
Formal Methods in Computer-Aided Design 2023

A Procedure for SyGuS Solution Fitting
via Matching and Rewrite Rule Discovery
Abdalrhman Mohamed† , Andrew Reynolds∗ , Clark Barrett† , and Cesare Tinelli∗

†Stanford University, Stanford, CA, USA, � abdal@stanford.edu ∗The University of Iowa, Iowa City, IA, USA

Abstract—Syntax-guided synthesis (SyGuS) is a recent soft-
ware synthesis paradigm in which an automated synthesis tool
is asked to synthesize a term that satisfies both a semantic
and a syntactic specification. We consider a special case of the
SyGuS problem, where a term is already known to satisfy the
semantic specification but may not satisfy the syntactic one. The
goal is then to find an equivalent term that additionally satisfies
the syntactic specification, provided by a context-free grammar.
We introduce a novel procedure for solving this problem which
leverages pattern matching and automated discovery of rewrite
rules. We also provide an implementation of the procedure
by modifying the SyGuS solver embedded in the CVC5 SMT
solver. Our evaluation shows that our new procedure significantly
outperforms the state of the art on a large set of SyGuS problems
for standard SMT-LIB theories such as bit-vectors, arithmetic,
and strings.

I. INTRODUCTION

Program synthesis is a powerful technique with many
potential applications, including program optimization, loop
invariance generation, and protocol synthesis [1], [2], [3], [4].
Syntax-guided Synthesis [5] (SyGuS) is a particular paradigm
for program synthesis in which the goal is to generate correct
functional code from a high-level description of the desired
program behavior. This high-level description is typically
represented as a set of semantic constraints, logical formulas
expressing the properties the program should satisfy, and
syntactic constraints, which dictate the structure and syntax of
the program and are commonly encoded as a formal grammar.

Program synthesis is generally undecidable and is con-
sidered to be a challenging task, even in restricted settings.
Nevertheless, in the past decade, several efficient SyGuS
solvers have emerged [6], [7], [8], [9], [10]. These solvers
are typically enumerative, with a few notable exceptions [6],
[10]. In an enumerative approach to syntax-guided synthesis,
the solver uses the provided grammar to generate a list of terms
that meet the syntactic constraints. These terms are then passed
to a backend reasoner, often an SMT solver, to determine
whether or not they meet the semantic constraints as well.

We consider a special case of the SyGuS problem in which
the semantic specification for the function f(x⃗) to synthesize
is already known to be satisfied by a given solution term t[x⃗]
with free variables x⃗. The problem, which we call the SyGuS
solution fitting problem, is to synthesize from t and a given
grammar G a term t′ that is equivalent to t and is generated
by G. It can also be seen an instance of the SyGuS problem,
where the semantic specification is the formula ∀x⃗. f(x⃗) ≈
t[x⃗]. Procedures for solving this problem can be understood as

refinement procedures, where additional syntactic restrictions
are imposed.

We propose a procedure for the SyGuS solution fitting prob-
lem that leverages both matching and rewrite rule synthesis to
find a term in the language of G that is equivalent to the
input term t. At a high level, the procedure matches t with
terms generated by the production rules of the input grammar,
thereby generating a set S of smaller terms to synthesize.
We then augment S by using rewrite rule synthesis to find
new terms that are equivalent to those in S. Finally, we use
enumerative SyGuS to find derivations for a subset of S that
is sufficient to construct a term equivalent to t.

One possible use case for our procedure is when a user
has successfully solved a SyGuS conjecture for a (complete)
semantic specification φ and a grammar G, and then needs
a solution in the language of a revised grammar G′, which
perhaps includes desirable and more stringent syntactic re-
quirements. If the previous solution term t does not fit the
updated grammar, our procedure can be used to construct from
t an equivalent term that does. A second use case occurs
within certain approaches for solving SyGuS problems [10]
that focus solely on satisfying the semantic component of
specifications. Our procedure can then be used to impose a
posteriori syntactic constraints on the solution.

Contributions: We propose a novel approach for the SyGuS
solution fitting problem. Our contributions include:

• A new procedure for this problem which combines
matching, dynamic rewrite rule discovery, and enumer-
ative SyGuS, and is parametric in the background theory
of the semantic constraints.

• An implementation of this approach in the SyGuS solver
of CVC5.

• A detailed evaluation of the procedure showing sig-
nificant performance improvements over other SyGuS
solvers on a set of crafted benchmarks, as well as a set
of mutated benchmarks from the standard SyGuS library.
Notably, the procedure scales well across multiple stan-
dard SMT-LIB theories, including bit-vectors, arithmetic,
and strings.

