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Abstract: Salt hydrates are highly promising materials for thermochemical energy storage applica-
tions to store waste heat below 200 ◦C. Although highly researched and theoretically promising,
in practical applications salt hydrates often cannot fulfill expectations. Based on the promising
results of the Ca-oxalate monohydrate/Ca-oxalate system, other Ca-dicarboxylate salt hydrates were
investigated to determine whether potential materials for heat storage can be found amongst them.
A simultaneous thermal analysis showed that all candidates are applicable in the temperature range
of 100–200 ◦C, and thermally stable up to 220 ◦C. Calcium malonate dihydrate (637 J/g), calcium
terephthalate trihydrate (695 J/g), and tetrafluoro calcium terephthalate tetrahydrate (657 J/g) have
shown higher enthalpies of dehydration than Ca-oxalate monohydrate. Due to the investigation
of derivatives of Ca-terephthalate, it is possible to report the crystal structure of 2-fluoro calcium
terephthalate. In single crystals, it forms a trihydrate and crystallizes in the Pmna space group (Z = 4,
Z’ = 1

2 ) forming infinite chains of Ca atoms. De- and rehydration reactions of the most promising can-
didates were studied in situ with powder X-ray diffraction showing the structural changes between
the hydrate and anhydrate states.

Keywords: thermochemical storage materials; thermochemical and thermophysical material properties;
crystallization; crystal structure

1. Introduction

Increasing energy efficiency is a fundamental need in order to tackle climate change,
reduce greenhouse gas emissions, and achieve energy independence. According to the
International Energy Agency (IEA), the production of heat is accountable for around 50%
of the global demand of primary energy [1,2]. A significant part of the heat produced
is subsequently lost as low-grade waste heat and released into the environment [3]. In
2021, the global demand of primary energy was 595.15 EJ, 82% being covered by fossil
fuel sources [4]. Considering that heat production is the biggest “end-use” of primary
energy, these numbers highlight the enormous storage potential [5–7]. Thermochemical
energy storage (TCES) systems are a promising technique for thermal heat storage, suitable
for a broad range of waste heat recovery applications [8,9]. Salt hydrates are considered
to be promising candidates as thermochemical materials (TCMs) for storing heat in the
temperature range of 100–200 ◦C and have been extensively researched [8,10–12]. In
general, salt hydrates can obtain high storage densities, often coming from high latent heat
capacities, which also enables the application of salt hydrates as phase change materials
(PCMs) in latent heat storage systems [13–15].
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A TCES system that relies on salt hydrates as TCMs uses a reversible chemical reaction
as storage principle. Equation (1) illustrates a general reaction of an anhydrous salt A with
n moles of water to react to its corresponding hydrate under the release of a certain heat
of reaction ∆rH [16,17]. Figure 1 displays a graphical illustration of the storage principle.
For a technically promising TCES system, parameters like high energy densities, high cycle
stability, usage of non-toxic, low-cost, and non-corrosive materials, as well as fast reaction
times, are key [18,19].

A + n H2O 
 A · nH2O + ∆r H, (1)

Crystals 2023, 13, x FOR PEER REVIEW 2 of 16 
 

 

A TCES system that relies on salt hydrates as TCMs uses a reversible chemical reac-
tion as storage principle. Equation (1) illustrates a general reaction of an anhydrous salt A 
with n moles of water to react to its corresponding hydrate under the release of a certain 
heat of reaction ΔrH [16,17]. Figure 1 displays a graphical illustration of the storage prin-
ciple. For a technically promising TCES system, parameters like high energy densities, 
high cycle stability, usage of non-toxic, low-cost, and non-corrosive materials, as well as 
fast reaction times, are key [18,19]. 𝐴 +  𝑛 𝐻 𝑂  ⇌  𝐴 ⋅ 𝑛𝐻 𝑂 + ∆ 𝐻,  (1)

 
Figure 1. Storage principle of a TCES system utilizing salt hydrates as TCMs. 

A systematic search algorithm screening for chemical reactions suitable to become 
part of a thermal energy storage system proposed the calcium oxalate monohydrate/cal-
cium oxalate (CaC2O4·H2O/CaC2O4) system as such a potential reaction [20]. The material 
was analyzed and subsequently characterized, confirming the theoretically promising 
data by showing excellent cycle stability, full reversibility of reaction, and tuneability of 
the storage temperature via varying the water vapor concentration [21,22]. Based on the 
data for the CaC2O4·H2O/CaC2O4 system, a small library of calcium dicarboxylate salt hy-
drates (1–5f) was chosen to conduct the study of these calcium salt hydrates to investigate 
whether some of the candidates share the strengths of the oxalate or can even outperform 
it. The investigated candidates are displayed in Figure 2, and the compound names are 
found in Table 1. 

