component of the pressure jump I (Δ ̂) when the plate vibrates
with the third vibrational mode. In a), b) and c) these quantities are shown over the entire plate
domain. In d), e), and f), they are shown across the -direction at the free edge c = . In g), h),
and i) they are shown along the -direction at = 0.

Fig. 4.3 shows the imaginary component of the plate’s velocity I p (the velocity has
only imaginary component, given that the mode shape is real-valued), the real compo-
nent of the pressure jump R(Δ ̂) and the imaginary component of the pressure jump
I (Δ ̂). Note that regions of the plate with high velocity also exhibit high R(Δ ̂) as
clear in the wide yellow region in Fig. 4.3b. More importantly, note the high amplitude
of both R(Δ ̂) and I (Δ ̂) towards the plate’s side edges = ± /2 shown in Fig. 4.3.
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This agrees with previous observations for ribbons moving with a uniform velocity that
the pressure jump is unbounded at the edges and exhibits an inverse square-root sin-
gularity towards the side edges [95]. Note that in -direction this singularity does not
occur as a result of the two-dimensional fluid flow approximation.

The pressure jump singularity also occurs when the plate moves with other vibra-
tional modes than the conventional Euler-Bernoulli like modes. For instance, Fig. 4.4
shows the velocity and pressure jump when the vibrational mode is a torsional-like
mode, here the tenth mode as shown in Fig. 3.19. From Figs. 4.4e and 4.4f, it is evident
that the pressure jump singularity towards the side edges of the plate is present also for
the torsional-like modes.

In Fig. 4.5 also the pressure jump for the first roof tile-shaped mode of the micro-
plate is shown, i.e. the sixth mode in Fig. 3.19. Note that, because of the mode shape,
the components of the pressure jump I (Δ ̂) and R(Δ ̂) exhibit a great variation along
the plate’s width direction.

4.3 Integration of the hydrodynamic force

From the previous chapters, determine that the governing equation for the micro-plate-
fluid interaction problem isℎ312 ̂ , − 2 ℎ ̂ = ̂ + Δ ̂. (4.21)

Solving Eq. 4.21 involves multiplying it with the test function h ∈ V h, resulting in a
weak form of the type: find ̂ h in W h such that∫Ωp ℎ312 ̂ h, h dΩ − ∫Ωp 2 ℎ ̂ h h dΩ= ∫Ωp ̂ hdΩ + ∫Ωp Δ ̂ hdΩ, ∀ h ∈ V h. (4.22)

Upon investigation of Eq. 4.22, it is evident that a numerical procedure to evaluate
the last integral term in Eq. 4.22 using the pressure difference definition in Eq. 4.11
must be defined. To determine the appropriate quadrature scheme, let us numerically
determine the resulting force resultant of the pressure jump as

resultant = ∫Ωp Δ ̂dΩ. (4.23)

Since Δ ̂ varies more than the test functions h, a suitable numerical scheme for evalu-
ating Eq. 4.23 is also suitable for evaluating the last integral term in Eq. 4.22.

Since a two-dimensional formulation for the fluid dynamics is implemented, the
pressure difference Δ ̂( c, ) depends only on the displacements ̂ ( c, ) on the same
position c. Therefore, integration of the pressure difference Δ ̂ in Eq. 4.23 is written as
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Mode 4:1

Figure 4.4: Imaginary component of the plate’s velocity I p, real component of the pressure
jump R(Δ ̂) and imaginary component of the pressure jump I (Δ ̂) when the plate vibrates
with the tenth vibrational mode. In a), b) and c) these quantities are shown over the entire plate
domain. In d), e), and f), they are shown across the -direction at the free edge c = . In g), h),
and i) they are shown along the -direction at = − /4.
successive integration in and −direction as

∫Ωp Δ ̂( c, ) dΩ = ∫0 ∫ /2− /2 Δ ̂( c, )d d , (4.24)

and two different quadrature schemes in and direction can be used.
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Mode 1:2

Figure 4.5: Imaginary component of the plate’s velocity I p, real component of the pressure
jump R(Δ ̂) and imaginary component of the pressure jump I (Δ ̂) when the plate vibrates
with the sixth vibrational mode. In a), b) and c) these quantities are shown over the entire plate
domain. In d), e), and f), they are shown across the -direction at the free edge c = . In g), h),
and i) they are shown along the -direction at = 0.
4.3.1 Numerical integration in -direction

With the uniform discretization scheme, the mid-point integration scheme is used to
numerically determine the integration of Δ ̂ in -direction at a fixed position c = as

y = ∫ /2− /2 Δ ̂( c = , )d = y∑=1 Δ ̂( c = , )Δ . (4.25)
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An appropriate choice of quadrature scheme for a function that exhibits an inverse
square root singularity is the Chebyshev-Gauss quadrature [96, 95]. In -direction, the
Chebyshev-Gauss quadrature points are distributed over the plate’s width as= 2 cos(2 − 12My ), (4.26)

where My is the number of grid points in the -direction and = 1⋯My. The limitsl are the mid-points between for = 1⋯My − 1, with the endpoints l0 = − /2 andl
My = /2 as depicted in Fig. 4.6.

My

(l)

(l)0 = − /2
(l)
My = /2

Figure 4.6: Quadrature points (blue dots) and limiting points ( ) (dashed lines) in the
Chebyshev-Gauss quadrature.

To evaluate the -integration of Δ ̂( c, ) note that the integration of a polynomial
function divided by the inverse square root singularity with Chebyshev-Gauss quadra-
ture is given by ∫ /2− /2 ( )√( /2)2 − 2d = ∑=1 ( ), (4.27)

where ( ) are the function’s value at the discrete points defined in Eq. 4.26. The defini-
tion in 4.27 is exact when the degree of the polynomial function is −1. This definition
is used to numerically evaluate y as

y =
My My∑=1 Δ ̂( , )√( /2)2 − 2. (4.28)

To quantify the convergence of the numerical integration we define y
y = | M +1yy − Myy || Myy | , (4.29)

where
M +1yy and

M +1yy are solutions obtained with quadrature schemes with M +1y and
My points, respectively. Also, M +1y = 2My .

Considering once again the third vibrationalmode of the plate defined in Section 3.4.3,
note in Fig. 4.7a that | y| converges to a value of 1.93 10−2 with My = 1024 points with
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4.3. Integration of the hydrodynamic force

the mid-point quadrature scheme. The mid-point scheme exhibits an average conver-
gence rate equal to 1, as shown in Fig. 4.7b. The Chebyshev-Gauss quadrature pro-
vides a much smaller y for fine fluid grids with My ≥ 128. For finer fluid grids with
My ≥ 256, convergence rates equal to one are obtained with both methods. Therefore,
for the Euler-Bernoulli like modes, the Chebyshev-Gauss quadrature is a more suitable
quadrature scheme to integrate the pressure jump given the much smaller values of y
achieved.

Mode 2:0

Figure 4.7: a) Result and b) convergence of the integral of the pressure jump in y-directiony with the Chebyshev-Gauss and mid-point quadrature rules for the mode 2:0 of the example
plate.

For the mode 4:1, also y obtained with both quadrature techniques converges as
seen in Fig. 4.9. The mid-point quadrature scheme exhibits smaller y up to My = 512.
For finer fluid grids, however, the mid-point rule converges with a convergence rate
equal to one, while the Chebyshev-Gauss quadrature converges with a convergence
rate equal to three, reaching a value of 10−5 for My = 1024.

Mode 4:1

Figure 4.8: a) Result and b) convergence of the integral of the pressure jump in y-directiony with the Chebyshev-Gauss and mid-point quadrature rules for the mode 4:1 of the example
plate.

For the first roof tile shaped mode, the convergence rate with the Chebyshev-Gauss
quadrature is equals two, while the mid-point rule exhibits a convergence rate of one
as seen in Fig. 4.9.
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Mode 1:2

Figure 4.9: a) Result and b) convergence of the integral of the pressure jump in y-directiony with the Chebyshev-Gauss and mid-point quadrature rules for the mode 1:2 of the example
plate.

Therefore, for all modes, the Chebyshev-Gauss quadrature exhibits a higher conver-
gence rate than the mid-point rule, and the convergence rate depends on the vibrational
mode and frequency, while for the mid-point rule discretization, it is equal to one.

4.3.2 Numerical integration in -direction

From Figs. 4.3, 4.4 and 4.5, it is clear that in -direction, Δ ̂ does not vary as greatly as in
-direction. In fact, there is no singularity at the edge c = due to the two-dimensional

fluid flow formulation. In addition to the mid-point quadrature rule, here we introduce
the 1/3 Simpson’s rule. With the 1/3 Simpson’s rule, the quadrature points are= Δ , (4.30)

for = 0... x and Δ = / x. Evaluation of the pressure jump at a fixed position with
the 1/3 Simpson’s rule is

x = ∫0 Δ ̂( c, )d = x∑=0 Δ ̂( , ) Δ , (4.31)

where are the 1/3 Simpson’s rule weighting constants. 0 = 1, x = 1, when is even= 2 and if is odd = 4. To quantify the convergence of the numerical integration
we define

x = | M +1xx − Mxx || Mxx | . (4.32)

In -direction the convergence rate is independent of the vibrational mode and fre-
quency as seen in Fig. 4.10. The 1/3 Simpsons rule exhibits a convergence rate equal to
4, while the mid-point rule converges with a rate equal to two.
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4.3. Integration of the hydrodynamic force

Figure 4.10: Convergence of the integral of the pressure jump in x-direction x with the 1/3
Simpsons and mid-point quadrature rules.

4.3.3 Convergence of the two-dimensional integration

In the previous sections, the convergence of the numerical integration was analyzed in
each direction separately. Using the Chebyshev-Gauss quadrature in -direction and
the 1/3 Simpsons rule in -direction, the two-dimensional integral of the pressure jump
is given by

resultant = ∫Ωp Δ ̂( c, )dΩ = Mx∑=0 My∑=0 MyΔ ̂( , )√( /2)2 − 2. (4.33)

To quantify the convergence of the two-dimensional numerical integrationwe defineresultant resultant = | M +1tresultant − Mtresultant|| Mtx | , (4.34)

where Mt is the total number of points, which is equal to MxMy.
Fig. 4.11 shows resultant for the three recurrent vibrational modes of the example

plate. Different combinations of the number of points in and directions are inves-
tigated, those are My = 0.5Mx, My = Mx, My = 2Mx, My = 4Mx, My = 8Mx and
My = 16Mx. For the three modes, the fluid grid consistent of My = 0.5My requires
the highest total number of grid points Mt for reaching a reference value of resultant =
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Chapter 4 | Hydrodynamic forces on a micro-plate10−3 (in comparison to the other fluid grids). For the three modes, either the fluid grid
with My = 8Mx or My = 16Mx achieved the reference value of resultant = 10−3 with the
smallest Mt.

Figure 4.11: Convergence of the integral of the pressure jump in two dimensions with different
combinations of Mx and My. The reference value of resultant = 10−3 is shown as a dotted line.

4.4 Conclusions

Here the hydrodynamic force acting on the mid-plane Ωp of the micro-plate is deter-
mined using a boundary integral equation method considering a two-dimensional fluid
flow. The pressure jump was calculated for a micro-plate vibrating in different mode
shapes in air, and in all cases an inverse square root singularity towards the plate’s
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4.4. Conclusions

side edges was present. Different numerical quadrature schemes were investigated
for integrating the resulting hydrodynamic force in and directions. In -direction
a Chebyshev-Gauss quadrature exhibited better results with a convergence rate that
varies between 1 and 3. depending on the vibrational mode and resonance frequency.
In -direction, the hydrodynamic force does not exhibit the same singularity that oc-
curs in -direction, and as a result, the 1/3 Simpson’s rule exhibits a high convergence
rate (equals four). The two-dimensional integration analysis showed that the fluid grid
consistent of My = 8Mx or My = 16Mx exhibited convergence to a reference value with
fewer grid points than other grid combinations.
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5 A semi-numerical method for micro-plates
in viscous fluids

Results of this chapter were partially published in [70].

In the previous chapters, we determine the governing PDE for the micro-plate-fluid
interaction problem to be ℎ312 ̂ , − 2 ℎ ̂ = ̂ + Δ ̂. (5.1)

whereΔ ̂ is to be determined from the Stokes equations and the no-slip and no-penetration
boundary conditions with the boundary integral method as discussed in Chapter 4. So-
lution of Eq. 5.1 is achieved by multiplying it with the test function h ∈ V h, resulting
in∫Ωp ℎ312 ̂ h, h dΩ − ∫Ωp 2 ℎ ̂ h h dΩ = ∫Ωp ̂ hdΩ + ∫Ωp Δ ̂ hdΩ, ∀ h ∈ V h.(5.2)
Eq. 5.2 is solved with a FEM, namely the IP method, whose details were discussed in
Chapter 3. The resulting weak form of the governing equation for the micro-plate fluid
interaction problem with the IP method considering cantilevered boundary conditions
is: find ̂ h in W h such that∫Ωp ℎ312 ̂ h, h, dΩ − ∫Γ̃ ℎ312{ ̂ h, } [[ h, e ]]d − ∫Γ̃ ℎ312[[ ̂ h, ]] {[ h, e}d+∫Γ̃ ℎ312 ipℎE [[ ̂ h, ]] [[ h, ]]d + ∫Γc ℎ312 ip2ℎE ̂ h, h, d−∫Γc ℎ312 ̂ h, h, bd − ∫Ωp 2 ℎ ̂ h h dΩ= ∫Ωp ̂ hdΩ + ∫Ωp Δ ̂ hdΩ, ∀ h ∈ V h.(5.3)
Eq. 5.3 is similar to the plate equation in vacuum Eq. 3.20 with the addition of the projec-
tion of the pressure jump Δ ̂. The projection of Δ ̂ to the basis functions h is obtained
by applying the Chebyshev-Gauss quadrature in the y-direction and the Simpson’s one-
third rule (as discussed in the Chapter 4), yielding

∫Ωp Δ ̂( , ) hdΩ = fj
My Mx∑=0 My∑=1 My∑=1 −1 ̂ h( , ) h( , )√( /2)2 − 2. (5.4)

Eq. 5.4 reveals that the projection of the pressure jump corresponds to aweighted projec-
tion of the inverse of matrix −1 into the function space W h. Fig. 5.1 shows the fluid grid
resultant of the Chebyshev-Gauss and Simpson’s one-third rule quadrature schemes.
The fluid grid consists of Mx points in -direction and My points in -direction
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Chapter 5 | A semi-numerical method for micro-plates in viscous fluids

Figure 5.1: Representation of the fluid grid defined with Mx points in -direction and My
points in -direction.

With the projection of Δ ̂( , ) into V h as defined in Eq. 5.4, the weak form of the
equation of motion of the plate in a viscous fluid is: find ̂ h in W h such that∫Ωp ℎ312 ̂ h, h, dΩ − ∫Γ̃ ℎ312{ ̂ h, } [[ h, e ]]d − ∫Γ̃ ℎ312[[ ̂ h, ]] {[ h, e}d+∫Γ̃ ℎ312 ipℎE [[ ̂ h, ]] [[ h, ]]d + ∫Γc ℎ312 ip2ℎE ̂ h, h, d−∫Γc ℎ312 ̂ h, h, bd − ∫Ωp 2 ℎ ̂ h h dΩ

− fj
My Mx∑=0 My∑=1 My∑=1 −1 ̂ h( , ) h( , )√( /2)2 − 2

= ∫Ωp ̂ hdΩ, ∀ h ∈ V h.(5.5)
Therefore, the proposed method is resumed to a single equation to determine the

plate dynamics accounting for the viscous forces of an incompressible fluid in an un-
bounded domain around a micro-plate undergoing purely out-of-plane displacement.
The elements −1 of the inverse of the matrix are obtained from Eq. 4.19 considering
the Chebyshev-Gauss quadrature scheme.

5.1 Convergence

The proposed method must be convergent with the number of elements of the FE-mesh
(represented by x) as well as with the fluid grid discretization (represented by Mx).
Here, the convergence of the method is analyzed in air and water at SATP as represent-
ing fluids for gases and liquids. For the convergence analysis, we consider a wide plate
with = 1000 µm, = 500 µm, that is, a plate with aspect ratio a = 2 as depicted in
Fig. 3.17. The plate has thickness ℎ = 5 µm and is comprised of Silicon with orthotopic
properties as given in Table 3.1.
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5.1. Convergence

5.1.1 Convergence with the FE-mesh

The finite element mesh consists of x elements in -direction and y = 64/ a elements
in -direction so that the internal angles of the mesh are similar and the numerical error
stemming from different internal angles is minimized. The convergence is analyzed withconvergence as defined in Eq. 3.29 between consecutively refined FE-meshes. The fluid grid
is the same in all simulations with 32 x 256 points, which follows a ratio of 8 points in
the y-direction for each point in the x-direction.

Fig. 5.2 shows convergence at 10 kHz, 100 kHz and 1000 kHz with the number of FE-
mesh elements in -direction x in air. At 10 kHz, the proposed method converges with
a convergence rate equal to 1.8 for an FE-mesh discretized up to x = 64 elements. Forx > 64, solution ̂ diverges, similarly to the IP method convergence results at 10 kHz in
vacuum shown in Fig. 3.14. Thus at 10 kHz the convergence/divergence behavior of the
complete method is dominated by the convergence/divergence of the IP method. At 100
kHz and 1 MHz, the method converges with a rate equal to 1.8 as well. The convergence
rate of the proposed method is at all frequencies equal to 1.8 in air, which is slightly
smaller than the convergence rate of the IP method (equals 2) at Fig. 3.14.

Air

Figure 5.2: In air, convergence as a function of the number of elements x in the FE-mesh of
the plate with a = 2 at (a) 10 kHz, (b) 100 kHz and (c) 1 MHz.

In water, at a low frequency, a similar convergence rate of 1.8 is obtained. At 1 MHz
a slightly higher convergence rate equal to 2.3 is achieved. From the convergence results
shown in this section, we show that the proposed method is convergent in a gas (air)
and in a liquid (water) with a minimum convergence rate of 1.8. The only exception is
the low frequency (10 kHz) case with a very fine mesh ( x ≥ 64), for which case the
method diverges due to the IP method.

5.1.2 Convergence with the fluid grid

To investigate the method’s convergence with the fluid grid, we define fg to quantify
the convergence of the method with the number of fluid grid points as

fg = || ̂ +1 − ̂ || 2|| ̂ || 2 , (5.6)
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Water

Figure 5.3: In water, convergence as a function of the number of elements x in the FE-mesh
of the plate with a = 2 at (a) 10 kHz, (b) 100 kHz and (c) 1 MHz.

where ̂ +1 and ̂ are solutions obtained with FE-meshes consistent of 2 x 8 2 (Mx x
My) elements. The FE-mesh is constant with 64 x 32 elements.

Fig. 5.4 shows fg at 10 kHz, 100 kHz and 1000 kHzwith the number of fluid grid points
in -direction Mx in air. At all frequencies, the method converges. At low frequency,
10 kHz, the proposed method converges with a convergence rate equal to 0.9, while at
1 MHz a convergence rate equals to 2.8 is achieved.

Air

Figure 5.4: In air, convergence as a function of the number of points Mx in the fluid grid of the
plate with a = 2 at (a) 10 kHz, (b) 100 kHz and (c) 1 MHz.

In water, the method exhibits a low convergence rate at low frequency and a high
convergence rate achieving the value of 4 at 1 MHz. In addition, note that the amplitude
of fg at the order of 10−4 at 10 kHz for Mx both in air and in water, meaning increasing
the number of points further would only slightly change the resulting displacement
field. At high frequencies, fg is higher, thus a finer fluid grid would be required for
similarly small errors.

5.2 Validation with semi-analytic methods

A key semi-analytic method for MEMS in fluids is the method proposed by Sader for
beams in incompressible viscous fluids [31]. Here, we use Sader’s method as a bench-
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Water

Figure 5.5: In water, convergence as a function of the number of points Mx in the fluid grid of
the plate with a = 2 at (a) 10 kHz, (b) 100 kHz and (c) 1 MHz.

mark to compare the spectral displacement obtained with the proposed method for
slender plates (beams).

5.2.1 Spectral displacement

Here, a slender plate with an aspect ratio a = 8 with = 1000 µm, = 125 µm andℎ = 5 µm is considered as depicted in Fig. 5.6. A uniform force equals ̂ = 1 Pa is applied
to the entire plate’s top surface, and the plate’s displacement is evaluated at its free
corner at = , = /2 (see Fig. 5.6).

= 1000 m = 125 mℎ = 5 m
Figure 5.6: Dimensions of a cantilevered plate used in the validation analysis. The plate is
excited by an uniform distributed force ̂ .

Fig. 5.7 shows the absolute displacement spectrum ̂ t of the slender plate in air
and in water. The considered frequency band ranges from 1 kHz to 700 kHz with 350
discretization steps. The FE-mesh consists of 64 x 8 elements and the fluid grid of 32
x 256 points. The proposed method exhibits excellent agreement with Sader’s method
both in air and water.

In air, the resonance frequencies obtained with the proposed method also agree with
the prediction using the inviscidmethod byChu et al. [45], which is a further proof of the
validity of the method. In water, a small difference is noted between the fluid resonance
frequency f obtained with Chu’s method and the others. Chu’s method overestimates
the resonance frequencies because it neglects the effect of the fluidic damping acting
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on the plate. Sader’s method and the present method, on the other hand, agree well
over the entire frequency range analysed.

10 100[kHz]10−410−210010
2

̂ t[m]
a) Air

Proposed method
Sader
Chu

10 100[kHz]10−4
10−2
100
102

̂ t[m]

b) Water

Proposed method
Sader
Chu

Figure 5.7: Spectral dynamic displacement of the slender plate’s tip ̂ t in a) air and in b) water.
Results obtained with the proposed method, Sader’s method [31] and the inviscid method by
Chu et al. [45].

5.2.2 Quality factor

The quality factor of each vibrational mode is obtained from the displacement spec-
trum ̂ t. In the vicinity of a resonance frequency, the immersed plate is approximated
as lumped element model (LEM) composed of a linear spring-damper-mass system in
which the hydrodynamics force (due to the pressure jumpΔ ̂) appears as a linear damp-
ing term with damping coefficient and an additional mass Δ as depicted in Fig. 5.8.
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Figure 5.8: Lumped element model of the micro-plate in a viscous fluid. The fluid acts a linear
damping term with damping coefficient and an additional mass Δ .