We present related approaches and preliminaries in the rest of
this section. Our approach and contributions are detailed in
Section II. We evaluate our approach against other methods
in Section III and conclude by outlining potential future
directions in Section IV.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_27 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0003-1414-7073
https://orcid.org/0000-0002-3529-8682
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-6726-775X
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_27
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_27
https://creativecommons.org/licenses/by/4.0/

A. Related Work

Typical methods for solving SyGuS problems are enumera-
tive in nature. However, some works have explored divide-
and-conquer methods to solve restricted classes of SyGuS
problems. For example, the SyGuS solver STUN [11] divides
the input space of the function f to synthesize into subsets,
enumerates expressions that are correct in these subsets, and
then combines them using a unification operator (e.g., the if-
then-else operator). STUN is fairly effective in solving general
SyGuS problems. However, it requires domain knowledge to
identify suitable unification operators and efficient program
generation algorithms. Moreover, the desired unification oper-
ator may not be available in the provided grammar.

EUSolver [6] adopts a similar approach to STUN by using
the ite operator and selected predicates to define the target
function by cases, reformulating the SyGuS problem as a
decision tree learning problem. This approach led to successful
results in the SyGuS solver competition in 2016 and 2017 [12],
[13]. A major limitation is that EUSolver requires point-wise
specifications of the semantic constraints (relating an input
point to its output, but not the outputs of different inputs)
and a grammar that both contains the ite operator and can be
decomposed into a term grammar and a predicate grammar.

Other work [10], implemented in the CVC4 SMT solver, ad-
dresses a class of synthesis problems called single-invocation
problems, where the occurrences of the target function in
the semantic constraints are all applied to the same input
tuple. For these problems, CVC4 first looks for a solution
satisfying just the semantic constraints and then tries to find an
equivalent term within the grammar using an ad-hoc procedure
based on matching against the grammar rules of the syntactic
specification ([10], Section 5). This procedure is efficient but
it often fails to find any equivalent term.

B. Technical Preliminaries

The goal in Program Synthesis is to generate functions that
meet a set of specified constraints. These constraints can be
formulated in terms of many-sorted second-order logic, using
a set of non-empty sorts S = {σ1, σ2, ...}. If the function
we aim to synthesize has a rank of σ1 · · ·σnσ, then we can
express the synthesis problem as:

∃f : σ1 · · ·σnσ, ∀x⃗ : σ1 · · ·σn. P [f, x⃗]

where f is a second-order variable representing the target
function, x⃗ is a tuple of first-order variables representing f ’s
input, and P is a predicate that encodes the semantic con-
straints imposed on f within a particular background theory
T . In the context of SyGuS, additional syntactic constraints are
imposed, specifically that the body of the synthesized function
f be in the language of a specified grammar G. We write
t ∈ L(G) to denote that a term t is in the language L(G)
generated by a grammar G. In that case, we will also say that
t is generated by G.

In this paper, we consider a specific class of SyGuS prob-
lems in which a term t[x⃗] over the free variables x⃗ that satisfies
the semantic part of the synthesis problem is also provided.

We can view this problem as the subclass of SyGuS problems
in which the semantic specification has the form:

∃f : σ1 · · ·σnσ, ∀x⃗ : σ1 · · ·σn. f(x⃗) ≈ t[x⃗].

The goal of our procedure, given t and G, is to find a term t′

that is generated by G and is equivalent to t in the background
theory T , denoted as t′ ≈T t.

Our procedure can be used in combination with approaches
that are limited only to solving semantic specifications. We
mentioned previous work [10] that introduced an efficient
synthesis approach for single-invocation problems. This class
of problems can be expressed by the conjecture:

∃f : σ1 · · ·σnσ, ∀x⃗ : σ1 · · ·σn. P [f(x⃗), x⃗] (1)

where P [f(x⃗), x⃗] is a first-order formula over the free variables
f, x⃗. This conjecture is equivalent to the first-order formula:

∀x⃗ : σ1 · · ·σn,∃y : σ. P [y, x⃗] (2)

A witness term t[x⃗] for the quantifier in formula (1) can
be constructed efficiently in practice from formula (2) by
quantifier elimination (QE) if the theory T admits QE or, more
generally, from a refutation in T of the negation of (2) [14].
However, finding then an equivalent term t′ generated by a
specified grammar G remains a challenge.

One approach is to use enumeration techniques developed
for solving general SyGuS problems, however, those tech-
niques do not scale well for large terms. Another option [10],
is to match the structure of the term t against the rules in
G to break down the synthesis problem into smaller, more
manageable sub-problems. Unfortunately, this approach has
its own limitations, since terms that slightly deviate from the
grammar can be generated only by enumeration.

C. Motivating Example

The following SyGuS problem demonstrates some of the
shortcomings discussed above. We explain how to address
them efficiently using matching and rewriting.
Example 1. Consider the synthesis problem

∀x, y, u : Int. f(x, y, u) ≈ x− ite(y + u > 0, y + u, 0)

over the theory of integers and let t be the right-hand side of
the equation. Assume our goal is to find an implementation of
f whose body is generated by a grammar G with start symbol
A and the following production rules:

A → 0 | 1 | x | y | u | 0−A | A+A | ite(B,A,A)
B → A ≈ A | A > A

The minimal solution to this problem, as measured by the
length of its shortest derivation in the grammar, is prohibitively
large for enumerative approaches, which typically explore the
solution space by increasing term size. We observed that such
approaches check 5K terms or more before finding a solution
in this example, due to the combinatorial explosion in the set
of terms generated by G as a function of derivation length.

