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Abstract

Embedded systems are essential building blocks in nearly every aspect of today’s life. Simultaneously to

increasingly tight design requirements, the steady growth of application fields raises the need for versatile

systems. Application Specific Instruction Set Processors (ASIPs) offer an efficiency and versatility trade-

off by providing a flexible base instruction set extensible with application-specific Custom Instructions

(CIs). The emerging open-source architecture RISC-V introduces new challenges to the topic. The

RISC-V ecosystem requires tools for automating the tedious CI development process. In particular, there

is a lack of flexible methodologies to facilitate the integration of compatible and reusable components.

This thesis proposes FRANCIS-V, an integration framework to reduce the effort required for designing

CI-based systems. Its main contribution is a flexible interfacing methodology for coprocessor generation

based on the OpenHW Group’s CORE-V eXtension Interface (XIF), complemented by a predefined

RISC-V processor system as well as compilation, simulation, and verification features. The thesis

further proposes a comprehensive analysis of the CI development process, recognizing CI identification,

hardware generation, integration, and verification as its major challenges.

An expert estimation is performed to evaluate the potential development time reduced by utilizing

FRANCIS-V, yielding a reduction of around 16 workdays or 34% of saved total time. The generated

systems are further evaluated based on two use cases, AES and CRC. The evaluation yields a considerable

cycle count decrease of up to 87.53% and a marginal LUT and FF utilization overhead of 0.85% and 2.75%,

respectively, positioning the framework as competitive to comparable tools. The generated coprocessors

support a broad range of CIs and are compatible with XIF-based RISC-V processors.

FRANCIS-V contributes to the identified challenges of CI integration and verification, and it is further

designed for collaboration with prospective identification and hardware generation solutions. It signifi-

cantly improves the CI development process for designers with varying expertise. The thesis emphasizes

the need for flexible and standardized RISC-V CI interfacing solutions and motivates further work on CI

integration and overall CI design automation.
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Kurzfassung

Embedded Systems sind ein unverzichtbarer Bestandteil in nahezu allen Bereichen des heutigen Lebens.

Während die Designanforderungen stetig steigen, bedingen wachsende Einsatzfelder eine gewisse

Vielseitigkeit dieser Systeme. Application Specific Instruction Set Processors (ASIPs) besitzen ein solches

vielseitiges Grundset an Instruktionen, welches zur Effizienzsteigerung mit anwendungsspezifischen

Custom Instructions (CIs) erweitert werden kann. Die aufstrebende Open-Source-Architektur RISC-

V belebt dieses Thema mit neuen Herausforderungen. Die RISC-V-Community benötigt Tools zur

Automatisierung des aufwendigen CI-Entwicklungsprozesses, vor allem, um dem Mangel an flexiblen

Integrationslösungen für kompatible und wiederverwendbare Komponenten entgegenzuwirken.

In dieser Arbeit wird FRANCIS-V vorgestellt, ein Framework zur Verringerung des Integrationsaufwands

von CI-basierten Systemen. Das Framework generiert Coprozessoren basierend auf dem CORE-V

eXtension Interface (XIF) der OpenHW Group und stellt ein zugehöriges RISC-V-Prozessorsystem, einen

Compiler, einen Simulator, und Verifikationsfunktionen zur Verfügung. Weiters wird eine umfassende

Analyse des CI-Entwicklungsprozesses präsentiert und Auswahl, Hardwaregenerierung, Integration

und Verifikation von CIs als dessen herausforderndste Teilaufgaben identifiziert.

Um die Zeit zu ermitteln, die durch den Einsatz von FRANCIS-V im Entwicklungsprozess gewonnen

werden kann, wurden Expertenmeinungen eingeholt. Die Auswertung ergibt eine Zeitersparnis von etwa

16 Werktagen oder 34% der gesamten Entwicklungszeit. Die durch das Framework generierten Systeme

werden weiters auf Basis der Anwendungsfälle AES und CRC beurteilt. Bei der Evaluierung ergibt sich

eine deutliche Reduktion der benötigten Taktzyklen um bis zu 87.53% und nur ein geringfügiger LUT-

und FF-Utilization-Overhead von 0.85% und 2.75%, wodurch FRANCIS-V ähnliche Werte gegenüber

vergleichbaren Tools erzielt. Die generierten Coprozessoren unterstützen ein vielfältiges Spektrum an

CIs und sind kompatibel zu XIF-basierten RISC-V Prozessoren.



v

In dieser Arbeit wird die Notwendigkeit von flexiblen und standardisierten RISC-V CI Interfaces betont

und die Weiterentwicklung von CI-Integration und der übergeordneten CI-Entwicklungsautomatisierung

motiviert. FRANCIS-V trägt zur CI-Integration und Verifikation bei und ist im Hinblick auf ein Zusam-

menspiel mit zukünftigen Identifikations- und Hardwaregenerierungs-Tools konzipiert. Sowohl uner-

fahrene als auch versierte Entwickler können von dem optimierten CI-Entwicklungsprozess profitieren.
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Chapter 1

Introduction

With embedded systems and their applications becoming increasingly complex, there is an ever-growing

need for efficient solutions and optimized design methodologies. Today’s state-of-the-art implementa-

tions must be optimized to meet the particular requirements of specialized applications. Established

General Purpose Processors (GPPs), with their entailed overhead, are too generic to exploit application-

specific properties sufficiently. Thus, GPPs do not align with such tight design constraints. Highly

specialized components based on Application Specific Integrated Circuits (ASICs), by contrast, often lack

the required adaptability and reusability for utilization in various designs and applications. In addition,

developing ASICs is costly and requires experienced designers [1], [2].

Application Specific Instruction Set Processors (ASIPs) provide a trade-off between flexibility and efficiency.

Similar to GPPs, such processors offer instructions to cover basic functionality. In addition, they support

application-specific Custom Instructions (CIs) for more efficiency [1]. However, the ASIP design process

partly inherits the increased time and effort of its ASIC counterpart. Designing and implementing CIs

for given applications starts with identifying and selecting suitable instructions. It further includes

implementing the custom functionality on hardware and integrating it with the processor and required

system. Last, the resulting design has to pass verification. During these design tasks, the designer must

modify the required C compilers, simulators, and synthesis tools for use with the introduced CIs [3].

Hence, the manual conduction of this process is tedious and error-prone. Automating the design process

and integrating suitable instruction identification as well as software and hardware development into

one design flow would significantly reduce its design time and effort.

1



2 Chapter 1. Introduction

Despite the substantial body of literature on CI design process automation [3], the lack of tools for

emerging architectures and the growing interest in open-source solutions motivates further research

on this topic. In recent years, there has been a particular interest in RISC-V, an emerging open-source

Instruction Set Architecture (ISA). RISC-V aims to become a standard architecture in research and

industry and a free alternative to closed-source solutions [4]. One main benefit of such an open-source

ISA over commercial solutions is the absence of license fees and secrecy, enabling a growing open-source

community to use and contribute to the RISC-V ecosystem. Furthermore, the base ISA can be extended

with optional standard and non-standard Instruction Set Extensions (ISEs), making RISC-V a promising

candidate for implementing CIs.

Current approaches for automated ISEs in RISC-V-based systems largely focus on one specific core or

a small set of cores [5], [6]. The open-source community lacks a standard solution that works with

several RISC-V cores. A first step towards such a solution would be a standard RISC-V interface to

integrate CI logic in external coprocessors that are subsequently compatible with a broad range of

RISC-V processors. A promising candidate for such an interface is the CORE-V eXtension Interface (XIF).

XIF enables ISEs in a standardized manner without modifying the RISC-V core’s RTL representation [7].

However, the interface is currently under development and, at the time of writing this thesis, lacks a

standard implementation or methodology for extending coprocessors with interface support.

1.1 Objectives

The aim of this thesis is twofold. First, motivated by the current lack of compatible and reusable RISC-V

CI solutions, we analyze the development process of CI-based systems and propose potential approaches

to automating its individual steps. In the second part of this work, we focus on CI integration with

interfaces. We present a methodology for an automated integration of CI logic into RISC-V cores.

The methodology supports various applications and processors. Its core is an adjustable XIF-based

coprocessor or wrapper for given CI modules. Based on this methodology, we propose the CI integration

framework FRANCIS-V, capable of performing the wrapper generation and integration into a predefined

RISC-V system alongside code compilation, simulation, and verification of the generated design.

The framework’s applicability for a wide variety of application fields is demonstrated with two selected

use cases, AES and CRC. The major goal of FRANCIS-V is to reduce the design time in an otherwise

expensive manual development process solely conducted by the designer. The generated CI-based

systems aim at enhancing the application’s performance with low hardware overhead.
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1.2 Research questions

This thesis aims to answer the following research questions:

1. Which are the most challenging process steps in a typical Custom Instruction development process

regarding time and effort?

2. How can the manual effort of integrating Custom Instructions with RISC-V cores be reduced

using the CORE-V eXtension Interface?

3. How much design time can a designer save with the developed framework depending on their

experience level and use case?

1.3 Structure of the thesis

The thesis starts with background on RISC-V and the CORE-V Family in Chapter 2. Chapter 3 presents

the state of the art on CI integration in RISC-V processors and goes into detail on CI interfaces and

existing work utilizing XIF.

Chapter 4 proposes the methodology to answer the research questions. The chapter analyzes the CI

development process and potential automation approaches and further proposes FRANCIS-V. In addition,

it presents the thesis’ approach to evaluate and discuss the potential time a designer can save when

utilizing FRANCIS-V during their development process.

Chapter 5 provides implementation details of FRANCIS-V and presents the selected use cases and setup

for evaluating the generated designs. The results of the thesis are presented in Chapter 6, namely, the

analysis of the saved design time as well as of system metrics to assess the designs generated by the

framework. Chapter 7 discusses the main findings of the thesis, compares the results to the related work,

and proposes potential approaches for future work on the topic. Chapter 8 closes with a summary of the

work, contributions, and main insights of the thesis.
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Chapter 2

RISC-V

RISC-V is an open-source ISA aimed at becoming a standard architecture in research and industry and

an open and free alternative to commercial solutions. The project started in 2010 at UC Berkeley. The

RISC-V Foundation was established in 2015 to build an open and collaborative community around the

RISC-V ISA. In 2020, the organization was named RISC-V International Association and incorporated

in Switzerland. Its members are academic institutions, commercial and non-profit organizations, and

individuals [8]. In 2022, the EU-funded TRISTAN project started, addressing the growing need for

open-source solutions that can compete with commercial alternatives. It aims to expand, mature, and

industrialize the RISC-V ecosystem [9].

RISC-V International maintains the ratified RISC-V ISA specifications in two volumes [10]. The first

volume covers unprivileged instructions [4], and the second volume describes the privileged architecture,

which covers privileged instructions and additional functionality required for operating systems and

external devices [11]. RISC-V does not predetermine a particular microarchitecture or implementation

technology, thus supporting both simple systems and highly parallel multicore implementations [4].

Various cores and SoCs already implement RISC-V ISAs [12]. Proprietary suppliers include but are not

limited to Andes Technology and Codasip. Open-source examples are the CORE-V Family cores from

the OpenHW Group or designs from the PULP Platform.

5
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2.1 Instruction Set Architecture

RISC-V exists in both 32-bit and 64-bit address space variants1. The ISA is modular and consists of a

small base integer ISA and optional ISEs. These extensions enable designers to customize their systems

and optimize their design metrics. The specification defines and maintains standard extensions for

additional functionality, such as integer multiplication, floating point, or cryptography. In addition,

the RISC-V encoding space allows for custom extensions2 to tailor highly specialized applications [4].

Table 2.1 gives an overview of selected ISAs and ISEs.

The RISC-V specification defines six instruction formats (R, I, S, B, U, J) in its base RV32I ISA, illustrated

in Figure 2.1. R-type instructions have two source registers and one destination register and are used for

arithmetic or logic instructions such as add or sub. I-type instructions include one source and destination

register and a 12-bit immediate field. They are also used for computational instructions like addi (“add

immediate”) and for load instructions. S-type instructions encode store instructions. U-type instructions

consist of an immediate of 20 bits. B-type encoding is a variation of S-type but for encoding conditional

branch instructions, J-type instructions are a form of U-type encoding but for jump instructions3.

Table 2.1: Selection of RISC-V base ISA subsets and standard ISEs [4], [13], [14].

Subset Type Abbreviation Description

Base Instruction Set

RV32I 32-bit Integer Set
RV32E Reduced Embedded 32-bit Integer Set
RV64I 64-bit Integer Set
RV128I 128-bit Integer Set

Standard Extensions

M Integer Multiplication and Division
F Single-Precision Floating-Point
D Double-Precision Floating-Point
C Compressed Instructions
Zba, Zbb, Zbc, Zbs Bit-Manipulation
Zkne, Zknd AES Encryption and Decryption

1The specification also includes a 128-bit variant to be prepared for potentially required larger address spaces in future systems.
2The RISC-V specification distinguishes between standard and custom instruction set extensions. However, the term Custom
Instruction (CI) used in this thesis means instructions added to the RISC-V core’s offered base instruction set. A CI in this case
includes instructions from both standard and custom extensions.

3The intention of this paragraph is to give an intuition regarding RISC-V’s individual instruction formats. Details may deviate
from this intuition, e.g., the jump instruction jalr using the I- instead of the J-type format.
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31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.1: RISC-V 32-bit base instruction formats, adapted from Waterman et al. [4]. In general, R-type
describe register-type instructions, I- and U-type define immediate and upper immediate instructions,
S-type is used for store instructions, and B- and J-type portray branches and jumps. These descriptions
can be seen as general guidelines, selected instructions may be realized differently.

2.2 CORE-V Family

A set of RISC-V cores is contributed by the not-for-profit organization and RISC-V International member

OpenHW Group. These cores represent the CORE-V Family. The core IP is open source and comes with

associated tools and software for design and verification [15]. The family also includes complementary

IPs such as the XIF specification.

The CORE-V Family is divided into an embedded (CVE) and application (CVA) class. The embedded class

consists of a low-power 2-stage core (CVE2) and a group of 4-stage cores aimed at efficiency (CVE4).

The application class consists of 5-stage and 6-stage cores that offer additional features and increased

computational power. A summary of the cores and their features can be found in Table 2.2.

The cores of the application class are distinguished by their stage count (CVA5, CVA6). The cores of the

embedded class are named CV32E, which represents a 32-bit ISA, followed by their stage count and an

additional version number. The 4-stage cores are further divided by a letter representing their different

characteristics and application fields [16].

Table 2.2: Summary of CORE-V cores and their features [16].

Class Name Aim Features

CVA CVA6 Linux-like OS support privilege levels, TLBs+, hardware PTW+, branch-prediction
CVA5 FPGA implementations extensible parallel and variable-latency execution units

CVE4

CV32E40P small size, efficiency optional DSP+ extensions
CV32E40X compute intensive applications eXtension Interface (XIF) for external CIs
CV32E40S security applications Machine and User mode, enhanced PMP+, anti-tampering
CV32E41P Zfinx and Zce ISE support CV32E40P-fork with Zfinx and Zce extensions

CVE2 CV32E20 low-cost, low-power high-energy efficiency, computationally limited
+ TLB: Translation Lookaside Buffer, PTW: Page Table Walker, DSP: Digital signal processing, PMP: Physical Memory
Protection
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The CVE4 family started with the CV32E40P, former RI5CY from the PULP Platform. It is a 32-bit,

4-stage, in-order core that implements the RV32IM[F]C[Xpulp] ISA. It achieved Functional RTL Freeze

in 2021 [17]. The other CVE4 cores are all based on the CV32E40P but are extended and altered with

specific goals and applications in mind. The CV32E40S, for example, focuses on security applications

and has been extended with the respective features described in Table 2.2.

2.3 CV32E40X

CV32E40X, the X-version of the CVE4 family and main core used within FRANCIS-V, is an in-order RISC-

V core that targets compute-intensive applications. Its ISA comprises one of two possible base Integer

Instruction Sets and several extensions, some of which are optional. Table 2.3 describes the individual

extensions. The core has several features, such as external debug support, hardware performance

counters, and a Physical Memory Attribution (PMA) unit. The CV32E40X is customizable, and many

stated features can be optionally enabled or excluded. Its IP is fully synthesizable for both FPGA and

ASIC implementations. A separate verification project provides testbenches, test cases, and a UVM

environment for the CV32E40X and the other CVE4 cores [18].

CV32E40X’s characteristic feature is the CORE-V eXtension Interface (XIF). This interface allows

designers to extend the core IP with Standard and Custom Instructions without changing the internal

structure. The resulting extension is tightly integrated with the core and can be used to speed up critical

sections of its applications [19].

Table 2.3: A full list of the CV32E40X ISA, consisting of a configurable set of mandatory and optional
base integer sets as well as standard and custom extensions [4], [19].

Group Abbreviation Description

Base Integer Instruction Sets RV32I Base Integer Instruction Set
RV32E+ Reduced Integer Set for Embedded Systems

Standard Extensions

M, Zmmul+ Integer Multiplication and Division
A+ Atomic Instructions
Zca, Zcb, Zcmb, Zcmp, Zcmt Code-size reduction
Zba, Zbb, Zbc, Zbs+ Bit Manipulation
Zicntr Base Counters and Timers
Zihpm Hardware Performance Counters
Zicsr Control and Status Register Instructions
Zifencei Instruction-Fetch Fence
Zbkc+ Constant time Carry-Less Multiply

Custom Extensions Xif+ eXtension Interface
+ optionally enabled
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Figure 2.2 illustrates the interfaces and the pipeline of the core. CV32E40X has a 4-stage pipeline

consisting of Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), and Writeback (WB):

• IF fetches instructions from the word-aligned 32-bit prefetch buffer. The buffer has three en-

tries, thus allowing one instruction per cycle to be fetched if the instruction memory allows it.