The equation of motion for the micro-plate-fluid problem with the LEM is given by
the damped harmonic oscillator equation with one degree-of-freedom as

p 2 2 + Δ 2 2 + + = m. (5.7)

Here, is the time-dependent displacement of the plate at an arbitrarily defined
position, m is an effective external drive force, p is the plate mass and the modal
stiffness. We define the damped angular resonance frequency as d = √ / , where is
the total modal mass t = p+Δ . From the damped angular resonance frequency, we
define the damped fluid resonance frequency d as d = d/(2 ). The Fourier transform
of Eq. 5.7 yields − 2 ̂ + j ̂ + 2d ̂ = ̂p. (5.8)

The Q-factor of a vibrational mode and its modal damping coefficient are inversely
proportional [62] as = t d . (5.9)

This definition of based on the DHO equation renders similar results to the Q-factor
definition based on dissipated energy in Eq. 1.2.

From the previous equations, we define a fit spectral response function ̂dho aŝDHO( , , d) = ̂p− 2 + j d/ + 2d . (5.10)

In Eq. 5.10, is an amplitude fitting parameter. To evaluate and d, we fit the spectral
response function DHO around each damped resonance frequency.

The spectrum displacement ̂ t (and by consequence, and d) slightly vary with the
fluid grid discretization for each mode until convergence is achieved. Fig. 5.9 shows the
spectrum displacement ̂ t, the Q-factor and d for the first three vibrational modes as
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a function of the fluid grid. For the three vibrational modes, at least a fluid grid with
Mx = 8 is required (8 x 64 fluid grid).

a) Mode 1:0

b) Mode 2:0

c) Mode 3:0

Figure 5.9: Spectrum displacement ̂ t, Q-factor and d for the a) 1:0, b) 2:0 and c) 3:0 vibrational
modes as a function of the fluid grid in water.

To quantify the convergence of the quality factor we introduce= | − −1|max ( , −1) (5.11)

where and −1 are quality factors obtained with two consecutively refined fluid grids
for the same vibrating mode. Fig. 5.10 shows for all modes of the plates with aspect
ratio a = 8. The Q-factor of lower-order modes converges with a coarser fluid grid than
the Q-factor of higher-order modes. For instance, the 1:0 mode converges for Mx ≥ 8,
while the 5:0 mode converges with Mx ≥ 32. The Q-factor is considered converged when
the difference between the Q-factors obtained with two consecutively refined fluid grids
is smaller than 1% ( ≤ 0.01).

Fig. 5.11 shows the converged quality factors of the EB modes in water. In addition
to the present method’s prediction, obtained with Sader’s method [31] for flexural
modes is shown. The quality factors of flexural modes agree within 0.5% to those
obtained with Sader’s method up to the sixth mode which is here shown.
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Figure 5.10: Convergence of quality factor for the slender beam in water. The dotted black
line stands for = 0.01, the value at which we consider that the Q-factor for this mode con-
verged.
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Figure 5.11: Quality factor of the vibrational modes of the plate with a = 8 in water obtained
with the proposed method and Sader’s method.

5.2.3 Added-mass effect

In addition to the Q-factor, for MEMS resonators it is essential to quantify the added
mass effect caused by the fluid. This is achieved with the fluid-added-mass-per-plate-
mass-ratio M , defined as

M = Δplate = 2n2d − 1. (5.12)

M quantifies the added mass effect, characterized by the reduction of the resonance
frequency of a resonator in vacuum n to its damped resonance frequency in a fluidd [35]. When d ≈ n the added mass is negligible and M ≈ 0.

Similarly to the quality factor convergence, we quantify the convergence of the res-
onance frequency with = | d − −1d |max ( d , −1d ), (5.13)

where d and −1d are resonance frequencies obtained with two consecutively refined
fluid grids for the same vibrating mode. Fig. 5.12 shows the convergence of the reso-
nance frequency of the slender plates. We consider convergence when ( d) ≤ 0.001. d
varies less with the fluid grid than the Q-factor. For this reason, ( d) ≤ 0.001 is fulfilled
with coarser fluid grids than required for the Q-factor convergence.

77



Chapter 5 | A semi-numerical method for micro-plates in viscous fluids

Figure 5.12: Convergence of the damped resonance frequency for the slender beam in water.
The dotted black line stands for = 0.001, the value at which we consider that the resonance
frequency for this mode converged

Fig. 5.13 shows M of the slender plate up to 200 kHz. The proposed method slightly
under-predictsM in comparison to Sader’smethod, but differences are smaller than 5%.
These differences are due to differences in the resonance frequencies (both in vacuum
and in a fluid) which arise when using Euler-Bernoulli slender beam theory or Kirchhoff
plate theory. Since the plate here considered has an aspect ratio of 8, small differences
in n and d are expected, which are seen in the added-mass effect.

Figure 5.13: Added-mass of the vibrational modes of the plate with a = 8 in water.

5.3 Validation with purely numerical results

An important assumption in the present method is the two-dimensional fluid flow ap-
proximation, as discussed in detail in Section 4.1. Here the Q-factor and M calculated
with the presentmethod andwith a purely numericalmethod [35]which assumes three-
dimensional fluid flow are compared. The silicon micro-plate has length equals 197 µm,
width equals 29 µm ( a ≈ 6.5), and the thickness is 2 µm.
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The Q-factor and M of the first six flexural modes of this slender plate in water
are shown in Fig. 5.14. Q-factor with the purely numerical method agrees with the
present method’s prediction within 10% for the low order modes ( x ≤ 4). For higher x,
the difference in Q-factors increases, reaching 20% difference for the 6:0 mode. There
are minimal differences in M (smaller than 5%) with the two methods up to the sixth
flexural mode. Results shown in Fig. 5.14 agree with previous findings of studies that
used purely numerical methods [35, 19, 64, 63] that the two-dimensional fluid flow ap-
proximation results in an underestimated resonance frequency, which in turns yields an
overestimated added mass, as well as under-estimated Q-factor.

a) Q-factor

1 2 3 4 5 6
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40

x [−]
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Figure 5.14: a) Q-factor and b) fluid-added-mass-per-plate-mass-ratio M of flexural modes
of a slender plate predicted by a purely numerical method [35] and with the present method.

5.4 Validation with experimental results

To validate the proposed semi-numerical method we resort to published experimental
data on the Q-factor of micro-plates in a viscous fluid. Here a silicon micro-plate which
is 500 µm long, 300 µm wide ( a ≈ 1.66) and 11.5 µm thick is investigated [66]. The
fluid used in the experiments is isopropanol with f = 2.1062 mPa s and density f =781.2 kg/m3. Silicon is here considered as an orthotropic material with properties given
in Table 3.1.

Fig. 5.15 shows the Q-factor of the reported vibrational modes obtained experimen-
tally and calculated with the present method. Results include not only roof tile-shaped
modes but also other low-order modes [66]. Convergence of the Q-factor and damped
resonance frequency with the fluid grid is shown in B.1. Excellent agreement between
simulated and experimental Q-factors is found. Notably, we observe exceptional agree-
ment with all vibrational modes up to the 1:2 mode at 750 kHz. For the three higher
frequency vibrational modes, the prediction and experimental Q-factors differ by less
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Figure 5.15: Quality factor of different vibrationalmodes of awidemicro-plate in isopropanol.
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Figure 5.16: Added mass ratio M of roof tile-shaped modes of a rectangular micro-plate in
isopropanol.

than 10%1, which is a smaller difference than the errors reported using purely numerical
methods [35, 19].

Additional studies focused exclusively on the roof tile-shaped modes, for example,
a micro-plate with = 2524 µm, = 1274 µm ( a ≈ 2), and ℎ = 22 µm in isopropanol [30,
66]. The experimental fluid-added-mass-per-plate-mass-ratio M of the roof tile-shaped
modes up to 2 MHz are shown in Fig. 5.16. The present method slightly over-predicts
M for all roof tile-shaped modes by 15 ± 2%, while the damped resonance frequencies
show very good agreement.

The Q-factors of the roof tile-shaped modes of the same plate are shown in Fig. 5.17.
Excellent agreement between the present method’s prediction and experimental data is
found. Predicted Q-factors are within the experimental errors for most of the evaluated
modes, being the only exceptions the 1:4 and 1:5 modes, for which the present method
under-predicts the Q-factors by 10%2. Fig. 5.17 shows also the Q-factor obtained with

1Compressibility is not the reason for this 10% difference, since even for the 1:4 mode at 4.12 MHz the
acoustic wavelength (276 µm) is larger than the flexural wavelength of the 1:4 mode (151 µm).

2Note that isopropanol is incompressible even for the 1:8 mode because the acoustic wavelength at
1.92 MHz is 592 µm, which is much larger than the flexural wavelength of the (1,8) mode that is 320 µm
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a purely numerical method from Ruiz Diez et al. [42]. In [42], the Q-factor is obtained
by assuming the vibrational mode in the fluid to be the same as the plate’s vibrational
mode in vacuum, which is obtained numerically. The dynamics of the plate-fluid do-
mains are solved in the time domain in a single cross-section of the plate assuming a
two-dimensional incompressible fluid flow. The damping factor and added mass coef-
ficients are determined from the fluid stress on the top and bottom sides of the plate
and the Q-factor is then obtained from Eq. 5.9. With the purely numerical method,
good agreement in the Q-factor is found only for the 1:2 mode. For the 1:3 mode, is
over-predicted, whereas for the higher order roof tile-shapedmodes 1:4 to 1:8 is under-
predicted. For instance, the Q-factor of the 1:8 mode is underestimated by 50.2% with
the purely numerical method. Moreover, the purely numerical method under-predicts
the resonance frequencies of all roof tile-shaped modes. These differences are likely due
to differences in the vibrational modes in vacuum and in liquids (which this particular
purely numerical method assumes to be the same), or to not enough discretization near
the plate’s side edges, where the pressure jump tends to infinite. Results in Fig. 5.17 ev-
idence that the proposed method surpasses the accuracy of purely numerical methods
in the estimation of both resonance frequencies and Q-factors of micro-plates in viscous
fluids.
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Figure 5.17: Q-factor of the roof tile-shaped modes of a rectangular micro-plate in isopropanol.
Experimental and purely numerical results are obtained from Ruiz Diez et al. [42].

5.5 Conclusions

In this chapter, the semi-numerical method for determining the dynamics of micro-
plates immersed in incompressible viscous fluids was defined. The proposed method
converges at all frequencies tested in water and in air with a minimum convergence rate
equal to 1.8. For a plate with a = 8, the difference in Q-factor prediction between the
proposed method and semi-analytical models [31] was minimal, showing the proposed

The acoustic wavelength is calculated considering the speed of sound of isopropanol as 1139 m s−1 [66].
The flexural wavelength is calculated using a two-dimensional Fourier transform.

81



Chapter 5 | A semi-numerical method for micro-plates in viscous fluids

method’s accuracy. What is more, excellent agreement to experimental data of micro-
plates in liquids (Figs 5.15 to 5.17) was obtained both for the Q-factor as well as for
the added-mass M . These results ensure that the proposed method accurately predicts
the Q-factor and the fluid-added-mass-per-plate-mass-ratio M of different vibrational
modes of micro-plates in viscous fluids.
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Part II

Numerical and experimental results
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6 Viscous losses in the beam-plate transition

Results of this chapter were partially published in [71].

With the convergence and validation of the proposed method shown, it is possible
to investigate different effects in the micro-plate-fluid structure interaction. The first
question that requires attention is how the viscous losses vary as the elastic structure
ranges from a slender beam to a wide plate in different fluids. For that purpose, we
consider plates with = 800 µm, ℎ = 5 µm, and whose widths spawn from = 12.5 µm to= 400 µm. Hence, the structures range from a narrow beam with aspect ratio a = 64/1
to a wide plate with a = 64/32, as depicted in Fig. 6.1. With this selection of geometries,
we obtain a broad perspective of the beam-plate transition.

a) b) d)c)
Figure 6.1: Example of plates with different aspect ratios a) a = 64/1, b) a = 64/12, c) a = 64/20
and d) a = 64/32 which are here investigated.

The beam-plate transition is here investigated in air and in water as representative
fluids for gases and liquids, respectively. The properties of air and water are considered
at SATP as given in Table 2.3.

6.1 Air

6.1.1 Displacement spectrum

The structure’s displacement spectrum is calculated considering an excitation of 1 mN

applied to the plate’s free corner = , = /2. The structure’s displacement is analyzed
once more at the plate’s free corner at = , = /2, as shown in Fig. 6.2. The free-
corner displacement ̂ t is ideal for such analysis since all vibrational modes exhibit a
significant displacement at the free corner.

= 800 m = 12.5 m to = 400 mℎ = 5 m
Figure 6.2: Dimensions of the cantilevered plates used in the beam-plate transition analysis.
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Chapter 6 | Viscous losses in the beam-plate transition

In air, a frequency range from 1 kHz to 1 MHz is defined with a 1 kHz discretization
step. Fig. 6.3 shows the spectral displacement ̂ t of the slender beam with = 12.5 µm
and the wide plate with = 400 µm. In the 1 MHz frequency range, the slender beam
exhibits only six resonance frequencies which refer to the lowest six EB modes (from
1:0 to 6:0 according to Leissa’s notation). The wide micro-plate (with = 400 µm) ex-
hibits also six EB-modes in the same frequency range. But, additionally, the micro-plate
exhibits five torsional modes, two roof tile-shaped modes and four higher-order plate
modes.

a) = 12.5 µm

0 100 200 300 400 500 600 700 800 900 1,00010−3100
103 1:0 2:0 3:0 4:0 5:0 6:0

[kHz]

̂ t[nm ]

b) = 400 µm
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Figure 6.3: Displacement spectrum of the a) slender beam with = 12.5 µm and b) wide plate
with = 400 µm in air.

The vibrational modes of the plate with a = 64/32 in air are shown in Fig. 6.4. In
order for better visualization of the different vibrational modes occurring in plates, here
and throughout this thesis EB modes are depicted in a green background (or with green
markers), torsional modes in violet, roof tile-shaped (RTS) modes in blue and higher-
order plate (HOP) modes in a red background.

Fig. 6.5 shows the absolute displacement spectrum | ̂ t| of the plates with width rang-
ing from 12.5 µm to 400 µm due to a force of 1 mN applied to one of the plate’s free corner
in air. As the plate becomes wider (increasing ), more non-EB vibrational modes occur
in the frequency range up to 1000 kHzwhile the number of EB modes remains the same.
The damped resonance frequencies d of the EB vibrational modes are identified with a
green dashed line, violet lines identify the torsional modes, blue the RTS modes and red
lines the HOP modes.

In air, the damped resonance frequencies d of EB modes remain unaltered through
the beam-plate transition, while for all non-EB modes, d reduces as the plate’s width
increases. d of the EB modes is independent of the plate’s width because the added-
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6.1. Air

Figure 6.4: Vibrational modes of the plate with = 400 µm in air. Green background identifies
the EB modes, a violet background the torsional modes, blue the RTS modes and red the HOP
modes.

mass effect in air is negligible, which means d ≈ vac. The vacuum resonance frequenciesvac of the out-of-plane bending modes of beams are independent of the beam’s width
according to Euler Bernoulli’s theory. Table 6.1 shows the vacuum resonance frequencies
of the modes 1:0 to 6:0 of the plates with widths ranging from b=12.5 µm to b=400 µm.vac are obtained from an eigenvalue analysis of the Kirchhoff plate equation, essentially
Eq. 3.1 without the right-hand-side terms for orthotropic silicon.

Table 6.1: Average vacuum resonance frequencies and standard deviation of the beam-like
modes 1:0 to 6:0 of the plates with aspect ratio from = 64/1 to = 64/32.

Mode 1:0 2:0 3:0 4:0 5:0 6:0vac [kHz] 10.2 ± 0.1 66.3 ± 0.1 185.5 ± 0.1 364.9 ± 0.1 603.6 ± 0.1 910.8 ± 0.2
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Figure 6.5: Absolute displacement spectrum ̂ t of plates with different widths in air. On the
y-axis, the width ranges from 12.5 µm to 400 µm, and on the x-axis the frequency range up
to 100 kHz. The colormap refers to the logarithmic value of the absolute displacement, where
bright yellow represents maximum displacement and are associated with a resonance frequency
and vibrational mode. Green dashed lines identify the resonance frequencies of EB modes, violet
lines represent torsional modes, blue lines the RTS modes and red lines the HOP modes.

6.1.2 Q-factor

TheQ-factor of each vibrationalmode of the differentmicro-plates are determined using
the LEM as introduced in Section 5.2.2. Fig. 6.6 shows the Q-factor of the two limiting
structures here analyzed in air: that is the slender beam with = 12.5 µm and the plate
with = 400 µm, respectively. The convergence for both plates, as well as the following
plates whose data are shown in this section, for d and , are shown in the Appendix B.

For the slender beam, there are only EB-like modes in the 1 MHz frequency range
and the highest Q-factor in the 1 MHz frequency range is the 6:0 mode’s Q-factor equals
1264 for a frequency of d= 913 kHz. For the wide plate, the highest Q-factor in the same
frequency range is the 2:3 mode’s 2∶3plate equals to 2820, which is more than twice the
highest achieved with the beam ( 6∶0beam = 1264). Fig. 6.7 shows the Q-factor of the EB
and torsional modes as the structure is altered from a slender beam with = 12.5 µm to
a plate with = 400 µm in air.

In Fig. 6.7, data referring to EB modes are shown in green, with torsional modes in
violet. Note that EB modes exhibit an increase in with the plate’s width , followed by
a decrease in . For the 1:0 mode, increases with the plate’s width until a maximum
of = 142 is achieved. These results for the EB modes agree with Sader’s methods
predictions, which are shown in Fig. 6.6 in black. The Q-factor of the 4:0 mode differs
between the proposed method’s and Sader’s prediction at = 300 µm. This occurs
because for this geometry, modes 4:0 and 1:2 have a similar resonance frequency d (see
Fig. 6.5 for how d alters with ). This effect can not be predicted by Sader’s method.
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6.2. Water

a) = 12.5 µm
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Figure 6.6: Q-factor of the a) slender beamwith = 12.5 µm and b)wide platewith = 400 µm in
air.

For the torsional modes in air, the Q-factor always decreases as the plate’s width is
increased.

6.2 Water

6.2.1 Displacement spectrum

Altering the fluid from air to water results in the displacement spectrum ̂ t as shown
in Fig. 6.8 where the width of the plates ranges from 12.5 µm to 400 µm. In water, a
frequency range from 1 kHz to 500 kHz is defined with a 1 kHz discretization step so
that a similar total number of vibrational modes is analyzed in air and in water.

Note that, in water, the resonance frequencies of the EB modes decrease as the
plate’s width increases. This is different from the results in air since in air EBd is inde-
pendent of . In water, as the plate becomes wider, more EB vibrational modes fall into
the frequency range up to 500 kHz. While the slender beam has only six EB modes in
this frequency range, the wide plate exhibits nine. The vibrational modes of the plate
which occur in the 500 kHz frequency range are shown in Fig. 6.9. This difference in thed dependency with in air and water is due to the greatly different densities of both
fluids, which lead to different added-mass effects in each fluid.

6.2.2 Q-factor

Fig. 6.10 shows the Q-factor of the EB and torsional modes of the micro-plates in water.
For all modes, the Q-factor increases as the plate’s width is increased. For instance,
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Chapter 6 | Viscous losses in the beam-plate transition

Figure 6.7: Quality factor of EB and torsional modes as the structure is altered from a slender
beam with = 12.5 µm to a plate with = 400 µm in air. For EB modes, Sader’s predictions for
the Q-factors are shown in black.

the 2:0 mode exhibits a Q-factor equal to 5 for a beam with = 50 µm , and a Q-factor
of 20 for the wide plate with = 400 µm, representing a four-fold increase in for a
same EB vibrational mode. Also, torsional modes exhibit an increase in Q-factor with ,
although less accentuated than EB modes, e.g. the Q-factor of the 2:1 mode increases
from 17 for = 100 µm to Q=21 when the micro-plate is 400 µm wide.

Fig. 6.11 highlights how an opposite trend of Q-factor in the beam-plate transition
occurs in the air and in water for the same vibrational modes. In air, decreases for an
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6.3. Added-mass effect and the damping coefficient

Figure 6.8: Absolute displacement spectrum ̂ t of plates with different widths in water. On the
y-axis, the width ranges from 12.5 µm to 400 µm, and on the x-axis the frequency range up
to 100 kHz. The colormap refers to the logarithmic value of the absolute displacement, where
bright yellow represents maximum displacement and are associated with a resonance frequency
and vibrational mode. Green dashed lines identify the resonance frequencies of EB modes, violet
lines represent torsional modes, blue lines the RTS modes and red lines the HOP modes.

increasing width (except for the very narrow beam with ≤ 50 µm in the EB modes as
shown in Fig. 6.7), while in water the opposite occurs and Q increases with the plate’s
width.

6.3 Added-mass effect and the damping coefficient

The reason why the Q-factor of the EB modes and torsional modes decrease in air and
increase in water for wider plates is better understood by identifying that the Q-factor

of a vibrational mode is affected by changes to the total modal mass t = p + Δ ,
the damped frequency d and the damping coefficient through= ( p + Δ )2 d . (6.1)

Interestingly, both in air and in water, increases with in torsional and in EB
modes. In the air, the increase in results in a decrease in with for > 50 µm. For> 50 µm, increases with an exponent equal to or larger than 1 with , whereas the
plate’s mass increases with an exponent equal 1 (the added-mass effect is negligible in
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Chapter 6 | Viscous losses in the beam-plate transition

Figure 6.9: Vibrational modes of the plate with = 400 µm in water. Green background iden-
tifies the EB modes, a violet background the torsional modes, blue the RTS modes and red the
HOP modes.

air, therefore Δ ≈ 0). Since d is constant (with ) for the EB modes, and decreases
with for the torsional modes, this leads to a Q-factor that decreases with in air for≥ 50 µm. In the very slender beam scenarios with < 50 µm, increases with an
exponent smaller than 1, resulting in an increasing Q-factor for the EB modes.

In water, the added-mass effect is not negligible and strongly impacts the Q-factor.
Fig. 6.13 shows the fluid-added-mass-per-plate-mass-ratio M of the plates with an as-
pect ratio between 64/4 and 64/32 in water as a function of the modes’ damped reso-
nance frequencies d. Similar modes of the different plates are connected with a dashed
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6.3. Added-mass effect and the damping coefficient

Figure 6.10: Quality factor of EB and torsional modes as the structure is altered from a slender
beam with = 12.5 µm to a plate with = 400 µm in water. For EB modes, Sader’s predictions
for the Q-factors are shown in black.

black line. The wider the plate, the greater the M for the same vibrational mode. Hence,
for all modes, slender beams exhibit a lower M and higher d, andwide plates exhibit the
opposite, higher added-mass and lower damped resonance frequency. For EB modes,
the added-mass effect of wide plates is very strong, achieving values as high as M ,
meaning the fluid-added-mass Δ is 30 times the plate’s mass p.
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In water
Increasing Q

In air
Decreasing Q

Increasing width

Figure 6.11: Illustration of the beam-plate transition effect on the Q-factor in air and in water.