Alternatively, we can directly try to match t with the
right-hand side of production rules of the grammar, treating

190

non-terminals like A and B above as match variables. This
makes it easy to detect, for instance, if t is already in L(G).
Unfortunately, this approach fails immediately in our example
since x−ite(y+u > 0, y+u, 0) does not match any right-hand
sides in G’s production rules.1

We can expand the possible patterns for term matching using
rewriting modulo the background theory. Note, for example,
that if we could add the rule A → A − A to the original
grammar G, then matching t against A − A would lead to
a solution, as both x and ite(y + u > 0, y + u, 0) in turn
match a rule for A. Now, we cannot add this rule directly
as it would change the language of the grammar.2 However,
we can simulate doing so by considering the production rule
A→ A+(0−A), derived from A→ A+A and A→ 0−A.
This is because every term of the form t1+(0−t2) is equivalent
to the term t1− t2 in the theory, something that can be easily
shown using simple theory-specific rewrite rules. Based on this
reasoning, we thus conclude that x+ (0− ite(y + u > 0, y +
u, 0)) is a solution for this example, being both equivalent to
t and generated by the provided grammar.

Note how this process is driven by matching against the
grammar rules. This is much more direct than having to wait
for terms to be constructed with enumerative methods. In the
above example, the matching is made more flexible by uti-
lizing term rewriting, which effectively provides a controlled
form of matching modulo the background theory, loosening the
limitations of relying just on the rules in the input grammar.
Our experimental evaluation shows that this flexibility boosts
the effectiveness of the matching-based approach considerably,
as we discuss in Section III.

For convenience, we will call an expression derivable in a
grammar G (like the one in Example 1) a pre-term (generated
by G) if it contains non-terminals. For instance, in Example 1,
0− (A+A) is a pre-term, whereas 0− (x+ y) is not.

II. A PROCEDURE FOR SYGUS SOLUTION FITTING

In this section, we describe and discuss our procedure for
solution fitting in SyGuS, starting with a high-level overview.
We then sketch the invariants that are maintained by the
procedure, and briefly discuss its properties. In particular, the
procedure is solution sound: it returns only terms that are in-
deed a solution of the given synthesis problem. The procedure
is also relatively terminating: it is guaranteed to terminate with
a (correct) solution if its underlying enumerative approach
terminates with a solution.

A. The Term Reconstruction Procedure

The reconstruction procedure, rcons, is described in Al-
gorithm 1. It uses two main auxiliary procedures, match
(Algorithm 2) and markSolved (Algorithm 3), to abstract
the high-level structure from the finer details. We start by
outlining the overall procedure and then elaborate on its key
data structures and auxiliary functions. Finally, we illustrate

1Note that it does not match with 0 − A because the terminal symbols x
and 0 do not match.

2Observe that A−A is not derivable from A in the original grammar.

Algorithm 1 rcons(G, t0)

Require: t0 : typeOf(N0) and N0 is start symbol of G
1: k0 ← newVar(K, N0)
2: Obs ← {(k0, t0↓)}
3: Pool ,CandSols,Sol ← ∅, ∅, ∅
4: Targets ← {(N0, t0↓)}
5: while k0 ̸∈ dom(Sol) do
6: for non-terminal N of G do ▷ Enumeration Phase
7: s← nextEnum(N)
8: if FV(s) = ∅ then
9: if there is (k, t) ∈ Obs s.t. t ≈T s then

10: markSolved(k, s)
11: else
12: k ← newVar(K, N)
13: Obs ← Obs ∪ {(k, s)}
14: markSolved(k, s)
15: end if
16: else
17: Pool ← Pool ∪ {(N, s)}
18: Targets ′ ← {match(t, s) | (N, t) ∈ Targets}
19: end if
20: end for
21: while Targets ′ ̸= ∅ do ▷ Match Phase
22: Targets ← Targets ∪ Targets ′

23: Targets ′ ←
24: {match(t, s) | (N, t) ∈ Targets ′, (N, s) ∈ Pool}
25: end while
26: end while
27: return Sol(k0)

through an example how the various components are integrated
in rcons.

We assume two countably infinite sets K and Z of (meta-
level) variables. The variables in K are placeholders for terms
that require reconstruction within the grammar. Those in Z
are matching variables; they represent holes in the patterns
used for matching. Variables in K and Z are associated with
two mappings, nonTerminalOf and typeOf, which respectively
return a non-terminal in the given grammar G and a type for
the variable. We denote by FV(t) the set of variables occurring
in term t. Note that for the purposes of the procedure, only
elements of K and Z are considered variables. We also assume
a rewriting procedure that rewrites each term t to a term t↓, the
rewritten form of t. We require that the procedure be sound,
that is, t↓ ≈T t for the background theory T , but not that it
be confluent. This means that t↓ and s↓ may be distinct for
some T -equivalent terms t and s.

The procedure rcons updates the following global program
variables.