Compressed instructions are also pre-decoded at this stage.

• ID decodes the fetched instructions and reads potential register entries. Jumps are also performed

at this stage.

• EX executes the decoded instructions. It contains an ALU and a unit for multiplication and

division. The EX stage also executes branches and generates the Load/Store Unit (LSU) addresses.

• WB loads the results from the EX stage back to the register file.

The physical instruction and data memory attributes can be mapped at compile time due to the PMA

unit. The instruction and data memory interfaces comply with the Open Bus Interface specification

(OBI). Figure 2.3 shows the basic idea for the data memory interface. At the start of a transaction, the

core provides the address, control signals, and optional data to be written. It subsequently indicates that

the transaction starts with the request signal. When the memory is ready, it responds with the grant

signal. If the transaction is a read, the read data is given along with the appropriate valid signal in the

following cycle. The instruction interface works on the same principle but without write capability and

with an additional error signal to indicate a bus error [19], [20].

Figure 2.2: Block diagram of the CV32E40X, adapted from its user manual [19]. The pipeline consists of
four stages, namely Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), and Writeback (WB).
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1 2 3 4 5 6 7 8

A0

WD0

RD0

WE0

BE0

clk

data_req_o

data_gnt_i

data_addr_o

data_wdata_o

data_we_o

data_be_o

data_rvalid_i

data_rdata_i

Figure 2.3: A basic transaction of the CV32E40X data memory interface, adapted from the CV32E40X
user manual [19]. The core provides the memory address, control signals and optional data, and request
signal. The memory responds with the grant signal. It also provides the valid signal and optional read
data in the next cycle.

2.4 CORE-V eXtension Interface

The CORE-V eXtension Interface (XIF) is a CI interface for ISEs and coprocessors based on the RISC-V

ISA and the chosen CI interface for FRANCIS-V. The goal of XIF is to provide a standardized design

and verification methodology for CIs without the need to change the internals of the core. The CI

functionality is implemented in external modules or coprocessors and is integrated with the cores at the

system level. The interface is relatively new and still in active development, with the first pre-release

specification published in August 2021. The current pre-release specification 0.2.0 from April 2022, when

writing this thesis, is available on GitHub [21] and docs.openhwgroup.org [7]. Version 0.2.0 features a

thorough revision of the overall interface structure and the introduction of its six subinterfaces.

XIF has independent channels for instruction offloading and result writeback and is tightly integrated

with the core’s register files. The following instruction types are supported:

• ALU instructions

• Load/store instructions

• Control Status Register and related instructions

Control-transfer instructions, such as jumps or conditional branches, are not supported.

https://github.com/openhwgroup/core-v-xif
https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/
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XIF supports the following features:

• Simple instruction encoding: XIF CIs use standard RISC-V bitfields for the instruction operands

and results. Unused bitfields can be repurposed.

• Compressed instructions: XIF supports 16-bit compressed instruction encoding to reduce code

size4.

• Dual read and writeback instructions: For 32-bit register width, XIF optionally enables

instructions to perform dual reads or writebacks on even-odd register pairs.

• Ternary operands: Instructions with three input operands are supported. Thus, in combination

with dual read, six 32-bit operands per instruction can be realized.

Structure

XIF consists of six subinterfaces named Compressed, Issue, Commit, Memory, Memory Result, and Result,

summarized in Table 2.4 and illustrated in Figure 2.4. The interfaces are used in this respective order for

every instruction. Each interface is responsible for a different phase in the overall flow of instructions,

but not all interfaces are mandatory for all instructions. Issue, Commit, and Result are mandatory,

while the Memory and Memory Result interfaces are optional. The Compressed interface per standard

is mandatory but can be reduced to a trivial implementation5 if no compressed CIs are used in the

particular application.

Table 2.4: Summary of the CORE-V-XIF subinterfaces [7]. The direction field indicates if the data flow is
in one or both directions. The initiator field states the component that starts the transaction. The Ready
field indicates if the ready signal is explicitly implemented or not.

Name Direction Initiator Ready Functionality

Compressed+ Bidirectional Core Explicit Decompress compressed instructions
Issue Bidirectional Core Explicit Issue instructions, provide operands
Commit Unidirectional Core Implicit Commit or kill speculative instructions
Memoryx Bidirectional Coprocessor Explicit Initiate memory reads and writes
Memory Resultx Unidirectional Core Implicit Execute memory reads and writes
Result Unidirectional Coprocessor Explicit Signal instruction completion, provide results
+ mandatory, but trivial implementation possible
x optional

4According to Waterman et al., if compressed instructions are used for all possible instructions in a typical program, the
resulting code size is reduced by around 20-30% [4].

5The core attempts to offload every compressed instruction that it does not recognize as legal. To prevent the core from
freezing, hence, the coprocessor has to respond to every compressed request. However, the trivial method for doing so is
holding a particular interface signal to zero to effectively reject every incoming request.
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Coprocessor

CompressedCompressed

IssueIssue

CommitCommit

MemoryMemory

Memory resultMemory Result

ResultResult

Core

Figure 2.4: Diagram of a XIF-connection showing the six subinterfaces. The interfaces are ordered by
their logical flow during execution. The arrows indicate the direction of the data flow. The initiator is
the component from which the upper arrow originates. The instructions are issued with the Compressed
and Issue interface. They are committed or killed by the Commit interface. The Memory and Memory
Result interfaces are used by load/store instructions. The Result interface delivers the instruction result.

All interfaces perform a valid-ready handshake between the core and the coprocessor, with one of the

two components being the initiator of the transaction. To start the transaction, the initiator requests

a transaction with valid, and the responding component accepts the transaction with ready. In other

words, the transmission is valid if both ready and valid are high in the respective cycle. The transferred

data are grouped into the categories of request and response, with request data coming from the initiator

and responder, respectively. Handshake, request data, and response data are all transferred in the same

cycle, ensuring tight integration of the core and the external instruction unit.

Each interface is unidirectional or bidirectional and has an explicit or implicit ready signal. The

bidirectional interfaces with an explicit ready signal (Compressed, Issue, Memory) behave as described

above. The Commit and Memory Result interfaces are unidirectional with an implicit ready signal.

Unidirectional in this context means that only the initiator can transmit data, and the responder is solely

a receiver. Furthermore, there is no dedicated ready signal, but the receiving component is assumed

to react to the incoming valid signal at any time and process the provided information. The Result

interface is also unidirectional but has a dedicated ready signal, allowing the core to control when it

processes the incoming results.
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Operating Principle

The core attempts to offload every instruction it does not recognize as legal over either the Compressed

or Issue interface. The coprocessor can accept implemented or reject unknown instructions. Compressed

instructions are handled via the Compressed interface in the first step. The coprocessor delivers the

non-compressed instruction.

All instructions6 are offloaded via the Issue interface. The request includes register file operands needed

for the instruction execution. The coprocessor responds to the issued instruction with acceptance or

rejection and additional information about the instruction, e.g., if the instruction performs a writeback

to the register file or if it is a load/store instruction. After this issuing, the coprocessor handles the

instruction. The instruction is speculative until the core commits or kills it via the Commit interface.

In case of a load/store instruction, the coprocessor uses the Memory and Memory Result interfaces

to access the core’s load/store unit. It requests a memory transaction over the Memory interface and

passes information needed for the transaction, like memory address, write enable, or write data. The

core accepts the transaction via the Memory interface and delivers the resulting memory data over the

separate Memory Result interface.

The coprocessor signals that it has completed the instruction through the Result interface. During this

transaction, it also performs the optional result writebacks. The coprocessor must induce exactly one

result transaction for each issued and committed instruction to signal the instruction completion to the

core, even if no writeback is performed.

6Both originally non-compressed instructions and also compressed instructions previously converted via the Compressed
interface are offloaded via the Issue interface.
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2.5 RISC-V AES Extension

The RISC-V scalar cryptography extension is a standard extension for cryptography ISEs within the

RISC-V specification, among others, including CIs for Advanced Encryption Standard (AES) encryption

and decryption [10], [14]. AES is one of the two selected use cases within this thesis to propose and

evaluate FRANCIS-V. In the specification, the AES instructions are grouped within the Zkne and Zknd

extensions7 for AES encryption and decryption, respectively. The two extensions feature the four

different 32-bit8 instructions, namely, aes32esmi, aes32esi, aes32dsmi, and aes32dsi, for middle and final

round encryption and decryption, respectively. They are described in Table 2.5.

AES is a round-based algorithm. After an initial key expansion or key scheduling, the plaintext on the

input is encrypted in iterative rounds [22]. The instructions of the crypto standard perform parts of these

rounds. They are also utilized during the key scheduling routine prior to the encryption rounds [23].

Accompanying the specification, the developers of the standardization work offer hardware implemen-

tations for their proposed instructions. The instructions are implemented as combinational modules

in Verilog. The standardization work further offers the source code of two AES software algorithms

for comparison with the hardware implementation, namely, a Reference implementation and a more

optimized ttable implementation.

Table 2.5: Overview of the 32-bit instructions of the RISC-V Scalar Cryptography Extensions Zkne and
Zknd for AES encryption and decryption [14].

ISE Mnemonic Instruction Description

Zkne aes32esmi Middle round encrypt Forward SBox, partial forward MixColumn, XOR
aes32esi Final round encrypt Forward SBox, XOR

Zknd aes32dsmi Middle round decrypt Inverse SBox, partial inverse MixColumn, XOR
aes32dsi Final round decrypt Inverse SBox, XOR

7Zkne and Zknd stand for Krypto NIST Suite AES Encryption and Decryption.
8The 64-bit instructions of the specification are not covered in this thesis.
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Related work

ASIPs, ISEs, and CIs certainly are not new areas of research. There is a significant body of literature

from the past few decades on the development of ASIP-based systems and on the automation of its

process steps [3]. However, the emergence of RISC-V and the growing interest in open-source solutions

sparked new interest in the topic.

In this thesis, the related state of the art comprises existing RISC-V methodologies for CI development,

particularly for CI integration. We differentiate between three relevant topics to position our thesis

within this existing work: RISC-V design methodologies, RISC-V CI interfaces, and XIF implementations.

Table 3.1 gives an overview of the relevant work on these topics.

The first topic consists of tools and methodologies for RISC-V CI design and integration compared to

the proposed framework FRANCIS-V. In the respective section (Section 3.1), we group the discussed

work on their integration technique, denoting them as either in-pipeline integration or interface-based

integration approaches.

The latter, interface-based tools utilize CI interfaces as their integration approach. Those CI interfaces

comprise the second research topic. Prominent CI interfaces are presented in Section 3.2, therefore,

after addressing the tools that utilize them in Section 3.1. Section 3.2 also compares the interfaces to

FRANCIS-V’s utilized interface XIF.

The third topic (Section 3.3) is existing XIF-based coprocessors and accelerators compared to the resulting

coprocessor or wrapper designs generated by FRANCIS-V.

15
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Table 3.1: Overview of the related work covered in this thesis, ordered by their research topics. Work
such as SCAIE-V or the thesis from Waage et al. covers aspects of multiple topics, thus is listed separately
in each group. FRANCIS-V, its utilized CI interface XIF, and FRANCIS-V’s generated wrapper solution
are highlighted in bold.

Topic Abbreviation Authors Description Ref.

RISC-V CI design
methodologies

Codasip Studio Codasip Commercial CI design tool for Codasip cores [5]
ACE Andes Commercial CI design tool for AndesCore™ cores [24]
OpenASIP Hepola et al. ASIP design toolset for a customizable core [6]
– Hu et al. ISE framework for the riscv-mini [25]
– Waage et al. AES XIF wrapper [26]
– Poncino and Pala Coprocessor framework for the ROCKET core [27]
SCAIE-V Damian et al. Interface-based CI integration tool [28]
FRANCIS-V This work Interface-based CI integration framework –

RISC-V
CI interfaces

PCPI YosysHQ CI interface for the PicoRV32 [29]
RoCC Asanović et al. CI interface for the ROCKET core [30]
CCOPI Nazarenus and Swierzy CI interface for the VexRiscv [31]
NICE Nuclei CI interface for the Hummingbirdv2 E203 [32]
TIGRA Green et al. Simplified and tightly integrated CI interface [33]
SCAIE-V Damian et al. Scalable and portable CI interface [28]
XIF OpenHW Group Generalized CI interface [21]

XIF
implementations

FPU_SS Imfeld Floating-point coprocessor [34]
NFC accelerator Babbaro et al. NFC accelerator [35]
Vicuna Platzer and Puschner Timing-predictable vector coprocessor [36]
Spatz Cavalcante et al. Compact vector coprocessor [37]
PQC coprocessor Lee et al. PQC coprocessor [38]
AES accelerator Waage et al. AES accelerator and basic coprocessor template [26]
XIF Wrapper This work Generic coprocessor template –

3.1 RISC-V CI design methodologies

The survey by Jain et al. [3] from 2001 gives an extensive overview of work on ASIPs from the last decades.

Albeit missing recent advances regarding RISC-V relevant to this thesis, the author’s proposed ASIP

development process structure still coarsely aligns with the structure of recent tools and methodologies

presented subsequently in this section. The authors define and describe five main process steps of ASIP

synthesis commonly realized by relevant work. They are illustrated in Figure 3.1. According to their

definition, the synthesis starts with analyzing the high-level application code, architecture selection,

and instruction set definition. The generation of object code and hardware generation follows these

steps. The authors emphasize that not every design methodology implements all these steps in this

explicit form.

In contrast to the extensive body of literature on general ASIP synthesis, less work on RISC-V-based CI

design solutions, the first of the three mentioned research topics, is available. In this thesis, these design

approaches are categorized into two groups of integration types, namely, in-pipeline integration and

interface-based integration, as illustrated in Figure 3.2. These groups are adapted by the definition of
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Figure 3.1: Flow diagram of the fivemain steps used in ASIP synthesis, adapted from Jain et al. [3, Figure 1].
The synthesis process starts with the application, analyzes it, explores architecture candidates, generates
the CI Set, and produces the software binary and hardware for the system.

Damian et al.1 [28]. In-pipeline integration approaches (Figure 3.2a) integrate the CI hardware directly

into the processor’s pipeline in the form of special functional units, as formulated by Galuzzi et al. [39].

Damian et al. state the advantage of this integration type over interface-based integration to be less

latency overhead and more throughput potential as well as reduced area and resource usage. By contrast,

the interface-based approach (Figure 3.2b) utilizes CI interfaces to connect the RISC-V core with an

external coprocessor that, in turn, contains the CI logic. The advantage of this approach over in-pipeline

integration is the compatibility with a broader range of processors, provided that they support the

interface, and the flexible use and reuse of existing CI designs. Furthermore, the processor’s internals do

not have to be adapted, eliminating possible unintended behavior or design faults.

Table 3.2 outlines important features of the tools that this section discusses. The general features listed

are the availability of a license and if the authors provide metrics for comparing their generated designs,

such as runtime improvement or resource overhead. Implementation features include the integration

type, which cores the tool supports, and whether the methodology is further applicable for various

additional RISC-V cores. Design process features describe which parts of the CI development process

(detailed in Section 4.1) are covered by each tool. Finally, types of supported instructions are listed.

Main Core
CI 

Module

(a) In-pipeline integration [28]: CI hardware added
inside the main core as a separate execution unit.

Main Core
Coprocessor

CI 
Module

CI Interface

(b) Interface-based integration: CI hardware inte-
grated with a CI interface and an external coprocessor.

Figure 3.2: Processor systems with integrated CI hardware using in-pipeline integration (a) or a CI
interface and an external coprocessor (b). The figure is adapted from Damian et al. [28, Figure 2].

1Damian et al. actually define three distinct approaches, further categorizing the interface-based approach by splitting it into
an on-chip coprocessor and off-chip accelerator group.
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Table 3.2: Features overview of the most promising RISC-V CI design tools discussed in this section.
Codasip Studio and OpenASIP exhibit the most features compared to the other commercial and open-
source solutions, respectively, but only support a specific set of RISC-V cores. SCAIE-V and FRANCIS-V
support generic RISC-V cores. To support new cores, they have to be added to the tool SCAIE-V, while
FRANCIS-V relies on developers adding XIF to their cores.

Feature Codasip Studio ACE Framework OpenASIP Hu et al. SCAIE-V FRANCIS-V
[5] [24] [6] [25] [28] (This work)

G
en

. License commercial commercial open source open source open source open source+

Metrics provided × × ✓ ✓ ✓ ✓

Im
pl

em
en

ta
ti

on Integration type in-pipeline in-pipeline in-pipeline in-pipeline interface-based interface-based

Supported cores Codasip cores AndesCore™ OpenASIP-gen. riscv-mini

VexRiscv

CV32E40XPiccolo
Orca

PicoRV32
Generic core supp. × × × × ✓ ✓

D
es

ig
n

pr
oc

es
s CI Identification ✓ ✓ × × × ×

CI Hardware gen. ✓ ✓ ✓ ✓ × ×
SW Compilation ✓ ✓ ✓ × × ✓
HDL Simulation ✓ ✓ ✓ × × ✓
Verificationx

Test case gen. Test case gen. NA NA NA Testbench
features Reference comp. SW debug

In
st

r.
ty

pe

Multi-cycle ✓ ✓ NA NA ✓ ×
R-type ✓ ✓ ✓ ✓ ✓ ✓
Immediate

✓ NA NA × ✓ ×Store
Jumps, Branches

+ FRANCIS-V is open source except for QuestaSim. More details are presented in Section 5.3.
x The listed verification features are support for automated test case generation, comparison to a ISS reference simulation, automated
testbench generation, or debug support for the application’s software code.