Figure 6.12: Damping coefficient of the EB and torsional modes in a) air and b) water.
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Figure 6.13: Fluid-added-mass-per-plate-mass-ratio M of the a) EB and b) torsional modes of
micro-plates. The legend refers to the plate’s aspect ratios . A gray dashed black line connects
the same vibrational mode of the different plates. The arrows indicate the increasing width
direction.

6.4 Fluid flow, kinetic energy and viscous dissipation

The fluid-added-mass and fluidic damping coefficient were until the previous sections
seen as simple passive elements in the LEM. However, both effects can be traced back to
the fluid flow around the different structures and vibrational modes. The present pro-
posed method allows also for determining the velocity field, kinetic energy and viscous
dissipation associated with each vibrational mode to further comprehend the micro-
plate-fluid problem.

With the 2D fluid flow formulation, the fluid velocity in and in directions are
determined in any position in the fluid domain taking partial derivatives of the stream-
function ̂x definition in Eq. 4.8, which yieldŝz( c, ′, ′) = ∫ /2− /2 1fΔ ̂( c, ) 2Ψ̂ ′ ||| =0d , (6.2)

and ̂y( c, ′, ′) = − ∫ /2− /2 1fΔ ̂( c, ) 2Ψ̂ ′ ||| =0d . (6.3)
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Eqs. 6.2 and 6.3 can be evaluated numerically using the analytic form for Ψ̂ given in
Eq. 4.5.

For the fluid flow analysis, we determine the fluid flow surrounding the free edge
( c = ) of themicro-plate as depicted in Fig. 6.14. The plate’s displacement is normalized
so that the free corner’s displacement is ̂t = 1µm s−1.

Figure 6.14: Fluid flow representation around the free edge of a micro-plate vibrating in the
5:1 mode. The plate’s displacement is normalized so that the free corner’s displacement is ̂t =1µm s−1.

The fluid flow is divided in in-phase fluid flow ̂ IP which stands for the fluid flow
velocity in-phase with the plate velocity, and out-of-phase fluid flow ̂ OP, for the out-of-
phase fluid velocity component with the plate velocity. Fig. 6.15 shows both in-phase
and out-of-phase components of the fluid flow surrounding the free edge ( c = ) of
plates with different widths. Note in Fig. 6.15 that ̂ IP and ̂ OP fulfill the no-slip and
no-penetration boundary conditions at the plate’s surfaces, given that ̂ IP has a value
of 1 µm s−1 with only -component for − /2 ≥ ≥ /2. As the plate moves in positive -
direction, two circulation zones appear in ̂ IP at ≈ ±( /2+10µm). As the plate’s width is
increased, the amplitude of ̂ IP in these circulation region increase, and at = 400µm ̂ IP
is even higher than the plate’s velocity around these circulation regions. ̂ OP exhibits a
circulation zone at ≈ ±( /2+40µm)with opposite orientation to the circulation zone of̂ IP . For instance, in the positive -direction, while ̂ IP moves in a clockwise direction,̂ IP moves in an anticlockwise direction. ̂ OP also increases amplitude with an increase
in the plate’s width .

The Q-factor of each mode is evaluated from the dissipated energy D in the fluid
per oscillation cycle as described with Eq. 1.2. To evaluate D, we introduce the fluid’s
kinetic energy f , and note that the rate of change of the fluid kinetic energy in the fluidd f/d is d f/d = ∫ p ⋅ ( TpTpTp ⋅ )d − 2 f ∫Ωf ⋅ dΩf . (6.4)

p is the union of the plate’s top and bottom surfaces. The second term in Eq. 6.4 is the
power with which the plate acts on the fluid, and the third term refers to the power
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6.4. Fluid flow, kinetic energy and viscous dissipation

1:0 mode in air

Figure 6.15: Fluid flow for the 1:0 mode around plates with different widths in air. The in-phase
flow is shown on the left, and the out-of-phase on the right. The plate is represented by a black
solid line.

dissipated by the fluid. Eq. 6.4 is rewritten using the pressure difference between top
and bottom plate surfaces (and the normal vectors on both surfaces) in the time-domain
as d fd = ∫Ωp Δ dΩp − 2 f ∫Ωf ⋅ dΩf . (6.5)

Over one oscillation period at a fixed frequency ( = 1/2 ), all the energy that
the plate transfers to the fluid is dissipated, and the net difference in kinetic energy in
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the fluid is zero. Hence, the energy dissipated by the fluid in one cycle of oscillation D
is D = ∫0 ∫Ωp dΩpd = 2 f ∫0 ∫Ωf ⋅ dΩfd . (6.6)

D is evaluated using the Fourier-transforms of the time-dependent quantities as

D = 2 ∫Ωp R (j ̂ Δ ̂∗) dΩp = 2 f2 ∫Ωf R ( ̂̂̂ ⋅ ̂̂̂∗) dΩf , (6.7)

where the∗ superscript means the complex conjugate and R is the real operator.

From Eq. 6.7 a energy dissipation density ΣD is introduced asΣD = fdR ( ⋅ ∗) . (6.8)

The integral of ΣD over the entire fluid domain is the dissipated energy per cycle D,
which is inversely proportional to . Note that , the strain rate tensor, is complex,
which means both the in-phase and out-of-phase flow components dissipate energy.
The non-zero components of are calculated taking the partial derivatives of the stream
function definition in Eq. 4.6 as( c, , ) = y( c, , ) = − 1f ∫ /2− /2 Δ ( c, ′) 3Ψ′ d ′, (6.9)( c, , ) = z( c, , ) = 1f ∫ /2− /2 Δ ( c, ′) 3Ψ′ d ′, (6.10)( c, , ) = 12 ( y( c, , ) + z( c, , )) (6.11)= 1f ∫ /2− /2 Δ ( c, ′) [ 3Ψ′ − 3Ψ′ ] d ′, (6.12)

and = . The other terms of are zero as a result of the 2D fluid flow approximation.
The fluid kinetic energy density Σk,fluid in the fluid flow is defined asΣk,fluid = 12 f ̂ ⋅ ̂ . (6.13)

In addition, we define also the kinetic energy density in the micro-plate, which is simplyΣk,plate = 12 2 ̂ 2. (6.14)

The kinetic and dissipated energy densities (Σk and ΣD) for the 2:0mode in air around
plates with different widths are shown in Fig. 6.16. The majority of the energy dissipa-
tion occurs at the plate’s side edges = ± /2, where ΣD reaches its maximum. In the
central region of the plate ( = 0), ΣD is small and the energy dissipation for the EB
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6.4. Fluid flow, kinetic energy and viscous dissipation

modes is negligible. Due to the small density of air, k in the plate domain is much
larger than the fluid’s k,fluid.

Air

Figure 6.16: Kinetic and dissipated energy densities for the 2:0 mode around plates with differ-
ent widths in air.

It is possible to further investigate the variation of the Q-factor for the EB mode
in the beam-plate transition by integrating the dissipation energy density ΣD and the
kinetic energy densities Σk,fluid and Σk,plate in a cross-section for the plates with different
widths which results in the energy dissipation per length D, k,fluid and k,plate, respec-
tively.

Fig. 6.16 shows D, k,fluid and k,plate for the 2:0 mode. D increases with , therefore
a wider plate dissipates more energy at each cross-section. The plate’s kinetic energyk,plate increases linearly with and is much greater than the air’s kinetic energy k,fluid.
The ratio D/ k,plate in Fig. 6.17 increases as is increased, until = 100µm. For wider
structures, the ratio D/ k,plate decreases, yielding the Q-factor reduction seen in Fig. 6.7
in air.

In water, the added mass effect is larger and this is noticeable in Σk,plate shown in
Fig. 6.18 for the mode 2:0 in water. In water, Σk,plate and Σk,fluid are the same order of
magnitude in a wide region near the plate. The ratio between fluid and plate density is
only 2.3, therefore the kinetic energy in the fluid is here significant.
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Figure 6.17: On the left, the dissipated energy per unit length D, fluid kinetic energy per unit
length k,fluid and plate kinetic energy per unit length k,fluid the 2:0 mode in air. On the right, is
the ratio between dissipated energy by the fluid and stored kinetic energy in the plate’s cross-
section.

Fig. 6.19 shows D, k,fluid and k,plate for the 2:0 mode in water. In water, k,fluid is
much larger than k,plate, meaning there is more kinetic energy stored in the fluid than
in the plate. Furthermore, k,fluid is smaller than D for slender beams, but becomes
larger than D as the plate becomes larger. Essentially, with an increase in , the fluid
stores more energy, resulting in an increased D/( k,plate + k,fluid) ratio, and as a result,
leading to an increase in Q-factor.

6.5 Oscillatory Reynolds number

The oscillatory Reynolds number is a non-dimensional parameter that appears in sev-
eral fluid dynamics phenomena[97, 98] and is commonly used for comparison between
different structures in fluids[31, 54]. For the fluid-plate interaction problem, is[70, 44]= 22 df , (6.15)

where the plate’s width is considered the problem’s characteristic length. Note that
in the present formulation, the square root of appears in the second term of the fun-
damental solution in Eq. 4.5.

Figs. 6.20a and 6.20b show the Q-factor and the damping coefficient , respectively,
of the EB modes of the plates with = 64/4 to = 32/64 as a function of in water.
Interestingly, both the Q-factor and the damping coefficient fall into a well-behaved
exponential curve increasing with . grows exponentially with an exponent equals
0.47, and with an exponent equals 0.53. The fluid-added-mass-per-plate-mass-ratio
M , on the other hand, does not fall into a single exponential curve. However, retrieving
the modal mass from the fluid-added-mass-per-plate-mass-ratio M and multiplying
it with d returns once more an exponential curve (Fig. 6.20c). In fact, note that ,
and d are related according to Eq. 5.9, and the same is true for the exponential fits
presented in Fig. 6.20.

Results in Fig. 6.20 show that even though the hydrodynamic force (pressure jumpΔ ) is a non-linear force, the resulting Q-factor of beam-like modes follows a well-
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6.5. Oscillatory Reynolds number

Water

Figure 6.18: Energy density for the 2:0 mode around plates with different widths. The in-phase
flow is shown on the left, and the out-of-phase on the right. The plate is represented by a black
solid line.

behaved path in the vs graph inwater. In air, on the other hand, a similar exponential
fit to the Q-factor of the EB modes is not possible as seen in Fig. 6.21.
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Chapter 6 | Viscous losses in the beam-plate transition
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Figure 6.19: On the left, the dissipated energy per unit length D, fluid kinetic energy per unit
length k,fluid and plate kinetic energy per unit length k,fluid the 2:0 mode in water. On the right,
is the ratio between dissipated energy by the fluid and stored kinetic energy in the plate.

6.6 Conclusions

In this chapter, the beam-plate transition in air and in water was investigated. In air,
the Q-factor of EB modes increases initially as the plate’s width increases and then
decreases for wider plates. In the air, torsional modes exhibited a decrease in as
increased. In water, for both the EB and torsional modes increases for wider plates.
An investigation using a lumped element model reveals the importance of the added-
mass effect, which effectively increases the Q-factor of modes in water by increasing
the kinetic energy stored in the fluid. In air, due to its small density, the added-mass
effect is negligible and the Q-factor decreases for wider plates. In the fluid flow in a
cross-section, it is easy to see the difference in the kinetic energy stored in the fluid in
air and in water.
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Figure 6.20: a) , b) and d) d of the EB modes as a function of the oscillatory Reynolds
number . The dashed lines are exponential approximations. The labels in a) refer to the plate’s
aspect ratio.
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Figure 6.21: Q-factor of the EB modes as a function of the oscillatory Reynolds number in
air. The labels in a) refer to the plate’s aspect ratio.
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7 Gas-Liquid modal Q-factor inversion

Results of this chapter were partially published in [72].

In the previous chapter, only the EB and the torsional modes were the objects of
study in the beam-plate transition range. Here, we determine the Q-factor of all the
plate’s vibrational modes (EB, torsional, roof tile-shaped modes and higher-order plate
modes) in different fluids. Gases and liquids are found in opposite regions in a density-
viscosity diagram as shown in Fig. 7.1. Liquids have high density and viscosity, whereas
gases exhibit low density and viscosity. A micro-plate immersed in gases and liquids
is subject to an effect we define as the gas-liquid modal Q-factor inversion (GL-Q-
inversion).

7.1 Galerkin mode decomposition (GMD)

For the single plate case (in which the geometry is not altered, but only the fluid or
frequency), the Galerkin mode decomposition (GMD) is a more suited method to solve
the governing equations. GMD is advantageous in comparison to FEM for a single
structure because the resulting matrices are smaller. In essence, with GMD the size
of the matrices is defined by the number of modes to be used as function space, which
is usually smaller than the number of basis functions used in FEM.

The Galerkin mode decomposition consists in using the modal basis function space
in the dimension reduction from the Hilbert function space W to finite function spaces
W md ⊂ W and V md ⊂ W , and defining the problem as: Find md ∈ W md such that( md, ̂md) = ( ̂md), ∀ md ∈ V md. (7.1)

The trial and test function spaces, V md and W md respectively, for the GMD is the
function space of a finite number md of free vibrationalmodes of the plate in vacuum.
The trial function space V md is defined as

V md = { ̂md ∈ 2(Ωp) ∶ ̂md ∈ , ̂md|Γc = 0}, (7.2)

and the test function space W md is

W md = { ̂md ∈ 2(Ωp) ∶ ̂md ∈ , ̂md|Γc = 0}, (7.3)

A possible choice for is the set of complex eigenmodes that are the solution to the
generalized eigenvalue problem of the governing PDE, that is the non-linear eigenvalue
problem which stems from Eq. (5.1) without a driving force d. However, both the an-
alytic and numeric solutions to such a non-linear eigenvalue problem with a non-local
hydrodynamic force h are complicated to determine. An alternative to the complex
eigenmodes is the set of free vibrational modes of the plate in vacuum (in absence of
fluid) which can be obtained from the generalized eigenvalue problem for the Kirchhoff
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Chapter 7 | Gas-Liquid modal Q-factor inversion

Figure 7.1: Density and viscosity of different gases and liquids. Among the gases: hydrogen,
air and neon are highlighted in a linear plot on the top left. Among the liquids: water, acetone,
gasoline and isopropanol are highlighted in a linear plot on the bottom right. The solid black
line connects air and water in a continuously changing fluid. and are quantities introduced
in this chapter to quantify the fluid’s properties.

plate equation. The set of free vibrational modes has been successfully used previously
to solve for the dynamics of fluid-structure interaction problems [31, 99, 100, 60].

is the eigenvector set from the generalized eigenvalue problemdefined in Eq. (3.30),
determined once more with the IP method as described in Section 3.4.3. The eigenvec-
tors stemming from Eq. (3.30) are 2 normalized asℎ∫Ωp Φ Φ dΩ = 1. (7.4)
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7.2. Convergence and validation

The governing PDE of the micro-plate fluid interaction Eq. (5.1) solved with GMD is
then: Find md ∈ W md such that∫Ωp ℎ312 ̂md, md, dΩ dΩ − ∫Ωp 2 ℎ ̂md ̂md dΩ

− fj
My Mx∑=0 My∑=1 My∑=1 −1 ̂md( , ) ̂md( , )√( /2)2 − 2

= ∫Ωp ̂ ̂mddΩ, ∀ ̂md ∈ V md. (7.5)

The last integral in 7.5 is once more evaluated in the -direction with a Chebyshev-
Gauss quadrature with My elements, and in -direction the 1/3 Simpsons’ rule with
Mx elements suffices. The quadrature points in and directions are represented in
Fig. 5.1.

7.2 Convergence and validation

For the analysis we use a micro-plate with = 500 µm, = 250 µm and ℎ = 5 µm
composed of silicon with orthotropic properties. A plate with aspect ratio a = 2 is ideal
for the analysis of micro-plates in gases and liquids because it exhibits different types of
vibrational modes in a relatively low frequency range. For instance, among the lowest
twenty vibrational modes of the micro-plate in vacuum (shown in Fig. 7.2 with their
resonance frequencies) there are six EB modes, six torsional modes, two RTS and six
HOP modes. In this chapter, when referring to RTS and HOP modes, the term HOP
modes will be employed as a reference for both types of modes together. HOP modes
are essentially the non-beam modes (neither torsional nor EB modes).

There are two parameters on which the convergence of the proposed method must
be shown: with the number of vibrational modes md that form the basis for the GMD
and with the fluid grid discretization Mx by My. To quantify the convergence of the
method with md we define md = || ̂ +1 − ̂ || 2 , (7.6)

where ̂ +1 and ̂ are solutions obtained md = 5( + 1) and md = 5. The convergence
with the fluid grid is shown using convergence as defined in Eq. 3.29.

The convergence of the method is analysed in air and water as representing fluids
for gases and liquids. In both fluids, modes reduces as md increases, reaching a value
of 0.9 10−3 in water, and of 0.8 10−4 in air as shown in Fig. 7.3.

Fig. 7.4 shows convergence as a function of the fluid grid discretization Nx Ny. Both
in air and water at 500 kHz the method converges with similar convergence reaching a
value of 10−6 for a fluid grid with 384 384 points.

For validating the GMD method, we resort to a comparison to the FEM method
described in Chapter 5. Fig. 7.5 shows the absolute spectrum displacement ̂ t of the
plate’s free-corner ( = , = /2) in air and in water obtained with GMD and FEM. The
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Chapter 7 | Gas-Liquid modal Q-factor inversion

Figure 7.2: Twenty lowest-order vibrational modes of a cantilevered siliconmicro-plate clamped
at its left edge and free on all others. EB modes are shown with green background, torsional with
purple, HOP modes with y = 2 in blue and HOP with y = 3 in red background.

101 101.1 101.2 101.3 101.4 101.5 101.610−310−210−1100
md [−]

md [− ]

Air Water

Figure 7.3: Convergence of the GMD method in air and in water with the number of modes.

0 50 100 150 200 250 300 350 40010−610−410−2
md [−]converg
ence[− ] Air Water

Figure 7.4: Convergence of the present method for a micro-plate in air and in water with the
fluid grid Nx Ny.
two methods exhibit excellent agreement in the entire frequency range up to 1 MHz in
both fluids.
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7.3. Q-factor in gases

a) Air
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Figure 7.5: Spectral displacement of the plate with GMD and FEM in a) air and b) water.

7.3 Q-factor in gases

For the investigation of the HOP and RTS vibrational modes of micro-plates in gases, as
gases of interest we select hydrogen, air and neon because these provide a wide range of
viscosities and densities as shown in Fig. 7.1. Table A.1 shows the viscosity and density
of the selected gases at SATP conditions.

The absolute spectral displacement of the free-corner of the plate | ̂ t| is shown in
Fig. 7.6 in the different gases in a frequency range between 1 kHz and 3 MHz. In the 3
MHz frequency range, there are nineteen maxima in the displacement spectrum which
refer to fourteen damped resonance frequencies d and vibrational modes. The vibra-
tional modes are indicated with the x ∶ y notation and are similar to the vibrational
modes in vacuum shown in Fig. 7.2. Since all gases have low density, the damped res-
onance frequency d of each mode investigated is similar to the vacuum resonance fre-
quency n (gray dashed lines in Fig. 7.6).

The Q-factors of the micro-plate in hydrogen, air and neon are shown in Fig. 7.7. In
air and neon, the micro-plate exhibits similar Q-factors, while in hydrogen the micro-
plate exhibits much higher Q-factors due to hydrogen’s smaller absolute viscosity f . In
the three gases, for modes with a same number of nodal lines along the plate’s lengthy, and d increase with x. For instance, the Q-factor and d of mode 3:0 are higher
than and d of mode 2:0 and so forth. The increase of and d with x has been seen
previously for EB and torsional modes of slender beams [31, 35]. Here, also and d of
HOP modes increase with x in gases.
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Figure 7.6: Displacement spectrum of a micro-plate in air, neon and hydrogen. Gray dashed
lines represent the resonance frequencies in vacuum. The labels on each dashed line represent
the vibrational mode of each resonance frequency according to Leissa’s notation.

a) Air

b) Neon

c) Hydrogen

Figure 7.7: Q-factor of the micro-plate in a) air, b) neon and c) hydrogen vibrating in EB, tor-
sional, RTS and HOP modes. The colors used in the marks here are the same as in the respective
vibrational mode in Fig. 7.2.
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7.4. Q-factor in liquids

More interestingly, EB modes exhibit the lowest Q-factors when comparing modes
with similar damped resonance frequencies d. For example, in air, the Q-factor of mode
6:0 ( 6∶0) is 1715, lower than mode’s 6:1 Q-factor ( 6∶1) which is 2720, which is, in turn,
lower than the 5:2’s Q-factor of 4860. Torsional modes exhibit higher Q-factors than
EB-modes ( torsional > EB), but lower than RTS and HOP modes. HOP modes and RTS
modes exhibit similar Q-factors ( HOP ≈ RTS). In summary, in gases, the Q-factors of
the plate vibrational modes follow the pattern HOP,RTS > torsional > EB comparing
modes with similar damped resonance frequencies d.
7.4 Q-factor in liquids

For the analysis in liquids, we investigate the same micro-plate in isopropanol, ethanol
and acetone. This choice of fluids provides a broad range of viscosity as shown in Fig. 7.1
while maintaining comparable densities. Table A.1 shows the liquids’ properties at SATP
conditions.

Fig. 7.8 shows the plate’s displacement ̂ t in the 1.5 MHz frequency range in differ-
ent liquids. The 1.5 MHz limit is selected because there occur a significant number of
vibrational modes and acoustic losses are negligible [30] in this frequency range. The
damped resonance frequency d of each mode changes for each liquid depending on the
liquid’s density (in a much more significant way than in gases). Mode 4:2 has a damped
resonance frequency of 905 kHz in either liquid, which is much lower than 1911 kHz res-
onance frequency in vacuum. In the 1.5 MHz frequency range, there are twenty-three
maxima in the displacement, 8 EB modes, 7 torsional modes, 6 HOP modes and 2 RTS
modes.

In comparison to the spectrum in gases, the maximums in displacement in liquids
are less sharp due to the higher viscosity of liquids, which results in smaller Q-factors
as shown in Fig. 7.9. In isopropanol, the vibrational modes exhibit the lowest Q-factors,
due to isopropanol’s largest absolute viscosity f , while in acetone the highest Q-factors
are achieved due to acetone’s smaller viscosity. All liquids here analyzed have similar
densities, and for this reason, damped resonance frequencies are similar.