• Obs stores a set of pairs of the form (k, t), where k is
a variable from K and t is a term. We refer to variable
k as an obligation and say it is closed if we succeed
in finding a term t′ equivalent to t and generated by
nonTerminalOf(k).

• Pool stores a set of pairs of the form (N, t), where N

191

Pool

Targets

Fig. 1. The relationship between the set of patterns, Pool , and the set of terms
to be reconstructed, Targets , can be depicted by the vertical and horizontal
bars, respectively. The vertical bars represent the enumeration phases, while
the horizontal bars represent the matching phases.

is a non-terminals of the grammar G and t is a term
possibly with free variables from Z . Those free variables
in t are used as holes for matching. If a match from an
enumerated term against t succeeds, then this match is
used to generate further obligations.

• CandSols stores a set of pairs of the form (k, t), where
t is a potential solution to the obligation k. Terms t in
this mapping may contain variables from K, meaning they
may be built from terms corresponding to obligations that
have yet to be closed.

• Sol stores a mapping consisting of pairs k ↦→ t, where t
is an actual solution to the obligation k for being a term
generated by nonTerminalOf(k). We write Sol(s) for the
result of applying Sol as a substitution to the term s.

The procedure rcons maintains a number of invariants over
these sets, described in detail in Section II-D.

Procedure rcons: The main procedure, rcons, takes as
input a term t0 to be reconstructed in a grammar G. It first
creates the main obligation to reconstruct, (k0, t0↓), where k0
is a variable used to refer to t0↓ in the procedure. The set
of terms to reconstruct, Targets , is initialized with t0↓. The
procedure is divided into two phases: the enumeration phase
and the match phase.

In the enumeration phase, new patterns for each non-
terminal in the grammar are enumerated using the iterator
nextEnum. If a pattern s returned by nextEnum is a ground
term (i.e., FV(s) = ∅), then we check if s closes any obligation
k. If it does, we call markSolved(k, s) to notify other candidate
solutions that depend on k. Otherwise, a new obligation (k, s)
is created on the fly, and s, for being in L(G), becomes the
solution to this obligation. This is done in case an equivalent
term is encountered in the future. If the pattern s is not
a ground term, then it is matched against all the terms in
Targets , and any potential subterms to reconstruct are saved
in a new set Targets ′. Additionally, s is added to the set Pool
of patterns as it may be useful in matching against new terms
to reconstruct in the match phase.

In the match phase, the new subterms in Targets ′ are
appended to the set Targets and matched against the set
of patterns that have been enumerated so far. Any subterms
returned by this step are stored in Targets ′ and the process

Algorithm 2 match(t, s)

Require: FV(t) = ∅, FV(s) ⊆ Z , typeOf(t) = typeOf(s)
1: Targets ′ ← ∅
2: if patternMatch(s↓, t) = σ then
3: τ ← ∅
4: for (z, st) ∈ σ do
5: if there is (sk, t′) ∈ Obs s.t. t′ ≈T st then
6: Obs ← Obs ∪ {(sk, st)}
7: τ ← τ ∪ {z ↦→ sk}
8: else
9: SN ← nonTerminalOf(z)

10: sk ← newVar(K, SN)
11: τ ← τ ∪ {z ↦→ sk}
12: Obs ← Obs ∪ {(sk, st)}
13: Targets ′ ← Targets ′ ∪ {(SN, st)}
14: end if
15: let k be s.t. (k, t) in Obs
16: CandSols ← CandSols ∪ {k ↦→ τ(s)}
17: if FV(Sol(τ(s))) = ∅ then
18: markSolved(k, τ(s))
19: end if
20: end for
21: end if
22: return Targets ′

is repeated until no new subterms are returned, indicating that
all patterns have been matched against all terms.

Once the matching phase is complete, the solution status
of the main obligation k0 is evaluated. If it is solved, the
reconstruction process is complete. If not, then the current
pool of enumerated patterns cannot derive a solution, and the
enumeration phase is resumed, to generate new patterns.

The alternating behavior of the enumeration and matching
phases is depicted in Figure 1. The vertical bars represent the
enumeration phases, during which new patterns are added to
Pool . It is possible for multiple enumeration phases to occur
before a match is successful. Once a match succeeds, terms to
be reconstructed are added to Targets , and the matching phase
begins. The horizontal bars represent the matching phases,
during which each new term is matched against all the patterns
in Pool .

Procedure newVar: This subprocedure can be invoked
with either K or Z to obtain a fresh variable v for nonterminal
N from K or Z , respectively. The procedure updates the
mapping nonTerminalOf so that nonTerminalOf(v) = N .