3.1.1 In-pipeline integration

The companies Codasip and Andes Technology offer commercial tools and design flows for automated CI

development. Codasip Studio [5] and the Andes Custom Extension™ (ACE) framework [24] support

CI identification by providing code profiling methods to identify often-used code segments. After that,

the designer-defined instructions can be simulated, verified, and implemented in RTL. The frameworks

also extend the required tools and compilers with the CIs. Andes further states the support of scalar

single- and multi-cycle instructions as well as vector instructions using loops. Moreover, immediate,

register, or memory operands are supported. Unlike most similar toolsets, Codasip additionally supports

control-flow type instructions like jumps or conditional branches, as also identified by Damian et al. [28].
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Furthermore, neither Andes nor Codasip seem to provide any benchmarks of the resulting designs like

runtime reduction or resource overhead [28]. In addition, the tools only support Codasip and Andes

processors, respectively, and are therefore not suited for use with additional open-source RISC-V cores.

Additionally, unlike the RISC-V ISA itself being open source, both proposed tools are closed source,

denying the growing RISC-V open-source community opportunities to further extend, adapt, or port

these tool and their generated designs.

An open-source alternative to Codasip Studio and the ACE framework is OpenASIP 2.0 by Hepola

et al. [6], a co-design toolset for ASIP synthesis. The designer can describe the semantics of the CIs

either with HDL snippets or with a directed acyclic graph and invoke them in the code with generated

C intrinsics. The tool then adapts its compiler and performs the code compilation. Furthermore, it

generates the previously customized processor and hardware for the defined CIs. It also supports the

simulation of the generated RTL system.

OpenASIP provides a customizable processor with a single-issue in-order pipeline with 3 to 4 stages. As

of writing this thesis, the tool does not support code profiling, automated CI identification, or automatic

utilization of CIs by the compiler. The designer has to manually select suitable CIs and insert the

generated intrinsics in the C code. Aside from CI selection, OpenASIP’s functionality compares to the

previously stated commercial tools. In addition, it provides metrics regarding runtime reduction and

post-synthesis properties, such as resource usage and maximum frequency, for the use cases AES, CRC,

and SHA. Similarly to OpenASIP, the framework from Hu et al. [25] offers automated ISE generation out

of graph-based descriptions of CIs. However, it does not feature compilation or simulation capabilities.

The generated CI RTL logic is directly integrated into the simple 3-stage pipeline of the riscv-mini core.

Both open-source solutions from Hepola et al. and Hu et al. address similar problems as FRANCIS-V. Our

framework as well features code compilation, CI integration, and simulation of the resulting RTL. While

FRANCIS-V does not support CI hardware generation in contrast to these tools, it is also developed

with HLS-based hardware generation in mind. However, the integration approach of the commercial

and open-source tools discussed above differs from the one in this thesis. According to the definitions

from the beginning of this chapter, Codasip Studio, OpenASIP, and the other proposed tools utilize

in-pipeline integration. FRANCIS-V, by contrast, realizes integration by using a CI interface, therefore

featuring the discussed advantages of supporting a broader range of cores without the need to adapt

them to the integrated CIs.
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3.1.2 Interface-based integration

The interface-based approach, as opposed to in-pipeline integration, is less common in literature. Like

the in-pipeline-based tools presented above, existing interface-based approaches are mainly designed

for one specific RISC-V core or a small set of cores. Thus, these approaches are not suited for use with

a broad range of RISC-V cores. Work on these approaches mainly contains CI interfaces themselves2

but does not include automation methodologies or tools for supporting the CI design process as the

above-presented solutions, e.g., Codasip or OpenASIP, do. However, we identify two master theses and

one tool that address aspects of this process automation by utilizing coprocessor interfaces.

The AES accelerator from Waage et al. [26] was published while this work was still in development.

It has several parallels to this thesis. The authors utilize the same RISC-V core and CI interface for

the implementation as FRANCIS-V, namely, the CV32E40X and XIF. Choosing CV32E40X is apparent,

given that it is the only openly available core with XIF support at at the time of writing this thesis.

Furthermore, their application field, AES cryptography, is also a use case chosen for this thesis, and

the same standardization work is used for its hardware implementation. As proposed in Section 5.4.2,

this already available standardization work is one major reason for choosing AES as a test case for

FRANCIS-V. Waage et al. also present a basic wrapper for XIF, a similar approach to the XIF wrapper

proposed in this thesis.

However, the work on the AES accelerator serves a different purpose. Waage et al. focus on implementing

an accelerator with first-order side-channel attack security. By contrast, this thesis focuses on developing

an interface-based methodology and only utilizes the AES use case to demonstrate and evaluate the

developed framework. Waage et al., while proposing a basic wrapper and stating that it can be adapted

for different purposes, do not provide further use cases or an underlying methodology to apply the

wrapper for other CIs in an automated way as FRANCIS-V does3.

The master thesis by Poncino et al. [27] covers RISC-V coprocessor development and gives guidelines for

future coprocessor designs. Like the work from Waage et al., the thesis exhibits some similarities to our

work upon initial examination. Poncino et al. conducted a case study where they developed a RISC-V

coprocessor for cryptography that, among others, can also perform AES encryption. Furthermore, they

outline design considerations for a generic coprocessor framework. This generic approach is similar to

2Note that CI interfaces are presented in the subsequent section, Section 3.2. This section only addresses design automation
work that utilizes these interfaces.

3Since Waage’s master thesis and the following thesis by Poncino, albeit discussing generic wrappers, do not focus on such
approaches nor propose concrete automation tools for their generation, they are hardly comparable to the other proposed CI
design tools and therefore not included in Table 3.2.
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the idea behind FRANCIS-V’s wrapper methodology. In addition, Poncino et al. also utilize a CI interface

for their CI integration.

However, they do not utilize XIF but the RoCC interface of the Rocket Chip Generator. This interface is

designed for the generated cores ROCKET and BOOM [30], while XIF is designed to support several RISC-

V processors. Furthermore, the authors assess a particular latency when utilizing the RoCC interface.

Therefore, they advise not to use the interface for tightly coupled coprocessors with frequent data

exchange. By contrast, XIF appears suitable for this coprocessor type in our experiments. In addition,

Poncino et al. discuss generic framework approaches but do not implement a generic coprocessor

solution. Similarly to Waage et al. and in contrast to FRANCIS-V, they also do not offer a framework for

automated generation of a CI-based system based on their proposed coprocessor design.

SCAIE-V by Damian et al. [28] describes both a CI interface for RISC-V processors and an associated open-

source hardware generation tool. Like FRANCIS-V, Damian et al. aim to reduce the high engineering

effort of CI-based systems, especially when updating systems or reusing components for successor

systems. They state scalability, portability, and flexibility as benefits of SCAIE-V. Scalability means

that the interface scales with the complexity of the CIs. Portability describes it as being portable with

multiple RISC-V cores4. With flexibility, the authors mean to emphasize the interface’s considerable

amount of features. SCAIE-V supports register and memory instructions, I/O transfer instructions, and

control flow instructions. It further supports multi-cycle and decoupled instructions that operate parallel

to the main core’s pipeline. It can reuse the pipeline of the main core and features hazard handling

and pipeline stalling capabilities. The interface is realized with a set of mandatory and optional signals

such as control, data, or address signals. SCAIE-V features tools for hardware generation and system

integration. The designer has to configure SCAIE-V and provide the CI hardware implementation. Based

on these inputs, its automatic hardware generator updates the main core and generates the interface to

connect the CI hardware logic with the core.

SCAIE-V has several parallels to the work in this thesis. Both SCAIE-V and FRANCIS-V implement

interface-based methodologies and tools for integrating externally provided CI hardware modules with

RISC-V cores. SCAIE-V, among others, also uses an SBOX instruction (a part of the popular use case

AES) to demonstrate its performance. In addition, HLS support for generating the CI hardware modules

themselves is scheduled as a prospective feature of the tool [28, Conference presentation by Andreas

Koch, DAC 2022]. Similar considerations are also incorporated into the design of FRANCIS-V.

4At the time of writing this thesis, SCAIE-V supports the four cores VexRiscv, Piccolo, Orca, and PicoRV32.
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A major difference between SCAIE-V and FRANCIS-V is how the tools approach the support of multiple

RISC-V cores. In order to use a particular core with SCAIE-V, it has to be adapted and added to the

tool [40]. FRANCIS-V, by contrast, supports cores compatible with XIF. Therefore, a core without XIF

support has to be extended with this interface functionality. At the time of writing this thesis, SCAIE-V

already features four different cores, while FRANCIS-V only supports the CV32E40X. The designers of

SCAIE-V can add additional cores by themselves, while FRANCIS-V relies on the developers of RISC-V

cores to incorporate XIF. However, with the maturing and establishing of the interface, we expect that

additional RISC-V cores will support XIF as time passes. Therefore, the resulting designs of FRANCIS-V

may be inherently compatible with a larger set of cores in the long run since, by contrast to SCAIE-V,

the tool itself does not have to be adapted to new cores. A further advantage of the approach in this

thesis is that already verified XIF-based RISC-V cores are not internally altered by FRANCIS-V since the

CI extension is realized solely over the already implemented and verified interface.

Regarding features, SCAIE-V supports elaborate instruction types, including multi-cycle and control

transfer instructions. FRANCIS-V has more limited instruction capabilities. However, unlike FRANCIS-

V, SCAIE-V does not feature software compilation, HDL simulation, and verification tools within its

framework. Comparisons on quantitative metrics like utilization overhead are presented in Section 7.4.

3.2 RISC-V CI interfaces

After discussing the first research topic, CI design tools and methodologies, the second topic focuses on

the particular CI interfaces used by such tools. In their paper about SCAIE-V, Damian et al. also give an

overview of such potential CI interfaces. The main options listed by the authors can be grouped into

generic CI interfaces, CI interfaces for specific domains, and existing interfaces originally developed for

other purposes. We focus on the first group, since interfaces in the latter two categories are either too

specific or exhibit a too high performance overhead to be suited for a flexible but efficient integration

approach as desired in this thesis [28].

There are a number of solutions for generic RISC-V CI interfaces. Table 3.3 presents the most prominent

candidates. Among these options, XIF is selected for FRANCIS-V for several reasons. First, when

starting this work, it newly emerged and is still in active development at the time of writing this thesis.

This recency designates XIF as the most interesting and prominent candidate for a novel integration

framework compared to the preceding candidates, PCPI [29], RoCC [30], CCOPI [31], and NICE [32].

These four solutions, in addition, are developed with a specific core in mind, while XIF offers a more
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generalized structure. It currently supports the CORE-V CV32E40X, and we envision an increased XIF

utilization in future RISC-V processor designs.

The developers of the interface TIGRA [33] follow a different strategy than the other mentioned ap-

proaches. TIGRA is described as a zero latency interface aimed at achieving the advantages of in-pipeline

integration, e.g., smaller overhead, while simultaneously reducing the manual implementation effort.

The authors achieve this by defining a simplified interface that only requires internal signals that a

typical RISC-V data path already entails, so no internal modifications of the core are needed. The

downside of this strategy is the restricted functionality of the interface. In contrast to XIF, TIGRA

only supports R-type instructions5, so direct memory access is not provided. Another difference is that

TIGRA does not have dedicated signals for committing or killing speculative instructions.

The tool SCAIE-V is already contrasted to FRANCIS-V in Section 3.1.2, which also covers the differences

of the interface SCAIE-V compared to XIF. Aside from the discussed RISC-V core support differences, no

major feature differences become apparent when only comparing the interfaces.

3.3 XIF implementations

The third relevant topic for this thesis is existing work on XIF coprocessors and accelerators. As already

mentioned, XIF is a rather new interface. As of writing this thesis, it is implemented by the CV32E40X

core from the OpenHW Group [19], and we anticipate further core support in the future. However,

Table 3.3: Overview of existing RISC-V CI interfaces. The comparison renders SCAIE-V and XIF as the
most promising candidates with extended feature and core support.

Name Year published Extended features Target Ref.

PCPI 2015 – PicoRV32 [29]
RoCC 2016 – Rocket Chip Generator [30]
CCOPI 2018 – VexRiscv [31]
NICE 2020 – Hummingbirdv2 E203 [32]
TIGRA 2021 × Generic cores [33]
SCAIE-V 2022 ✓ Generic cores [28]
CORE-V XIF +2022+ ✓ Generic cores [21]
+ This date corresponds to the 0.2.0 pre-release specification, since the previous version 0.1.0 from 2021

exhibits an entirely different structure and working principle.

5FRANCIS-V is currently also limited to R-type instructions, as reasoned in Section 4.2. However, XIF itself supports more
elaborate instruction types, and further instruction support by FRANCIS-V is planned in future work (Section 7.6).
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despite its recent emergence, some coprocessors and accelerators already utilize XIF as their interface.

They are summarized in Table 3.4.

All listed accelerators and coprocessors hold different assumptions than our thesis. The designers focused

on developing and optimizing their coprocessor for specific use cases, while we focus on a generalized

solution for several applications. The implementations handle XIF transactions either directly inside

the responsible components or in dedicated interface modules. Hence, all solutions are entangled with

the specific application to some extent. The XIF implementations would have to be manually adapted

to update functionality, add new CIs, or reuse the proposed architecture in other application fields.

This thesis, by contrast, aims to minimize this manual effort by developing a generalized interfacing

framework for a wide range of CIs and application fields. The only exception to these application

limitations is the work from Waage et al. which proposes a basic wrapper but does not provide an

underlying integration methodology, as already addressed in Section 3.1.2.

Despite the diverging focus of the listed work in contrast to this thesis, it is still of interest to analyze how

and to which extent the listed coprocessors utilize XIF. This analysis helps to design and understand our

proposed wrapper’s structure (presented in Section 5.2.1). From Table 3.4, only FPU_SS [34] implements

compressed instructions and thus all six XIF subinterfaces. The Near Field Communication (NFC)

accelerator utilizes every interface but the Compressed interface [35]. The Post-Quantum Cryptography

(PQC) and AES solutions, besides not using the Compressed interface, additionally do not implement

load/store type instructions [26], [38]. Thus, they do not utilize the Memory and Memory Result

interfaces responsible for accessing the LSU of the main core. They implement the three required

interfaces Issue, Commit, and Result.

Table 3.4: Summary of coprocessors and accelerators utilizing XIF. Among these options, the developed
wrapper in this work is the only solution supporting a broad range of CIs and offering related tool
support. The “∼” in the AES accelerator column indicates that Waage et al. [26] shortly discuss their
proposed basic wrapper but do not go into detail on potential automation approaches.

Name Generic CI Functionality and Features Ref.support

FPU_SS × F and Zfinx single-precision floating-point extensions [34]
NFC accelerator × CIs for NFC decoding [35]
Vicuna × Zve32x vector extension, timing-predictable [36]
Spatz × Zve32x vector extension, compact and energy-efficient [37]
PQC coprocessor × CIs for PQC [38]
AES accelerator ∼ Zkne and Zknd AES extensions, first-order SCA+ secure [26]
XIF Wrapper ✓ Support of a broad range of CIs This work
+ SCA: Side-Channel Attack
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The accelerators Vicuna and Spatz focus on vector operations and implement vector load/store in-

structions and could, therefore, utilize the Memory and Memory Result subinterfaces. However, the

authors of Spatz stated that at the time of developing their work, the XIF specification did not meet

the bandwidth required to transfer vectors over these two interfaces efficiently6 [37]. Thus, Spatz

implements a separate Vector LSU and uses an adapted XIF to consider instructions with a bigger

maximum bandwidth. Vicuna follows a similar approach by implementing a vector LSU. Furthermore,

Vicuna implements the Memory and Memory Result interfaces. It optionally allows communicating

directly with the memory over a custom memory interface instead, as becomes apparent when studying

the respective RTL components [41].

Although the implementation details differ for the individual coprocessors, a coarse and abstract overview

of the most common architectural components can be given. Most coprocessors and accelerators

implement some kind of decoding unit for incoming instructions and FIFOs to help with handling

multiple instructions or to allow selective committing or killing of instructions. Furthermore, a functional

unit implements the custom instruction logic itself. Most architectures also include a register file for

operands, results, and intermediate results in multi-cycle instructions. Finally, control logic or controllers

of differing complexity manage the other components of the coprocessor and, among other things,

handle interfacing, memory transactions, and commits or perform configurations of the functional units.

6The current maximum bandwidth is defined to be 256 bit per cycle. However, in early drafts, the size limit was 32 bit [21],
which was likely the case when being assessed by Spatz.
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Chapter 4

Methodology

This chapter proposes the methodology to answer our research questions by analyzing the typical CI

development process, presenting FRANCIS-V, and discussing the thesis’s design time evaluation strategy.

4.1 CI development process analysis

The first research question of identifying the major challenges within the RISC-V CI development

process is addressed by analyzing the typical manual process steps a designer has to perform to design,

implement, and integrate a CI-based RISC-V system. The analysis is based on the following assumptions

to ensure a focus on the essential topics of this thesis:

• The development process and targeted system are based on RISC-V.