 
Figure 2. Overview of the investigated Ca-dicarboxylate salt hydrates. 

The thermal behavior of Ca-malonate dihydrate has been investigated before [23,24], 
and so too has the behavior of its coordinated water [25]. Ca-succinate is reported to form 
a trihydrate in single crystals [26,27]. For Ca-succinate monohydrate, as well as Ca-glu-
tarate monohydrate, an existing, detailed thermal analysis is unknown to the authors. Ca-
terephthalate is a valuable precursor for building metal organic frameworks (MOFs) as 

O O

O O

O
O

O

O
O O

O O

2 3 4

5a-d

1

Ca2+

1H2O

O

O O

O
Ca2+

1H2O
Ca2+

2H2O
Ca2+

1H2O

O

O

O

O Ca2+

nH2O

R
O

O

O

F
F

F
F

O

Ca2+

4H2O

O

O

O

Cl
Cl

Cl
Cl

O

Ca2+

nH2O

5e 5f

Figure 1. Storage principle of a TCES system utilizing salt hydrates as TCMs.

A systematic search algorithm screening for chemical reactions suitable to become part
of a thermal energy storage system proposed the calcium oxalate monohydrate/calcium
oxalate (CaC2O4·H2O/CaC2O4) system as such a potential reaction [20]. The material was
analyzed and subsequently characterized, confirming the theoretically promising data by
showing excellent cycle stability, full reversibility of reaction, and tuneability of the storage
temperature via varying the water vapor concentration [21,22]. Based on the data for the
CaC2O4·H2O/CaC2O4 system, a small library of calcium dicarboxylate salt hydrates (1–5f)
was chosen to conduct the study of these calcium salt hydrates to investigate whether
some of the candidates share the strengths of the oxalate or can even outperform it. The
investigated candidates are displayed in Figure 2, and the compound names are found in
Table 1.
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Figure 2. Overview of the investigated Ca-dicarboxylate salt hydrates.

The thermal behavior of Ca-malonate dihydrate has been investigated before [23,24],
and so too has the behavior of its coordinated water [25]. Ca-succinate is reported to
form a trihydrate in single crystals [26,27]. For Ca-succinate monohydrate, as well as Ca-
glutarate monohydrate, an existing, detailed thermal analysis is unknown to the authors.
Ca-terephthalate is a valuable precursor for building metal organic frameworks (MOFs) as
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well as being the subject of research in macromolecular chemistry [28–33]. It possesses a
crystal structure documented in the literature [34].

Table 1. Compound names of investigated Ca-dicarboxylate salt hydrates.

Compound Number Compound Name

1 Calcium oxalate monohydrate
2 Calcium malonate dihydrate
3 Calcium succinate monohydrate
4 Calcium glutarate monohydrate

5a (R=H) Calcium terephthalate trihydrate
5b (R=CH3) 2-methyl calcium terephthalate n-hydrate

5c (R=F) 2-fluoro calcium terephthalate trihydrate
5d (R=Cl) 2-chloro calcium terephthalate trihydrate

5e Tetrafluoro calcium terephthalate tetrahydrate
5f Tetrachloro calcium terephthalate n-hydrate

Despite the existing characterizations, to the best of the authors’ knowledge, the
mentioned salt hydrates have not been investigated as potential thermochemical materials
for TCES systems. However, despite the high potential shown by the CaC2O4·H2O/CaC2O4
system, the family of calcium dicarboxylate salt hydrates is also suitable to study the
influence of various chemical factors on the thermophysical properties of the TCMs. In the
past, promising salt hydrates were scrutinized, in an attempt to unveil all their properties
related to a TCM application. Prominent examples are CaCl2 [35,36], MgSO4 [37–40],
and SrCl2 [41,42]. In this paper, the chemical nature of the compounds and its influence
on the thermophysical properties shall be considered. For this purpose, derivatives of
Ca-terephthalate were prepared and investigated. By inserting functionalizations with
different electronic properties into the system, it is interesting to follow their influence on
properties like the onset temperatures of dehydration or the enthalpy of dehydration.