Procedure nextEnum: This is a stateful procedure, called
on line 7 of the main procedure rcons, parametrized by a non-
terminal N of the grammar. Let T (N) be the set of all terms
and pre-terms generated by N . Each call to nextEnum(N)
returns the next term in a (fair) enumeration of the set obtained
from T (N) by replacing all occurrences of non-terminals with
variables from Z . For non-terminal A in the grammar of
Example 1, this set of terms would include, for instance, 0−z1,
z1 + z2, and ite(z1, z2, z3) where z1, z2, z3 ∈ Z . In practice,
nextEnum is implemented by modifying standard methods for

192

Algorithm 3 markSolved(k, s)

Require: FV(s) = ∅ and s ≈T t for some (k, t) ∈ Obs.
1: Sol ← Sol ∪ {(k, s)}
2: CandSols ← CandSols ∪ {(k, s)}
3: repeat
4: CandSols ′ ← CandSols
5: CandSols ← {(k,Sol(s)) | (k, s) ∈ CandSols ′}
6: for (k, s) ∈ CandSols do
7: if k ̸∈ dom(Sol) then
8: Sol ← Sol ∪ {k ↦→ s}
9: end if

10: end for
11: until CandSols ′ = CandSols

fast term enumeration [9].
The terms returned by nextEnum serve two purposes in the

main procedure: those with no free variables from Z are used
to discharge terms to synthesize, on lines 9-15 (as we will see
later in subprocedure markSolved); those with free variables
from Z are used as new patterns for matching on lines 17-18.

Procedure match (Algorithm 2): This function takes
in a term t to be reconstructed and a pattern s. The term t is
assumed to be in rewritten form (i.e., t = t↓), However, this is
not necessarily the case for s as it must preserve the syntactic
structure enforced by the grammar.

The first step is to rewrite s and attempt to match the struc-
ture of t. If the match succeeds, match returns the substitution
σ (from variables in Z to subterms from t) required to unify
s↓ and t. This substitution represents the subterms that must
be synthesized before s can be marked as a solution. For each
pair (z, st) in σ, match finds a corresponding sk in Obs or
creates a new obligation sk and adds the pair (sk, st) to Obs .
match then creates a new substitution τ from z to sk and
applies it to s to construct a candidate solution, τ(s), for k
(the variable whose obligation is t). If there are no subterms
to synthesize, τ(s) is a solution to k, and markSolved(k, τ(s))
is called.

Example 2. Consider the following obligations and candidate
solution sets: Obs = {(k0, x − y), (k1, x)} and CandSols =
{(k1, x)}. If we invoke match with s = z0 + (0 − z1) and
t = x−y, then matching will succeed (assuming s↓ = z0−z1)
and return a substitution σ = {z0 ↦→ x, z1 ↦→ y}. The check
at line 5 will determine that x is already in Obs , so there is
no need to create a new obligation for it. However, y is not
in Obs , so a new obligation (k2, y) will be added.

As we process the substitutions in σ, we construct a new
substitution τ = {z0 ↦→ k1, z1 ↦→ k2} and apply it to s to
construct a candidate solution for k0, namely k1 + (0 − k2).
The match procedure returns {(A, y)} as the set of subterms
to reconstruct, resulting in the following updated sets:

Obs = {(k0, x− y), (k1, x), (k2, y)}
CandSols = {(k1, x), (k0, k1 + (0− k2))}

Procedure markSolved (Algorithm 3): The set
CandSols contains candidate solutions s to obligations k.

Specifically, term s is a solution if it does not contain variables.
Whenever that is the case, markSolvedis called to update all
other potential solutions that depend on k. During this process,
complete solutions for other obligations may be discovered.
Thus, we repeat this step until no further such terms appear
(i.e., a fixed point is reached). Algorithm 3 provides a basic
implementation of this procedure.

Example 3. As an illustration, consider the following sce-
nario, which uses the grammar from Example 1. Let
CandSols = {(k0, x+k1), (k1, 0−k2)} and Sol = ∅. Invoking
markSolved(k2, y) results in:

CandSols = {(k0, x+ k1), (k1, 0− k2),

(k2, y), (k1, 0− y), (k0, x+ (0− y))}
Sol = {k0 ↦→ x+ (0− y), k1 ↦→ 0− y, k2 ↦→ y}

B. Rewrite Rule Discovery

There are two situations in which our overall procedure
utilizes theory reasoning to synthesize new rewrite rules.
The first instance occurs in line 9 of Algorithm 1, where
we aim to establish if a ground term we derived from the
grammar is T -equivalent to one of the target terms in Obs
that we want to synthesize. The second instance occurs in
line 5 of Algorithm 2 after a match against a pattern is
successful and generates a substitution. We again utilize theory
reasoning there to determine if there are any obligations that
are T -equivalent to the substitution that match asks us to
synthesize. This line creates an equivalence class of terms to
synthesize, where synthesizing any term in the class amounts
to synthesizing all of them.

We use an SMT solver to discover new rewrite rules.
Calling the solver every time to find a term’s equivalence class,
however, is inefficient. Instead, we follow the approach in
Nötzli et al. [15] and build a trie whose leaves are equivalence
classes and whose nodes are points where the equivalence
classes differ. Those points can be obtained by requesting a
model when the SMT solver determines that two terms are
not T -equivalent.