• The application is given in C code.

• The designated goal of the process is to realize CIs to enhance the application’s performance with

a resource overhead comparable to similar approaches.

• XIF is used for integrating the external CI hardware logic.

• The main core can be any core that supports XIF.

• The process does not include synthesizing and implementing the generated system on hardware

such as FPGAs or ASICs.

The paper by Jain et al. [3], as presented in Chapter 3, gives a collective overview of common steps

realized by CI design tools. Based on their generalized process analysis and the assumptions from above,

we define the specific XIF-based CI development process as illustrated in Figure 4.1. The figure proposes

27



28 Chapter 4. Methodology

the process’s development steps and their inputs and outputs. The steps are defined and detailed in

the following paragraphs by dividing them into five groups: CI identification, CI implementation, CI

integration, code synthesis, and simulation and verification.

The steps of the typical development process are conducted by the designer. When utilizing the

framework FRANCIS-V, subsequently proposed in Section 4.2, some of these steps (blue in Figure 4.1)

are performed by the interface, while others remain to be done manually (gray in the figure).

The process analysis and illustration omit the potential iteration loops during a practical process to

enhance their contentual and visual clarity. Such iterations may be necessary when previous steps

have to be revisited, e.g., due to erroneous or inadequate behavior of the system or its components. For

example, consider a software bug that is identified during the system verification step but originates

from an error done during code adaption. In that case, the designer has to go back to the C code adaption

step, fix the error, and proceed through the subsequent process steps again.

CI identification

The defined development process starts with the C application. Given this application as input, the

following step CI Identification comprises identifying suitable CIs [39]. This step can be compared to the

application analysis, architectural design space exploration, and instruction set generation steps defined

by Jain et al. According to their definition, the C application is profiled to identify often-used code

segments, referred to as hot spots in literature [42]. With knowledge of these hot spots, the performance

of different architecture and CI combinations is estimated to find the most suitable configuration [3].

When applying the assumptions of our defined development process, this problem is reduced to selecting

the most suited XIF-supporting main core for the given cost, power, and performance requirements and

to finding the optimal set of CIs for the given application. The designer has to conduct this selection

based on experience or existing solution approaches for this application. Automation approaches for this

group of tasks would include tools for code profiling [42] and techniques for architecture estimation, such

as worst-case execution time analysis [43] or performance estimation. FRANCIS-V does not incorporate

such identification techniques.



4.1. CI development process analysis 29

Adaptations

Simulation and Verification                                  Code Synthesis

CI Integration

C Application CI Identification

Adapted
C Code Compilation

CIs

RTL
CI Module

XIF
Implementation

XIF-comp.
Coprocessor

RTL
Integration

Testbench

Binary

CI 
Implementation

CIs

CI 
Implementation

CIs

Code Adaption

CIs

Code Adaption

CIs

System RTLSystem RTL

Output

RTL System

Output

Input

XIF Specification RISC-V Core

BinaryBinary

Output

Binary

Output

Simulation
App. Output

Signals
Timing

System

Verification

Steps supported by FRANCIS-V

Steps performed by the designer

Inputs and Outputs

Figure 4.1: Flow diagram of the typical CI development process. The process is divided into steps,
represented by the rectangular and colored (blue and gray) boxes. The steps are categorized into five
groups, namely, CI identification, CI implementation, CI integration, code synthesis, and simulation and
verification. The groups consist of either one step or more substeps, represented by the boarders around
them. The arrows illustrate the step’s inputs and outputs, the curved and white-colored boxes illustrate
the input and outputs of the process. Blue steps are supported by FRANCIS-V, gray steps remain to be
done manually by the designer. System verification is facilitated but not fully automated by FRANCIS-V.
The bent adaptation arrow represents implied iterations between steps of the design process.

CI implementation

After choosing suitable CIs, they have to be realized in hardware (CI Implementation) with HDL languages

in RTL. In our definition, this hardware generation task is split from the subsequent integration task. One

major way of automating this task would be using High-Level Synthesis (HLS) to generate RTL hardware

out of the given source code. FRANCIS-V does not contain such hardware generation approaches.

CI integration

In the next step, the resulting CI module has to be extended with hardware units that support XIF (XIF

implementation). The resulting XIF-compatible coprocessor must be able to manage the timing and data

format of the XIF subinterfaces to achieve compatibility with the main core. The subsequent step is
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the RTL integration of the coprocessor and the main core into the RISC-V system, resulting in the RTL

system output of the process. This step also includes the development of a testbench for subsequent

simulation and evaluation. For these steps, approaches for reducing the manual effort comprise an

automated XIF coprocessor or wrapper generation and integration into a predefined system including

a chosen main core. This wrapper generation and system integration are significant contributions of

FRANCIS-V, as detailed in Section 4.2.

Code synthesis

In parallel to developing the RTL system, a compilation step has to generate the binary of the application

for the chosen processor, ISA, and CIs1. Before this compilation, the designer has to adapt the parts of

the C code that are realized with CIs in hardware. The resulting adapted source code is further compiled,

resulting in the binary that serves as an output of the process.

This division in code adaption and compilation within our defined process limits the code synthesis to

approaches where the designer adds the CIs to the code beforehand. Consequently, the compiler does

not have to interpret the CIs semantically or know their behavior since the CIs are already present in the

binary at these explicitly defined code positions. The subsequent compilation step is thus simplified and

can be performed with the standard ISA of the chosen main core. Hence, resulting automation tools are

limited to an automated adaption of the compiler to the given basic ISA, as is supported by FRANCIS-V.

Simulation and verification

In the last steps, the generated design has to be evaluated. For that, the testbench and binary are

simulated. As a result, the correctness of the code execution and timing can be analyzed, as represented

by the system verification step. Tools and frameworks for simulation and verification of the generated

design include scripts and testbenches for automated simulating and testing of the developed CI-based

system, as provided by FRANCIS-V. Further approaches like automated test case generation or formal

verification methods, albeit being a promising alternative for this problem, are not scope of this thesis.

1Jain et al. differentiate between two different Code Synthesis approaches, namely, retargetable Compiler and Code Generator.
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4.2 Proposed framework

To answer the second research question, we propose the open-source framework FRANCIS-V for

integrating CIs into RISC-V systems. FRANCIS-V addresses the deficiency in flexible CI integration tools

for the emerging RISC-V ISA. We define flexibility in this context as a solution that is applicable and

reusable for a broad range of applications and compatible with several RISC-V cores. The framework

adopts the interface-based approach discussed in Section 3.1 to achieve this desired flexibility.

FRANCIS-V is structured into a software, hardware, and simulation part, respectively. Figure 4.2 gives a

high-level overview of the features and relevant components of the framework. FRANCIS-V assumes

that the designer provides the C application with included CIs and the associated CI hardware modules2.

Based on these inputs, it integrates the CI module in a coprocessor with XIF support (XIF wrapper)

generated by the framework. FRANCIS-V further provides code compilation, HDL simulation, and

verification capabilities to generate and test the CI-based system.

Focus on CI integration

In comparison with the CI development process analysis from Section 4.1, FRANCIS-V mainly covers

CI integration and further features code synthesis, simulation, and verification capabilities, while CI

identification and implementation are out of scope. This thesis’ focus on integration is justified due to its

crucial role in the design process. Furthermore, compared to the CI identification and implementation,

CI integration is evaluated as the most realistic step to be contained in a single master thesis and solved

with open-source tools. The additional compilation, simulation, and verification features are added to

FRANCIS-V because they naturally complement its proposed integration methodology.

Albeit being out of scope for this thesis, FRANCIS-V is still designed with CI identification and im-

plementation in mind. The framework can seamlessly integrate CI modules generated by HLS-based

implementation solutions3. Similarly, CI definitions generated by automated identification methods can

be included in the subsequent framework-based design flow.

2In other words, the designer has to prepare the adapted C code and implement CI hardware, either manually or with external
hardware generation solutions such as HLS tools.

3The given CI hardware does underlie some assumptions described in Section 4.2. However, all of these assumptions can be
fulfilled by either manual or HLS-generated hardware designs.
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Figure 4.2: High-level overview of FRANCIS-V’s features and components. The color gray illustrates
existing standard components and IP by other designers. The colored parts represent the contributions
of this thesis and emphasize various affiliations within the framework. Orange, purple, magenta, green,
and yellow emphasize the relations regarding the application software and hardware inputs, debug
capabilities, application binary and instruction memory, XIF coprocessor or XIF wrapper, and RTL system
embedded in a testbench, respectively. Blue is the general color of choice for the other framework’s
parts. AES and CRC indicate the utilized test cases of this thesis (discussed in Section 5.4).
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Supported instructions

Figure 4.3 illustrates the type of CIs that FRANCIS-V supports. We limit the instruction type to single-

cycle R-type4 instructions with two source registers (rs1, rs2) and one destination register (rd). The

instruction type is limited to meet the requirements of a master thesis. Future extensions beyond these

limitations, such as load/store or multi-cycle instructions, are discussed in Section 7.6.

Due to the single-cycle limitation, FRANCIS-V supports every software function as a CI module that

can be realized in combinational hardware. This support implicates that any function without time

dependence can be realized using a single CI as long as the resulting critical path stays within the

given system requirements. Functions with an exceedingly lengthy critical path or time-dependent

functions can be realized using multiple CIs. Therefore, the framework facilitates a wide range of

potential applications, as long as they are realizable with reasonable effort in multiple CIs, with each

respective CI being implemented in combinational hardware.

Software

The software aspects of FRANCIS-V (the software block in Figure 4.2) cover the code compilation and

software debugging capabilities of the framework. These features address the binary creation as well as

the software parts of the verification block in the development process from Section 4.1.

This software process starts with the given C application. After manually adding the CIs by the designer,

the adapted source code is fed into FRANCIS-V. The framework provides the compiler structure to

generate the binary out of this given application. This binary is subsequently used in the simulation

and deployment of the developed system. Apart from compilation, the framework further features

rs1 rs1rs1
rs2CI Modulers1
rs2CI Modulers1 rs1rs1
rs2CI Modulers1

rs2
rs1
rs2 rdrd

Registers

Figure 4.3: Schematic high-level overview of the type of supported CIs. The instruction type is limited
to single-cycle R-type instructions with two inputs and one output.

4R-type stands for Register-type instructions, as explained in Section 2.1.
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debugging functionality, including assembly and disassembly of the source and binary as well as libraries

for simulation control from within the C code.

It is important to note that the compiler only uses the CIs previously added by the designer and

translates them into a binary format, effectively inserting them at the respective predefined code parts.

The compiler does not have behavioral information on the ISEs or, in other words, cannot interpret the

semantics of the added CIs.

Hardware

FRANCIS-V’s contribution regarding hardware components and features, as illustrated in Figure 4.2,

consists of the XIF coprocessor or XIF wrapper generation and integration into the predefined RTL

system (Testbench block). These components contribute to the CI integration part of the development

process in Section 4.1.

The framework takes a given CI hardware module as an input, previously designed by manual imple-

mentation or with the help of HLS. The chosen CI module is integrated inside an external coprocessor

that supports XIF. This coprocessor is called XIF wrapper in the thesis. The proposed XIF template serves

as a generalized base coprocessor for the framework to generate the XIF wrapper specific to the given

application’s CIs.

This integration methodology is a major contribution of FRANCIS-V. At the time of writing this thesis,

XIF is only given in the form of a written specification in natural language as a GitHub project and

respective documentation [7], [21]. The authors do not provide a generalized adapter or template for

XIF nor an example coprocessor implementation5. FRANCIS-V’s wrapper generation methodology fills

this gap of a generalized XIF implementation to simplify and shorten the RISC-V design process.

The framework further integrates the XIF wrapper with the RISC-V CV32E40X main core, resulting

in a complete system. The RTL system is subsequently embedded into a testbench for simulation. In

addition, the resulting system features the respective hardware units for the simulation control from

within the C application.

5The closest form of reference implementation are the processor-specific modules handling XIF inside the CV32E40X.
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Simulation

The previous software and hardware contributions converge in the simulation phase of FRANCIS-V. The

framework simulates the proposed testbench and application binary. Regarding the defined development

process, this phase covers the simulation block and parts of system verification in Figure 4.1. As

mentioned in the software and hardware paragraphs, FRANCIS-V further offers debug capabilities for

simulation control and output visualization of the C application. Further use-case-specific evaluations,

such as a comparison to an Instruction Set Simulator (ISS) and timing analysis, are presented in Chapter 5

and Chapter 6.

The testbench and debug capabilities are features to assist the designer in verifying the generated

system. However, the designer must still perform the verification step themselves, such as generating

suitable test cases for their application and assessing the simulation results. Therefore, FRANCIS-V

partly supports the verification process.

4.3 Design time estimation

To address the third research question, we evaluate how much the design time decreases when utilizing

FRANCIS-V in the next step. We defined the typical process in Section 4.1 as a process that exclusively

relies on manual design steps by the designer to develop the required CI-based system. Based on that

definition, we estimate how much time a designer approximately needs to perform each process step.

From the resulting values, we derive the time the designer saves when utilizing FRANCIS-V during their

development process. With the results, we aim to identify trend values on the expected design time

reduction to offer approximate, qualitative results of FRANCIS-V’s potential.

Among the different estimation approaches proposed in literature, the common approach of expert

estimation for quantifying the required design time is chosen for this thesis. Our methodology for

this estimation consists of conducting an expert interview with a confined group of participants who

estimate the expected duration of the tasks to be performed during the development process.

Estimation techniques

According to Jørgensen [44], expert estimation is the most popular estimation strategy for software

development. The author defines expert estimation as estimation work being conducted by a person
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recognized as an expert on the task. He describes this estimation work as consisting of both intuitive

and explicit reasoning elements by this person.

There are known accuracy limitations and biases entailed with expert estimations. Jørgensen describes

experts as biased towards over-optimism, meaning that the effort and time required to execute a task

is typically underestimated. Furthermore, the author identifies over-confidence in the accuracy of

the estimated values. However, his results indicate no favor in the use of expert estimation or formal

estimation over the respective other technique.

Expert estimation, as described by Jørgensen, is assessed as this thesis’s most promising and feasible

technique for design time quantification. Still, a superficial preliminary investigation of the topic is

conducted to preclude other alternatives, namely, model-based and metric-basd estimation approaches.

Bazeghi et al. propose µComplexity [45], a model-based methodology for design effort estimation and

measuring of processor-based designs. The methodology divides the system into components, applies a

statistical regression model to estimate the design effort, and scales the result with a productivity factor.

The authors advise to recalibrate the model based on used EDA tools, recent projects, and the design

team’s productivity. These factors make the approach unsuitable and too cumbersome for this thesis

since FRANCIS-V originates from a small team without recordings of required time for prior projects.

Bazeghi et al. further identify single-metric estimators based on metrics like lines of code or fan in of

logic cones to roughly correlate to design time. This metric-based approach is not further pursued in this

thesis due to its uncertainty.

Metric-based and model-based approaches only consider the hardware and software development time

in their estimations. We expect a significant part of the development process to be knowledge acquisition

by the designer, such as familiarizing themselves with the working principle of XIF. By contrast, the

participants of the expert estimation can give their opinion on the amount of training time a designer

likely requires.

Development tasks

In order to reduce the complexity of the estimation for the experts, the development process is split into

tasks that are individually assessed on their expected design time. This development process assumes the

application and the chosen CIs as inputs. The tasks build upon these inputs, detailing the CI properties

and source code additions, and then continuing with hardware implementation and integration.
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We define the following nine tasks:

1. Opcode selection: The opcodes of the given CI shall be selected. They shall not be already in

use and legal within the RISC-V ISA specification.

2. C code adaption: The given C application’s code parts to be implemented as CIs shall be

substituted with the respective CIs.

3. Compiler setup: The RISC-V compiler toolchain shall be set up.

4. CI implementation: The CIs shall be implemented in an execution unit using combinational

HDL code. This task shall be estimated for two concrete use cases, AES and CRC6.

5. XIF learning: The designer shall familiarize themselves with XIF, including handshakes, timing

properties, and data of the subinterfaces.

6. XIF implementation: The CI module shall be integrated into a coprocessor supporting XIF.

7. RTL integration: The coprocessor shall be integrated with the CV32E40X and supporting

modules, resulting in the RTL system testbench.

8. System verification: The design shall be verified on correct timing and behavior by simulating

the system’s testbench7.

9. Synthesis: The RTL system shall be synthesized on an FPGA.

The tasks are derived from the typical development process steps defined in Section 4.1. However, they

are adapted for a clearer and simpler explanation during the time-limited interview. Figure 4.4 illustrates

these adaptations. Since we assume already predefined CIs, the CI identification step is reduced to

selecting suitable RISC-V opcodes for them in task 1. Tasks 2 to 4 correspond to their previous step

counterparts. Tasks 5 and 6 divide the XIF implementation step into two parts to emphasize the training

time needed to acquire knowledge about XIF during the interview since the designer does not need

to conduct this task when using FRANCIS-V. Task 7, RTL integration, is also transferred as is, while

simulation and verification are condensed to a single system verification task in task 8. Last, task 9 is

added to include synthesis into the estimation since this step, albeit not the focus of this thesis, is still

an interesting and important step in a practical development process.

6To give the experts a more precise context, the concrete NIST Standard 128-bit and CRC-16-CCITT algorithms where specified
within the interview.