What is more interesting, in liquids the Q-factor of EB modes is higher than those
of non-EB modes at similar d. For example, in acetone the Q-factor of mode 7:0 ( 7∶0) is
112, being higher than mode’s 4:2 Q-factor ( 4∶2)which is 71. In liquids, torsional modes
exhibit lower Q-factors than EB-modes ( torsional < EB), but are higher than those of
RTS and HOP modes. Hence, in liquids, the Q-factors of the plate vibrational modes
follow the pattern HOP,RTS < torsional < EB comparing modes with similar damped
resonance frequencies d. This trend is exactly the opposite of the Q-factor pattern seen
in gases.

This inversion is more clearly seen in Fig. 7.10, where the Q-factor of the vibrational
modes in air and water categorized in EB modes (left), torsional modes (center) and
high-order plate modes (right) are shown. Notice that in air, Q increases from left to
right (i.e. from EB modes to high-order plate modes), so HOP,RTSair > torsionalair > EBair . In
water, the opposite happens, and Q decreases from EB modes to high-order plate modes
( HOP,RTSwater < torsionalwater < EBwater). To name this phenomenon of the change in Q-factor trend
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a) Acetone

b) Ethanol

c) Isopropanol

Figure 7.8: Displacement spectrum of the micro-plate in a) acetone, b) ethanol and c) iso-
propanol.

from gases to liquids we introduce the term “Gas-Liquid modal Q-factor-inversion”, or
GL-Q-inversion. The GL-Q-inversion is illustrated in Fig. 7.10b.
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7.5. Physical mechanism underlying the Gas-Liquid modal Q-factor-inversion

a) Acetone

b) Ethanol

c) Isopropanol

Figure 7.9: Q-factor of the micro-plate in a) acetone, b) ethanol and c) isopropanol.

7.5 Physical mechanism underlying the Gas-Liquid modal
Q-factor-inversion

To investigate the GL-Q-inversion, we resort once more to the LEM model defined in
Section 5.2.2 in which the Q-factor of a vibrational mode and its modal damping
coefficient are inversely proportional according to= p(1 +M ) d , (7.7)

where p is the plate mass and M is the fluid-added-mass-per-plate-mass-ratio, or
added-mass coefficient.
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Figure 7.10: Q-factor of the micro-plate in a) air and c) water. EB modes ( y = 0) are on the
left, torsional modes ( y = 1) on the center and high-order plate modes ( y ≥ 2) on the right. b)
Illustration of the Gas-liquid modal Q-factor inversion effect.

In gases, the pattern HOP,RTS > torsional > EB can be directly related to a higher
damping coefficient of the EB modes in comparison to the non-EB modes as shown
in Fig. 7.11 in air. In the air, the added-mass coefficient is negligible. For modes with
approximately similar d, the damping coefficient follows HOP,RTS < torsional < EB.

The higher damping coefficient of the EB modes is also seen in the energy dis-
sipation density map in Fig. 7.13. The kinetic and dissipated energy densities (Σk andΣD) for the different modes with approximately the same damped resonance frequencyd ≈ 2.5 MHz shown in Fig. 7.13. Those modes are 6:0, 6:1, 5:2 and 3:3, whose displace-
ment field is shown in Fig. 7.12. The majority of the energy dissipation occurs at the
plate’s side edges = ± /2 for all modes, however, the 6:0 mode shows an enlarged re-
gion of high energy dissipation. Here we consider a region with high energy dissipation
where ΣD ≥ 10−7 nJm−3. Regions with low dissipation ΣD < 10−7 nJm−3 are represented
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Damping coefficient in air

Figure 7.11: Damping coefficient of the micro-plate in vibrating in EB, torsional and RTS and
HOP modes in air.

in black in Fig. 7.13. For RTS and HOP modes, ΣD decreases in amplitude and also in
the size of the high energy dissipation region.

Mode 6:0 Mode 6:1 Mode 5:2 Mode 3:3

Figure 7.12: Displacement field of the 6:0, 6:1, 5:2 and 3:3 vibrational modes in air.

Furthermore, note in the energy dissipationmaps in Fig. 7.13 the increase inΣD around
the center of the plate = 0, above and underneath the plate at ≈ 15 µm for all the
non-EB modes. The appearance of this additional region of energy dissipation occurs
because of additional -direction fluid flow around these non-EB modes both for the
in-phase component ̂ IP as well as for the out-of-phase component ̂ OP as shown in
Fig. 7.14.

In water, the pattern HOP,RTS < torsional < EB is not explained by the damping
coefficient , since in water is higher for EB modes than for non-EB modes as shown
in Fig. 7.15. Therefore, follows a similar pattern both in air in Fig. 7.11 and inwater, that
is, HOP,RTS < torsional < EB, in which EBmodes exhibit the highest damping coefficients.

The explanation for the higher Q-factor of the EB modes in water must rely on the
added-mass effect. Fig. 7.16 shows that, indeed, the added-mass coefficient M is much
higher for the EB modes than for the non-EB modes. The added-mass coefficient M
for the HOP and RTS modes is the lowest among the plate vibrational modes. The fact
that EB modes have a higher added-mass coefficient means the EB modes store more
energy in form of kinetic energy in the fluid, which increases the EB mode’s Q-factor
in liquids.

Fig. 7.18 shows the dissipation and kinetic energy densities, ΣD and Σk, for the dif-
ferent modes with approximately the same damped resonance frequency d ≈ 1.05MHz

shown in Fig. 7.18. These modes are the 8:0, 5:2 and 2:3 modes, whose displacement field
is shown in Fig. 7.17. The fluid flow around a plate vibrating in the 8:0 mode exhibits
higher Σk and ΣD than the flow around the non-EB modes (5:2 and 2:3) at a similar fre-
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Mode 6:0

Mode 6:1

Mode 5:2

Mode 3:3

Figure 7.13: Kinetic and dissipated energy densities around plates in different modes in air. The
plate’s boundaries are represented by a gray wire frame.

quency, which causes the EB mode’s higher added-mass coefficient M and damping
coefficient .

The efficiency of the proposed method for a single plate allows the investigation of
the Q-factor, and M in a fluid with continuously varying density and viscosity from
a gas (air) to a liquid (water). Both the density and viscosity are simultaneously altered
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Mode 6:0

Mode 6:1

Mode 5:2

Mode 3:3

Figure 7.14: Fluid flow for modes 6:0, 6:1, 5:2 and 3:3 at the plate’s tip in air. The in-phase flow
is shown on the left, and the out-of-phase on the right.

from air to water following

f = air + ( water − air), (7.8)

f = air + ( water − air), (7.9)
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Damping coefficient in water

Figure 7.15: Damping coefficient of the micro-plate in vibrating in EB, torsional and RTS and
HOP modes in water.

Figure 7.16: Added-mass coefficient of the micro-plate in vibrating in EB, torsional and RTS
and HOP modes in water.

Mode 8:0 Mode 5:2 Mode 2:3

Figure 7.17: Displacement field of the 8:0, 5:2 and 2:3 vibrational modes in water.

where varies between 0 and 1 logarithmically, which results in the f , f pairs shown
in Fig. 7.1.

Fig. 7.19 shows the plate’s spectrum in the 2 MHz frequency range in the fluid rang-
ing from the air (top) to water (bottom) as a function of a fluid parameter = log 1/√ f f .
For air, = 2.33, while for water = 0.026. Bright lines represent frequencies of max-
imum displacement, associated with the vibrational modes specified on the top and
right side of the graph. As f and f increase, the damped resonance frequencies d of
all modes decrease. However, they do not decrease equally for all types of modes. EB
modes exhibit a more accentuated decrease in d than non-EB modes.

As increases it leads to the appearance of resonance frequencies in which two
vibrational modes occur simultaneously. Fourteen of these resonance frequencies d on
which two modes occur are highlighted in Fig. 7.19 from a) to n), following the order of
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Mode 8:0

Mode 5:2

Mode 2:3

Figure 7.18: Kinetic and dissipated energy densities around plates in different modes in water.
The plate’s boundaries are represented by a gray wire frame.

decreasing (from air to water). For instance, at point a) the mode 6:0 and mode 1:3
occur at the frequency d = 1925kHz for a = 1.2. These fourteen points are considered
points of interest for understanding the GL-Q-inversion analysis since the analysis is
restricted to modes with similar d.

To elucidate the GL-Q-inversion let us define the Q-factor ratio between an EB mode
and a non-EB mode which share the damped resonance frequency d asEBnon−EB = 1 +M EB1 +M non−EB non−EBEB . (7.10)

Fig. 7.20a shows the quality factor modal inversion in terms of the ratios between
Q-factors. In gases, EB/ non−EB is smaller than 1 because EB modes have a lower Q-
factor than non-EB modes. In liquids, the EB/ non−EB ratio is larger than 1, since EB
modes have in liquids higherQ-factors. Interestingly, the ratio of damping coefficients is
approximately constant in the entire fluid range and smaller than 1, as seen in Fig. 7.20b.
Thus, EB modes exhibit a larger damping coefficient independently of the fluid regime.
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Figure 7.19: Spectral displacement of a micro-plate in a continuously changing fluid, from air
to water. The colormap refers to the logarithmic value of the absolute displacement spectrumlog(| ̂ t|) of the plate in fluids between air (top) and water (bottom) as the function of the fluid’s
parameter .

Therefore, the explanation for the quality factor modal inversion lies in the fluid flow
addedmass of the differentmodes as expected. As shown in Fig. 7.20c, the ratio of added
masses 1+M EB1+M non−EB is approximately 1 for gases since M EB and M non−EB are negligible in
gases. 1+M EB1+M non−EB continuously increases as the fluid is altered from a gas to a liquid,
reaching a ratio higher than 3 in water.

7.6 Conclusions

Investigating the HOP and RTS modes of micro-plates in gases and liquids revealed op-
posite trends in the different fluid regimes. While in gases Q increases from EB modes,
to torsional and then to HOP and RTS modes HOP,RTS > torsional > EB, in liquids, the
opposite happens, and Q decreases from EB modes to HOP modes EB > torsional >HOP,RTS. This change in the Q-factor trend from gases to liquids we named the ”Gas-
Liquid-modal-Q-factor inversion“ (GL-Q-inversion). An analysis of the Q-factor as a
ratio of the damping coefficient and added-mass coefficient revealed that in gases, in-
creases for HOP modes due to their lower damping coefficients. In liquids, even though
EB-modes dissipate more energy, they also exhibit a higher stored energy in form of
added mass, which increases EB.
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Figure 7.20: Ratio of the a) Q-factor, b) added-mass coefficients and c) damping coefficient of
the vibrational modes over frequency in the gas-liquids transition.
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8 Experimental analysis

Results of this chapter were partially published in [72].

Experimental investigations of MEMS resonators immersed in gases and liquids are
essential to give confidence in the proposed numerical method. Here, we use the in-
house capabilities to fabricate MEMS resonators with different geometries. This allows
for an in-depth investigation to go way beyond the experimental data of fluid-micro-
plate interaction available in the literature.

8.1 Fabrication of silicon MEMS resonators

For the experimental analysis, we fabricatemicro-plates that have a length equal to 1500
µm and a thickness of 20 µm. A 500 nm piezoelectric layer of Aluminium Nitride (AlN)
is sputter-deposited on the micro-plate so that integrated actuation and sensing can be
performed in liquids as well as in gases. Two electrode layers of chromium/gold (Cr/Au)
having a thickness of 50 nm and 150 nm, respectively, are evaporated on the top and
bottom of the piezoelectric AlN-layer. Plates with two different widths are fabricated:
plates with width equals 750 µm have an aspect ratio a = 2 and are named “w750”
and plates with width equals 500 µm (aspect ratio a = 3) are named “w500”. Fig. 8.1
shows the example of prototypes “w500” and “w750” fixed to a ceramic package and
electrically connected through gold wires.

a) w500 b) w750

Figure 8.1: Prototypes fabricated for experimental analysis, in a) plates “w500” and in b) plates
“w500”. The prototypes are fixed to a ceramic package and electrically connected through gold
wires.

The silicon micro-plates are tailored with a different number of pairs (top and bot-
tom) of electrodes as represented in Fig. 8.2. These tailored electrodes allow the ex-
citation of specific vibrational modes with different external electric connections. For
instance, providing a similar signal to all electrodes excites most efficiently EB modes,
because EB modes are symmetric concerning the −direction. In the w500 example in
Fig. 8.2a, providing opposite signal voltages to E1 and E3 excites most efficiently tor-
sional and HOP modes with y = 3. In the w750 example in Fig. 8.2b, exciting E1∪E2
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and E3∪E4 with opposite signals excites torsional and HOP modes with y = 3, while ex-
citing E1∪E3 and E2∪E4 with opposite signals excites predominantly modes with y = 4.

a) b)

E1

E2

E3

E1

E2

E3

E4

Figure 8.2: Tailored electrodes for symmetric and anti-symmetric excitation. In a) a w500 plate
is shown with three tailored electrodes (E1 to E3). In b) a w750 plate is shown with four tailored
electrodes (E1 to E4).

8.2 Experiments in water

The plate’s spectral displacement is measured using a laser Doppler vibrometer (LDV)
Polytech MSA 500. For the measurement in water, a water droplet is placed on the
micro-plate as shown in Fig. 8.3.

Figure 8.3: w750 micro-plate immersed in a droplet of water during measurements.

Fig. 8.4 shows, on the right, the real part of the measured velocity R( ) of the micro-
plate in water with the LDV at the lowest ten vibrational modes of the micro-plate w750
at each damped resonance frequency d. On the left, the average displacement field
of the measured points at frequencies near d is given.

The quality factor is obtained from a fit with the damped harmonic oscillator equa-
tion (Eq. 5.10) to the average displacement field . The resulting fit is shown in Fig. 8.4.
Fig. 8.5 shows the Q-factor of the w500 and w750 micro-plate in a 750 kHz frequency
range in water. In this frequency range, sixteen vibrational modes of the w500 plate
are experimentally identified, six EB modes, six torsional, the first RTS and three HOP
modes. From the w750 plate resonator, seventeen vibrational modes were identified in
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a) Mode 1:0

b) Mode 1:1

c) Mode 2:0

d) Mode 2:1

e) Mode 3:0

f) Mode 3:1

g) Mode 1:2

h) Mode 2:2

i) Mode 4:1

j) Mode 5:0

Figure 8.4: Experimental data of the w750 micro-plate in water for the eight lowest vibrational
modes. On the left, the average of at the measure points at frequencies near d is given. On
the right, the real part of the measured velocity of the micro-plate is shown.

this frequency range, including two RTS modes and five HOP modes. The 4:0 mode was
not identified, likely due to spectral overlap with a HOP mode (the 2:2mode), which pre-
vents the 4:0mode’s identification. Similarly, the 5:1modewas not found due to spectral
overlap with the 1:3 mode. Note in Fig. 8.5 that EB modes exhibit the highest Q-factors,
followed by torsional modes and HOP/RTS modes. This EBwater > torsionalwater > HOPwater pat-
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tern found experimentally agrees with the pattern seen in the simulations in liquids in
Chapter 7.

a) w500 b) w750

Figure 8.5: Experimentally obtained Q-factor of the a) w500 and b) w750 micro-plates in water.

The difference between simulation and experimental damped resonance frequencyDiff( d) is determined as Diff( d) = Simd − ExpdSimd . (8.1)

Hence, negative values ofDiff( d)means the simulation under-estimates d, and positive
values of Diff( d) indicates the simulated values of d are over-estimated.

Fig. 8.6 showsDiff( d) for bothw500 andw750 plate resonators. In bothmicro-plates,
the numerical method under-estimates d for the EB modes, reaching a difference of
22% for the w500 plate and up to 35% for the w750 plate. The d under-prediction for EB
modes is expected due to the two-dimensional fluid flow approximation in the proposed
numerical method. For the torsional, HOP and RTS modes, the difference in d is in the
range 0 ≤ Diff( d) ≤ 12% for the w500 plate, and within the −15% ≤ Diff( d) ≤ 5% range
for the w750 plate.

The difference between simulation and experimental Q-factors Diff( ) is deter-
mined as Diff( ) = Sim − ExpSim . (8.2)

Fig. 8.7 shows Diff( ) for both w500 and w750 plate resonators. For most EB modes
(in both plates), the simulated Q-factors are overestimated, whereas torsional, HOP and
RTS modes have underestimated Q-factors. For the w500 plate, the difference in is in
the range −30% ≤ Diff( ) ≤ 20%, and within the −20% ≤ Diff( ) ≤ 25% range for the
w750 plate. We consider these results to indicate great agreement between simulation
and experimental data in water. The main limitation of the proposed method is the es-
timation of the damped resonance frequency d of the EB modes, whose error increases
with the number of nodal lines x.
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Difference in the resonance frequency
a) w500 b) w750

Figure 8.6: Difference in d, Diff( d), for the a) w500 and b) w750 micro-plate in water.

Difference in the Q-factor
a) w500 b) w750

Figure 8.7: Difference in , Diff( ), for the a) w500 and b) w750 micro-plate in water.

8.3 Experiments in air

Experimentally determining theQ-factor of the w500 andw750micro-plates in air yields
surprisingly lowQ-factors. As shown in Fig. 8.8, of the EB and torsionalmodes initially
increase (from modes 1:0 to 2:0, and from modes 1:1 to 2:1), similarly to the increase
expected from simulations. What is more, the torsional modes exhibit a higher Q-factor
than the EB modes, similar to the simulation results. However, this initial increase in

is followed by a decrease for all modes with resonance frequencies higher than 200
kHz. While the simulated Q-factor for these modes with d ≥ 200 kHz is in the order of
thousands, the measured Q-factors are in the order of the hundreds.

The reason for this decrease in is the occurrence of acoustic losses. Acoustic losses
refer to the fluid’s compressibility, which becomes significant when the acoustic wave-
length ac is of the same order of magnitude or smaller than the flexural wavelengthflex [30, 54].
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a) w500 b) w750

Figure 8.8: Experimentally obtained Q-factor of the a) w500 and b) w750 micro-plates in air.

The two-dimensional vibrational modes of plates exhibit flexural wavelengths in
both directions, and , denoted by x and y, respectively. x and y are determined
with a two-dimensional Fast Fourier Transform (FFT) of the experimental displacement
field. Fig. 8.8 shows on the left, the average of at the measure points at frequencies
near d. On the center is the real part of the measured velocity of the micro-plate and
on the right, is the result of the two-dimensional FFT of the vibrational mode as a func-
tion of x and y. For the 1:0 mode, the dominant x is 6000 µm and y is 3000 µm. All the
torsional modes exhibit y equals to 1500 µm, whereas the EB modes have y = 3000 µm.
The 1:2 mode has y = 600 µm, slightly smaller than the plate’s width.

a) Mode 1:0

b) Mode 1:1
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c) Mode 2:0

d) Mode 2:1

e) Mode 3:0

f) Mode 3:1

g) Mode 1:2

Figure 8.8: Experimental data of the w750 micro-plate in water for the eight lowest vibrational
modes. On the left, the average of at the measure points at frequencies near d. On the center,
is the real part of the measured velocity of the micro-plate. On the right, the result of the
two-dimensional FFT of the vibrational mode.
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Figure 8.9: Flexural and acoustic wavelengths of the vibrational modes of the micro-plate w750
in air.

Fig. 8.9 shows the flexural wavelengths x and y as well as the acoustic wavelengthac for the w750 plate in air. The acoustic wavelength as ac = / considering the speed
of sound of air as 340 m s−1 [66]. The 2:1 mode is the last one to have both flexural
wavelengths x and y smaller than the acoustic wavelength ac. All modes above the 2:1
mode have at least one of the flexural wavelengths larger than the acoustic wavelength,
hence acoustic losses play a prominent role in such vibrational modes.

8.4 Minimizing the influence of acoustic losses

Including compressibility effects to account for acoustic losses in the proposed method
is not trivial. Hence, we use an alternative strategy to experimentally demonstrate the
GL-Q-inversion effect (found in the previous chapter). We design resonators for which
acoustic losses are minimized. Using a thinner and longer micro-plate, resonance fre-
quencies d are lower, hence the number of vibrational modes occurring at frequencies
before acoustic losses become dominant is increased. We fabricate a micro-plate with
length equals to 2524 µm, width equal to 1274 µm and thickness of 5 µm. Similarly to the
numerical example and previous experimental analysis, this micro-plate has an aspect
ratio approximately equal to 2.

Given the plate’s small thickness (5 µm), the device’s layer stress must be small,
so that static out-of-plane bending is minimized and the plate’s spectral displacement
can be measured with the LDV. To achieve low layer stress we use a stress-engineered
polycrystalline diamond layer as the plate’s material. A polycrystalline diamond layer
is deposited on a ⟨100⟩-silicon substrate using hot filament chemical vapor deposition
(CVD) in a CVD reactor from CarbonCompetence GmbH. A preliminary seeding step
with nanodiamond crystals is used to grow the diamond layer on a non-diamond sub-
strate. Subsequently, the plate resonators are patterned on the diamond layer with
chemical dry etching in an inductively coupled plasma reactive ion etcher (ICP RIE)
with oxygen as the etching gas and aluminium as the etching mask. The silicon sub-
strate beneath the polycrystalline diamond layer is removed with the so-called Bosch
process etch from the backside in the same ICP RIE equipment, which concludes the
plate resonator fabrication. With this fabrication method, the layer’s stress is smaller
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than 100 MPa and the out-of-plane static displacement is restricted to a few tens of
micrometers. The resulting micro-plate is shown in Fig. 8.10).

Figure 8.10: Polycrystalline diamond micro-plate with minimized static out-of-plane displace-
ment.

Fig. 8.11a shows the Q-factor of this thin diamond micro-plate in air in the 200 kHz
frequency range. EB modes exhibit the lowest Q-factors in this frequency range, while
torsional and HOP modes with y = 2 have intermediate Q-factors. HOP modes withy = 3 exhibit the highest Q-factors in this frequency range. For instance, the 3:3 mode
has a Q-factor of 982, almost 5 times higher than the Q-factor of the 6:0 EB mode at a
similar resonance frequency with = 205. In Fig. 8.11b it is clear that using the thin
plate successfully avoided the acoustic losses, and in this frequency regime, the Q-factor
follows the pattern HOPair > torsionalair > EBair , in agreement with the numerical findings.

a) Q-factor

b) Wavelengths

Figure 8.11: a) Q-factor and b) flexural and acoustic wavelengths of the diamond micro-plate
in air.
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A comparison between the simulated Q-factor and measured Q-factor in air was
not possible, because, for such analysis, an extensive characterization of the mechanical
properties of the polycrystalline diamond layerwould be necessary, given the anisotropic
properties of the material and the specific fabrication process. Also, experimentally
measuring the Q-factor of the thin diamond micro-plate in water was not possible, since
no piezoelectric layer was deposited on the device.