Note that calling the SMT solver is more costly than just
calling the rewriter, but doing so leads to larger equivalence
classes, thereby providing a greater selection of terms for
reconstruction. In particular, simpler terms may become avail-
able, which can greatly accelerate the reconstruction process.
Although the approach in Nötzli et al. [15] reduces the
number of solver calls required, some calls may still take too
long. In practice then, we set a time limit for each call and
conservatively assume non-equivalence when a call times out.

C. Revisiting the Motivating Example

We return now to the motivating example from Section I-C
to give a detailed run-through of the rcons procedure, which
we simplify slightly to keep the presentation manageable. The

193

objective is to reconstruct the term t0 = x − ite(y > 0, y, 0)
to an equivalent one in the language of the grammar below.

A→ 0 | 1 | x | y | 0−A | A+A | ite(B,A,A)

B → A ≈ A | A > A

rcons starts by initializing the data structure values with:

Obs = {(k0, t0)} Pool = CandSols = Sol = ∅

where k0 is a fresh variable. During the enumeration phase,
rcons begins by enumerating the set of terminal symbols of
the grammar: 0, 1, x, and y. None of them match with t0, but
they are assigned as solutions to artificial obligations, in case
they turn out to be equivalent to subterms of t0.

Obs = {(k0, t0), (k1, 0), (k2, 1), (k3, x), (k4, y)}
CandSols = {(k1, 0), (k2, 1), (k3, x), (k4, y)}

Sol = {k1 ↦→ 0, k2 ↦→ 1, k3 ↦→ x, k4 ↦→ y}

The procedure then proceeds to the next stage of enumeration,
deriving more complex patterns from T (A) and T (B). The
patterns that can be instantiated are stored in Pool . For brevity,
we explicitly list only the significant patterns below.

Pool = {(A, 0− z0), (A, z1 + z2), (A, ite(z3, z4, z5)),

(B, z6 > z7), ...}

rcons continues its process of deriving patterns from the
grammar in an effort to reconstruct t0. At some point, it
arrives at the pattern z8 + (0 − z9), whose rewritten form
is z8 − z9, matching t0. The match creates a substitution
σ = {z8 ↦→ x, z9 ↦→ ite(y > 0, y, 0)}, mapping variables
from Z to subterms to reconstruct. Since we do not know
how to reconstruct all subterms yet, match creates another
substitution, τ = {z8 ↦→ k3, z9 ↦→ k5}, which replaces the
subterms with (potentially new) corresponding obligations.
Substitution τ is then applied to s to create a candidate solution
τ(z8 + (0− z9)) = k3 + (0− k5) for k0. Now we have:

Obs = {(k0, t0), (k1, 0), (k2, 1), (k3, x), (k4, y), ...,
(k5, ite(y > 0, y, 0))}

Pool = {..., (A, ite(z3, z4, z5)), (B, z6 > z7), ...,

(A, z8 + (0− z9))}
CandSols = {(k1, 0), (k2, 1), (k3, x), (k4, y), ...,

(k0, k3 + (0− k5))}
Sol = {k1 ↦→ 0, k2 ↦→ 1, k3 ↦→ x, k4 ↦→ y, ...}

At this point, match returns {(A, ite(y > 0, y, 0))}, the
new term to synthesize. Since Targets ′ is not empty, rcons
enters the match phase for the first time, matching ite(y >
0, y, 0) against all patterns stored in Pool . Matching against
ite(z3, z4, z5) succeeds and generates the substitutions below.

σ = {z3 ↦→ y > 0, z1 ↦→ y, z2 ↦→ 0}
τ = {z3 ↦→ k6, z4 ↦→ k4, z5 ↦→ k1}

match then adds τ(ite(z3, z4, z5)) = ite(k6, k4, k1) as a
candidate solution for k5.

This process is then repeated for the term y > 0. This time,
rcons matches y > 0 against z6 > z7 generating the candidate
solution k4 > k1. Since both k1 and k4 are solved obligations,
markSolved(k6, k4 > k1) is invoked to construct complete
solutions for k6 and any other obligations that depend on it,
such as k5 and k0.

Obs = {(k0, t0), (k1, 0), (k2, 1), (k3, x), (k4, y), ...,
(k5, ite(y > 0, y, 0)), (k6, y > 0)}

CandSols = {(k1, 0), (k2, 1), (k3, x), (k4, y), ...,
(k0, k3 + (0− k5)), (k5, ite(k6, k4, k1)),

(k6, k4 > k1), ...}
Sol = {k0 ↦→ x+ (0− ite(y > 0, y, 0)), ...}

With the solution to k0 contained in Sol , rcons exits the main
loop and returns Sol(k0) = x+ (0− ite(y > 0, y, 0)).

D. Properties

Procedure rcons maintains several invariants that are essen-
tial to its correctness. Those invariants are listed below. We say
that a substitution σ respects grammar G if for all v ↦→ t ∈ σ,
term t is generated by nonTerminalOf(v) of G.

Invariant 1. Obs is a set of pairs of the form (k, t), where
k is an obligation to reconstruct the term t in the grammar,
such that:

1) t : typeOf(k);
2) FV(t) = ∅;
3) s ≈T t for all (k, s) ∈ Obs .