2. Materials and Methods
2.1. Materials

Calcium oxalate monohydrate (CAS 5794-28-5) was obtained from Sigma-Aldrich
(Merck KGaA, Darmstadt, Germany) and used as supplied. Calcium malonate was pre-
pared from malonic acid and calcium carbonate. Calcium carbonate (CAS 471-34-1) was
obtained from PanReac AppliChem (Ottoweg 4D-64291 Darmstadt, Germany), and mal-
onic acid (CAS 141-82-2) from fluorochem (14 Graphite Way, Hadfield, Glossop SK13 1QH,
UK); both were used without further purification. Calcium succinate (CAS 140-99-8) was
purchased from Szabo-Scandic HandelsgmbH (Quellenstraße 110, 1100 Vienna, Austria)
and used as supplied. Calcium glutarate monohydrate, as well as calcium terephthalate
(CAS 16130-76-0) and its derivatives, were synthesized, and the synthetic procedures are
found in the supporting information.

2.2. Synthesis

The exact synthetic protocols are given in Chapter I of the supporting information.
Calcium malonate dihydrate was prepared according to the procedure found in the lit-
erature [24], i.e., by reaction of malonic acid with calcium carbonate in distilled water.
After completed CO2 formation, a white precipitate was observed, which could be isolated
as product.

Ca-glutarate monohydrate, as well as Ca-terephthalate trihydrate and all of its deriva-
tives, were synthesized by mechanochemical means following the proposed procedure for
Ca-terephthalate trihydrate preparation found in [43]. In this method, terephthalic acid,
Ca(OH)2, and 130 µL H2O are filled in a ball and milled for 4 h (Reaction (2)).

C8H6O4 + Ca(OH)2 + H2O→ CaC8H6O4·3H2O (2)
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The synthesis of the mono-functionalized Ca-terephthalates was carried out in two
steps. In a first step, the mono-functionalized terephthalate was prepared. In a second
step, the corresponding calcium salt hydrate was formed by mechanochemical means (see
Figure 3).
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Figure 3. Synthesis of the mono-functionalized Ca-terephthalate hydrates.

2.3. Single Crystal Growth

Crystals of 2-fluoro Ca-terephthalate trihydrate were grown by in situ formation of
the target compound and slow evaporation. 2-fluoro Ca-terephthalate is insoluble in water,
requiring that it is transformed into the corresponding disodium salt which is water-soluble.
The preparation is shown by Reaction (3). The exact synthetic details are found in the
supporting information.

C8H5O4F + 2 NaOH→ Na2C8H6O4F + 2 H2O (3)

An aqueous solution of CaCl2 (6.3 mg, 0.05 mmol) was carefully added to a solution of
2-fluoro terephthalic acid disodium salt (10.5 mg; 0.05 mmol) resulting in a slight turbidity.
After two weeks of crystallization at room temperature, red single crystals were obtained
in a quality suitable for single crystal XRD (Reaction (4)).

Na2C8H6O4F + CaCl2 + 3 H2O→ CaC8H5O4F·3H2O + 2 NaCl (4)

2.4. Thermal Analysis

The thermal characterization measurements were carried out on a Netzsch STA 449 F1
Jupiter® system equipped with an automatic sample changer and a combined TGA–DSC
sample holder. The sample was measured in aluminum crucibles, containing sample
masses between 10 and 12 mg at a heating rate of 2 ◦C/min.

2.5. Powder X-ray Diffraction

The powder X-ray diffraction measurements were carried out on a PANalytical X’Pert
Pro diffractometer in Bragg-Brentano geometry, using a mirror for the separation of Cu-
Kα1,2 radiation and a X’Celerator linear detector. The collected diffractograms were evalu-
ated with the PANalytical program suite HighScore Plus v5.1.
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For the in-situ monitoring of the experiments, an Anton-Paar XRK 900 reaction cham-
ber was used. The sample was mounted on a hollow ceramic powder sample holder.
Dehydration measurements were performed in an atmosphere of dry N2, with a flow rate
set to 0.4 L/min.