8.5 Conclusions

Experiments in water showed a Q-factor following the numerically predicted pattern
of EB > torsional > HOP. The difference in d between simulation and experiments
was within the −15% ≤ Diff( d) ≤ 5% range for the w750 plate for non-EB modes. For
EB modes, Diff( d) grows with x and reached 35% for the 6:0 mode. The difference in
Q-factor was within the −20% ≤ Diff( ) ≤ 25% range for the w750 plate in water, which
we consider a great agreement between simulated and experimental data.

Experiments in air showed that acoustic losses must also be considered, in addition
to viscous losses for properly determining the Q-factor. Thin micro-plates were fabri-
cated with polycrystalline diamond for enabling a low-stress device layer. For the thin
micro-plates, the Q-factor in air follows the pattern HOP > torsional > EB, in agreement
with the numerical prediction of the gas-liquid Q-factor inversion.
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Beyond two-dimensional
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9 Hydrodynamic force on a micro-plate due
to a three-dimensional fluid flow

One key assumption in the method introduced in this work so far is the restriction of
the fluid flow to be two-dimensional = (0, , ). This hypothesis is expected to limit
the applicability of the method because for wide plates the three-dimensional fluid flow
increases its effect on the plate’s dynamics [35, 62] as represented in Fig. 9.1. However,
the exact length to which the three-dimensional fluid flow affects the plate dynamics
is yet undefined. Here, we propose to use formulation for the fluid flow that allows for
the modeling of a three-dimensional fluid flow = ( , , ) around a micro-plate
using a boundary integral formulation.

a) Flow around a beam b) Flow around a plate

Figure 9.1: Representation of fluid the flow around a) beam and b) a plate. Green arrows
indicate the fluid flow which is not characterized by the 2D fluid flow approximation.

9.1 The unsteady Stokeslet

The fundamental solution to the unsteady Stokes equations is the unsteady Stokeslet.
That is, the unsteady Stokeslet is a Green’s function that solves the singularly forced
unsteady Stokes equations in the frequency domainj ̂ ( f) = − 1f∇ ̂( f) + f∇2 ̂ ( f) + ̂ ( s), (9.1)∇ ⋅ ̂ ( f) = 0. (9.2)

where ̂ is a constant vector, s is an arbitrary point in the three-dimensional space and
is the three-dimensional delta function [94]. s is typically called the pole or source

point, and f the field point.
In Einstein’s summing notation, the unsteady Stokeslet S that solves the unsteady

Stokes equations in an infinite unbounded domain is

S ( f , s, ) = ( , ) + ( , ) 3 (9.3)
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where , represent , and directions. and are the components of the vector= f − s, and = | |. The functions ( , ) and ( , ) are( , ) = 2e− (1 + 1 + 12 2) − 22 2 , (9.4)

and ( , ) = −2e− (1 + 3 + 32 2) + 62 2 , (9.5)

where 2 = −j 2char/ , where char is the problems characteristic length. In the micro-
plate case, char will be the plate’s largest dimension, usually the plate’s length . The
Stokeslet allows for defining the velocity components at the field point f due to the
source ̂ at the pole s as ( f) = 18 fS ( , f , s) ̂ ( s). (9.6)

In addition to the unsteady Stokeslet S , the unsteady Stresslet is required for de-
scribing the stress components of a three-dimensional Stokes flow. The Stresslet, in
index notation [93], is= − 23 ( f + f )[ − ( + 1) − ( , )] − 23 f [1 − ( , )]− 2 f f f5 [5 ( , ) − 2 − ( + 1)]. (9.7)

The Stresslet describes the stress components at the field point f due to the sourcê at the pole s as ̂ ( f) = 18 f ( , f , s) ̂ ( s). (9.8)

9.2 The boundary integral equation

The boundary integral equation arises when considering a closed surface in an infi-
nite fluid domain as represented in Fig. 9.2. The boundary integral equation allows for
determining the velocity at a field point f due to the fluid flow and fluid stress at the
surface as ̂ ( f) = − 18 f ∫ [ ̂S ( , f , s) − ̂ ( s)T ( , f , s) ] d ( s), (9.9)

where ̂ are the components of the vector ̂ = ̂ ⋅ , and are components of the
normal vector pointing outward from the surface to the flow as depicted in Fig. 9.2.
In Eq. 9.9, s are source points at the surface which are also used to describe the
surface [93, 94]. The integral of the first term inside the RHS of Eq. 9.9 is known as
the single-layer potential, and the integral of the second is the double-layer potential.
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Figure 9.2: Body with a closed surface immersed in a fluid. The normal vector points out
of the body into the fluid domain.

For certain scenarios, Eq. 9.9 can be written simply as a single-layer formulation,
while the double-layer potential may be neglected. For a single-layer representation to
be valid, the requirement is that the flow rate through any closed surface in the fluid
domain is zero, that is ∫ ̂ ⋅ d = 0. (9.10)

Hence, the single-layer potential formulation can not describe flows where sources or
sinks of fluid exist [93]. For themicro-plate-fluid problem, from the continuity equation,
as well as the no-penetration and no-slip boundary condition at the plate’s surfaces, Eq.
9.10 is fulfilled. Therefore, the fluid flow around the micro-plate is represented by the
single-layer formulation aŝ ( f) = − 18 ∫ [ ̂( s)S ( , f , s)] d . (9.11)

Neglecting the plate’s lateral surfaces, the fluid flow velocity at a field position f is
determined from the fluid forces, ̂t and ̂b, acting on top and bottom plate surfaces, Σt
and Σb, respectively, as represented in Fig. 9.3, yieldinĝ ( f) = − 18 f ∫Σt ̂t( s)S ( , f , s)d − 18 f ∫Σb ̂b( s)S ( , f , s)d . (9.12)

Eq. 9.11 has analytic solutions only for a couple of examples, e.g. sphere translating
with constant velocity [93]. For the micro-plate problem, Eq. 9.12 must be discretized
and solved numerically. The discretization of the plate’s top surface Σt is F (Σt) as ex-
emplified in Fig. 9.4a), where Σt is discretized with rectangular elements. Discretizing
the force acting on the plate’s top surface ̂t with piece-wise continuous elements in t
leads to the collocation discretization scheme. Hence, each element of the partitioningt is subject to a vector force ̂t with constant values. The set of the vector forces ̂t at t is
denoted ̂ t and is represented in Fig. 9.4b). This discretization scheme where forces are
described on all surfaces, in this case on the top and bottom plate surfaces, is typically
called the Boundary Element Method (BEM).

To obtain an equation between the plate’s velocity p and the force distributions ̂ t
(acting on the top surface) and ̂ b (acting on the bottom surface), the fluid velocity is
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Figure 9.3: Forces acting on the top and bottom plate surfaces, Σt and Σb, repectively.

Figure 9.4: Example of the plate’s a) top surface partitioning F (Σt) and c) bottom surface par-
titioning F (Σt) with rectangular elements. b) On the top surface, discretization of the vector
forces ̂t in the partitioning F (Σt) leads to the discretized vector force distribution ̂ t. d) On the
bottom surface, it leads to ̂b.
discretized on Σt at a field point distribution tf , which leads to

⎡⎢⎢⎢⎣
̂ t ( tf)̂ t ( tf)̂ t ( tf)

⎤⎥⎥⎥⎦ = − 18 f
⎡⎢⎢⎢⎣
∫Σt Sxx ∫Σt Sxy ∫Σt Sxz ∫Σb Sxx ∫Σb Sxy ∫Σb Sxz∫Σt Syx ∫Σt Syy ∫Σt Syz ∫Σb Syx ∫Σb Syy ∫Σb Syz∫Σt Szx ∫Σt Szy ∫Σt Szz ∫Σb Szx ∫Σb Szy ∫Σb Szz

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

̂ tx̂ tŷtẑbx̂bŷbz
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.13)
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In Eq. 9.13, all components of the Stokeslet take as argument the distance between the
field points tf and the coordinates of the elements of the partitionings F (Σt) and F (Σb).
The integral in Eq. 9.13 are surface integrals, where the differential element d is omitted
for more compact notation.

A similar analysis for the fluid velocity at the plate’s bottom surface leads to

⎡⎢⎢⎢⎣
̂b( bf )̂b( bf )̂b( bf )

⎤⎥⎥⎥⎦ = − 18 f
⎡⎢⎢⎢⎣
∫Σt Sxx ∫Σt Sxy ∫Σt Sxz ∫Σb Sxx ∫Σb Sxy ∫Σb Sxz∫Σt Syx ∫Σt Syy ∫Σt Syz ∫Σb Syx ∫Σb Syy ∫Σb Syz∫Σt Szx ∫Σt Szy ∫Σt Szz ∫Σb Szx ∫Σb Szy ∫Σb Szz

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

̂ tx̂ tŷtẑbx̂bŷbz
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.14)

The BEM formulation in Eqs. 9.13 and 9.14 is valid for thick as well as thin structures.
For thin structures, an alternative discretization scheme to BEM exists in which the
thickness of the structure is considered to be zero for Stokeslet’s evaluation and for the
discretization scheme, i.e. the pole points and the field points are considered inside
the domain of the structure[44, 69, 101, 102]. This method is called the Slender Body
Method (SBM) or the singularity method. Even though the name of the method uses
the word slender, its validity includes thin geometries such as micro-plates which are
not necessarily slender (thin and narrow).

For the micro-plate fluid problem, using SBM implies that f and s are considered
to be on the plate’s midplane Ωp as represented in Fig. 9.5. The plate’s midplane par-
titioning in SBM is defined as F (Ωp), and discretization of the vector forces ̂ in the
partitioning F (Ωp) leads to the discretized vector force distribution ̂mp.

Figure 9.5: a) Example of the plate’s midplane partitioning F (Ωp) with rectangular elements.
b) Discretization of the vector forces ̂ in the partitioning F (Ωp) leads to the discretized vector
force distribution ̂mp. c) Discretization of the plate’s midplane plate yields the slender body
method.
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The governing equation for the micro-plate-fluid interaction problem with SBM is⎡⎢⎢⎢⎣
̂mp( mpf )̂mp( mpf )̂mp( mpf )

⎤⎥⎥⎥⎦ = − 18 f
⎡⎢⎢⎢⎣
∫Ωp Sxx ∫Ωp Sxy ∫Ωp Sxz∫Ωp Syx ∫Ωp Syy ∫Ωp Syz∫Ωp Szx ∫Ωp Szy ∫Ωp Szz

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
̂mpx̂mpŷmpz
⎤⎥⎥⎥⎦ , (9.15)

where all components of the Stokeslet assume the -distance between the field pointsmpf and the pole points in F (Ωp to be zero.

The fluid’s force acting on the plate’s midplane ̂mp (whose discretized version iŝmp) is the sum of the forces acting on top and bottom surfaces aŝmp = ̂t + ̂b. (9.16)

Remembering the fluid stress definition in an incompressible Newtonian fluid̂ = − ̂ + f (∇ ̂ + ∇ ̂ ) , (9.17)

and defining the normal on Σt to be t(0, 0, 1)T, the fluid force on the top surface iŝt = ̂ t ⋅ t = [− ̂t + f (∇ ̂ + ∇ ̂ )] ⋅ t. (9.18)

From the no-slip and no-boundary conditions, the fluid velocity at the plate’s top and
bottom surfaces, ̂ t and ̂b are equal to the plate’s midplane velocity (0, 0, ̂p), yieldinĝt = ( ̂p , ̂p , − ̂t + 2 f ̂p)T . (9.19)

Similarly, the fluid force acting on the plate’s bottom surface is determined, assumingb(0, 0, −1)T, as ̂b = (− ̂p , − ̂p , + ̂b − 2 f ̂p)T . (9.20)

Hence, ̂mp is ̂mp = (0, 0, ̂b − ̂t)T. (9.21)

The plate’s midplane velocity is ̂ mp(0, 0, ̂p)T, therefore Eq. 9.15 renders⎡⎢⎢⎢⎣
00̂p( mpf )

⎤⎥⎥⎥⎦ = − 18 f
⎡⎢⎢⎢⎣
∫Ωp Sxx ∫Ωp Sxy ∫Ωp Sxz∫Ωp Syx ∫Ωp Syy ∫Ωp Syz∫Ωp Szx ∫Ωp Szy ∫Ωp Szz

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

00̂b − ̂t⎤⎥⎥⎥⎦ , (9.22)

which, considering that Syz = 0 and Sxz = 0 from the Stokeslet’s definition in Eq. 9.3,
renders ̂p( mpf ) = − 18 f ∫Ωp Szz dΩ ̂. (9.23)
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9.3 Integration of the Stokeslet

Eq. 9.23 is solved numerically by writing it as a matrix-vector product that relates the
plate’s displacement ̂ in the field points mpf with the pressure jump Δ ̂Δ ̂Δ ̂ discretized in
the partitioning F (Ωp). Eq. 9.23 is written using the plate’s displacement ̂ asj ̂ ( mpf ) = 3D3D3DΔ ̂Δ ̂Δ ̂. (9.24)

The matrix elements 3Dij are given by

3Dij = − 18 f ∫ Szz( , mpf , ′) d ( ′), (9.25)

where mpf is the i-th point in the field fluid grid mpf , and is the j-th element in the
plate’s partitioning F (Ωp) on which j-th element of Δ ̂Δ ̂Δ ̂ acts. The i-th row of the 3D
matrix is the integral of the Stokeslet Szz with a field position at mpf over the entire
plate’s partitioning F (Ωp).

The geometric center of each surface element is denoted mps . Note that the field
points mpf and the center of the surface elements mps must not necessarily be equal.
However, a different number of elements in mpf and mps leads to a non-square 3D.
Since later stages of the method require the determination of the inverse of 3D, we opt
for the most common strategy in which mps = mpf as represented in Fig. 9.6.

Figure 9.6: a) Plate’s displacement ̂ discretized at the field points ( mpf ), b) partitioning of the
plate’s midplane domain F (Ωp) and c) pressure jump discretized at ( mps ).

One of the challenges in using BEM/SBM is that the Stokeslet functions are singular.
For instance, Szz is singular at mpf = mps . This characteristic of the Stokeslet is so critical
that it gave rise to a new set of methods called the regularized Stokeslets [103, 104].
In the regularized Stokeslet, the Stokeslet function is regularized by altering it with a
“cutoff” function [103, 104], which effectively removes the singularity from the Stokeslet
components. Here, given the fact that only the Szz component needs to be integrated
over, we use the fact that there exists an analytic solution to the integral of Szz in a
circular region of radius analytic as

analytic = ( analytic + 1) − analytic − 12 f 2 analytic . (9.26)
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Since we assume a continuous pressure jump Δ ̂ in each element of F (Ωp), we may use
Eq. 9.26 to evaluate Eq. 9.25 when mpf ∈ . The strategy we propose relies on the an-
alytic integration around a circular region, and numerical integration using triangular
elements between the circular region and a square with side 2 analytic and rectangular el-
ements to evaluate the integral in the remaining region in the element as represented
in Fig. 9.7.

Figure 9.7: a) Plate’s partitioning F (Ωp) and b) integration scheme around the singularity
when mpf ∈ . The yellow circular region corresponds to the analytic integration domain.
In the orange region, numerical integration is performed with triangular elements, and in the
remaining domain, rectangular elements are employed.

Hence, the element of the 3D matrix, when mpf ∈ is

3Dij = analytic + triangular + rectangular, mpf ∈ . (9.27)

For the other surface elements, when mpf ∉ , Eq. 9.25 is evaluated using rectangular
elements as 3Dij = rectangular, ∉ . (9.28)

To evaluate Eqs. 9.27 and 9.28 efficiently, we use the numerical integration package
Quadpy available in Python for both triangular and rectangular elements. Each element
of F (Ωp) is refined until convergence of the element 3Dij is achieved, that is, the relative
difference between two iterations of 3Dij is smaller than Szz.
9.4 Hydrodynamic force due to different vibrational modes

To define a proper discretization scheme for the field points mpf and the fluid parti-
tioning F (Ωp), it is crucial to understand how Δ ̂ behaves for the different vibrational
modes of a plate using the 3D fluid flow formulation. The pressure jumpΔ ̂ is calculated
as Δ ̂Δ ̂Δ ̂ = 3D3D3D−1j ̂ ( mpf ). (9.29)
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3D3D3D−1 is the inverse of the 3D3D3D matrix.
Given thatΔ ̂ is expected to exhibit a singularity at the plate’s side edges at = ± /2

as well as at the plate’s free edge = , we use the Chebyshev-Gauss quadrature points
both in and − [96, 95]. Hence, in -direction, My points are distributed
over the plate’s width as defined in Eq. 4.26. In -direction, we use only the positive
values of a Chebyshev-Gauss quadrature, that is= cos(2 − 12Mx 2 + 2), (9.30)

where Mx is the number of grid points in the -direction and = 1⋯Mx. The limits
of integration l are the mid-points between for = 1⋯Mx − 1, with the endpointsl0 = 0 and l

Mx = as depicted in Fig. 9.8.

Mx

(l)

(l)0 = 0

(l)
Mx =

Figure 9.8: Quadrature points (blue dots) and limiting points ( ) (dashed lines) in the
Chebyshev-Gauss quadrature in -direction.

The fluid flow around slender beams is expected to be predominantly two-dimen-
sional [35, 64]. Hence, a slender beam is an ideal example to investigate the accuracy of
the 3D fluid formulation here proposed. We consider a slender beam with = 1000 µm,
aspect ratio a = 32 and thickness ℎ = 5 µm. As a fluid, air is used at SATP (properties
given in Table 2.3). For this analysis, the fluid grid consists of Mx = 64 and My = 32
and Szz = 10−3.

Fig.9.9a) and b) show the real part of the pressure jump R(Δ ̂) with the 2D and 3D
fluid formulation, respectively, for the mode 2:0 over the entire plate domain. Fig.9.9c
shows R(Δ ̂) at different cross-sections of the plate, at = 100 µm, = 200 µm, =400 µm, = 600 µm, = 800 µm and = 900 µm, where great agreement between 2D
and 3D results is seen. For visualizing the plate’s cross sections, see Fig. 9.10. Fig.9.9d
shows R(Δ ̂) at the plate’s center line at = 0 over . Near the free edge of the beam
at = there is a small difference in R(Δ ̂), which indicates the influence of the 3D
fluid flow in this region. A similar agreement is obtained for the imaginary component
of the pressure jump I (Δ ̂).

For higher order EB modes, the influence of the 3D fluid flow is expected to in-
crease [35], hence we investigate here how the pressure jump varies in the first five EB
modes for this slender beam. Fig. 9.11 shows R(Δ ̂) as a function of the position at
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Figure 9.9: Real part of the pressure jump R(Δ ̂) with the a) 2D and b) 3D fluid formulation,
respectively, for the mode 2:0 in air. In c), R(Δ ̂) at different cross-sections of the plate, at= 100 µm, = 200 µm, = 400 µm, = 600 µm, = 800 µm and = 900 µm, in d) over the x
coordinate at = 0.
the center of the beam (y = 0) for the first to the fifth EB mode. 3D results agree well
with 2D in a great extension of the plate. Near the plate’s free edge, the pressure jump
obtained with the 3D method exhibits a reduction in amplitude followed by a singular-
ity for all EB modes at = . Such singularity, the 2D method is, of course, not able to
predict.

For a wider plate, the influence of the 3D dimensional fluid flow is expected to
increase [64]. For an initial investigation into the effect of the width on the pressure
jump, we use once more the wide plate which was introduced in Section 3.4.3. Fig. 9.12
shows R(Δ ̂) at = 0 for the EB and 1:2 modes, and at = /2 for the torsional modes.
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Figure 9.10: Cross-sections parallel to the -direction are represented by a dashed blue line.
Cross-sections parallel to the -direction are represented by a red continuous line for the EB
mode, and by a dashed green line for the torsional mode.

Differently than for the slender beam example, for the wide plate, R(Δ ̂) exhibits a
noticeable difference between the 2D and 3D formulations. The amplitude of R(Δ ̂)
is overestimated with the 2D method over the entire length of the plate, and these
differences are even more significant for the EB modes than for other modes.

9.5 Conclusions

In this chapter a three-dimensional fluid flow formulation for the micro-plate-fluid
structure interaction based on the free space Stokeslet was introduced. For the micro-
plate-fluid problem, the single-layer formulation suffices and the double-layer termmay
be ignored. With the SBM, the Szz component of the Stokeslet suffices for determining
the hydrodynamic forceΔ ̂ acting on the micro-plate, which further simplifies the prob-
lem. To account for the singularities in all free edges of the plate, the Chebyshev-Gauss
quadrature was implemented in both and directions. An example with a slender
beam showed great agreement between 2D and 3D formulations over a great extension
of the beam, which provides confidence in the implementation of the new method. Fur-
thermore, an initial investigation with a wide plate example revealed great differences
between 2D and 3D results.
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Slender beam
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Figure 9.11: Real part of the pressure jump R(Δ ̂) with the 2D and 3D fluid formulation for a
slender beam in air.
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Wide plate
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Figure 9.12: Real part of the pressure jump R(Δ ̂) with the 2D and 3D fluid formulation for a
wide plate in air.
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10 A semi-numerical method for micro-plates
in viscous fluids considering a
three-dimensional fluid flow

The governing equation for the micro-plate-fluid interaction problem isℎ312 ̂ , − 2 pℎ ̂ = ̂ + Δ ̂, (10.1)

whose weak form is: find ̂ h in W h such that∫Ωp ℎ312 ̂ h, h, dΩ − ∫Γ̃ ℎ312{ ̂ h, } [[ h, e ]]d − ∫Γ̃ ℎ312[[ ̂ h, ]] {[ h, e}d+∫Γ̃ ℎ312 ipℎE [[ ̂ h, ]] [[ h, ]]d + ∫Γc ℎ312 ip2ℎE ̂ h, h, d−∫Γc ℎ312 ̂ h, h, bd − ∫Ωp 2 pℎ ̂ h h dΩ= ∫Ωp ̂ hdΩ + ∫Ωp Δ ̂ hdΩ, ∀ h ∈ V h.(10.2)
Eq. 10.2 is similar to the weak form of the 2D fluid flow formulation (Eq. 5.3) with the
difference that, here, Δ ̂ is determined using the free-space 3D Stokeslet formulation
introduced in Chapter 9. Hence, a different numerical quadrature is here required to
evaluate ∫Ωp Δ ̂ hdΩ.