Invariant 2. Pool is a set of pairs of the form (N, t), where
t is a pattern shared by some terms generated from the non-
terminal N , such that:

1) t : typeOf(N);
2) FV(t) ⊆ Z;
3) the ground term σ(t) is generated by N for all substi-

tutions σ over Z that respect grammar G.

Invariant 3. CandSols is a set of pairs of the form (k, t),
where t is a potential solution to the obligation k, such that:

1) t : typeOf(k);
2) FV(t) ⊆ K;
3) The ground term τ(t) is generated by nonTerminalOf(k)

for all substitutions τ over K that respect grammar G;
4) if t is ground, s ≈T t for all (k, s) ∈ Obs .

Invariant 4. Sol is a mapping with pairs of the form k ↦→ t,
where t is a solution to the obligation k, such that:

1) t : typeOf(k);
2) FV(t) = ∅;
3) t is generated by nonTerminalOf(k);
4) s ≈T t for all (k, s) ∈ Obs .

Correctness: The main correctness property of procedure
rcons can be summarized as follows.

Proposition 1. If rcons(G, t0) successfully terminates with a
solution term t, then:

194

1) t ≈T t0, and
2) t is generated by the start symbol N0 of grammar G.

Thus, the returned term t is semantically equivalent to the
input term t0 and satisfies the syntactic restrictions G as well.

Proof sketch. One can show that each update in rcons of
the globals sets maintains invariants 1–4. Points (1) and (2)
above follow from those invariants. In particular, the returned
solution t is Sol(k0), where (k0, t0↓) ∈ Obs due to the
initial value of Obs . By Invariant 4, t ≈T t0↓ ≈T t0.
Furthermore, by Invariant 3, we have that Sol(k0) is generated
by nonTerminalOf(k0) = N0.

Termination: We briefly remark on the termination of rcons
by examining the enumeration and match phases. We argue
that the procedure terminates whenever a term t ≈T t0 can be
produced by enumeration from the grammar, and the underly-
ing theory T has a decision procedure for term equivalence.
Even if the matching components of the procedure fail to make
progress, the enumerator will still arrive at a solution since
enumeration approaches terminate in this setting. So, it is suffi-
cient to show that both phases of the procedure terminate. The
enumeration phase terminates because T -equivalence checks
terminate. In the match phase, every call to match returns
smaller subterms as it only matches against the syntactic
structure of the terms to synthesize. As a result, eventually,
the algorithm will reach a point where matching fails or the
terms can no longer be broken down further. In either case,
match returns an empty set and the match phase terminates.

Unrealizability: It is possible that t0 may be unrealizable
with respect to G, meaning that there is no term t ∈ L(G) such
that t ≈T t0. In its current version, rcons lacks a mechanism to
detect and report unrealizability; it simply diverges. However,
we can draw upon techniques from existing enumeration ap-
proaches, which rcons builds upon, to detect simple cases. An
alternative approach would involve checking the realizability
of syntactic constraints during the matching phase, potentially
requiring a recursive invocation of SyGuS on sub-target terms.
However, for performance reasons and due to rcons not being
designed for handling this situation, we do not incorporate
these mechanisms. For a more comprehensive treatment of
unrealizability, we refer readers to the work by Hu et al. [16].

III. EXPERIMENTAL EVALUATION

We have implemented the rcons procedure as a module
within CVC5’s synthesis solver. Our implementation is com-
prised of roughly 800 lines of C++ code. We evaluated it on
two classes of SyGuS benchmarks: the first was designed to
assess the procedure’s performance under a range of grammars
and theories, while the second consists of benchmarks from
the SyGuS 2019 competition for which the procedure directly
applies. The benchmarks for both classes had a common
structure consisting of four components:

1) Miscellaneous declarations and definitions.
2) The function f to synthesize.
3) Syntactic constraints on f via a grammar G.

4) One semantic constraint of the form ∀x⃗. f(x⃗) ≈ t[x⃗],
where t is the solution we want to fit into G.

In evaluating the effectiveness of rcons, we compared its
performance against the winning solvers of previous SyGuS
competitions: EUSolver3 [6] and CVC4 [17] (and its latest
iteration, CVC5 [18]). We used EUSolver in its default con-
figuration. We considered purely enumerative configurations of
CVC4 and CVC5 (referred to as cvc4-enum and cvc5-enum,
respectively), the procedure from Section 5 of [10] (cvc4-
rcons), as well as our new rcons procedure (cvc5-rcons).
An additional configuration, cvc5-match, uses a modified
version of rcons, with the enumeration phase disabled, and
Pool only holding the patterns found in the given grammar.
This configuration builds the solution solely through matching,
serving as a baseline for our comparisons.

We ran our comparative evaluation on the StarExec plat-
form [19], with a time limit of 30 minutes per instance.