78. System verification, the verification of the system, is explicitly differentiated from the verification of the single components.
E.g., verifying the correctness of the CI hardware implementation prior to the subsequent XIF integration is included in the
respective task 4. CI implementation, and not in the subsequent system verification task.
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Figure 4.4: Derivation of the development tasks for the expert interview based on the steps of a typical
process defined in Section 4.1.

The number and scope or granularity of the tasks to be estimated are chosen over a set of other possible

configurations to focus on the important features of FRANCIS-V without neglecting the remaining steps.

Tasks 5 and 6 (XIF learning and XIF implementation), for example, could also be encapsulated in a single

task but are split for a more accurate estimation of the XIF integration process. On the other hand,

depending on the application, complex tasks like task 4 (CI implementation) could be split into further

subtasks for a potentially more accurate estimation. Note that the tasks are also not designed to be

within the same order of magnitude, time-wise. Instead, it was expected prior to the conducted interview

that simpler tasks such as Opcode selection might potentially be scored lower than cumbersome tasks

like CI Implementation by a significant factor, as confirmed by the results in Section 6.1.

Increasing the task granularity and balancing the expected magnitude difference of the individual tasks

may lead to more accurate estimation results with less uncertainty, especially in rather comprehensive

tasks like task 4. However, a more fine-grained division with a detailed description of the possible

implementations and many subtasks might entice the participants to think of certain predetermined

solutions. Preferably, the task descriptions are generic enough not to lead participants to a specific

development and implementation approach to prevent biased opinions.

Participants

The participants of the expert estimation were five senior engineers from the department of Siemens,

with which the thesis is developed in cooperation. These experts specialize in varying fields of SoC,

ASIC, and FPGA designs. Each chosen participant is well-versed in a different hardware, software, or

system development are. The specific participants were selected based on their long-time experience.
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The number of selected participants and their origin in the same company entails some shortcomings.

Due to the relatively small number of five experts, the estimation likely contains a non-negligible degree

of uncertainty. Furthermore, the participants are all part of the same department at Siemens. This

limited participant diversity likely constrains the generalizability of the results to a group of designers

with varying backgrounds and job specialization. Repeating the interview involving other participants

with different backgrounds would likely yield deviating design time results. The choice and size of the

participant group are attributable to the restricted requirements of the master thesis.

However, although the partaking experts share a similar level of experience, their diverse specialization

areas can be stated as a strength of this estimation. Despite their mutual experience in SoC design,

the enlisted participants have varying backgrounds and specialization domains, ranging from software

development over hardware engineering to co-design, testing and verification, and system design.

Furthermore, the choice of experienced senior engineers over junior engineers is made to get a more

accurate and experience-based opinion8. The experts’ long-term experience in their designated area of

expertise likely increases the accuracy of the estimation.

Interview

The expert estimation was conducted by interviewing the participants during an online meeting. The

interview was planned to take thirty minutes and include all five participants. The first phase consisted

of a concise ten-minute introduction to set the context of the subsequent estimation tasks. This phase

presented the topic, goals, the two exemplary use cases, and concepts of the thesis, such as XIF. It was

followed by five minutes of answering additional questions.

The remaining 15 minutes were reserved for the second phase, consisting of the interviewing process.

There was a short written and complementary oral introduction of the purpose and content of each of

the nine tasks to estimate. After this description, the development time expected for the task conduction

in workdays was anonymously submitted by each participant using the survey tool Microsoft Forms.

After each submitted estimation, the participants were invited to justify their decisions and optionally

discuss deviating opinions. The participants also had the option to abstain from single tasks if they were

not well acquainted with it, e.g., if they had not used or implemented an AES algorithm before.

Similar to the rationale on chosen development task granularity, the set length and schedule of the

interview have implications for the result accuracy and quality. Within 15 minutes, the participants can
8The argument of higher estimation accuracy of expert engineers was also the main reason of excluding our own estimation
later in the result analysis (Section 6.1).
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only receive a coarse overview of background information, inputs into the process, and requirements

and details on the specific tasks. As already reasoned for task granularity, the interview duration and

presented context were set to ensure a balance between an accurate and an unbiased result and a limited

timeframe of all involved participants, focusing on the most prominent features of FRANCIS-V.

Besides the estimations of the five participants, we also provide our own time estimation of the tasks.

This estimation was done before the interview was conducted but after designing and implementing the

main body of the framework.

The interview is intended to indicate trends in potential manual development time. It stands apart from

a typical extensive study due to the limitations described in the above sections. In the next step, the

resulting estimation values of the typical development process are used to infer the time when utilizing

FRANCIS-V within this process. This analysis and the results are presented in Section 6.1.



Chapter 5

Implementation

This chapter goes into detail on the implementation and evaluation aspects of FRANCIS-V. The framework

is divided into a Software, Hardware, and Simulation segment1. Albeit supporting arbitrary single-cycle

CIs with two inputs and one output, the designs generated by FRANCIS-V can only be evaluated with

specific use cases in mind. We selected the test cases AES and CRC to demonstrate the framework’s

working principle and to analyze the runtime and utilization metrics of the generated system.

5.1 Software

The software part of FRANCIS-V is responsible for compiling the application’s source code. The code is

assumed to be given at the start of the development process in C. Before starting the compilation within

FRANCIS-V, the designer must insert the CIs chosen to speed up the algorithm into this source code. For

this reason, they have to substitute the code segments performed in hardware with their respective CI

counterparts by using Custom Assembler instructions. The following code segment lists the CI inside

the C code when implementing the CRC use case:

1 asm volatile(".insn r 0x6B, 0, 1, %0, %1, %2" : "=r" (crc) : "r" (data_conv), "r" (0));

Listing 5.1: Custom Assembler instruction for the CRC use case. It specifies 0x6B as the opcode and
funct3 and funct7 values of 0x0 and 0x1, as well as the variable output crc and inputs data_conv and 0
for resulting check value, input data, and CRC initalization seed of zero, respectively.

1Figure 4.2 gives a high-level overview of these three parts. The relevant illustrated segments are repeated in this chapter.

41
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The asm volatile() routine allows using C variables within the compiled assembly representation of the

source code. It inserts the assembly directive .insn, representing the opcode of the CRC CI. This code

segment has to be replaced with the original CRC software routine in the C code.

The resulting adapted code serves as input to the compileflow of FRANCIS-V, as illustrated in Figure 5.1.

The framework features compilation to generate the binary out of the adapted source code. The binary

is subsequently executed on the chosen main RISC-V core CV32E40X. Therefore, the compilation is

done for the particular RV32IMA ISA of the CV32E40X. In addition, startup code is added, among

others, for initialization tasks such as interrupt, exception, and system call handling as well as pointer

initialization. In addition to the compilation feature, FRANCIS-V offers disassembly to help the designer

locate potential bugs within the code in its assembly representation.

The compile toolchain of the framework is based on the GNU Compiler Collection (GCC), an open-

source collection initially developed for the GNU operating system [46]. It supports C and various other

languages. As described by Poorhosseini et al. [47], GCC is the first compiler to support RISC-V and, to

this day, is the most popular one alongside the LLVM compiler infrastructure [48]. Poorhosseini et al.

find that LLVM and GCC perform similarly regarding binary size and resulting clock cycles, making

both compilers viable candidates for this thesis. Following an initial evaluation, GCC is chosen over

LLVM due to the more intuitive integration of CI Instructions in the source code using inline assembly.

However, it has to be emphasized that both compilers support this method.

.C

.S
GCC .hex

Disassembly
GCC

.hex .S

RISC-V ISA
Startup Code

Debug

AES

...

CRC

Figure 5.1: Software aspects of FRANCIS-V (segment of high-level diagram in Figure 4.2). The two
groups represent the compilation capabilities of the framework and the source codes of the proposed
test cases. The application’s adapted C code that contains the CIs and the startup code of the CV32E40X
are compiled by the framework on the core’s ISA.
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5.2 Hardware

The hardware development methodology of FRANCIS-V manages the integration of CI hardware into a

predefined system. The CI hardware unit is required as an input given by the designer. The hardware

unit must be combinational due to the limitation to single-cycle instructions. Moreover, a specific

scheme of input and output ports of the unit is required. The 32-bit input ports rs1 and rs2 (register

source) and the 32-bit output port rd (register destination) represent the inputs and output of the CIs.

The 32-bit encoding of the instruction is also given to the hardware unit to allow for CIs that change

functionality depending on certain bitfields of the opcode. Furthermore, since only one hardware unit

represents all CIs, a selection signal named after the respective instruction has to be present for each CI

to choose which CI the hardware unit shall perform. For the use case CRC with one single CI, e.g., the

port definition may look as follows:

1 module CRC_module #()

2 (

3 input logic [31:0] rs1,

4 input logic [31:0] rs2,

5 output logic [31:0] rd,

6 input logic [31:0] instr,

7 input logic instr_CRC,

8 );

9 ...

10 endmodule

Listing 5.2: Port definition of the CI module for the CRC use case, defining the register inputs and output,
instruction opcode, and instruction enable signal.

A module with multiple CI would implement more input signals like instr_CRC. These adaptions to

the port requirements have to be done by the designer prior to using FRANCIS-V. The framework is

written in SystemVerilog, but the hardware unit can be written in Verilog, SystemVerilog, or VHDL. The

hardware process of the framework is illustrated in Figure 5.2. It integrates the given CI hardware unit

into a wrapper compatible with XIF. The wrapper is further integrated into a predefined RTL system

with the CV32E40X. The system testbench is subsequently used for the system’s simulation process.
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Figure 5.2: Hardware components and features of FRANCIS-V (segment of high-level diagram in
Figure 4.2). The adapted CI modules of the first block as well as naming and opcode information of
the CIs are used to generate the XIF-compatible wrapper out of a predefined template, illustrated in
the second block. The wrapper is integrated into the predefined system testbench together with the
CV32E40X, as shown in the third block.

5.2.1 Wrapper Generation

The adapted CI module serves as an input to the framework’s wrapper generation methodology, as

illustrated in the middle block of Figure 5.2. This wrapper generation is realized using a Python script.

Besides the CI module, it requires information about the CIs’ name and opcode in a JSON format. The

generated XIF wrapper manages the execution of the CI issued by the main core, effectively fulfilling

the role of a coprocessor.

The wrapper consists of the given CI hardware unit, an instruction decoder, and supportive logic to

handle instruction and data requests and responses of XIF. A high-level overview of the architecture is

illustrated in Figure 5.3. The decoder accepts all instructions issued by the CV32E40X that the designer

previously defined in the JSON configuration file. The decoder further extracts the operands and

instruction data and passes them to the CI module. The module performs the instruction and delivers the

result to the result generation. Until this point, only combinational operations are performed. Thus, the

execution is within the same cycle as the instruction is issued. In the second cycle, the result generation

stores the result. Once the main core commits the instruction, the wrapper offers the CI’s result on

the Result interface and informs the main core. This commit may already happen in the second cycle

parallel to storing the result. The main core can confirm the result transmission in the same or the

following cycles, which completes the CI execution process. The result generation also manages several

corner cases, such as a simultaneous commit of the current and issue of a subsequent instruction.
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Figure 5.3: High-level overview of the architecture of the XIF wrapper. Three of the six XIF subinterfaces,
namely, Issue, Commit, and Result, are used by the CV32E40X to issue CIs, to commit or kill them, and
to receive their results, respectively. Within the wrapper, in the same cycle of the issuing, the decoder
accepts and decodes the instruction and the CI module performs it. The result generation block outlines
the synchronous components of the wrapper, managing the result delivery and intermediate result
storage based on the CV32E40X’s subsequent issue and commit behavior.

The wrapper architecture can be compared with the other XIF-based coprocessors consisting of decoder,

FIFO, CI module, register files, and control logic, as summarized in Section 3.3. Decoder and CI modules

similarly exist in the wrapper, while the FIFO and control logic functionality is implicitly included

within the Result Generation block. The wrapper can operate without a separate register file due to

the limitation to R-type single-cycle instructions. Section 7.6 further discusses potential architectural

extensions to overcome these limitations.

The XIF wrapper is generated based on a template. The template includes the predetermined components

and structure of the wrapper. It further contains placeholders on the application-dependent parts of the

wrapper, namely, at the CI module instantiation, the instruction decoder, and at selected XIF-related

internal signals that scale with the number of CIs.

5.2.2 System Integration

In the next step, the generated XIF wrapper is integrated within the predefined RTL system, as illustrated

in the third block of Figure 5.2. The system connects the wrapper with the CV32E40X over XIF.

As the main core, the CORE-V processor CV32E40X is chosen since, at the time of writing the thesis, it

is the only processor with XIF support. Furthermore, the core offers a good trade-off between size and

performance for embedded applications targeted by FRANCIS-V. Its four stages are well-suited for an
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efficient XIF communication, as shown in Section 6.3. CV32E40X executes the application’s binary. It

outsources each instruction it does not recognize (hence, every CI) to the wrapper via XIF, controls if

the instruction shall be committed or killed, and further processes the received results.

The binary generated by FRANCIS-V’s compiler toolchain is located inside the instruction and data

memory of the HDL system. The memory is realized as a dual-port memory with one read-only port

for the instruction and one read-write port for the data interface. The CV32E40X’s memory interfaces

comply with the OBI specification. A separate module manages the protocol conversion between the

CV32E40X and the memory.

5.3 Simulation

The binary and RTL system generated by the software and hardware parts are combined in the subsequent

simulation part of the framework, as illustrated in Figure 5.4. FRANCIS-V simulates the system embedded

into a testbench with the binary running on the CV32E40X. TCL scripts realize the simulation routines

inside FRANCIS-V. Questa advanced simulator (QuestaSim) [49] is chosen for this HDL simulation. The

tool is part of Siemens’ Questa verification solution, a simulation and debug engine for complex FPGA

and SoC design. It supports mixed simulation of HDL languages, including VHDL and SystemVerilog.

QuestaSim is the only commercial tool used in the otherwise open-source framework. The open-source

alternative Verilator was explored in the early phases of FRANCIS-V’s development but was later

discarded. Its developers claim similar performance compared to closed-source simulators such as

QuestaSim while being free of license fees [50]. However, one benefit of using QuestaSim over Verilator

is its debugging features to facilitate the framework development process. Another consideration is
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Figure 5.4: Simulation aspects of FRANCIS-V (segment of high-level diagram in Figure 4.2) representing
the HDL simulation within the framework. The simulator QuestaSim is used to simulate the system
testbench, with the application’s binary running on the CV32E40X.
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the support for mixed simulation of various HDL languages within the system, allowing for more

flexibility regarding the framework’s RTL design and the CI hardware units given to FRANCIS-V.

Furthermore, during this exploration phase, the usage of Verilator seemed less intuitive than other

simulators. The developers of Verilator themselves also imply this observation, as they suggest the

open-source alternative Icarus Verilog [51] for small projects [50].

The intuitive and advanced simulation features are decisive for selecting QuestaSim for FRANCIS-V.

While adding further simulator support for FRANCIS-V is not within the scope of this thesis, QuestaSim

could, in general, be substituted with the aforementioned open-source alternatives.

One use case of the HDL simulation is to verify that the application executes as intended regarding

the correctness of its results and timing properties. FRANCIS-V offers a C debugging library to aid the

designer during the verification process. It consists of software routines for simulation control and

debugging within the C source code:

• sim_printf(): This routine enables printing a string to the QuestaSim console during simulation.

• sim_end(): Calling this routine ends the simulation.

• sim_sig(): This routine sets a debug signal within the HDL testbench to simplify the localization

of specific code parts within the HDL simulation.

When called within the C code, the routines write to specific reserved memory addresses otherwise not

utilized by the CV32E40X. A separate debug module within the system identifies these write attempts

and forwards them to the testbench. sim_end(), when triggered, causes a $finish-command, while

sim_sig() sets a special debug signal that is active for one cycle. sim_printf() splits the given string into

character symbols, with each character triggering individually, causing a console output.

5.4 Use cases

The algorithms CRC and AES serve as exemplary use cases for FRANCIS-V. AES is chosen to quantify

the considered system metrics. CRC is utilized as a more straightforward test case to demonstrate

FRANCIS-V’s features and working principle. It has to be noted that the framework’s applicability

extends beyond these examples. The framework can be utilized for a broad range of applications.



48 Chapter 5. Implementation

5.4.1 CRC

Cyclic Redundancy Check (CRC) is an error-detecting method, among others, used for data transmission

between processors. The algorithm represents the input as a binary number and divides it by a predefined

value. This divisor can be described with a checking polynomial. The remainder of the division, the

check number, is appended to the input number before transmission. After transmission, the algorithm

is reapplied to the transmitted data. If the result is zero, the message is supposed to be correct. Otherwise,

a transmission error is assumed [52]. There are several standards and implementations of CRC with

varying details, such as different polynomials or input bits [53].

Since CRC is a rather straightforward algorithm, we chose to implement it using a single CI. The

concrete implementation uses a 32-bit input word and the polynomial x16 + x12 + x5 + 1. The required

inputs to FRANCIS-V are the hardware unit and a C algorithm. The combinational Verilog hardware

module is generated using the CRC HDL generator by Büsch [54]. A top module is manually written for

the hardware unit to rename and extend the inputs and outputs of the unit for subsequent use in the

FRANCIS-V wrapper generation.