10.1 Numerical integration of the hydrodynamic force

Using the Chebyshev-Gauss quadrature in -direction as well as in the -direction, the
domain integral of the pressure jump is given by

resultant = ∫Ωp Δ ̂( c, )dΩ = Mx∑=1 2Mx√ 2 − 2 My∑=1 MyΔ ̂( , )√( /2)2 − 2. (10.3)

resultant must converge as the number of grid points My and Mx increase. The conver-
gence with the fluid grid is quantified with resultant as defined in Eq. 4.34.

Fig. 10.1 shows resultant for the lowest three vibrational modes of the wide plate in
the air as shown in Section 9.4. Different combinations of the number of points in
and directions are here investigated, those are My = Mx, My = 2Mx and My = 4Mx
and My = 8Mx. For the three modes, the fluid grid with My = Mx fails to provide a
convergent resultant up to Mx = 64. resultant obtained with the My = 2Mx, My = 4Mx
and My = 8Mx fluid grids converge to similar values. What is more, the My = 4Mx and
My = 8Mx grids required only Mx = 32 to exhibit resultant ≤ 0.01, which is a threshold
value used throughout this thesis for a quantity to be considered converged.
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Mode 1:0
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Figure 10.1: Resultant force | resultant| and convergence error resultant for the a) 1:0, b) 1:1 and c)
2:0 mode.

The projection ofΔ ̂ to the basis functions h is obtained by applying theChebyshev-
Gauss quadrature in the y-direction and x-direction, yielding

∫Ωp Δ ̂( , ) hdΩ = j
My 2Mx Mx∑=1 My∑=1 −13Dij ̂ h( , ) h( , )√( /2)2 − 2√ 2 − 2, ∀ h ∈ V h. (10.4)( , ) and ( , ) are two points in the fluid grid F (Ωp) with coordinates given in

Eqs. 9.30 and 4.26. With the 3D formulation, the points ( , ) and ( , ) in differ-
ent cross-sections (different coordinates ) influence each other, which is also reflected
in the inverse of the matrix 3D.
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With the projection of Δ ̂( , ) into V h as given in Eq. 10.4, the equation of motion
of the plate in a viscous fluid with the 3D fluid formulation is written as: find ̂ h in W h
such that∫Ωp ℎ312 ̂ h, h, dΩ − ∫Γ̃ ℎ312{ ̂ h, } [[ h, e ]]d − ∫Γ̃ ℎ312[[ ̂ h, ]] {[ h, e}d+∫Γ̃ ℎ312 ipℎE [[ ̂ h, ]] [[ h, ]]d + ∫Γc ℎ312 ip2ℎE ̂ h, h, d−∫Γc ℎ312 ̂ h, h, bd − ∫Ωp 2 pℎ ̂ h h dΩ

−j
My 2Mx Mx∑=1 My∑=1 −13Dij ̂ h( , ) h( , )√( /2)2 − 2√ 2 − 2

= ∫Ωp ̂ hdΩ, ∀ h ∈ V h.(10.5)
Therefore, the proposed method is resumed to a single equation to determine the

plate dynamics accounting for the viscous forces of an incompressible fluid in an un-
bounded domain around a micro-plate undergoing purely out-of-plane displacement.
The elements −1 of the inverse of the 3D matrix are obtained from Eq. 4.19 using the
Chebyshev-Gauss quadrature scheme.

10.2 Convergence

The proposed method must be convergent with the number of elements of the FE-mesh
(represented by x)) as well as with the fluid grid discretization (represented by Mx).
Here, the convergence of the method is analyzed in air and water at SATP as represent-
ing fluids for gases and liquids. For the convergence analysis, we consider once again
the wide plate with = 1000 µm and = 500 µm. The plate has thickness ℎ = 5 µm and
is comprised of silicon with anisotropic properties.

10.2.1 Convergence with the FE-mesh

The finite element mesh consists of x elements in -direction and, in -direction y =x a. The convergence is analyzed with convergence as defined in Eq. 3.29 between con-
secutively refined FE-meshes. The fluid grid is the same in all simulations with 32 x
128 points, which follows a ratio of 4 points in the y-direction for each point in the
x-direction.

Fig. 10.2 shows convergence at 10 kHz, 100 kHz and 1000 kHz with the number of FE-
mesh elements in -direction x in air and in water. In air, at 10 kHz, the proposed
method converges with a convergence rate equal to 1.8 for an FE-mesh discretized up
to x = 64 elements. For x > 64, solution ̂ diverges due to the IP-method. At 100 kHz

and 1 MHz, the method converges with a rate equal to 1.8 as well. The convergence rate
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of the proposed method is at all frequencies equal to 1.8 in air, which is exactly the same
as the convergence rate of the proposed method with the 2D fluid flow formulation in
air (Fig. 5.2).

In water, at 10 kHz and 100 kHz, a convergence rate of 1.7 is obtained, and at 100
kHz the convergence rate is equal to 2. At 1 MHz, convergence initially increases and then
decreases for x ≥ 32, the convergence rate considering only the FE-meshes x ≥ 32
is 1.4. From the convergence results shown in this section, we show that the proposed
method is convergent in a gas (air) and in a liquid (water) with a minimum convergence
rate of 1.4. The only exception is, once again, the low frequency (10 kHz) in air with a
very fine mesh ( x ≥ 64), for which case the method diverges due to the IP method.

a) Air

b) Water

Figure 10.2: a) In air, and b) in water, convergence as a function of the number of elements x
in the FE-mesh of the plate with a = 1/2 at 10 kHz, 100 kHz and 1 MHz.

10.2.2 Convergence with the fluid grid

To investigate the method’s convergence with the fluid grid, we resort once again to fg
as defined in Eq. 5.6. The FE-mesh is constant with 64 x 32 elements, and the fluid grid
follows a pattern of My = 4Mx.

Fig. 10.3 shows fg at 10 kHz, 100 kHz and 1000 kHz with the number of fluid grid
points in -direction Mx in air and in water. In air, at all frequencies, the method con-
verges, and the convergence rate varies between 1.5 and 1.7. In water, at low frequen-
cies fg exhibits convergence with a convergence rate between 1.9 and 2. At the high
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frequency of 1000 kHz, fg initially diverges (Mx < 16), and once a fine enough fluid grid
is used (Mx < 16), fg converges with a convergence rate equals 2.

a) Air

b) Water

Figure 10.3: Convergence as a function of the number of points Mx in the fluid grid of the plate
with a = 1/2 at 10 kHz, 100 kHz and 1 MHz in a) air and b) water.

In addition to convergence with the fluid grid and with the FE-mesh, the influence of
the tolerance in the calculated displacement is also investigated. is the tolerance
with which, each element of F (Ωp) is refined until convergence of the matrix element3Dij is achieved, that is, the relative difference between two iterations of 3Dij must be
smaller than Szz. Note that, in the 2D method, this was not required, since the integral
of the fundamental solution in each element was determined analytically. This analysis
is shown in C, where we conclude that selecting a very small value of can make the
simulation time prohibitively long. Therefore, we define = 10−3 to be used through
the next analysis, as it provides ≤ 0.01 (see Eq. C.1) while maintaining a relatively
low computing time.

10.3 Validation

For slender beams, 3D fluid effects are expected to be small [19, 35]. Hence, for valida-
tion of the 3D fluid flow method, we resort once again to the key semi-analytic method
proposed by Sader [31], as well as the 2D fluid flow method proposed in this study. For
this comparison, consider a slender beam with width equals = 15 µm, = 800 µm andℎ = 5 µm as shown in Fig. 10.4.
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= 800 m = 15 mℎ = 5 m
Figure 10.4: Dimensions of a cantilevered plate used in the validation analysis. The plate is
excited by a uniform distributed force ̂ .
10.3.1 Spectral displacement

Fig. 10.5 shows the absolute displacement spectrum ̂ t of the slender beam in water
obtained with the present 3D formulation as well as the 2D formulation and Sader’s
method. In both 2D and 3D formulation, the FE-mesh consists of 64 x 4 elements and
the fluid grid of 32 x 128 points. In the 3D formulation, = 10−3. Excellent agreement
(maximum difference smaller than 1 %) is found in the spectral displacement ̂ t in the
500 kHz frequency range between the three formulations.

0 50 100 150 200 250 300 350 400 450 50010−310−1101
[kHz]

̂ t[nm ] 3D 2D Sader

Figure 10.5: Displacement spectrum of the slender beam with = 15 µm in water.

10.3.2 Q-factor and damped resonance frequency

The spectrum displacement ̂ t (and by consequence, and d) vary with the fluid grid
discretization for each mode. Fig. 10.6 shows the spectrum displacement ̂ t, the Q-
factor and d for the lowest five vibrational modes as a function of the fluid grid. Hence,
a convergence analysis is necessary to determine whether and d converge with the
fluid grid.

Fig. 10.7a) shows the convergence of d evaluated with as defined in Eq. 5.13 for
the five vibrational modes which occur in the 500 kHz frequency range in water. For the
modes 1:0 and 2:0, a fluid grid with 8 x 32 points already provides a converged d with≤ 0.01. The 3:0 and 4:0 modes require a fluid grid of at least 16 x 64 points, while the
5:0 mode converges only for a fluid grid of 32 x 128 points.
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a) Mode 1:0

b) Mode 2:0

c) Mode 3:0

d) Mode 4:0

e) Mode 5:0

Figure 10.6: Spectrum displacement ̂ t, Q-factor and d for the a) 1:0, b) 2:0, c) 3:0, d) 4:0 and
e) 5:0 vibrational modes as a function of the fluid grid in water.

In Fig. 10.7b), the convergence of evaluated with is shown. For all modes,
requires a finer fluid grid for convergence with ≤ 0.01 to be achieved. For instance,
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modes 1:0 and 2:0 require a fluid grid of 16 x 64, whereas modes 3:0, 4:0 and 5:0 required
fluid grids with 64 x 256 points for a converged Q-factor.

Figure 10.7: Convergence of the a) damped resonance frequency and b) Q-factor of the slender
beam in water.

Fig. 10.8 shows the converged quality factors of the EB modes in water obtained
with the 3D fluid formulation, the 2D fluid formulation and Sader’s method [31]. The
three methods exhibit a remarkable agreement, thus providing an important validation
of the 3D fluid formulation in this chapter introduced.

50 100 150 200 250 300 350 400 450 50005
10

[kHz]

[−]

3D 2D Sader

Figure 10.8: Quality factor of the vibrational modes of the slender beam in water obtained with
the 3D fluid formulation, the 2D fluid formulation and Sader’s method.

10.4 Conclusions

In this chapter, the semi-numerical method for determining the dynamics of micro-
plates immersed in incompressible viscous fluids with a three-dimensional fluid flow
formulation was defined. The proposed method converges at all frequencies tested in
water and in air both with the fluid grid and with the FE-mesh. What is more, for a
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slender beam in water, the proposed method exhibits excellent agreement with Sader’s
method and with the 2D fluid flow formulation introduced in the previous chapters,
both for the spectral displacement as well as for the Q-factor.

157



Chapter 10 | A semi-numerical method for micro-plates in viscous fluids considering a three-dimensional
fluid flow

158



11 On the limits between two-dimensional
and three-dimensional fluid flow

With both 2D and 3D fluid flow formulations defined and validated, it becomes possible
to investigate the limit of the two-dimensional fluid flow approximation around micro-
plates.

To determine the limit of the 2D fluid flow, we investigate the dynamics of structures
ranging from a slender beam to a wide plate. That is, the plate’s dimensions are =800 µm, ℎ = 5 µm, and the widths spawn from = 15 µm to = 400 µm as depicted in
Fig. 11.1.

a) b) d)c)
Figure 11.1: Example of plates with different widths a) = 15 µm, b) = 100 µm, c) = 200 µm
and d) = 400 µm here investigated.

11.1 Spectral displacement and damped resonance frequency
in water

We focus on the influence of the three-dimensional flow on the damped resonance fre-
quency d in the beam-plate transition. Since d in the air is not hugely impacted by the
flow, this analysis considers only water as the fluid. In order to more easily identify and
visualize the difference in the plate’s displacement with the 2D and 3D formulation, the
plate is considered either under actuation of a symmetric or an anti-symmetric force as
shown in Fig. 11.2.

Initially, we investigate the spectral displacement as the plate varies from a slender
beam to a wide plate in the 1 MHz frequency range. Fig. 11.3 shows the absolute dis-
placement spectrum ̂ t of the micro-plates with = 25 µm, = 50 µm, = 100 µm and= 200 µm due to the symmetric excitation. The arrows indicate the increase in the
damped resonance frequency d from the 2D to the 3D formulation for the same vibra-
tional modes. For the slender beam, both formulations render essentially equal results.

Figure 11.2: Symmetric and anti-symmetric forces applied at the plate’s free corners.
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As the plate’s width increases, so increases the influence of the three-dimensional flow,
as clearly seen with the help of the arrows in Figs. 11.3b and 11.3c. For the wide plate
with = 200 µm in Fig 11.3d, the differences in ̂ t between 2D and 3D formulations
are so significant that a simple indication in the plate’s spectrum to indicate the same
vibrational mode would render the graph confusing.

a) = 25 µm

0 100 200 300 400 500 600 700 800 900 1,000100102
[kHz]̂ t[nm ] 3D 2D

b) = 50 µm

0 100 200 300 400 500 600 700 800 900 1,00010−2100
102

[kHz]

̂ t[nm ]

c) = 100 µm

0 100 200 300 400 500 600 700 800 900 1,00010−2100
102

[kHz]

̂ t[nm ]

d) = 200 µm

0 100 200 300 400 500 600 700 800 900 1,00010−2100
102

[kHz]

̂ t[nm ]

Figure 11.3: Displacement spectrum of the slender beam with a) = 15 µm, b) = 50 µm, c)= 100 µm and d) = 200 µm in water under symmetric excitation. The arrows indicate the
increase in the damped resonance frequency d from the 2D to the 3D formulation for the same
vibrational modes.

In Fig. 11.3, only symmetric vibrational modes appear due to the symmetric excita-
tion. Fig. 11.4 shows the absolute displacement spectrum ̂ t due to an anti-symmetric
excitation. For the anti-symmetric modes (here all maxima correspond to torsional
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modes), the influence of the three-dimensional fluid flow seems much smaller. Thus,
the torsional modes are better represented by a 2D fluid flow than EB modes, at least
in terms of damped resonance frequency d.

a) = 15 µm

0 100 200 300 400 500 600 700 800 900 1,00010−1.510−1
[kHz]

̂ t[nm ] 3D 2D

b) = 50 µm

0 100 200 300 400 500 600 700 800 900 1,00010−210−1100
[kHz]

̂ t[nm ]

c) = 100 µm
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101
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d) = 200 µm
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Figure 11.4: Displacement spectrum of the slender beam with a) = 15 µm, b) = 50 µm, c)= 100 µm and d) = 200 µm in water under anti-symmetric excitation. The arrows indicate
the increase in the damped resonance frequency d from the 2D to the 3D formulation for the
same vibrational modes.

The percentile difference in d between 2D and 3D formulations is defined byDiff( d) = 100 2Dd − 3Dd3Dd , (11.1)
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where 2Dd is the converged frequency obtained with the 2D fluid flow method, and 3Dd
is obtained with the 3D fluid formulation.

Fig. 11.5 shows Diff( d) for the lowest four EB and torsional modes for micro-plates
with 25 µm ≤ ≤ 400 µm1. For all EB and torsional modes, Diff( d) increases with the
plate’s width , as well as with the number of nodal lines x. EB modes are more affected
by the 3D fluid flow in terms of Diff( d). For instance, for the 4:0 mode Diff( d) reaches
-40 % for the wide plate with = 400 µm, while the 4:1 mode exhibits Diff( d) = −20 %
for the same width. Results in Fig. 11.5 are of key importance, as they highlight that
each vibrational mode is influenced to a different degree by the 3D fluid flow.

a) EB modes
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b) Torsional modes
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Figure 11.5: Difference in d obtained between 2D and 3D methods in water for a) EB and b)
torsional modes.

11.2 Three-dimensional fluid flow in water

The fluid flow around the plate can be determined witĥ ( f) = − 18 f ∫Ωp Δ ̂Sz ( , f , mps )dΩ( mps ), (11.2)

where f is a three-dimensional distribution of field points in the fluid domain.
As an object of study to illustrate the 3D fluid flow, we select the 100 µm wide plate

vibrating at the lowest five EB modes. Fig. 11.6 shows the in-phase fluid flow along the

1Convergence of d with the fluid grid is shown in D
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plate’s center line ( = 0). Importantly, note in the five EB modes, the fluid flow over the
plate’s free edge at > ( > 800 µm, in this case). Such fluid flow can of course, only
be accounted for with the 3D fluid flow formulation. With the 2D method, the fluid
velocity at > is simply zero. What is more, as the number of nodal lines x increases
(from mode 1:0 to 5:0), re-circulation fluid flow zones appear at the fluid regions above
and underneath the mode’s nodal lines. For instance, for the mode 2:0, at = 580 µm
and = ±30 µm, fluid flow in -direction becomes significant as the fluid moves from
one region of the plate’s maximum displacement to one of minimum. Considering the
3:0 mode, these flow regions with intense -direction velocity occur at = 4000 µm
and at = 650 µm, in addition to the free edge flow at > 800 µm. This increase in
the -direction flow with the number of nodal lines x is the leading cause of Diff( d)
increasing with x shown in Fig. 11.5.

11.3 Q-factor in the beam-plate transition in water

Determining the Q-factor of the different vibrational modes in water requires using a
finer fluid grid than for d as seen in the validation results shown in Fig. 10.7. The re-
quirement for finer fluid grids becomes especially important considering that the com-
putation time increases exponentially with M 3x as shown in Fig. 11.7. For instance,
while one frequency step simulation with a 32 x 128 fluid grid consumes an average of
5 minutes, using a 64 x 256 fluid grid requires 40 minutes per frequency step2. This high
computation time becomes prohibitively lengthy using the DHO model, given that this
method requires the determination of ̂ t in several frequencies around d. For instance,
using twenty frequency steps around d with a fluid grid of 128 x 512 consumes around
6 days of simulation for each vibrational mode.

Hence, the need for a more efficient method to determine than based on the
damped harmonic oscillator equation is imperative. Given that d converges with coarse
grids, one more efficient strategy to determine is using the Q-factor definition as the
ratio of the maximum elastic energy stored in the structure b and the energy dissipated
by the fluid in one cycle of oscillation D [28] at d as= 2 b( = d)D( = d) . (11.3)

The dissipated energy D for the micro-plate fluid system is [70, 71]

D = 2 d ∫Ωp R (j ̂ Δ ̂∗) dΩp, (11.4)

where the∗ superscript means the complex conjugate and R is the real operator. b is
the maximum bending energy over one oscillation cycle when the plate vibrates at d as

2Timing results obtained in one node at the VSC with 40 cores and 1024 GB RAM. The fluid grid
consists of Mx 4Mx, and = 10−3.
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a) In-phase flow around mode 1:0

b) In-phase flow around mode 2:0

c) In-phase flow around mode 3:0

d) In-phase flow around mode 4:0

e) In-phase flow around mode 5:0

Figure 11.6: In-phase fluid flow along the plate’s center line ( = 0) for modes a) 1:0, b) 2:0, c)
3:0, d) 4:0 and e) 5:0. The plate is 100 µmwide. On the left, the vibrational modes are represented.
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Figure 11.7: Average computation time per frequency step for different values of Mx.
b = max∈[0, )∫Ωp , ( ) , ( )dΩp. (11.5)

The Q-factors obtained from the energy definition in Eq. 11.3 with the dissipated energy
in Eq. 11.4 and the stored bending energy in Eq. 11.5 are similar to the ones obtained
with a fitting to the DHO equation [70, 71].

Fig. 11.8 shows the of the micro-plates with = 25 µm, = 50 µm, = 75 µm
and = 100 µm in the 500 kHz frequency range obtained with the 2D and 3D fluid
flow formulations3. Up to 100 µm, Q-factors obtained with 3D formulation are higher
than with the 2D formulation. Thus, the 2D fluid flow formulation underpredicts for
slender plates in water, which agrees with previous numerical studies [35]. Furthermore,
the difference increases with the increase in the number of nodal lines x. The Q-factors
and resonance frequencies of the torsional modes are only slightly different from the
two methods in this width and frequency range.

As the plate becomes wider, an interesting effect occurs. For the plates with width= 150 µm and = 200 µm, values of obtained with both methods (2D and 3D) are
roughly similar, as shown in Fig. 11.9a and 11.9b in a 150 kHz frequency range. For even
wider plates with = 300 µm and = 400 µm, the 2D method overpredicts , an effect
which occurs both for the EB and torsional modes here investigated.

Fig. 11.10 shows the Q-factor for the lowest four EB and four torsional modes for
plates with widths ranging from 25 µm to 400 µm. With Fig. 11.10 it becomes more
clear that the Q-factor for plates with widths up to 200 µmare underestimated by the
2D method, whereas for wider plates, the 2D method over-predicts . In Fig. 11.10, for
the EB modes also the Q-factor prediction with Sader’s method [31] is shown, which
agrees very well with the 2D fluid flow method, given that also in Sader’s method, 2D
fluid flow is assumed.

The percentile difference in between 2D and 3D formulations is defined byDiff( ) = 100 2D − 3D3D , (11.6)

3Convergence of with the 3D method is shown in D.
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a) = 25 µm
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Figure 11.8: Quality factor of the vibrational modes of the plate with a) = 25 µm, b) = 50 µm,
c) = 75 µm and d) = 100 µm in water obtained with the 3D and 2D fluid formulation. The
arrows indicate the increase in the damped resonance frequency d and Q-factor from the 2D to
the 3D formulation for the same vibrational modes.

where 2D is the converged frequency obtained with the 2D fluid flow method, and 3D
is obtained with the 3D fluid formulation. Fig. 11.11 shows the percentage difference
between the Q-factor obtained with the 2D and 3D methods. Q-factor of the EB modes

166



11.3. Q-factor in the beam-plate transition in water

a) = 150 µm
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c) = 300 µm
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d) = 400 µm
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Figure 11.9: Quality factor of the vibrational modes of the plate with a) = 150 µm, b) =200 µm, c) = 300 µm and d) = 400 µm in water obtained with the 3D and 2D fluid formulation.
The arrows indicate the increase in the damped resonance frequency d and the decrease in Q-
factor from the 2D to the 3D formulation for the same vibrational modes.

are underpredicted with the 2D fluid flow approximation by as much as 15% for slender
plates ( ≤ 200 µm), and overpredicted by as much as 30% for wider plates. For torsional
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Water

Figure 11.10: Quality factor of EB and torsional modes as the structure is altered from a slender
beam with = 15 µm to a plate with = 400 µm in water. For EB modes, Sader’s Q-factors
predictions are shown in black.

modes, this difference is very small (smaller than 5%) for slender plates ( ≤ 200 µm)
and increase up to 20% for wider plates.