2.6. Single-Crystal X-ray Diffraction

X-ray diffraction data of 2-fluoro Ca-terephthalate (CSD 2298055) were collected
at T = 100 K in a dry stream of nitrogen on a STOE STADIVARI diffractometer system
equipped with a Dectris Eiger CdTe hybrid photon counting detector using Cu-Kα radiation
(λ = 1.54186 Å). Data were reduced to intensity values with X-Area, and an absorption
correction was applied with the multi-scan approach implemented in LANA [44]. The
crystal structure was solved by the dual-space approach implemented in SHELXT [45], and
refined against F2 with JANA [46]. Non-H atoms were refined with anisotropic atomic
displacement parameters (ADPs). H atoms connected to C were placed in calculated
positions and refined as riding on the parent atom. The water H atoms were refined freely.
The F atom was refined as disordered about three crystallographically distinct positions
with the sum of the occupancies constrained to 1. The additional difference electron
density in parts of the structure suggested an alternative orientation of the inorganic
part of the structure. The Ca atoms and water molecules were, therefore, refined as
positionally disordered. The ADPs of the minor positions were constrained to those of the
major positions up to the pseudo-symmetry relating the orientations (reflection at y = 1

4 ).
Likewise, the coordinates of the H atoms of the minor positions were connected to those
of the major position up to this reflection. Molecular graphics were generated with the
program MERCURY [47].

2.7. Scanning Electron Microscopy

SEM images were taken on a FEI Quanta 200 F using a Schottky-FEG Emitter. The
measurements were performed with an acceleration voltage of 5 kV and a working distance
of 6.4–7.7 mm.

3. Results and Discussion
3.1. Synthesis

The mechanochemical synthesis method described in [43] was a very important pro-
cedure to prepare most of the investigated salt hydrates. At first, it was interesting to
determine whether it is also applicable to calcium salts with anions different than the
terephthalate. For this reason, Ca-oxalate monohydrate was prepared analogously and
compared with a purchased sample. For the preparation, oxalic acid (0.55 g, 6.11 mmol)
and calcium hydroxide (0.45 g, 6.11 mmol) were filled in a ball mill, 130 µL of deionized
water was added, and the mixture was milled for 4 h. The product was obtained as white
powder (802 mg, 5.49 mmol, 89 %). The product formation was confirmed with PXRD and
IR-spectroscopy (Figure 4), showing the identity of the two compounds.

3.2. Characterization and Thermal Dehydration Experiments

Combined TG-DSC experiments are a well-established method to characterize po-
tential TCMs. The dehydration process of CaC2O4·H2O is well documented in the litera-
ture [21,48] and used as standard for mass-loss calibration in TG analysis [49].

The thermal characterization of the compounds was carried out to determine the
applicability of the investigated candidates as thermal energy storage materials in the
temperature range from 100 to 200 ◦C. Decomposition reactions, as well as thermal stability
measurements, were not the target of this investigation. Table 2 shows the measured
onset temperatures of dehydration (in ◦C) and enthalpies of dehydration (in J/g) for the
investigated calcium dicarboxylate salt hydrates. The two chlorinated derivatives of Ca-
terephthalate (5d and 5f) showed a significantly different dehydration behavior than the
other components and are, therefore, excluded from the table.
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Table 2. Onset temperatures of dehydration and measured dehydration enthalpies.

Substance Theoretical Mass Loss
in %

Observed Mass Loss
in %

Onset Temperature of
Dehydration in ◦C ∆Hdeh in J/g

Ca-oxalate monohydrate 12.3 12.2 156 489
Ca-malonate dihydrate 20.2 17.9 127 637

Ca-succinate monohydrate 10.3 10.2 166 314
Ca-glutarate monohydrate 9.6 12.5 145 418
Ca-terephthalate trihydrate 20.9 20.1 104 695

2-methyl Ca-terephthalate n-hydrate 15.7 15.8 93 220
2-fluoro Ca-terephthalate trihydrate 19.5 15.6 126 483