As source code, a C test program is written for comparing the CI hardware implementation with a

software-based CRC algorithm. The CI is defined using a Custom Assembler instruction. The software

counterpart is adapted from a CRC-16-CCITT implementation by the AutomationWiki [55]. The program

performs the CRC routine on the selected input data 0x00006162 (“ab” in ASCII representation). The

resulting check value is subsequently appended to the input data (0x616274FF ), representing the data

to be transmitted in a conceptual application. Applying the CRC routine on this data yields zero,

assuming a correct algorithm. Afterwards, the program alters the previously appended data to simulate

a transmission error. A third execution of the CRC routine should yield a value other than zero, implying

a recognition of the error. The whole routine is performed twice, once utilizing the pure CRC software

routine and once using the CI.
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Based on these inputs, the framework generates the binary and RTL system and simulates the resulting

design. The following simulation output illustrates that both implementations operate as expected and

generate identical outputs:

# SW Test:

# Check number: 0x74FF

# Correct transmission test: 0x0000

# Wrong transmission test: 0x1EF0

#

# CI Test:

# Check number: 0x74FF

# Correct transmission test: 0x0000

# Wrong transmission test: 0x1EF0

Listing 5.3: Simulation output for the CRC test routine, indicating identical results for both software
and CI-based hardware implementation of the CRC algorithm.

5.4.2 AES

Advanced Encryption Standard (AES) or Rijndael is a symmetric block cipher. It won a contest for a

new encryption standard organized by the National Institute of Standards and Technology (NIST). It

is capable of encrypting and decrypting 128-bit data blocks using 128-, 192-, or 256-bit-sized keys in

10, 12, and 14 rounds, respectively. Among others, the requirements for contest participants was the

possibility of implementing the algorithm in software on 8-bit processors as well as using dedicated

hardware implementations [22], [26].

The choice of selecting AES for evaluating FRANCIS-V is based on various reasons. First, it is a suitable

candidate for evaluating a CI-based framework for hardware integration like FRANCIS-V since it can be

implemented relatively cheaply in hardware and software. Another argument is the popularity of the

algorithm and the availability of hardware implementations. Not only is AES a popular example use

case in related literature on ISEs and used in various applications, but also numerous solutions for AES

implementations in hardware exist [56].

In addition, the available RISC-V AES standardization work (presented in Section 2.5) greatly facilitated

the development of FRANCIS-V’s AES use case. Apart from minor adaptions and runtime optimizations,

the featured C source code and CI hardware modules are well-suited as inputs for FRANCIS-V to generate

the CI-based system for the AES use case. Furthermore, the standard’s benchmark collection features two

AES software solutions (Reference and ttable) for comparing the CI hardware solution with software-only
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approaches. The standardization work also facilitates the runtime evaluation of FRANCIS-V’s generated

AES system design proposed in Section 5.5.1.

As detailed in Section 2.5, the crypto specification defines four CIs (aes32esmi, aes32esi, aes32dsmi,

aes32dsi) for subtasks within the rounds of the AES algorithm. The CIs are also reused in the algorithm’s

key scheduling segments. All four CIs are implemented in combinational RTL modules and encapsulated

into one unit. This unit is manually instantiated in a top module to define the input and output ports

according to FRANCIS-V’s needs.

The C program to test the AES hardware and two software implementations comprises four code

segments, as illustrated in Figure 5.5. All three implementations pass through this sequence of the four

segments, respectively. In the first step, the key is expanded (Key Scheduling Encryption or KSE) prior to

the subsequent encryption routine (ENC) of the given plaintext, yielding the ciphertext. Afterwards, key

scheduling (KSD) is executed again, followed by the decryption (DEC) of the ciphertext to the original

plaintext. The resulting plaintext on the output was expected to be equal to the plaintext on the input,

which is the case for all three simulations2.

E. Key
Schedule

Encrypt

D. Key
Schedule

DecryptCiphertextPlaintext

Key

Plaintext

1

2

3

4

Key

Figure 5.5: High-level flowchart of the AES test program. It is traversed three times for the two software
implementations and the CI hardware implementation, respectively.

2The following defined inputs and resulting outputs are present in the test program:
• Key: 2b7e151628aed2a6abf7158809cf4f3c
• Plaintext Input: 3243f6a8885a308d313198a2e0370734
• Ciphertext: 3925841d02dc09fbdc118597196a0b32
• Plaintext Output: 3243f6a8885a308d313198a2e0370734
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5.5 Evaluation setup

The HDL simulation features of FRANCIS-V allow for verifying that the generated designs operate as

intended regarding both functionality and timing. In addition, it is of interest to assess how competitive

the resulting designs are in contrast to related solutions. Therefore, we evaluate the runtime saved and

the utilization overhead caused by the implemented CIs in contrast to a software-only approach without

custom hardware for the AES use case.

5.5.1 Runtime evaluation

A comparison between the hardware and software implementations is done to verify the assumption of

reduced runtime due to the CI hardware implementation. The base for this evaluation is the AES test

program described in Section 5.4.2. We propose a benchmarking script to perform the program with the

hardware implementation and two software-only approaches on the same system. The simulation is

conducted with FRANCIS-V’s QuestaSim-based HDL simulation flow and with the ISS Spike. Section 6.2.1

presents these results.

While the HDL simulation is cycle-accurate, Spike simulates on an instruction level [57] without

information on cycle count. Its inputs are the binary of the source code and the RISC-V ISA, including

the added CIs. Spike does not consider the particular properties of the CV32E40X, XIF, or implemented

hardware in general. Therefore, Spike has reduced accuracy. It is included in the AES benchmarking

process to verify the HDL simulation by comparing the instruction count of both simulations. Note that,

while the HDL simulation with QuestaSim is part of FRANCIS-V and applicable for all of the framework’s

generated designs, the benchmarking script, Spike, and the synthesis are not part of FRANCIS-V. The

evaluations are only designed for evaluating the AES use case specifically.

The proposed comparison script and Spike are only set up for AES because they cannot be generalized as

easily as the QuestaSim simulation. The script depends on the console output of the specific application.

Therefore, it has to be manually adapted to each use case. The framework would have to support adding

CI behavior to the simulator to generalize simulation with Spike, which is out of scope for this thesis.

The AES CIs, on the other hand, are standardized (see Section 2.5) and, therefore, are already available

within Spike for this specific use case only.
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5.5.2 Synthesis

In contrast to the CI hardware implementation achieving an advantageous runtime improvement, the

synthesized implementation is expected to come with the drawback of increased resource consumption.

As mentioned at the beginning of this section, a artly automated synthesis of the generated systems on

FPGAs or ASICs is not supported by the framework itself. Rather, the focus lies on integration and HDL

simulation.

However, getting a coarse idea of the potential overhead of FRANCIS-V’s designs, particularly due to

the XIF wrapper and the integrated CI module, still complements the thesis. Therefore, we synthesize

and analyze the generated system using the Xilinx tool Vivado on the xc7z020clg400-3 FPGA from the

Zynq-7000 SoC Family3. The resulting utilization values are presented in Section 6.2.2.

The synthesized systems’ derivated utilization values only apply to the particular AES use case. The

design is synthesized in two configurations to compare the CI-based with a software-only solution. One

configuration includes the whole system, while the other system misses the XIF wrapper. The system’s

module, otherwise instantiated within the testbench, serves as the synthesis’ top module. Its inputs are

clock and reset, while the trigger and print signals of the debugging unit are reutilized as outputs.

The AES module, XIF wrapper, main core CV32E40X, and supporting modules generated by the frame-

work are all synthesizable with two exceptions. First, the simulation-only clock gating cell within

the CV32E40X has to be substituted with a board-specific clock buffer. Secondly, FRANCIS-V’s RAM

implementation is adapted. In order to maximize resource efficiency while still being able to fit the

AES binary, the RAM’s size is lowered to 64 kB4. The word length of 32-bit is split into four byte-wide

memories to realize a write process with byte-enable required by the CV32E40X, resulting in a required

memory of 16 kB for each of the four byte segments. The selected FPGA offers 36kbit dual-port RAMs,

translating to four BRAMs per byte segment or 16 BRAMs for the entire RAM of the system.

3Further informations on the Zynq-7000 Family can be found on the respective Xilinx website [58].
4The simulation originally defines several GB of RAM to facilitate potential applications that result in a larger binary than AES.
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Results

This chapter presents and discusses the relevant metrics of this thesis. Given the first and third research

questions, we propose the results of the design time estimation and subsequently use them to analyze

the potential amount of saved time due to utilizing FRANCIS-V in the development process. In addition,

the metrics of FRANCIS-V’s generated systems are of interest to assess if the resulting designs are

competitive regarding other relevant automation solutions. The particular system metrics presented are

the runtime improvements of the CI-based hardware systems over software-only approaches and the

resource overhead of the implemented CI hardware. Last, we analyze the influence of XIF on the overall

time behavior of the system.

6.1 Design time analysis

The outcome of the conducted expert interview proposed in Section 4.3 is illustrated in Table 6.1. The

time in workdays needed for performing the nine design tasks was estimated by the five participants for

the two specific use cases AES and CRC. The five participants are denoted with numbers from #1 to #5,

the mean values of these five opinions are presented in the last column. Two different estimations are

given for the CI implementation task depending on the specified use case since this task, in particular, is

potentially influenced by the application to a large degree. As two participants had no prior familiarity

with AES, they did not give an opinion on the respective design task.

Our own estimations are presented in column #0. The tasks about CI implementation and System

verification are not estimated due to our missing experience on these tasks in an industrial setting.

This estimation was conducted prior to the interview but after developing FRANCIS-V. Therefore, the

53
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Table 6.1: Results of the interview on estimating the time required for a CI typical development process.
The time is given in workdays [d]. Participants are labelled from #1 to #5. Our own estimation is labelled
with #0. The estimation of task 4 is given for the AES and CRC use case, respectively.

Task Auth. Est. [d] Participant Est. [d]

ID Name #0 #1 #2 #3 #4 #5 Mean

1 Opcode selection 1 1 1 1 1 1 1.00
2 C code adaption 3 3 3 3 2 2 2.60
3 Compiler setup 3 2 2 2 3 2 2.20

4 CI implementation AES – 20 – – 5 8 11.00
CRC – 3 3 4 3 3 3.20

5 XIF learning 5 5 3 5 4 4 4.20
6 XIF implementation 5 4 3 4 5 5 4.20
7 RTL integration 10 5 4 8 5 4 5.20
8 System verification – 10 15 14 10 10 11.80
9 Synthesis 3 4 5 5 5 3 4.40

Sum (AES) – 54 – – 40 39 46.60
Sum (CRC) – 37 39 46 38 34 38.80

The five expert participants are included in the mean value calculation, #0 is excluded.
The AES mean sum is calculated out of the individual mean values (46.60 workdays)
rather than averaging the sum values of #1, #4, and #5 (44.33 days).

estimated values of #0 are influenced by our practical experience on the manual process. They are

presented for a coarse verification of the solely estimated expert data with values derived after passing

through the design process. However, #0 is not included in themean calculation or subsequent evaluation.

Our experience on the topic differs from senior engineers due to less overall design experience and more

experience regarding the thesis’ specific concepts and components, and therefore, would presumably

distort the results.

Themajority of presented task times estimated by the participants are situatedwithin the samemagnitude.

However, the relative deviations of the values are still relatively high. The largest outlier is the AES

implementation task, ranging from 5 to 20 workdays. In addition, this particular task was not estimated

by two of five participants due to a lack of experience with the AES algorithm. Still, the results represent a

coarse quantification of the typical development process and provide insights for answering the research

questions. Results for the first research question are directly inferred from Table 6.1 and illustrated

in Figure 6.1. The most time-consuming subtasks are identified to be CI integration1 with around 14

workdays, verification with around 12 workdays, and CI implementation with 11 workdays for the AES

use case. The implications of these results are discussed in Section 7.1.

1XIF learning and implementation and RTL integration combined.
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Figure 6.1: Comparison of the most time consuming tasks of the CI development process, according to
the results of the expert interview. The time is given in workdays. CI integration groups XIF learning
and implementation as well as RTL integration. The group others consists of opcode selection, C code
adaption, compiler setup, and synthesis, all amounting to less than five estimated workdays.

6.1.1 Framework-based design time

To assess the third research question, the time estimation results of the typical development process

are used to derive the development time when utilizing FRANCIS-V. Subsequently, the absolute and

percentage reduction in design time can be inferred, indicating how much potential time can be saved

using FRANCIS-V.

The framework-based development process consists of the same nine tasks defined in Section 4.3,

summarized in Table 6.2. Tasks 1., 2., 4., and 9. are not supported by the framework and remain to be

done manually. Hence, they take the same time whether FRANCIS-V is utilized or not. The tasks 3., 5.,

6., 7., and 8., on the other hand, are supported. Apart from task 8., all supported tasks are fully covered

by the framework. Therefore, we assume no required design time for these tasks. This assumption

neglects the time required to learn about and operate FRANCIS-V. This influence is instead included

in the designer training time described below. The task 8. System Verification is partly supported by

the framework because FRANCIS-V does offer testbench and debugging capabilities. However, the

verification process itself still has to be conducted and assessed by the designer.

Furthermore, while the design time of most listed tasks only scales insignificantly with the chosen

use case2, tasks 4., 8., and 9. do depend on the application to a certain degree. Most notably, the

CI implementation task responsible for the hardware generation depends on the chosen CI and the

complexity of the particular application. As seen in Table 6.1, the estimated implementation time for

AES and CRC differs by a factor of around 3.5. More complex applications may consume even more

design time. Therefore, claims regarding design time estimation can only be made with the assumption

of a specific use case and cannot be easily generalized on arbitrary applications.

2E.g., the interface integration itself does not depend on the number or complexity of the chosen CIs.
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Table 6.2: Overview of the CI development process tasks to be estimated. Column Framework Support
indicates which of these design tasks are handled or at least partly facilitated by FRANCIS-V. Column
Application-dependent indicates if the design task is dependent on the given use case or not.

ID Task Framework Support Application-dependent

1 Opcode selection no no
2 C Code adaption no no
3 Compiler setup yes no
4 CI implementation no yes
5 XIF learning yes no
6 XIF implementation yes no
7 RTL integration yes no
8 System verification partly yes
9 Synthesis no yes

Apart from this application dependency, further factors must be considered prior to inferring a particular

value on the framework-based design time. First of all, to fully utilize FRANCIS-V, the provided RTL

system has to be used. If specific system requirements demand an adaption of the system, e.g., a

transition to a different RISC-V processor or further HDL components, the additional time needed for

manually extending or adapting the proposed RTL system has to be added.

Another important point is the assumed experience of the responsible system designer. To get a

more accurate estimation result, experts in their respective fields are elected as interview participants.

However, the actual required design time may be higher for more inexperienced junior designers, e.g.,

to search for bugs in the HDL hardware.

Based on these reflections, we define influence factors on the actual framework-based design time, as

outlined in Table 6.3. For the use case dependency, the time of task 4, tapp, is varied depending on

whether the application is CRC, AES, or any other use case3. Designer experience level is considered

by introducing an experience factor fexp to all manual tasks in both the manual and framework-based

analysis. For system reusability and verification benefit, we introduce factors fsys and fver that reduce

the design time of the respective tasks 7 and 8. For the designer training time ttrain, we assume a fixed

estimated time of three workdays for every further analysis (ttrain = 3).

3The potential use-case dependency of the other tasks is neglected in this assumption.
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Table 6.3: Summary of parameters influencing the design time reduction due to utilizing FRANCIS-V.

Parameter Symbol Impact

Use case tapp Application-dependent task 4 design time
Designer experience level fexp Experience factor increasing all manual tasks
System reusability fsys Factor for task 7 in FRANCIS-V-based design time
Verification benefit fver Factor for task 8 in FRANCIS-V-based design time
Designer training time ttrain Learning offset for FRANCIS-V-based design time

Based on the typical process time estimations and the above-defined parameters, we can derive gen-

eralized formulas for the typical and framework-based design times, tman and tfra, and absolute and

percentage time reduction, tred and pred:

tman = fexp tt1−3 + tapp + tt5-9 = fexp 35.60 + tapp (6.1a)

tfra = fexp tt1,2 + tapp + tt7(1− fsys) + tt8(1− fver) + tt9 + ttrain

= fexp 11.00 + tapp + 5.20(1− fsys) + 11.80(1− fver) (6.1b)

tred = tman − tfra = fexp tt3 + tt5,6 − ttrain + tt7fsys + tt8fver

= fexp 7.60 + 5.20fsys + 11.80fver (6.1c)

pred =
tred
tman

=
7.60 + 5.20fsys + 11.8fver

35.60 + tapp
(6.1d)

6.1.2 Evaluation scenarios

For a specific quantization of the design time reduction and to illustrate the respective parameter’s

influences, we define three different exemplary scenarios, #1, #2, and #3, for a conservative, average,

and optimistic set of expected parameters. The terms conservative and optimistic can be interpreted in

the sense of achieving the lowest and highest realistic absolute and percentage design time reduction by

choosing the influencing parameters accordingly.

As use case, we choose CRC as the least complex example, AES as the prime case, and an additional

hypothetical use case with a doubled design effort compared to AES. A less complex use case yields a

lower percentage difference pred, thus, the cases are allocated according to their complexity to scenarios

#3, #2, and #1, respectively. A lower experience level yields a higher experience factor, therefore, a higher

absolute time reduction tred. We assume a junior designer to have a 1.5 times higher design effort for

the optimistic scenario #3 and a senior designer with a factor of 1 for the other scenarios. For system



58 Chapter 6. Results

reusability of the provided RTL system, we only differ between no reusability for #1, and full reusability

otherwise. For verification benefit, we define a factor of around 25% or three workdays to be saved by

FRANCIS-V, but assume no benefit in the conservative scenario #1. The training time is set to a fixed

value of three workdays in all scenarios. The three configurations are summarized in Table 6.4.