11.4 Q-factor in the beam-plate transition in air

In air, the damped resonance frequencies d of micro-plates are not significantly influ-
enced by the fluid formulation. However, the Q-factor can be impacted by the 3D fluid
flow and this influence is here investigate.

Fig. 11.12 shows the Q-factor for the lowest four EB and four torsional modes for
plates with widths ranging from 25 µm to 400 µm in air. For the four EB modes, there
is a great difference in values and the 2D method underpredicts . Interestingly, the
torsional modes 1:1 and 2:1 are little influenced by the 3D fluid flow, but the Q-factor
for modes 3:1 and 4:1 are once more underpredicted by the 2D fluid flow approximation.

Fig. 11.13 shows the percentage difference between the Q-factor obtained with the
2D and 3D methods. Fig. 11.13 shows clearly how Diff( ) increases with the plate’s
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a) EB modes
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Figure 11.11: Difference in Q-factor obtained between 2D and 3D methods in air for EB and
torsional modes.

width and the number of nodal lines x. For the slender beam with = 15 µm, the
2D fluid flow and 3D methods render similar results and the difference for all modes
is near zero. As the width increases, the difference in reaches values as high as 50 %
difference for the 4:0 mode, and 20% for the 4:1 mode.

11.5 Comparison to experiments

To further investigate the accuracy of the 3D fluid flow method, we resort to the exper-
imental data of the w500 and w750 micro-plates in water reported in Chapter 8. The
difference between simulation and experimental damped resonance frequency Diff( d)
is determined as Eq. 8.1, where negative values o Diff( d) means the simulation under-
estimates d, and positive values of Diff( d) indicates the simulated values of d are over-
estimated.

Fig. 11.14 shows Diff( d) for the w500 plate obtained with the 2D and 3D methods.
While the 2D method exhibited an increasing error for the EB modes with increasingx and values of Diff( d) were in a −25% ≤ Diff( d) ≤ 15% range, with the 3D methodDiff( d) is consistently within a 8% ≤ Diff( d) ≤ 18% range. Hence, a reduction from a
40% error range in d is reduced to only a 10% difference range by using the 3D fluid
flow formulation.
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Air

Figure 11.12: Quality factor of EB and torsional modes as the structure is altered from a slender
beam with = 12.5 µm to a plate with = 400 µm in air. For EB modes, Sader’s Q-factors
predictions are shown in black.

For thew750micro-plate inwater, with the 3Dmethod,Diff( d) is within a 1% to 16%
difference range as seen in Fig. 11.15b. Whereas with the 2D fluid flow method, Diff( d)
is in a −40% ≤ Diff( d) ≤ 10%. Thus a reduction from 50% error range in d to only 15% is
achieved. What is more, the increasing value of Diff( d) with x from the 2D method is
no longer an issue. Also, results in Figs. 11.14 and 11.14 were obtained considering the
nominal dimensions of the micro-plates. Given that Diff( d) is consistently positive in
this frequency range, Diff( d) could even be further reduced by considering measured
dimensions of the micro-plates (instead of nominal)4.

Comparing the simulated Q-factor with the 3D method and the experiments was
not possible because the convergency of the Q-factors for the w500 and w750 in water
was not achieved. With the finest fluid grid of 192 x 768, ( ) for most modes is well
above 0.01, as s shown in D. With this fluid grid, the simulation time for one frequency
step reaches 48 hours, and the required memory reaches 1800 GB in a computing node

4Results in Figs. 11.14 and 11.15 were obtained with FE-meshes consisting of 64 x 64/ a elements and
a fluid grid of 64 x 256 points in the 3D formulation. The convergence with the fluid grid is shown in B.
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a) EB modes

15 50 100 200 300 400
−60−40
−200

[µm]

Diff()
[% ]

1:0 2:0 3:0 4:0

b) Torsional modes

15 50 100 200 300 400
−60−40
−200

[µm]

Diff()
[% ]

1:1 2:1 3:1 4:1

Figure 11.13: Difference in Q-factor obtained between 2D and 3D methods in air for EB and
torsional modes

a) 2D b) 3D

Figure 11.14: Difference in d for the w500 plate with the a) 2D and b) 3D fluid formulation.
The dark-orange band represents the limits to which Diff( d) extends.
of the Vienna Scientific Cluster (VSC) with 40 physical cores and 2048 GB memory.
Hence, the Q-factor comparison of very wide structures ( ≥ 500 µm) requires strategies
to improve the implementation of the 3D formulation, a couple of which are discussed
in the outlook section of this thesis.
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a) 2D b) 3D

Figure 11.15: Difference in d for the w750 plate with the a) 2D and b) 3D fluid formulation.
The dark-orange band represents the limits to which Diff( d) extends.
11.6 Conclusions

This chapter used the 2D and 3D fluid flow semi-numerical methods to understand the
limits of the two-dimensional flow approximation in the beam plate transition in air
and water. From the results in water, we see that the 2D formulation has a considerable
impact on the resonance frequencies, as differences in d reached values up to 45 %
(for the 5:0 mode). These differences were explained with the help of the fluid flow
visualization, which showed regions of re-circulation on the top and bottom regions of
the plates associated with the number of nodal lines x. An interesting effect appeared
concerning the Q-factor in water. While for slender plates with ≤ 200 µm, the 2D
method provides underestimated Q-factors, for wider plates with > 200 µm, the 2D
method overpredicts , reaching differences up to 30 %. The 2D method underpredicts

for all modes in air, reaching differences as high as 50 %. Applying the 3D method
to find d of the w500 and w750 plates in water yielded a much better agreement with
experiments. For instance, for the w500 plate, a reduction from the 40 % error range ind with the 2D fluid flow method to merely 10% with the 3D method is achieved. For
the w750 plate, this error drops from 50 % to 15 %.
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12 Conclusions and outlook

12.1 Conclusions

Even though fluid-structure interaction is a well-established research and application
field in MEMS, the geometry of the MEMS resonator is most commonly limited to slen-
der beams. With the numerical and experimental results shown here, we highlight that
non-slender geometries represent a promising alternative for MEMS resonators in vis-
cous fluids whose application has been hindered due to the need for efficient methods
for determining their dynamics. The proposed semi-numerical methods enable study-
ing novel effects and geometries in the MEMS-fluid interaction field, thus inspiring new
device architectures to perform with unprecedented high quality-factors in fluidic op-
eration.

The methods are based on the Kirchhoff plate equation. Hence the proposed method
generalizes the existent beam-based semi-analytic methods for the out-of-plane modes
in incompressible viscous fluids and, more importantly, overcomes their limitations by
accounting for two-dimensional vibrational modes. From dimensional analysis, the
governing equations for the fluid dynamics of the micro-plate-fluid interaction prob-
lem were defined as the Stokes equations. The hydrodynamic force is determined in
the first semi-numerical method proposed here, assuming the fluid flow around micro-
plates is two-dimensional. The use of the two-dimensional flow approximation makes
the method very efficient since the integration of the fundamental solution can be per-
formed analytically. To investigate the extent to which the two-dimensional fluid flow
affects the plate dynamics and if an even better agreement with the experimental data is
achieved, we propose a formulation that considers three-dimensional fluid flow around
amicro-plate. Themethod is based on the free-space unsteady Stokeslet, the fundamen-
tal solution to the unsteady Stokes equations in three dimensions for incompressible
fluids. The formulation to the micro-plate-fluid interaction problem is simplified us-
ing a single-layer formulation, and we show that only one component of the Stokeslet
(Szz) is required for determining the hydrodynamic force on a micro-plate undergoing
purely out-of-plane displacement. The numerical integration of Szz over the plate’s do-
main required a tailored scheme to account for the fact that Szz is singular. With the
analytic integration around a circular region, we were able to avoid singularity issues,
which enabled much finer fluid grids than previous studies which relied on the free
space Stokeslet [44, 69, 101]. Both methods converge at all frequencies tested in water
and air and exhibit excellent agreement with Sader’s method. The difference in Q-factor
prediction between the proposedmethods and semi-analytical models [31] wasminimal
(less than 0.5%) for a slender beam in water, showing the proposed methods’ accuracy.

Investigating the beam-plate transition in different fluids revealed the importance
of the stored kinetic energy in the fluid for the Q-factor of different modes. Specifically,
we highlight that in water, the damping coefficients of all modes increase as the plate
becomes wide. Similarly, the added-mass effect (through the fluid’s kinetic energy)
increases with the plate’s width. Hence, despite the increase in the damping coefficient,

for all out-of-plane modes increases with the plate’s width in water. For instance, the
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5:0 mode reaches a 500 % increase in when altering a slender beam with = 15 µm
for a wide plate with = 400 µm. These results indicate a counter-intuitive explanation
for the increased Q-factor of micro-plates in liquids, which resides in increased stored
energy rather than decreased dissipation.

Non-beam modes, e.g., HOP and RTS modes, revealed opposite trends in gases and
liquids. While in gases, Q increases from EB modes to torsional and then to HOP and
RTS modes HOP,RTS > torsional > EB, in liquids, the opposite happens, and Q decreases
from EB modes to HOP modes EB > torsional > HOP,RTS. We named this change in the
Q-factor trend from gases to liquids the ”Gas-Liquid modal Q-factor inversion“ (GL-Q-
inversion). An analysis of the Q-factor as a ratio of the damping coefficient and added-
mass coefficient revealed that increases for HOP modes in gases due to their lower
damping coefficients. In liquids, even though EB-modes dissipate more energy than all
other modes, they also exhibit a higher stored energy in the form of added mass than
other modes, which increases EB. Since the added-mass effect is only significant in
liquids, this leads to the GL-Q-inversion.

Experiments in water showed a Q-factor following the numerically predicted pattern
of EB > torsional > HOP. Experiments to determine the Q-factor in air showed that
acoustic losses play a significant role in the overall Q-factor. We designed resonators for
which acoustic losses are minimized, whose Q-factor in air follows the pattern HOP >torsional > EB, in agreement with the numerical prediction of the Gas-Liquid modal
Q-factor inversion.

With the 2D fluid flow and 3D fluid flow semi-numerical methods, it was possible
to understand the limits of the two-dimensional flow approximation in the beam plate
transition. From results in water, we find that the 2D formulation considerably impacts
the resonance frequencies, as differences in d between the two formulations reached
values as high as 45 % (for the 5:0 mode, for instance). These differences occur due to
regions of re-circulation on the top and bottom regions of the plates associated with the
number of nodal lines x, in addition to the fluid flow around the plate’s free edge, which
of course, exhibits a significant component. Comparing results from the 3D method to
experiments showed a reduction from the 40 % error range in d with the 2D fluid flow
method to merely 10% with the 3D method. An unexpected pattern emerged concerning
the Q-factor in water. While the 2D method underestimates for slender plates, the
2D method overpredicts for wider plates. This overestimation reaches differences up
to 30 % for modes as low as 3:0. In air, the 2D method underpredicts for all modes,
reaching differences as high as 50 % for the wide plate. These numerical results are well
beyond previous investigations on the three-dimensional flow influence of non-slender
geometries on which only one or few vibrational modes were investigated [64, 61].

12.2 Outlook

The results in this thesis highlight that research with non-slender MEMS resonators has
limitless possibilities.

One exciting research field for non-slender geometries is MEMS resonators for bi-
ological applications. By exploiting the large surface area, the resonator’s surface can
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be functionalized to bond with different proteins, enzymes, bacteria and others [105],
which in association with the high Q-factor of non-slender geometries in viscous fluids
enables measurements in blood. Research in high-speed AFM also benefits from non-
slender geometries, not only due to their high Q-factor but also by exploiting non-beam
modes, which further enables applications to soft samples [106, 107].

Further MEMS research also benefits from non-slender geometries by exploiting
novel physical effects not present in slender geometries. For instance, micro-plates in
vacuum are susceptible to the veering effect. Veering effect refers to a system where
one parameter is altered and two eigenvalues and eigenvectors effectively “repel” each
other instead of simply crossing each other as the system’s parameter varies, which is
why veering is also known as avoided-crossing [108]. According to preliminary results,
a micro-plate immersed in a viscous fluid is also suscept to veering, but in this case,
a fluid-induced mode-veering occurs. Fluid-induced mode-veering occurs by altering
the fluid’s properties, which leads to a non-linear response of the modes’ resonance fre-
quencies andQ-factor with the fluid parameter. A further physical effect in micro-plates
is the linear mode coupling of vibrational modes through the fluid [109]. Preliminary
results indicate the existence of mode-splitting and other types of mode-coupling in
the micro-plate-fluid problem [110], which are not present in the slender beam case in
fluids.

The proposed semi-numerical methods are powerful tools and can be altered for
other geometries not limited to plate resonators. For instance, it is simple to modify the
elastic body formulation to determine the out-of-plane dynamics of other structures
found in MEMS resonators, e.g., V-shaped beams [111], double-clamped bridges [112],
and membranes [113]. Additionally, one may alter the elastic domain formulation to
shells for accounting for non-planar geometries, as done elsewhere for the steady Stokes
equations [114].

As a further improvement to the method, it is interesting to make the 3D fluid flow
method more memory and time efficient. One promising approach to improving both
aspects is implementing a fast multipole method (FMM) for the BEM formulation. The
principle of FMM is to convert the element-to-element interactions (in this case, of the
fluid grid) to cell-to-cell interactions, where cells are organized in a hierarchical struc-
ture. Using the FMM for the BEM alleviates the computation time and memory issues
from BEM since, with FMM, time and memory requirements increase with order O(M1x),
instead of O(M2x) [115].
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A Fluid properties

Table A.1 shows the viscosity and density of the selected gases and liquids at SATP
conditions.

Fluid f [µPa s] f [kgm−3] f [mm2 s−1]
Hydrogen 8.8 0.083 106

Air 18.2 1.204 15.1
Neon 31.3 0.9 34.7

Gasoline 504 711 0.7
Ethanol 1040 789 1.32

Isopropanol 2106 771 2.7
Water 890 997 0.9

Table A.1: Absolute viscosity f , density f and kinematic viscosity f of selected liquids and
gases at SATP conditions [66].
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B Convergence of the Q-factor and damped
resonance frequency

As discussed in 5, the Q-factors and damped resonance frequencies d of all the vibra-
tional modes alter with the number of points in the fluid grid, hence a convergence
analysis is necessary for the data shown in the main text.

B.1 Convergence of the Q-factor shown in the validation

This section shows the convergence of the Q-factor of the microplates used in the ex-
perimental validation in 5.4. In Fig. B.1, convergence of and d is shown for the plate
used in [30] in isopropanol. In liquids, we considered converged for ≤ 0.01. The
Q-factor of the lower-order modes (1:0 and 2:0) converge with a fluid grid with Mx= 32.
whereas the 1:3 and 1:4 modes require a fluid grid with Mx= 256 for converged results.

a) Convergence of the Q-factor
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b) Convergence of the damped resonance frequency
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Figure B.1: Convergence of the a) Q-factor and b) damped resonance frequency of the mi-
croplate used in [66].

Fig. B.2 shows the convergence of and d for the RTS modes of the plate used
in [66] in isopropanol. The higher RTS mode, the 1:8, requires a fluid grid of 512 x 4096
points for the Q-factor convergence.
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a) Convergence of the Q-factor
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b) Convergence of the damped resonance frequency
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Figure B.2: Convergence of the a) Q-factor and b) damped resonance frequency of the mi-
croplate used in [66].

B.2 Convergence of the Q-factor in the beam-plate transi-
tion in air

This section shows the convergence of the Q-factor and d of all modes of the plates
with widths ranging from 15 to 400 micrometers in air. In air, d is considered converged
for ≤ 10−4. For the slender plates with ≤ 200 µm, and d converge for a fluid grid
with Mx= 32 points. For the wider plates with ≥ 250 µm, a fluid grid with Mx= 64 is
required.
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a) = 15 µm

b) = 25 µm

c) = 50 µm

d) = 75 µm

Figure B.3: Convergence of the Q-factor and damped resonance frequency with the fluid grid
for the plates in air.
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e) = 100 µm

f) = 150 µm

g) = 200 µm

h) = 250 µm

Figure B.3: (Cont.) Convergence of the Q-factor and damped resonance frequency with the
fluid grid for the plates in air.
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B.3. Convergence of the Q-factor in the beam-plate transition in water

i) = 300 µm

j) = 350 µm

k) = 400 µm

Figure B.3: (Cont.) Convergence of the Q-factor and damped resonance frequency with the
fluid grid for the plates in air.

B.3 Convergence of the Q-factor in the beam-plate transi-
tion in water

This section shows the convergence of the Q-factor and d of all modes of the plates
with widths ranging from 15 to 400 micrometers in water. For the slender plate with= 15 µm and for the wider plates with ≥ 250 µm, converges for a fluid grid with
Mx= 128 points for all modes. For the other plates with 25 ≤ ≤ 100 µm, a grid with
Mx = 64 suffices.
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a) = 15 µm

b) = 25 µm

c) = 50 µm

d) = 75 µm

Figure B.4: Convergence of the Q-factor and damped resonance frequency with the fluid grid
for the plates in water.
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B.3. Convergence of the Q-factor in the beam-plate transition in water

e) = 100 µm

f) = 150 µm

g) = 200 µm

h) = 250 µm

Figure B.4: (Cont.) Convergence of the Q-factor and damped resonance frequency with the
fluid grid for the plates in water.
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i) = 300 µm

j) = 350 µm

k) = 400 µm

Figure B.4: (Cont.) Convergence of the Q-factor and damped resonance frequency with the
fluid grid for the plates in water.
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C Influence of the Stokeslet numerical
integration

In addition to convergence with the fluid grid and with the FE-mesh, the influence of
the tolerance in the calculated displacement field must be investigated. is the
tolerance with which, each element of F (Ωp) is refined until convergence of the matrix
element 3Dij is achieved, that is, the relative difference between two iterations of 3Dij
must be smaller than Szz. Note that, in the 2D method, this was not required, since the
integral of the fundamental solution in each element was determined analytically.

To evaluate the influence of we introduce

Szz = || ̂ − ̂ ref || 2|| ̂ ref || 2 , (C.1)

where ̂ ref is a reference displacement field determined with = 10−5 and ̂ are solu-
tions obtained with different values of . For this analysis, the FE-mesh is composed
of 64 x 32 elements and the fluid grid of 32 x 128 points.

Fig. C.1 shows Szz in air and in water at 10 kHz, 100 kHz and 1000 kHz as a function
of . In air, the displacement field ̂ is little affected by , and values of Szz are in
the order of 10−4 or below. In water, on the other hand, to obtain values of Szz smaller
than 0.01, may have a maximum value of 3 10−3 at 10 and 100 kHz, and of 2 10−3 at
1000 kHz.

Note that the computation time per iteration increases as decreases, as shown
in Fig. C.2 both in air and water. Hence, selecting a very small value of can make
the simulation time prohibitively long. From hereon, we define = 10−3 to be used
through the next analysis, as it provides ≤ 0.01 while maintaining a relatively low
computing time.
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a) Air

b) Water

Figure C.1: Influence of the Szz in the displacement field, convergence as a function of the
number of points Mx in the fluid grid of the plate with a = 1/2 at 10 kHz, 100 kHz and 1 MHz in
a) air and b) water.

10−6 10−5 10−4 10−3 10−210110
2

[min ] Air Water

Figure C.2: Average computation time per frequency step for different values of Szz.
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D Convergence in the 3D method

In this section, we report on the convergence of and d with the 3D fluid flow method
whose results are shown in Chapter 11. The fluid grid is composed with My = 4Mx
points throughout this analysis.

D.1 Convergence of the Q-factor in the beam-plate transi-
tion in air

Here, the convergence of the Q-factor and d of the plates with widths ranging from 15
to 400 micrometers in air is shown. For the slender plates with ≤ 25 µm, converges
for a fluid grid with Mx= 64 points. For the wide plate with ≥ 400 µm, a fine fluid grid
with Mx= 192 is required for convergence.

a) = 15 µm

b) = 25 µm

c) = 50 µm

Figure D.1: Convergence of the Q-factor and damped resonance frequency with the fluid grid
for the plates in air.
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d) = 75 µm

e) = 100 µm

f) = 150 µm

g) = 200 µm

Figure D.1: (Cont.) Convergence of the Q-factor and damped resonance frequency with the
fluid grid for the plates in air.
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D.1. Convergence of the Q-factor in the beam-plate transition in air

h) = 300 µm

i) = 400 µm

Figure D.1: (Cont.) Convergence of the Q-factor and damped resonance frequency with the
fluid grid for the plates in air.
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D.2 Convergence of the Q-factor in the beam-plate transi-
tion in water

This section shows the convergence of the Q-factor and d of all modes of the plates
with widths ranging from 15 to 400 micrometers in water. For the slender plates with≤ 50 µm, converges for a fluid grid with Mx= 64 points for the low-order modes
shown. For wider plates with ≥ 300 µm, once more a fine fluid grid with Mx=192
points is required.

a) = 15 µm

b) = 25 µm

c) = 50 µm

Figure D.2: Convergence of the Q-factor and damped resonance frequency with the fluid grid
for the plates in water.
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D.2. Convergence of the Q-factor in the beam-plate transition in water

d) = 75 µm

e) = 100 µm

f) = 150 µm

g) = 200 µm

Figure D.2: (Cont.) Convergence of the Q-factor and damped resonance frequency with the
fluid grid for the plates in water.
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h) = 300 µm

i) = 400 µm

Figure D.2: (Cont.) Convergence of the Q-factor and damped resonance frequency with the
fluid grid for the plates in water.

D.3 Experimental results

Here, the convergence of the Q-factor and d of the w750 and w500 plates with the 3D
method is shown. For these wide plates, while it is possible obtaining a converged d
(which occurs with Mx=64 points), does not converge even with a fine fluid grid with192 × 768 points (total of 147456 points).
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D.3. Experimental results

a) w500 microplate

b) w750 microplate

Figure D.3: Convergence of d and with the fluid grid for the a) w500 and b) w750 microplates
in water.
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[27] I. Dufour, E. Lemaire, B. Caillard, H. Debéda, C. Lucat, S. M. Heinrich, F. Josse, and O. Brand,
“Effect of hydrodynamic force on microcantilever vibrations: Applications to liquid-phase chemical
sensing,” Sensors and Actuators B: Chemical, vol. 192, pp. 664–672, 2014.

[28] A. Frangi, A. Bugada, M. Martello, and P. Savadkoohi, “Validation of pml-based models for the eval-
uation of anchor dissipation in mems resonators,” European Journal of Mechanics-A/Solids, vol. 37,
pp. 256–265, 2013.