Tetrafluoro Ca-terephthalate
tetrahydrate 19.2 19.2 99 657

Firstly, it should be noted that all included salt hydrates are stable up to 220 ◦C
and possess onset temperatures of dehydration in the desired temperature range from
100 to 200 ◦C, with 5b and 5e being slightly below. Furthermore, none of the candidates
showed melting or deliquescence effects throughout all experimental investigations. Three
candidates (2, 5a, 5e) achieved higher enthalpies of dehydration than calcium oxalate
monohydrate. Ca-malonate dihydrate (2), Ca-terephthalate trihydrate (5a), and Tetraflu-
oro Ca-terephthalate tetrahydrate (5e) formed higher hydrates (more than one water per
formula unit). Figure 5 shows the STA curves for calcium malonate dihydrate (2), and
Figure 6 shows the TG and DSC curves for calcium terephthalate (5a), in which the TG
signal shows a stepless mass loss of 20.1% which corresponds to a loss of 2.85 moles of
hydrate water. The enthalpy of dehydration is 695 J/g. The results are in good agreement
with literature data [43]. All other STA curves are included in the supporting information
(Supplementary Figures S1–S9).
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The corresponding enthalpies of dehydration ∆dehH in J/g were converted to J/mol
giving the molar dehydration enthalpies ∆dehh. They describe the thermal energy related
to the process of dehydration related to the moles of TCM. It consists of two energetic
contributions: one necessary to induce a phase change of water, represented by the en-
thalpy of evaporation ∆eh, and another necessary for breaking chemical bonds (∆hnet) [50].
Equation (5) leads to the net storage enthalpy representing the sole contribution of the TCM
to the enthalpy of dehydration. Equation (6) shows that the energy required to evaporate
the coordinated water is built up by two parts. ∆vh represents the latent part, which is
the energy necessary to evaporate the water. The other part represents the amount of
sensible heat stored in the process of heating the water from a storage temperature T1 to a
desired evaporation temperature T2. In the case of both storage and evaporation at room
temperature (T1 = T2 = 25 ◦C), the enthalpy values obtained are found in Table 3 (∆hnet_25),
and the calculations are based on the methodology of [42,50].

∆hnet = ∆dehh− n · ∆eh, (5)
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∆eh = ∆vh +

T2∫
T1

cpdT, (6)

Table 3. Calculated enthalpies for investigated calcium dicarboxylic acid hydrates.

TCM Moles of Crystal Water Moles of Water Lost in TGA
∆dehh ∆dehh/n H2O ∆hnet_25

kJ/mol kJ/mol H2O kJ/mol

1 1 0.99 71.33 72.20 27.87
2 2 1.72 110.26 64.10 34.59
3 1 0.98 54.60 55.46 11.29
4 1 1.35 81.36 60.29 21.99
5a 3 2.85 177.52 62.26 52.09
5c 3 * 2.29 127.73 34.65 27.00
5e 4 3.65 224.66 61.55 64.10

* determined by single-crystal analysis.

The net enthalpy values show that in the cases of Ca-malonate dihydrate (2), Ca-
terephthalate trihydrate (5a), and its tetrafluorinated derivative (5e) the higher enthalpy
of dehydration is not only achieved by an enhanced number of crystal water molecules.
For the named candidates, the energetic contribution of the material itself is higher than in
the case of Ca-oxalate monohydrate, since ∆hnet directly corresponds to the actual energy
storage potential [50]. The TG analysis of the monofluorinated compound (5c) gave a
mass loss of 2.29 moles of crystal water. Since the crystal structure was not known to the
literature, the determination of the exact structural properties was desirable, also to clarify
the bonding situation of the crystal water.

3.3. Structure Description of 2-Fluoro Ca-Terephthalate Trihydrate

The crystal structure of 2-fluoro Ca-terephthalate trihydrate (Pmna, Z = 4, Z’ = 1
2 )

is built of infinite chains of Ca atoms located on the m [100] reflection plane and con-
nected by 2-fluoroterephthalate ions and water molecules extending in the [100] direction
(Figure 7, top). A bridging water molecule located on a 2 [010] rotation axis connects two
adjacent Ca atoms in these chains. Two further water molecules, located on m [100], com-
plete the coordination sphere of the Ca atom. The infinite chains are connected by hydrogen
bonds from the water molecules to the non-coordinating carboxylate group, forming a
triperiodic network (Figure 7, bottom).

The monofluorinated-para-phenylene moiety is disordered around the m [100] reflec-
tion plane of the Pmna space group (Figure 8). The F atom is additionally disordered and
could be located at three out of the four crystallographic C atom positions. The major
F1 position (30.2 (5)% occupancy) is located on the side of the uncoordinated carboxylate
group. The alternative F1′ position on the same side features 3.7 (7)% occupancy. Finally,
on the side of the coordinating carboxylate group, F2 is occupied by 16.1 (4)%. It should be
noted that the occupancies amount to 0.5 owing to the disorder of the phenylene moiety
around the m 100 reflection plane. Given the occupancy ratio of ca. 7.5:1 for the F1/F1′

pair, one could expect a F2′ atom at the fourth position with ca. 2% occupancy, which is,
however, below the detection limit of a routine X-ray structure analysis.