The three scenarios are evaluated using the Equations (6.1a) to (6.1d). The results are illustrated in

Table 6.5. Depending on the assumed scenario, they indicate a design time reduction of 7.60, 15.75,

or 23.63 workdays or of 13.19%, 33.80%, or 40.59%. Therefore, despite a certain uncertainty of these

quantifications, we can identify the general trend of a significant reduction in design time by using

FRANCIS-V. For simpler applications and typical system requirements that the proposed system already

fulfills to a large degree, the estimations indicate a significant reduction of design time of around 15 to 24

workdays or at least one third of design time saved. Even in the more conservative scenario, assuming a

complex application and limited reuse potential of the RTL system due to specific processor and system

requirements, there is still an estimated design time reduction of more than a workweek.

Table 6.4: Three scenarios with differing parameters to represent conservative, average, and optimistic
assumptions for the deduction of design time reduction.

Parameter Scenarios

Name Symbol #1: Conservative #2: Average #3: Optimistic

Value Description Value Description Value Description

Use case tapp [d] 22 Fictional case 11 AES 3.2 CRC
Designer experience level fexp 1 Senior designer 1 Senior designer 1.5 Junior designer
System reusability fsys 0 No reusability 1 Full reusability 1 Full reusability
Verification benefit fver 0 No benefit 0.25 Partial benefit 0.25 Partial benefit
Designer training time ttrain [d] 3 Average est. 3 Average est. 3 Average est.

Table 6.5: Design time comparison of three scenarios with conservative, average, and optimistic parame-
ters and assumptions that influence the analysis. The design times of the typical and the framework-based
design process are given in workdays. The absolute and percentage reduction of design time when
utilizing the framework over a pure manual process is given in workdays and percent, respectively.

Design time Scenarios

Name Symbol #1: Conservative #2: Average #3: Optimistic

Typical design time tman [d] 57.60 46.60 58.20
FRANCIS-V-based design time tfra [d] 50.00 30.85 34.58

Design time reduction tred [d] 7.60 15.75 23.63
Percentage reduction pred [%] 13.19 33.80 40.59
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Use case dependency

The impact on the absolute and percentage reduction (Equations (6.1a) to (6.1d)) differs for each parameter.

The influence of the use case is illustrated in Figure 6.2. As evident from the Equations (6.1a) to (6.1d),

the use case has no influence on the absolute design time reduction in our model since the application-

dependent steps remain manual in both development process variants. However, the percentage

reduction pred lowers with a more complex use case since the influence of the other automated tasks of

the framework-based process diminishes in comparison to a complex manual hardware implementation.

This trend aligns with prior expectations, validating the choice of CRC and the complex fictional use

case for the optimistic and conservative scenarios, respectively.

Due to the application dependency of the design time reduction, FRANCIS-V is more efficient when used

in simpler applications where the CI implementation time is confined, or in cases where the CI hardware

is already available, e.g., due to previous projects. For more complex use cases, the implementation task

is a major task of the manual part of the development process. The results indicated that, apart from

the system verification task, CI implementation is the task with the most accounted workdays for the

moderately complex AES use case. A more complex use case would likely further elevate this influence,

resulting in less percentage time reduction due to FRANCIS-V for complex applications.

0 5 10 15 20 25
0

10

20

30

40

50

60

CRC AES fict. case

tapp [d]

t m
an

,t
fra

,t
re

d
[d

]

0 5 10 15 20 25
0

10

20

30

40

CRC AES fict. case

tapp [d]

p
re

d[
%
]

tman tfra tred pred

Figure 6.2: Diagram of typical and framework-based design time and absolute design time reduction
(left) as well as percentage reduction (right) over the use-case-dependent design time required for task
4, tapp. The diagrams illustrate an influence on percentagebut not absolute design time.
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To increase the design efficiency in these complex use cases, an automation of the CI implementation

task would greatly benefit the overall design time reduction. One potential automation approach would

be utilizing HLS to generate the CI hardware out of the source code of the given application. HLS, instead

of manual hardware implementation, would directly link to the subsequent integration methodology

proposed by FRANCIS-V and, subsequently, would imply a certain scalability for complex applications.

Designer experience

As shown in Figure 6.3, an increase of the introduced experience factor implicates an increase in the

absolute but no change in the percentage reduction of design time since, in the derived equations, it is

assumed that an inexperienced designer requires the same factor of additional time for all manual tasks.

This approach of experience level affecting all manual tasks must be seen as a rough approximation

since the individual task times may fluctuate based on individual knowledge, especially for junior

designers with limited experience. As an example, a junior engineer who is already familiar with the

use case and HDL simulation but not with RISC-V, XIF, or GCC may tendentially save more design

time because FRANCIS-V supports exactly the compilation and XIF-related tasks that may take this

individual designer longer. On the other hand, a designer already familiar with RISC-V and XIF but with
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Figure 6.3: Diagram of typical and framework-based design time and absolute design time reduction (left)
as well as percentage reduction (right) over the experience factor fexp, introduced to model designer
experience level. The diagrams illustrate no influence on percentage but on absolute reduction.
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no prior experience on the application may find a solution for the XIF-related aspects in a reasonable

time but struggle with the CI hardware implementation, therefore benefitting less from FRANCIS-V.

Further influences

The influence of the assumed verification benefit on both absolute and percentage reduction is illustrated

in Figure 6.4. The impact of the system reusability factor is not illustrated in a figure. Its influence

is similar to that of the verification factor but to a lesser extent since the system integration task is

estimated to take less time than the verification task.
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Figure 6.4: Diagram of typical and framework-based design time and absolute design time reduction
(left) as well as percentage reduction (right) over fver , the factor that approximates how much the
verification tools of the framework support the designer during the verification task. The diagrams
illustrate an influence on percentage and absolute design time.
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6.2 System metrics

The FRANCIS-V-generated system’s runtime improvement and utilization overhead due to the XIF

wrapper are evaluated by HDL simulation and synthesis, respectively.

6.2.1 Runtime improvements

One apparent expectation of using designated CI hardware for parts of the application is a reduction

in the code’s runtime. We evaluate this runtime by analyzing the instruction and cycle count of the

proposed CI system generated by utilizing FRANCIS-V for the specific use case AES. The CI-based

system is compared with two typical software-based algorithms Reference and ttable [23] provided by

the RISC-V cryptography extensions standardization group (detailed in Section 2.5). For this comparison,

the AES-specific benchmark script proposed in Section 5.5.1 simulates the three implementation variants

of the algorithm on the proposed RTL system with the ISS Spike and the HDL simulator QuestaSim.

The instruction and cycle count of all three implementations is evaluated for the four segments of the

test program presented in Section 5.4.2. The timing results are presented in Table 6.6 and illustrated

in Figure 6.5. The table shows the instruction count, cycle count, and cycles per instruction of the

HDL simulation with QuestaSim. As assumed, the results of the instruction set simulation with Spike

regarding instruction count values are identical to the QuestaSim results and, therefore, are not illustrated

explicitly. Cycle count cannot be evaluated with Spike, since Spike simulates on an instruction level

without cycle-accurate timing information.

The hardware solution was expected to execute faster than the two software solutions. The results

confirm these expectations. It took the system 8.37 and 3.15 times as many instructions and 8.02

and 2.53 times as many cycles to execute the Reference and ttable implementation over the CI-based

implementation, respectively. In other words, there is a decrease of 88.05% and 68.26% in instruction

count and 87.53% and 60.52% in cycle count when utilizing the CI solution over the software solutions

Reference and ttable.
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Table 6.6: Results of the runtime benchmarking program on two software (Reference, ttable) and one
CI-based hardware implementation for the use case AES. The three segments of the table represent
the simulated instruction count, cycle count, and resulting cycles per instruction, respectively. For
the evaluation, the algorithm is split into the four distinct parts of Encryption Key Scheduling (KSE),
Encryption (ENC), Decryption Key Scheduling (KSD), and Decryption (DEC).

Program Parts
Implementation variants

Software Hardware
Reference ttable CI-based

In
st

r.

KSE 606 606 217
ENC 3303 1023 237
KSD 1129 1844 729
DEC 6847 1001 237

Sum 11885 4474 1420

C
yc

le
s

KSE 713 714 271
ENC 3626 1043 248
KSD 2782 1970 1108
DEC 7903 1020 247

Sum 15024 4747 1874

C
yc

le
s

pe
r

In
st

ru
ct

io
n KSE 1.18 1.18 1.25

ENC 1.10 1.02 1.05
KSD 2.46 1.07 1.52
DEC 1.15 1.02 1.04

Sum 1.26 1.06 1.32
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Figure 6.5: Comparison of the two software implementations (Reference, ttable) and CI-based hardware
implementation regarding instruction and cycle count for the use case AES.
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The program parts of the software solutions are within 1.02 to 1.18 cycles per instruction4. The values

of the CI hardware solution, however, are higher on average, with 1.04 to 1.52 cycles per instruction.

The raised cycle overhead arises from data dependency hazards caused by sequential instruction inside

the key scheduling algorithm. The following code snippet illustrates the problem:

1 ...

2 aes32esi T1, T1, T0, 0

3 aes32esi T1, T1, T0, 1

4 aes32esi T1, T1, T0, 2

5 aes32esi T1, T1, T0, 3

6 ...

Listing 6.1: Snippet of the AES key scheduling assembly code illustrating the data dependency caused
by the recurring occurance of T1.

The previous CI writes on the same register that is the input in the consecutive CI. Therefore, the

consecutive instruction has to wait for one cycle until the result from the previous instruction is

written back and the register is updated accordingly, resulting in two cycles per instruction in these

cases. Fortunately, these constructs can be dissolved in the encryption and decryption algorithms, the

respective code parts exhibit a low cycle overhead of 1.04 to 1.05 cycles per instruction. In a practical

application, key scheduling is done once, followed by several encryption iterations instead of only one

iteration, as done in the test program. Hence, the overall influence of this cycle overhead decreases in

practical applications.

A comparison of the software solutions further shows an improvement of the optimized ttable implemen-

tation over the conventional Reference implementation. The similarity of the encryption key scheduling

(KSE) of both software solutions arises because the identical code is used for this part of the algorithm.

A further observation on the cycles per instruction shows that the ttable implementation is relatively

efficient in terms of cycles per instruction (1.02 to 1.07) in contrast to the Reference implementation.

4An exception to this range is the decryption key scheduling KSD with 2.46 cycles per instruction. For the following
considerations, it is assumed to be an outlier, attributable to the inefficient decryption key scheduling of the Reference
implementation in contrast to the ttable implementation.
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6.2.2 Hardware overhead

As proposed in Section 5.5.2, the resulting system for the use case AES has been synthesized on a

selected Xilinx FPGA to evaluate the resource utilization. For the overhead analysis, two configurations

of the system are synthesized. The first configuration represents the pure software approach without

CIs, consisting of the CV32E40X main core and instruction and data memory. The second, CI-based

configuration is extended to also include the XIF wrapper with the integrated AES module.

The utilization results of the CI-based approach are divided into two parts, one resembling the main core

and memory components and a second one arising due to the XIF wrapper and AES module. The resulting

utilization values are illustrated in Table 6.7, complemented by the total utilization and percentage

overhead of the CI hardware compared to the total utilization. The software-only configuration is not

explicitly stated in the table since its utilization values closely resemble those of the main core and

memory part of the second configuration, differing only by an additional LUT but one FF less.

The results show that the XIF wrapper with integrated AES module has only a marginal utilization

overhead, the major part of the system utilization arises from the main core and memory. However,

this data only provides insight into the specific use case AES, and not for generic applications. A more

complex use case will likely implicate a more complex XIF wrapper, particularly due to the integrated

CI module, therefore resulting in more resource overhead.

Table 6.7: Lookup Table (LUT), Flip Flop (FF), and Block RAM (BRAM) utilization data for the synthesized
system generated by FRANCIS-V for the specific use case AES. The values are stated for the two parts
of the system consisting of main core and memory and XIF wrapper with CI AES module, respectively, as
well as for the overall system (sum). Also stated is the overhead of the XIF wrapper in relation to the
total utilization values.

System components Utilization

LUT FF BRAM

Core, Memory 3731 2333 16
XIF Wrapper, AES Unit 32 66 0

Sum 3763 2399 16
CI Overhead [%] 0.85 2.75 0
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6.3 XIF timing properties

The CI interface XIF, in contrast to systems using in-pipeline integration, potentially holds a timing

overhead for communication between the main core and external coprocessor or wrapper. To assess

this overhead and to gain further insight on the behavior, features, and restrictions of XIF, we perform a

simulation of the internal signals of the main core, coprocessor, and XIF, and analyze the results.

To get a typical exemplary transfer between the main core and the wrapper over XIF, the use case CRC is

simulated with QuestaSim. The resulting internal signals of this simulation are shown in Figure 6.65. The

4-stage core consists of the Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), and Writeback

(WB) stages. In the first cycle, the core’s IF stage fetches the instruction (opcode 0x02F8086B). The input

data (0x6162) was already fetched by the core due to previous instructions (not illustrated in the figure).

In the second cycle, the decoded instruction is not recognized by the subsequent ID stage and, therefore,

issued to the wrapper over XIF together with the input operand and some additional data. The wrapper

decodes and accepts the instruction in the same cycle. Afterwards, the instruction is signaled to be

committed by the main core in cycle three, thus no longer speculative. In the same cycle, the wrapper

executes the instruction and generates the output (0x74FF ), indicated by the result valid signal. The

main core accepts the result in cycle four and writes the result back to its internal register file.

For a process-internal instruction, the core’s four stages implicate a latency of four cycles due to IF, ID,

EX, and WB for instructions managed by the main core, respectively. A CI is fetched (IF), issued (ID), and

committed (EX) by the main core, and in the meantime decoded (ID), executed (EX), and written back

(WB) by the wrapper and subsequently by the main core. Therefore, a CI in these cases is also performed

in four cycles. In addition, multiple CIs enter the main core’s pipeline one cycle at a time. Thus, the

same throughput of one instruction per cycle is reached, which is also achievable by processor-internal

instructions. Therefore, the wrapper and CV32E40X combination inside FRANCIS-V utilizing XIF does

not come with additional latency or throughput overhead under these ideal assumptions.

However, it has to be noted that these considerations are based on ideal assumptions of a hazard-free

program execution. In practice, as seen in Section 6.2.1, in most cases a throughput of exactly one

instruction per cycle is not reached due to pipeline hazards (e.g., load data or jump hazards [19]). Using

XIF and CIs may still influence the occurrence of these hazards and thus indirectly influence latency

and throughput,e.g., due to the inefficient compiler scheduling described in Section 6.2.1. In addition,

the framework does not use all of XIF’s features and is limited to single-cycle instructions. In the case

5The figure represents a simplified version of the core’s and XIF’s internal signals to illustrate the general execution process.
Details such as additional signals of the Issue interface are omitted.
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Figure 6.6: Simulation of a typical XIF transfer for the use case CRC. In the first cycle, the main core
fetches the instruction 0x2F8086B. It issues the instruction to the wrapper in the second cycle together
with the prefetched input data. Yet in this cycle, the wrapper decodes and accepts the issued instruction.
In cycle three, the main core commits the instruction while the coprocessor executes it and generates
the output 0x74FF which is collected and stored by the main core in the subsequent fourth cycle.

of multi-cycle instructions or more advanced features of XIF, such as load/store operations, additional

stalls due to multiple execute-cycles and memory transactions would occur. Hence, the assumption of

one cycle per instruction may not hold anymore in these cases.
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Chapter 7

Discussion and future work

In this chapter, we discuss the main results, limitations, and findings of this thesis. Based on these

considerations, we suggest future work regarding research topics and potential extensions of FRANCIS-V.

7.1 CI development process analysis

The first research question of this thesis reads as follows:

Which are the most challenging process steps in a typical Custom Instruction development process regarding

time and effort?

To identify these challenges, we define the process steps in Section 4.1 based on various assumptions

and identify potential automation approaches. Among these steps, based on the results of the con-

ducted expert interview in Section 6.1, the most time-consuming challenges are identified to be the

combined steps of CI integration with around 14 workdays, verification with around 12 workdays,

and CI implementation with 11 workdays for the AES use case. Among these, FRANCIS-V’s proposed

integration methodology contributes to the integration problem. Additionally, the framework offers

verification tools. The estimations of only 25% savings due to these tools, however, indicate that they are

not expected to fully automate verification. Formal verification methods are identified as an alternative

promising approach that also might raise the verification quality but are out of the scope of this thesis.

Moreover, CI logic generation is not covered by the framework. However, FRANCIS-V is compatible

with prospective tools that generated HLS-based implementations.
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CI identification is not included in the expert estimation and thus does not appear in the time estimation

results. Rather, the CIs are assumed to be already predetermined. However, depending on the complexity

of the application, it is reasonable to assume that this development task holds a particular development

time and effort. The identified approaches of automated profiling and performance estimation tools

for various CI configurations likely simplify the selection of the most appropriate CIs for the designer.

In addition, such approaches would provide the designer with metrics of the examined configurations,

thus allowing for a more evidence-based CI selection in contrast to the conventional manual selection

approach that solely depends on the designer’s experience.