[29] C. Zener, “Internal friction in solids. i. theory of internal friction in reeds,” Physical review, vol. 52,
no. 3, p. 230, 1937.

[30] G. Pfusterschmied, C. Weinmann, M. Schneider, D. Platz, N. Shen, J. Sader, and U. Schmid, “Sound
dissipation from plate-type resonators excited in non-conventional transversal modes in liquids,”
Journal of Micromechanics and Microengineering, vol. 30, no. 7, 2020.

[31] J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications
to the atomic force microscope,” Journal of Applied Physics, vol. 84, no. 1, pp. 64–76, 1998.

[32] C. P. Green and J. E. Sader, “Small amplitude oscillations of a thin beam immersed in a viscous
fluid near a solid surface,” Physics of Fluids, vol. 17, no. 7, pp. 1–12, 2005.

[33] C. P. Green and J. E. Sader, “Torsional frequency response of cantilever beams immersed in viscous
fluids with applications to the atomic force microscope,” Journal of applied physics, vol. 92, no. 10,
pp. 6262–6274, 2002.

[34] G. Wu, J. Xu, E. J. Ng, and W. Chen, “Mems resonators for frequency reference and timing appli-
cations,” Journal of Microelectromechanical Systems, vol. 29, no. 5, pp. 1137–1166, 2020.

[35] S. Basak, A. Raman, and S. V. Garimella, “Hydrodynamic loading of microcantilevers vibrating in
viscous fluids,” Journal of Applied Physics, vol. 99, no. 11, p. 114906, 2006.

[36] M. K. Ghatkesar, T. Braun, V. Barwich, J. P. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang,
“Resonating modes of vibrating microcantilevers in liquid,” Applied Physics Letters, vol. 92, no. 4,
pp. 10–13, 2008.

222



[37] J. W. Chon, P. Mulvaney, and J. E. Sader, “Experimental validation of theoretical models for the
frequency response of atomic force microscope cantilever beams immersed in fluids,” Journal of
Applied Physics, vol. 87, no. 8, pp. 3978–3988, 2000.

[38] I. Dufour, F. Josse, S. M. Heinrich, C. Lucat, C. Ayela, F. Ménil, and O. Brand, “Unconventional uses
of microcantilevers as chemical sensors in gas and liquid media,” Sensors and Actuators B: Chemical,
vol. 170, pp. 115–121, 2012.

[39] L. A. Beardslee, K. S. Demirci, Y. Luzinova, B. Mizaikoff, S. M. Heinrich, F. Josse, and O. Brand,
“Liquid-phase chemical sensing using lateral mode resonant cantilevers,” Analytical Chemistry,
vol. 82, no. 18, pp. 7542–7549, 2010.

[40] T. Manzaneque, V. Ruiz, J. Hernando-Garcı́a, A. Ababneh, H. Seidel, and J. Sánchez-Rojas, “Charac-
terization and simulation of the first extensional mode of rectangular micro-plates in liquid media,”
Applied Physics Letters, vol. 101, no. 15, p. 151904, 2012.

[41] M. Kucera, E. Wistrela, G. Pfusterschmied, V. Ruiz-Dı́ez, J. L. Sánchez-Rojas, J. Schalko, A. Bit-
tner, and U. Schmid, “Characterisation of multi roof tile-shaped out-of-plane vibrational modes in
aluminium-nitride-actuated self-sensing micro-resonators in liquid media,” Applied Physics Letters,
vol. 107, no. 5, pp. 1–5, 2015.

[42] V. Ruiz-Dı́ez, J. Hernando-Garcı́a, J. Toledo, T. Manzaneque, M. Kucera, G. Pfusterschmied,
U. Schmid, and J. L. Sánchez-Rojas, “Modelling and characterization of the roof tile-shaped modes
of AlN-based cantilever resonators in liquid media,” Journal of Micromechanics and Microengineer-
ing, vol. 26, no. 8, p. 084008, 2016.

[43] A. W. Leissa, “The Free vibration of rectangular plates,” Journal of Sound and Vibration, vol. 31, no. 3,
pp. 257–293, 1973.

[44] S. N. Ahsan and M. Aureli, “Three-dimensional analysis of hydrodynamic forces and power dissipa-
tion in shape-morphing cantilevers oscillating in viscous fluids,” International Journal of Mechanical
Sciences, vol. 149, pp. 436–451, 2018.

[45] W. H. Chu, “Vibration of fully submerged cantilever plates in water,” tech. rep., South-West Re-
search Institute, 1963.

[46] U. S. Lindholm, D. D. Kana, W.-H. Chu, and H. N. Abramson, “Elastic vibration characteristics of
cantilever plates in water,” Journal of Ship Research, vol. 9, no. 02, pp. 11–36, 1965.

[47] C. A. Van Eysden and J. E. Sader, “Frequency response of cantilever beams immersed in viscous
fluids with applications to the atomic force microscope: Arbitrary mode order,” Journal of applied
physics, vol. 101, no. 4, p. 044908, 2007.

[48] R. C. Tung, A. Jana, and A. Raman, “Hydrodynamic loading of microcantilevers oscillating near
rigid walls,” Journal of Applied Physics, vol. 104, no. 11, p. 114905, 2008.

[49] R. J. Clarke, O. E. Jensen, J. Billingham, A. P. Pearson, and P. M. Williams, “Stochastic elastohydro-
dynamics of a microcantilever oscillating near a wall,” Physical Review Letters, vol. 96, no. 5, pp. 2–5,
2006.

[50] R. J. Clarke, V. Bachtiar, T. C. Lee, J. E. Cater, and J. Minton, “Response of a fluid-immersed micro-
cantilever close to a deformable body,” Journal of Applied Physics, vol. 117, no. 9, 2015.

[51] F. Cellini, C. Intartaglia, L. Soria, and M. Porfiri, “Effect of hydrodynamic interaction on energy
harvesting in arrays of ionic polymer metal composites vibrating in a viscous fluid,” Smart Materials
and Structures, vol. 23, no. 4, p. 045015, 2014.

[52] C. Intartaglia, L. Soria, and M. Porfiri, “Hydrodynamic coupling of two sharp-edged beams vibrat-
ing in a viscous fluid,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 470, no. 2162, p. 20130397, 2014.

223



[53] M. T. Clark and M. R. Paul, “The stochastic dynamics of an array of atomic force microscopes in a
viscous fluid,” International Journal of Non-Linear Mechanics, vol. 42, no. 4, pp. 690–696, 2007.

[54] C. A. Van Eysden and J. E. Sader, “Frequency response of cantilever beams immersed in compress-
ible fluids with applications to the atomic force microscope,” Journal of Applied Physics, vol. 106,
no. 9, p. 094904, 2009.

[55] S. N. Ahsan and M. Aureli, “Finite amplitude torsional oscillations of shape-morphing plates im-
mersed in viscous fluids Finite amplitude torsional oscillations of shape-morphing plates immersed
in viscous fluids,” Physics of Fluids, vol. 32, no. 5, p. 053101, 2020.

[56] S. N. Ahsan and M. Aureli, “Small amplitude oscillations of a shape-morphing plate immersed in a
viscous fluid near a solid wall,” Journal of Applied Physics, vol. 124, no. 13, p. 134502, 2018.

[57] S. N. Ahsan and M. Aureli, “Torsional oscillations of a shape-morphing plate in viscous fluids,”
ASME 2019 Dynamic Systems and Control Conference, DSCC 2019, vol. 2, pp. 1–9, 2019.

[58] D. R. Brumley, M. Willcox, and J. E. Sader, “Oscillation of cylinders of rectangular cross section
immersed in fluid,” Physics of Fluids, vol. 22, no. 5, pp. 1–15, 2010.

[59] J. A. Schultz, S. M. Heinrich, F. Josse, I. Dufour, N. J. Nigro, L. A. Beardslee, and O. Brand, “Lateral-
mode vibration of microcantilever-based sensors in viscous fluids using timoshenko beam theory,”
Journal of Microelectromechanical Systems, vol. 24, no. 4, pp. 848–860, 2014.

[60] N. Shen, D. Chakraborty, and J. E. Sader, “Resonant frequencies of cantilevered sheets under
various clamping configurations immersed in fluid,” Journal of Applied Physics, vol. 120, no. 14,
p. 144504, 2016.

[61] N. Shen, D. Chakraborty, and J. E. Sader, “Frequency response of cantilevered plates of small aspect
ratio immersed in viscous fluids,” Journal of Applied Physics, vol. 133, no. 3, p. 034501, 2023.

[62] A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-Bouhacina, and J. P. Aim, “Hydrodynamics of
oscillating atomic force microscopy cantilevers in viscous fluids,” Journal of Applied Physics, vol. 97,
no. 7, p. 074907, 2005.

[63] A. T. Liem, A. B. Ari, C. Ti, M. J. Cops, J. G. McDaniel, and K. L. Ekinci, “Nanoflows induced by
mems and nems: Limits of two-dimensional models,” Physical Review Fluids, vol. 6, no. 2, p. 024201,
2021.

[64] A. L. Facci and M. Porfiri, “Analysis of three-dimensional effects in oscillating cantilevers immersed
in viscous fluids,” Journal of Fluids and Structures, vol. 38, pp. 205–222, 2013.

[65] J. N. Reddy, “Theory and Analysis of Elastic Plates and Shells,” 2007.

[66] V. Ruiz-Dı́ez, J. Hernando-Garcı́a, T. Manzaneque, M. Kucera, U. Schmid, and J. L. Sánchez-Rojas,
“Modelling out-of-plane and in-plane resonant modes of microplates in liquid media,” Journal of
Micromechanics and Microengineering, vol. 25, no. 7, p. 074005, 2015.

[67] A. Ricci, G. Canavese, I. Ferrante, S. L. Marasso, and C. Ricciardi, “A finite element model for the
frequency spectrum estimation of a resonating microplate in a microfluidic chamber,”Microfluidics
and Nanofluidics, vol. 15, no. 2, pp. 275–284, 2013.

[68] K. Takizawa and T. E. Tezduyar, “Multiscale space-time fluid-structure interaction techniques,”
Computational Mechanics, vol. 48, no. 3, pp. 247–267, 2011.

[69] R. J. Clarke, O. E. Jensen, and J. Billingham, “Three-dimensional elastohydrodynamics of a thin
plate oscillating above a wall,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
vol. 78, no. 5, pp. 1–17, 2008.

[70] A. Gesing, D. Platz, and U. Schmid, “A numerical method to determine the displacement spectrum
of micro-plates in viscous fluids,” Computers & Structures, vol. 260, p. 106716, 2022.

224



[71] A. Gesing, D. Platz, and U. Schmid, “Viscous fluid-structure interaction of micro-resonators in the
beam–plate transition,” Journal of Applied Physics, vol. 131, no. 13, p. 134502, 2022.

[72] A. Gesing, T. Tran, D. Huber, D. Steinmüller-Nethl, G. Pfusterschmied, M. Schneider, D. Platz,
and U. Schmid, “The gas-liquid-q-factor-inversion in mems plate resonators,” Journal of Sound and
Vibration, vol. 559, p. 117777, 2023.

[73] D. Kim, S. Hong, J. Jang, and J. Park, “Determination of fluid density and viscosity by analyzing
flexural wave propagations on the vibrating micro-cantilever,” Sensors, vol. 17, no. 11, p. 2466, 2017.

[74] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?,” Journal of
microelectromechanical systems, vol. 19, no. 2, pp. 229–238, 2010.

[75] B. J. Kirby, Micro-and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge uni-
versity press, 2010.

[76] W.-M. Zhang, G. Meng, and X. Wei, “A review on slip models for gas microflows,” Microfluidics and
nanofluidics, vol. 13, no. 6, pp. 845–882, 2012.

[77] H. Brenner, “Beyond the no-slip boundary condition,” Physical Review E, vol. 84, no. 4, p. 046309,
2011.

[78] G. Karniadakis, A. Beskok, and N. Aluru, Microflows and nanoflows: fundamentals and simulation,
vol. 29. Springer Science & Business Media, 2006.

[79] C. A. Van Eysden and J. E. Sader, “Small amplitude oscillations of a flexible thin blade in a viscous
fluid: Exact analytical solution,” Physics of Fluids, vol. 18, no. 12, p. 123102, 2006.

[80] M. D. Graham, Microhydrodynamics, Brownian motion, and complex fluids, vol. 58. Cambridge
University Press, 2018.

[81] T. J. Barth and D. Roose, Finite Element Method Book. Springer Science & Business Media, 10 ed.,
2013.

[82] G. Engel, K. Garikipati, T. J. Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor, “Continu-
ous/discontinuous finite element approximations of fourth-order elliptic problems in structural
and continuum mechanics with applications to thin beams and plates, and strain gradient elas-
ticity,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 34, pp. 3669–3750,
2002.

[83] G. N. Wells and N. T. Dung, “A C0 discontinuous Galerkin formulation for Kirchhoff plates,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 196, no. 35-36, pp. 3370–3380, 2007.

[84] N. T. Dung andG.N.Wells, “A study of discontinuousGalerkinmethods for thin bending problems,”
III European Conference on Computational Mechanics, no. June, pp. 653–653, 2008.

[85] D. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis of Discontinuous Galerkin
Method for elliptic problems,” SIAM journal on numerical analysis, vol. 39, no. 5, pp. 1749–1779,
2002.

[86] A. Logg, L.-A. Mardak, and G. N. Wells, Automated solution of differential equations by the finite
element method: The FEniCS book. Springer Science & Business Media, 84 ed., 2012.

[87] F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo, “Discontinuous Galerkin approximations
for elliptic problems,” Numerical Methods for Partial Differential Equations, vol. 16, no. 4, pp. 365–
378, 2000.

[88] K. Larsson and M. G. Larson, “Continuous piecewise linear finite elements for the Kirchhoff-Love
plate equation,” Numerische Mathematik, vol. 121, no. 1, pp. 65–97, 2012.

[89] A. Embar, J. Dolbow, and I. Harari, “Imposing Dirichlet boundary conditions with Nitsche’s method
and spline-based finite elements,” International Journal for Numerical Methods in Engineering,
vol. 83, pp. 877–898, 2010.

225



[90] F. Bassi and S. Rebay, “A High-Order Accurate Discontinuous Finite Element Method for the Nu-
merical Solution of the Compressible Navier–Stokes Equations,” Journal of Computational Physics,
vol. 131, no. 2, pp. 267–279, 1997.

[91] K. B. Olgaard, A. Logg, and G. N. Wells, “Automated code generation for discontinuous galerkin
methods,” Society for Industrial and Applied Mathematics, vol. 31, no. 2, pp. 849 – 864, 2007.

[92] S. Fernández-Méndez and A. Huerta, “Imposing essential boundary conditions in mesh-free meth-
ods,” Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 12-14, pp. 1257–1275,
2004.

[93] C. Pozrikidis, “A singularity method for unsteady linearized flow,” Physics of Fluids A, vol. 1, no. 9,
pp. 1508–1520, 1989.

[94] C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow. Cambridge
University Press, 1992.

[95] E. O. Tuck, “Calculation of unsteady flows due to small motions of cylinders in a viscous fluid,”
Journal of Engineering Mathematics, vol. 3, no. 1, pp. 29–44, 1969.

[96] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and
mathematical tables, vol. 55. US Government printing office, 1948.

[97] T. Sarpkaya, “On the parameter = re/kc= d2/ t,” Journal of fluids and structures, vol. 21, no. 4,
pp. 435–440, 2005.

[98] R. Kanwal, “Vibrations of an elliptic cylinder and a flat plate in a viscous fluid,” ZAMM-Journal of
Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 35,
no. 1-2, pp. 17–22, 1955.

[99] L. Ma, Using superposition of undamped modes to model non-orthogonally damped systems. PhD
thesis, Massachusetts Institute of Technology, 2017.

[100] L. Ma, T. L. Resvanis, and J. K. Vandiver, “The influence of mode dominance and traveling waves
on flexible cylinder flow-induced vibration,” Ocean Engineering, vol. 264, p. 111750, 2022.

[101] R. J. Clarke, O. E. Jensen, J. Billingham, and P. M. Williams, “Three-dimensional flow due to a
microcantilever oscillating near a wall: An unsteady slender-body analysis,” Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 462, no. 2067, pp. 913–933,
2006.

[102] L. Koens and E. Lauga, “The boundary integral formulation of stokes flows includes slender-body
theory,” Journal of Fluid Mechanics, vol. 850, p. R1, 2018.

[103] R. Cortez, L. Fauci, and A. Medovikov, “The method of regularized stokeslets in three dimensions:
analysis, validation, and application to helical swimming,” Physics of Fluids, vol. 17, no. 3, p. 031504,
2005.

[104] R. Cortez, “Regularized stokeslet segments,” Journal of Computational Physics, vol. 375, pp. 783–796,
2018.

[105] V. Varanasi, M. Velten, T. Odatsu, A. Ilyas, S. Iqbal, and P. Aswath, “Surface modifications and
surface characterization of biomaterials used in bone healing,” in Materials for Bone Disorders,
pp. 405–452, Elsevier, 2017.

[106] J. A. Hafner, Ferroelectric polymer thin Films for MEMS applications: towards soft and high-speed
AFM probes. PhD thesis, TU Wien, 2021.

[107] J. Hafner, D. Canena, D. Platz, M. Schneider, P. Hinterdorfer, and U. Schmid, “Scanning probes
with high resonance frequency and low stiffness for high-speed afm applications in liquid envi-
ronments,” in 8th Multifrequency AFM conference, Book of Abstracts, p. 28, 2020.

226



[108] E. Manconi and B. Mace, “Veering and strong coupling effects in structural dynamics,” Journal of
Vibration and Acoustics, vol. 139, no. 2, p. 021009, 2017.

[109] M. Asano, H. Yamaguchi, and H. Okamoto, “Free-access optomechanical liquid probes using a
twin-microbottle resonator,” Science Advances, vol. 8, no. 44, p. eabq2502, 2022.

[110] D. Demattio, “Simulation of Fluid-Structure Interactions in MEMS Resonators,” Master’s thesis,
TU Wien, 2022.

[111] M. Damircheli and B. Eslami, “Design of v-shaped cantilevers for enhanced multifrequency afm
measurements,” Beilstein Journal of Nanotechnology, vol. 11, no. 1, pp. 1525–1541, 2020.

[112] W. G. Dantas and A. Gusso, “Analysis of the chaotic dynamics of mems/nems doubly clamped
beam resonators with two-sided electrodes,” International Journal of Bifurcation and Chaos, vol. 28,
no. 10, p. 1850122, 2018.

[113] M. Dorfmeister, M. Schneider, and U. Schmid, “Static and dynamic performance of bistable mems
membranes,” Sensors and Actuators A: Physical, vol. 282, pp. 259–268, 2018.

[114] T. vanOpstal, E. van Brummelen, andG. van Zwieten, “A finite-element/boundary-elementmethod
for three-dimensional, large-displacement fluid–structure-interaction,” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 284, pp. 637–663, 2015.

[115] Y. Liu and N. Nishimura, “The fast multipole boundary element method for potential problems: a
tutorial,” Engineering Analysis with Boundary Elements, vol. 30, no. 5, pp. 371–381, 2006.

227


	Introduction
	MEMS resonators
	MEMS resonators in fluids
	Modeling the dynamics of micro-beams and micro-plates in fluids
	Objective
	Thesis outline

	I A semi-numerical method for micro-plates in viscous fluids with a two-dimensional fluid flow formulation
	Mathematical formulation
	Elastic body dynamics
	Fluid flow dynamics
	Rarefaction
	Compressibility
	Inertial and viscous forces

	Mathematical formulation of a micro-plate in a viscous fluid
	Conclusions

	Numerical methods for the plate equation
	Isotropic and anisotropic material models
	Boundary conditions
	Finite element method for the plate equation
	Interior Penalty Method
	Lifting operator

	Numerical results
	Static simply supported square plate
	Cantilevered plate with a sinusoidal force
	Generalized eigenvalue problem

	Conclusions

	Hydrodynamic forces on a micro-plate
	Boundary integral equation method
	Hydrodynamic force due to different vibrational modes
	Integration of the hydrodynamic force
	Numerical integration in y-direction
	Numerical integration in x-direction
	Convergence of the two-dimensional integration

	Conclusions

	A semi-numerical method for micro-plates in viscous fluids
	Convergence
	Convergence with the FE-mesh
	Convergence with the fluid grid

	Validation with semi-analytic methods
	Spectral displacement
	Quality factor
	Added-mass effect

	Validation with purely numerical results
	Validation with experimental results
	Conclusions


	II Numerical and experimental results
	Viscous losses in the beam-plate transition
	Air
	Displacement spectrum
	Q-factor

	Water
	Displacement spectrum
	Q-factor

	Added-mass effect and the damping coefficient
	Fluid flow, kinetic energy and viscous dissipation
	Oscillatory Reynolds number
	Conclusions

	Gas-Liquid modal Q-factor inversion
	Galerkin mode decomposition (GMD)
	Convergence and validation
	Q-factor in gases
	Q-factor in liquids
	Physical mechanism underlying the Gas-Liquid modal Q-factor-inversion
	Conclusions

	Experimental analysis
	Fabrication of silicon MEMS resonators
	Experiments in water
	Experiments in air
	Minimizing the influence of acoustic losses
	Conclusions


	III Beyond two-dimensional
	Hydrodynamic force on a micro-plate due to a three-dimensional fluid flow
	The unsteady Stokeslet
	The boundary integral equation
	Integration of the Stokeslet
	Hydrodynamic force due to different vibrational modes
	Conclusions

	A semi-numerical method for micro-plates in viscous fluids considering a three-dimensional fluid flow
	Numerical integration of the hydrodynamic force
	Convergence
	Convergence with the FE-mesh
	Convergence with the fluid grid

	Validation
	Spectral displacement
	Q-factor and damped resonance frequency

	Conclusions

	On the limits between two-dimensional and three-dimensional fluid flow
	Spectral displacement and damped resonance frequency in water
	Three-dimensional fluid flow in water
	Q-factor in the beam-plate transition in water
	Q-factor in the beam-plate transition in air
	Comparison to experiments
	Conclusions


	IV Conclusions and outlook
	Conclusions and outlook
	Conclusions
	Outlook

	Appendices
	Fluid properties
	Convergence of the Q-factor and damped resonance frequency
	Convergence of the Q-factor shown in the validation
	Convergence of the Q-factor in the beam-plate transition in air
	Convergence of the Q-factor in the beam-plate transition in water

	Influence of the Stokeslet numerical integration
	Convergence in the 3D method
	Convergence of the Q-factor in the beam-plate transition in air
	Convergence of the Q-factor in the beam-plate transition in water
	Experimental results

	List of Figures
	List of Tables
	List of symbols
	List of acronyms