The structure of 5c features a polytype character as evidenced by distinct one-dimensional
diffuse scattering along c*, which means that the structure is ordered on the (001) plane but
features a pronounced stacking-fault probability. The alternative arrangements of the layers
are reflected by ‘phantom atoms’ corresponding to a reflection of the Ca2+ ions and water
molecules on the y = 1

4 plane, with 4.5% occupancy. This implies an order-disorder (OD)
theory [51] interpretation of the polytypism as follows: The structure is built of two kinds
of layers extending on the (001) plane. Layers of the first kind are built of the terephthalate
ions. Owing to the disorder of the phenylene moieties, but ignoring the occupancies of the F
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atoms, these layers possess a pseudo-reflection plane at y = 1
4 . The second kind of layer (Ca2+

ions and water molecules) does not possess such a reflection symmetry and can, therefore,
appear in two orientations with respect to this reflection plane. This second orientation
explains the ‘phantom atoms’. There is an infinite number of possible polytypes, depending
on the sequence of the orientation of these layers. Nevertheless, all these polytypes are locally
equivalent and, therefore, energetically very similar.
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The structures of 5c and the unfluorinated analogue (5a) [34] are closely related. In
fact, both are built of the same kind of infinite chains connected by an analogous hydrogen
bond network. However, in the unfluorinated analogue, the phenylene moieties are not
disordered around a reflection plane, which leads to a symmetry descent of order 2 to
P21/c (permutation of the b and c axes). The reduction from orthorhombic to monoclinic
symmetry leads to a pronounced deviation from the orthorhombic metrics, with a reported
β angle of 92.3◦. Attempts to refine 2-fluoro Ca-terephthalate trihydrate in the P21/c space
group, with twinning by the lost point operations, did not resolve the disorder of the
phenylene moieties and showed distinct signs of overparameterization, namely, a large
correlation of ADPs and highly anisotropic ADPs.
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3.4. In Situ De- and Rehydration

Due to the unavailability of a suitable STA setup for rehydration, an in situ PXRD
approach was used to study the de- and rehydration reactions in as detailed a manner as
possible. Due to the promising enthalpy data from the TGA-DSC measurements, candidates
2, 5a, 5c and 5e were selected for the in situ PXRD measurements. The dehydration was
caried out at isothermal conditions with a chosen temperature Tdeh = Tonset + 10 ◦C. Tonset
corresponds to the onset temperature of dehydration observed in the STA experiments.

The rehydration was carried out with hot water vapor pumped into the system with
a HPLC pump. Under the chosen conditions, all four salt hydrates were effortlessly de-
and rehydratable.

The two images, a and b, in Figure 9 show the collected diffraction patterns for
the calcium terephthalate trihydrate/calcium terephthalate system. Under the applied
conditions, rehydration happens too fast to monitor intermediate structures with a scan of
5◦–60◦ 2θ. The third rehydration (blue curve in Figure 9b) shows a reflection at 21.6937 ◦2θ
remaining from the anhydrate structure. The measurement setup can cause inevitable
material loss, mainly because of an abrupt exposition to the N2 stream. After the 3rd cycle,
the remaining amount of sample was too low to perform a 4th cycle. With this limitation it
was not possible to confirm whether the reflection at 21.6937 ◦2θ means that a part of the
material is no longer rehydratable after three cycles. However, in SEM images (Figure 10)
no visible particle degradation was observed, indicating that 5a is cyclable for >3 cycles
and the observed anhydrate reflection derives from the PXRD setup. To prove that the
diffraction pattern of the anhydrate is obtained from fully dehydrated Ca-terephthalate, an
IR-spectrum was recorded (Figure 11).
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The red curve in Figure 11 shows a prominent, broad absorption band at 3600–2900 cm−1

coming from the OH stretching vibrations of the bound water molecules. The broadening is an
effect of H-bonds. In the spectrum of anhydrous 5a, no bands occur in this region, confirming
a full dehydration of the sample.