One potential point of criticism is the focus of the analysis on the integration-based approaches, in

particular with XIF as a suggested solution. This emphasis can be justified with the focus of this thesis

being on integration methodologies. However, a grouping or abstraction of the integration segments

may facilitate a more generalized analysis. An inclusion of more details, on the other hand, such as

splitting CI identification into substeps, adding synthesis and implementation, or better visualizing

iterations within the process may have led to a more accurate representation of the development process’

details. However, these details may have made it more cumbersome to grasp the essence of each step.

7.2 Framework limitations and applications

The framework FRANCIS-V approaches the second research question:

How can the manual effort of integrating Custom Instructions with RISC-V cores be reduced using the

CORE-V eXtension Interface?

Besides several features proposed in the previous chapters, FRANCIS-V entails certain limitations that

can be categorized as follows:

Supported instructions: FRANCIS-V supports R-type single-cycle instructions to keep the underlying

CI hardware combinational. It does not support multi-cycle instructions nor immediate, load/store, or

branch and jump instructions. Those restrictions ensure a constrained wrapper complexity. Branch and

jump instructions, in addition, are not supported by the framework’s underlying CI interface XIF.

Assumed inputs: It is assumed that the designer provides preselected CIs and an appropriate hardware

implementation and source code to the framework. FRANCIS-V features no hardware generation or CI

identification methods. Further, as detailed in Section 4.1, the framework only supports compilation of

adapted source code where the designer already placed the CIs in form of their opcodes at designated
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code locations. Thus, the compiler has no semantic information about the instructions and only places

the CIs at these locations. It cannot autonomously decide on further, potentially suitable code locations.

The fundamental code compilation is supported by FRANCIS-V to aid the designer, more complex or

autonomous compiler configurations, however, are not within the scope of this thesis.

Verification: Verification is supported by FRANCIS-V by providing a testbench and debug capabilities

of the source code within the HDL simulation. However, additional features such as automated test case

generation or formal verification methods are not supported. Rather, the designer has to develop the

source code according to their testing requirements.

Simulation: In an otherwise open-source framework, QuestaSim is the only commercial tool. In

Section 5.3, we justify this simulator choice based on the enhanced and intuitive features of QuestaSim

and argue that a change to open-source solutions is a potential future step.

Synthesis: The framework constrains itself on simulation, and does not offer tools for synthesis and

implementation on FPGAs or ASICs. However, the generated system designs are fully synthesizeable,

apart from two architecture-dependant clock gate and RAM modules.

Potential solutions and extensions to these limitations are discussed in Section 7.6.

As presented in Section 4.2, FRANCIS-V supports a broad range of potential applications despite the

limitation to R-type single-cycle instructions. One prime example is security applications. The possibility

of realizing AES or CRC is already featured in the thesis, further potential cryptography algorithms,

such as SHA (Secure Hash Algorithm), are imaginable. Use cases proposed by work priorly featured

in this thesis for PQC, NFC or for vector instructions (similar to those of Vicuna or Spatz) represent

further possible applications.

Moreover, the various applications proposed by Cui et al. [59] are all interesting candidates for FRANCIS-

V. The authors, besides the already mentioned security and PQC use cases, also propose candidates such

as floating-point computation, signal processing, or Artificial Intelligence (AI) applications. All use cases

are only restricted by the single-cycle limitation requiring a combinational implementation. To avoid

this limitation, however, complex instructions can be split into multiple CIs.
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7.3 Design time reduction

The third research question specifies the main purpose of FRANCIS-V and its integration methodology

by defining the main metric of interest:

How much design time can a designer save with the developed framework depending on their experience

level and use case?

The methodology (Section 4.3) and results (Section 6.1) for evaluating this time saving raises three major

points of discussion. First, the granularity of the partitioned tasks to be estimated is rather coarse. We

justify this partitioning by the time limitation of the conducted interview and the deliberate restriction

of too detailed information, e.g., to prevent an accidental solution proposal that could possibly limit the

participant’s imagination. Secondly, the selected group of participants is relatively small and, regarding

company and experience level diversity, homogeneous. Nonetheless, the group consists of experts in

their diverse respective fields to provide an assessment as accurate as possible. Third, expert estimations

inherently involve particular accuracy limitations and biases.

Despite a particular uncertainty due to these stated limitations, the results of the estimation provide a

trend and show that FRANCIS-V does significantly reduce the required design time by supporting the

designer in certain tasks of the otherwise manual design process. The quantified results suggest around

7 to 24 workdays or 13% to 41% of design time reduction when utilizing FRANCIS-V, depending on the

assumed scenario, with the realistic scenario yielding around 16 days or 34%.

The distinct estimations of the various tasks of the process facilitate an analysis of the influencing factors

of these values, as discussed in Section 6.1. The dependency on the specific use case and on the designer

experience are of particular interest. To recall previous considerations, the percentage time reduction

increases with simpler use cases and, according to the simplified assumptions, does not depend on the

designer experience. The use case dependency provides an argument for automated, HLS-based CI

hardware generation to raise the potential time savings for complex applications. Without this addition,

FRANCIS-V is most efficient when used for applications with limited complexity and prototypical use

cases. Nevertheless, more complex systems are supported, with the generated system at least providing

a starting point for subsequent optimizations to tailor more specific system requirements.
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The designer experience not influencing the relative reduction value likely follows the simplified

modeling with the same experience factor on all influenced tasks. The real influence of designer

experience is most certainly way more complicated and dependent on the knowledge of the particular

designer, e.g., regarding XIF or RISC-V.

A further aspect is the reduction of required knowledge to design CI-based systems when utilizing

FRANCIS-V. After becoming familiar with the framework, a designer requires less knowledge about its

underlying concepts, in particular about XIF, since FRANCIS-V fully manages XIF-related integration and

implementation tasks. Not learning XIF, consequently, reduces the training period for both inexperienced

and experienced designers. Inexperienced designers may additionally profit from the provided system

solution since they otherwise may produce a less efficient design than the framework does. Thus, the

system’s quality regarding its metrics may increase. Furthermore, FRANCIS-V is a promising solution

when a designer is in need of a proof-of-concept system design or for quickly exploring different C source

code and CI logic configurations. On the other hand, while still saving time in more complex application

designs, the relative design time efficiency decreases in these cases. Experienced designers familiar with

XIF, in addition, might even benefit from implementing the system manually and optimizing it to their

specific needs, in particular when they are faced with tight system requirements.

7.4 System metrics comparison

Besides reducing the design time with FRANCIS-V, it is of natural interest that the resulting CI system

exhibits a baseline of comparable runtime and utilization metrics to be competitive in contrast to similar

approaches. The respective evaluation results are presented in Section 6.2.1 and Section 6.2.2. To

summarize these results, a reduction in cycle count of up to around 88% is achieved with utilization

overhead of only 0.85% and 2.75% for LUTs and FFs for the AES use case.

Since these metrics strongly depend on the application and underlying main core, a comparison to

other papers can only give rough trends, but is still of interest for a coarse classification of the system.

Therefore, we compare FRANCIS-V’s AES-based metrics with three selected frameworks OpenASIP,

SCAIE-V, and TIGRA. Hepola et al., the authors of OpenASIP, also utilize AES as a test case and report a

runtime reduction of 40% and an area overhead of 1.5% [6]. The SCAIE-V authors Damian et al. evaluate

an AES SBox instruction on the 4-stage core VexRiscv. Out of 1111 LUTs and 671 FFs1, 1.26% and 0.45%

1In contrast, the 4-stage processor CV32E40X and XIF wrapper within this thesis utilizes 3763 LUTs and 2399 FFs. Therefore,
albeit both cores realize four stages, the utilization overhead only holds limited comparability. For larger cores, the their
influence on the utilization is higher, thus, the percentage overhead is likely to go down.
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are attributed to the CIs, respectively [28]. The authors of TIGRA, Green et al., report a cycle count of 51

cycles for the AES encryption, which amounts to a reduction of 91.5% compared to their stated AES-128

software reference completing at 600 cycles2 [33].

With 0.85% LUT and 2.75% FF overhead, FRANCIS-V’s system achieves a similar magnitudes than

SCAIE-V does, with a lower LUT but higher FF. OpenASIP only reports area instead of utilization, so a

direct comparison has to be interpreted with caution. However, in terms of magnitude, the overhead

is also comparable. Furthermore, FRANCIS-V outperforms OpenASIP with a cycle time reduction of

60.52% to 87.53%, depending on the compared software algorithm. Regarding AES encryption only,

FRANCIS-V achieves a runtime reduction of 76.22% or 93.16%, which is also comparable to TIGRA’s

reported number.

In addition to these metrics, additional parameters such as change in critical path and power consumption

would be of interest. Furthermore, more evaluations regarding the second use case CRC and additional

use cases would have complemented the thesis. However, these ambitions are out of scope for a single

master thesis. Still, the evaluated metrics and chosen use cases are comparable to similar work on this

topic, especially regarding the popular test case AES. The comparisons indicate the competitiveness of

FRANCIS-V’s generated designs.

7.5 XIF benefits and limitations

XIF is chosen as the CI interface for FRANCIS-V and, therefore, strongly influences the capabilities and

limitations of the framework. One advantage of XIF is its scalable specification. The six subinterfaces

support complex structures and CI designs, and the structure and purpose of XIF’s signals appear

elaborate. In addition, since not all of the interfaces are mandatory, XIF also supports designs with

reduced features and complexity, e.g., as FRANCIS-V only supports R-type instructions. Still, as a

disadvantage of XIF, the induction period to grasp and apply XIF was found to be rather high during

this thesis.

Furthermore, as proposed in Section 6.3, a benefit of XIF is the absence of additional latency due to XIF

when utilized with the CV32E40X, assuming a hazard-free instruction sequence. Another advantage of

XIF is the support of a large subset of instruction types. However, control transfer instructions like jumps

and branches are not supported, albeit these features seem to have almost no interface and framework

support outside of SCAIE-V and Codasip Studio [28].
2Since the authors do not give an exact cycle count of a reference implementation, we choose 600 cycles as reference.
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A potential disadvantage of XIF that also impacts the applicability of FRANCIS-V in its current form

is its present lack of usage within the RISC-V ecosystem. While there are several coprocessors and

accelerators with XIF support (as listed in Section 3.3), as of writing this thesis, only the CV32E40X

core from CORE-V themselves supports XIF. The initial expectation for XIF at the time of starting this

project was for it to become common within the RISC-V ecosystem in the near future. This expectation,

among others, emerged from the XIF specification being formulated for generic processors and not a

specific core, and from articles about two different cores in development with XIF on their intended

feature’s list [60], [61]. Though, one year later at the time of writing this paragraph, both the IBEX core

and the AIRISC seem not to support XIF yet [62], [63].

However, we anticipate that XIF will increase in popularity as time progresses. The present lack of

utilization does not undermine the generic design of XIF, in particular when considering that the

interface is still in its pre-release phase and not finally released yet. Due to CORE-V eXtension Interfaces

(XIFs) promising idea and elaborate structure, it is more than probable that XIF will become more

common over time once it had time to settle. After its major release, we envision XIF to experience a rise

of support in RISC-V cores, coprocessors, and also design tools supporting the interface specification.

The various proprietary solutions and advances in the field of CI integration certainly show the need

and potential benefits of a RISC-V standard interface.

Even a potential lack of XIF-compatible RISC-V cores would not reduce the value of this thesis. In

this case, FRANCIS-V still facilitates CI design for the feature-rich and promising CV32E40X core. In

addition, the framework is applicable for potential adaptions to feature further CI interfaces. In this

scenario, the insights on CI integration proposed in this thesis still hold.

7.6 Future work

Although this thesis proposes a fully developed CI integration framework and a comprehensive discussion

about its contributions, the presented limitations leave room for future improvements of FRANCIS-V and

for additional contributions to the current state of the art. FRANCIS-V is developed as one component

in a large prospective setting of CI development tools for CI identification, generation, integration, and

verification. We structure suggestions on future work in three aspects regarding automation of the

overall development process, additions to FRANCIS-V, and potential advancements for RISC-V.
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Development process automation

A major insight of this thesis is the influence of the CI hardware implementation on the overall design

time, which is also evident from the estimation results. To overcome FRANCIS-V’s need for existing

CI logic, one promising approach would be to implement an HLS-based tool for automatic hardware

generation based on the C application, resulting in CI logic that is applicable to the input of FRANCIS-V.

In addition, CI identification methods for evaluating and selecting the optimized CIs for the specific

application based on certain requirements have the potential to significantly improve the resulting

system’s quality. Both these concepts would be directly compatible with FRANCIS-V.

Framework improvements

An extension of additional instruction types supported by FRANCIS-V mainly has implications on the

design of its XIF wrapper. Supporting immediate instructions for computing would be the simplest

addition, with minor changes to the CI module instantiation and decoder. Load and store instructions

would additionally require extending the wrapper with the Memory and Memory Result subinterfaces

of XIF and result in a more complex control logic, instruction FIFO, and a local register file. Adding

these instructions would allow for simpler and more compact assembler code [64]. Custom jump and

branch instructions would require a different CI interface since XIF does not support those kinds of

instructions. Multi-cycle instructions are a more complex addition to the wrapper that, among others,

would require a considerable extension of the control logic.

A rather straightforward improvement to the software functionality group of the framework would

include an automated generation of unused and legal opcodes for each CI to be implemented, which

would eliminate the minor and currently manual opcode selection task. An even more significant

extension would be an automated integration of the CIs and their behavior into the compiler itself, as

mentioned in Section 4.2, to remove the need of manually exchanging the respective CI code parts with

their assembler representations.

Another open discussion point is the support of simulation and compilation tools. FRANCIS-V would

benefit from further verification features such as additional simulator support like the ISS Spike or

an open-source alternative to QuestaSim. Further verification support would also be conceivable, e.g.,

automated source code generation for different test cases or formal verification techniques.
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Advancing the RISC-V ecosystem

One key finding of this thesis is that the RISC-V ecosystem would benefit from a standard CI interface.

Therefore, with this thesis, we aim to encourage future work on XIF and similar CI interfaces or work on

the extension of RISC-V processors and tools to support XIF. RISC-V would benefit from more attention

to standard CI solutions in the long run.

Similarly, an advancement of open-source tools, in particular open-source simulators, would benefit a

growing RISC-V community. During this thesis, we experienced that, although powerful open-source

alternatives exist, their commercial counterparts understandably often outperform them regarding

usability and intuitiveness.
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Chapter 8

Conclusion

Based on the identified lack of CI design tools in the RISC-V ecosystem, this thesis proposes the framework

FRANCIS-V for facilitating the CI integration process using XIF. The defined research questions aim at

an analysis of the CI development process to identify its primary automation challenges and potential

solutions, with a focus on integration with interfacing of external CI-based coprocessors. They further

define the metric of interest for evaluating FRANCIS-V as design time reduction due to utilizing the

framework within the CI development process.

We answer the first question analyzing the typical development process. We identified the most

demanding process steps as CI integration, logic generation, and verification. The influence of integration

justifies the thesis’ focus, while logic generation with HLS or similar methods is recognized as a promising

future approach. We further identified CI identification techniques as a potential addition for a more

optimized system design.

To approach the manual CI integration effort, we propose an integration methodology based on XIF,

realized within FRANCIS-V. A predefined RISC-V system as well as compilation, simulation, and veri-

fication features complement this methodology. The framework’s capabilities are demonstrated with

two use cases, AES and CRC. The system designs generated by the framework achieve a substantial

cycle count decrease of up to 87.53% and a low resource overhead of 0.85% and 2.75% for LUTs and FFs,

respectively, rendering FRANCIS-V competitive in contrast to related work. A secondary finding of the

timing analysis is that XIF entails no latency overhead when assuming a hazard-free program execution,

positioning XIF as promising in tightly integrated embedded applications.
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For inferring the design time saved by FRANCIS-V, we performed expert estimation with a selected

group of participants and analyzed the results with varying assumptions and scenarios. The typical

scenario yields 16 workdays or 34% of design time reduced due to FRANCIS-V. After analyzing the

detailed results, we showed that, despite being more efficient for simpler applications regarding design

time reduction, the framework is applicable for both simple and complex use cases. Both inexperienced

and experienced designers benefit from FRANCIS-V by not having to learn about XIF and by reusing

the proposed system and tools. Inexperienced designers, furthermore, may save additional time when

using FRANCIS-V for design steps where they lack experience.

FRANCIS-V is limited to single-cycle instructions. It also requires the designer to provide the CIs,

application source code, and CI logic. Further limitations include only commercial simulators and

no synthesis tools being native to FRANCIS-V. Still, the generated systems are fully synthesizeable.

The conducted expert interview has a particular uncertainty due to a small participant group but still

indicates trends that allow for an analysis and coarse quantification of the required design time. Another

point of discussion is that XIF currently only supports a single processor. However, after a prospective

full release of XIF, we envision that more RISC-V processors and tools will facilitate the interface over

time and assess that XIF is a promising candidate for a future CI standard.

The limitations of this thesis highlight the potential for further work. In particular, extensions further

automating the overall development process, such as HLS logic generation or CI identification tech-

niques, represent promising approaches directly compatible with FRANCIS-V’s integration methodology.

Another potential future approach is extending the framework with further instruction and tool support.

We conclude the thesis’s main contribution to be FRANCIS-V and its CI interfacing methodology,

constituting significant improvements towards an automated CI development process. We further

contribute an analysis of the typical process and highlight potential enhancements and future research

on this topic. Finally, we identify the current lack of a standard RISC-V CI interface and emphasize the

importance of efforts concerning this matter, especially regarding the promising candidate XIF.
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