Figures 12 and 13 show one de- and rehydration cycle of the fluorinated derivatives
of calcium terephthalate (5c and 5e). The diffraction patterns in (a) in both figures show a
successful rehydration of both compounds, with the anhydrous diffraction pattern in (b).
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Due to a high amount of particle movement in the scanning electron microscope, SEM
images of 5c could not be provided in an appropriate quality. Figure 14 shows SEM images
for 5e after preparation (a) and after a full cycle of measurement (b). The rehydrated image
is highly comparable to the rehydrated form of 5a (Figure 10b). In general, the de- and
rehydration reactions were monitorable with the applied methodology, making it possible
to collect diffraction patterns of the fully hydrated and anhydrous states of the salts 2, 5a,
5c, and 5d. The corresponding IR spectra of both fully hydrated and anhydrous states are
included in the supporting information (Supplementary Figures S24–S29).
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4. Conclusions

A small library of calcium dicarboxylate salt hydrates was prepared and analyzed
with respect to their thermophysical and thermochemical properties to search for potential
thermochemical materials. The STA experiments of all candidates showed that these salt hy-
drates possess promising enthalpies of dehydration. The determined net storage enthalpies
correlate to the achievable storage densities, especially highlighting Ca-malonate dihy-
drate (2), Ca-terephthalate trihydrate (5a), and Tetrafluoro Ca-terephthalate tetrahydrate
(5e) as promising candidates, being able to deliver net storage enthalpies at T = 25 ◦C of
34.59 kJ/mol (2), 52.09 kJ/mol (5a), and 64.10 kJ/mol (5e). The rehydration measurements
monitored in situ by PXRD showed effortless rehydration back to the fully hydrated struc-
ture. Ca-terephthalate trihydrate indicated full cyclability over the three cycles investigated.
In a comparison of SEM images after preparation and after three cycles, no particle degra-
dation could be observed. The absence of the prominent, broad absorption band from 3600
to 2900 cm−1 in the IR-spectra of the fully dehydrated salts proves that full dehydration
was achieved, and the corresponding diffraction patterns were obtained from the fully
dehydrated species. It could be shown that 2-fluoro Ca-terephthalate forms a trihydrate
in single crystals and crystallizes in the Pmna space group (Z = 4, Z’ = 1

2 ). The crystal is
built of infinite chains of Ca atoms located on the m 100 reflection plane and connected by
2-fluoroterephthalate ions and water molecules extending in the [100] direction.

To enable a more profound characterization, rehydration measurements on a suitable
STA device are to be conducted, ideally resulting in more reliable data on cycle stability. To
enable a calculation of the corresponding energy storage densities, density measurements
of the salt hydrates are to be performed in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cryst13101518/s1, Figure S1: STA of Ca-oxalate monohydrate, Figure S2: STA
of Ca-succinate monohydrate, Figure S3: STA of Ca-glutarate monohydrate, Figure S4: STA of 2-methyl
Ca-terephthalate n-hydrate, Figure S5: STA of 2-fluoro Ca-terephthalate trihydrate, Figure S6: STA
of 2-chloro Ca-terephthalate, measurement 1, Figure S7: STA of 2-chloro Ca-terephthalate, measure-
ment 2, Figure S8: STA of Tetrafluoro Ca-terephthalate tetrahydrate, Figure S9: STA of Tetrachloro
Ca-terephthalate n-hydrate, Figure S10: PXRD Ca-oxalate monohydrate, Figure S11: PXRD Ca-oxalate
anhydrate, Figure S12: PXRD Ca-malonate dihydrate, Figure S13: PXRD Ca-malonate anhydrate,
Figure S14: PXRD Ca-succinate monohydrate, Figure S15: PXRD Ca-succinate anhydrate, Figure S16:
PXRD Ca-glutarate monohydrate, Figure S17: PXRD Ca-glutarate anhydrate, Figure S18: PXRD Ca-
terephthalate trihydrate, Figure S19: PXRD Ca-terephthalate anhydrate, Figure S20: PXRD 2-fluoro
Ca-terephthalate trihydrate, Figure S21: PXRD 2-fluoro Ca-terephthalate anhydrate, Figure S22: PXRD
2-methyl Ca-terephthalate n-hydrate, Figure S23: PXRD 2-methyl Ca-terephthalate anhydrate, Figure
S24: FTIR spectrum of Ca-malonate dihydrate, Figure S25: FTIR spectrum of Ca-malonate anhydrate,
Figure S26: FTIR spectrum of 2-fluoro Ca-terephthalate trihydrate, Figure S27: FTIR spectrum of 2-fluoro
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Figures 3–9.
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