A. Crafted Benchmarks

In the first set of experiments, we randomly generated
SyGuS solution refinement benchmarks for three SMT-LIB
theories of interest: bit-vectors, integer arithmetic, and strings.
We followed the steps below to craft the benchmarks:

1) We constructed a reference grammar for each of the
three theories, each comprising a majority of the sym-
bols for that specific theory.4 We used the reference
grammars to craft our set of benchmarks.

2) We developed a procedure to generate random terms
from the reference grammars, with the derivation length
of the terms adhering to a geometric distribution.

3) We used the reference grammars to construct random
grammars containing the original non-terminals (with
modified rules) and new non-terminals.

Using the simple grammar A → 1 | x | y | A + A as an
example, the procedure used in Step 2 above works as follows.
A string containing only the start symbol, A, is first generated.
A coin is then flipped to determine whether or not to replace
a non-terminal with a randomly selected rule containing non-
terminals (only A+A in our case). For example, if the first two
coin flips yield heads, then A will be replaced with A+A and
either the first or second A (randomly chosen) with A + A.
This would result in either (A + A) + A or A + (A + A).
The process continues until a tails is seen, at which point all
remaining non-terminals are replaced with randomly selected
terminal symbols (0, x, or y in our case) and the resulting
SyGuS term (e.g., 0+ (x+x)) is returned. To ensure that the
derivation length of the terms follows a geometric distribution,
we crafted the reference grammars so that each non-terminal
symbol has at least one terminal rule and at least one rule
containing a non-terminal symbol.

3We updated EUSolver with bug fixes and added missing support for theory
symbols to conform to the latest revisions of SMT-LIB’s standard and theories.

4Some redundant theory symbols were omitted for simplicity. Our reference
grammars along with the benchmarks we considered are available at https:
//github.com/cvc5/artifact-fmcad23-sygus.

195

https://github.com/cvc5/artifact-fmcad23-sygus
https://github.com/cvc5/artifact-fmcad23-sygus

Solver\Fragment bv (1K) nia (1K) slia (1K) Total (3K)

cvc4-enum 518 90 248 856
cvc4-rcons 427 113 66 606
cvc5-enum 530 222 305 1057
cvc5-match 17 6 6 29
cvc5-rcons 955 810 604 2369
EUSolver 498 243 405 1146

TABLE I
THE TABLE SHOWS THE NUMBER OF SYNTHESIZED BENCHMARKS SOLVED

BY EACH SOLVER CONFIGURATION.

The construction in Step 3 works as follows. First, rules
containing non-terminals (A + A for A in the example) are
examined. A coin is flipped to decide whether or not to add
this rule to the random rules for A in the new grammar. If the
rule is added, each non-terminal within the rule is examined
and either kept or replaced with a different (potentially new)
non-terminal of the same type. We add at least one terminal
rule for each non-terminal to ensure that the random grammar
is well defined. Those two steps are repeated for each original
and new non-terminal. The procedure is forced to terminate by
making the probability of adding new non-terminals inversely
proportional to the number of existing non-terminals. An
example of a random grammar that can be generated from
the grammar above is:

A → x | A1 +A2 A1 → 1 | A2 +A3

A2 → x | y | A1 +A A3 → x | A1 +A3

0 500 1,000 1,500 2,000

10−2

10−1

100
101
102
103

Tests solved

Ti
m

e
(s

ec
s)

cvc4-enum cvc4-rcons cvc5-enum
cvc5-match cvc5-rcons EUSolver

Fig. 2. Cactus plot comparing performance of solvers on crafted benchmarks.

Results: The results presented in Table I demonstrate a
marked superiority of our new implementation compared to
other solver configurations. Specifically, cvc5-rcons was able
to successfully solve 846 benchmarks that were not solved by
any other configuration. Conversely, only 44 benchmarks were
solved by other configurations but not by cvc5-rcons. This
disparity becomes even more pronounced when comparing
cvc5-rcons against individual configurations, such as 1,334
vs. 22 uniquely solved benchmarks for cvc5-enum and 1,256
vs. 33 for EUSolver.

Furthermore, our rcons procedure consistently exhibits
faster performance when solving commonly solved bench-
marks. This is particularly pronounced in the case of bit-
vector benchmarks, where significant speedups of one order
of magnitude are observed (16, 17, and 74 times faster than

Solver\Fragment General (877)

cvc4-enum 438
cvc4-rcons 205
cvc5-enum 672
cvc5-match 82
cvc5-rcons 721
EUSolver 640

TABLE II
THE TABLE SHOWS THE NUMBER OF SYGUS 2019 COMPETITION

BENCHMARKS SOLVED BY EACH SOLVER CONFIGURATION.

EUSolver, cvc4-rcons, and cvc5-enum respectively). While
more modest, still significant speedups are observed in the
theories of integers (up to 21 times) and strings (up to 13
times), this is largely due to the other solvers timing out on
most benchmarks in those fragments. The cactus plot presented
in Figure 2 provides a summary of the results.

The number of benchmarks solved by cvc5-match is negli-
gible when compared to that of the other configurations. This
result shows that relying solely on the patterns provided in the
grammar is not effective and generating new patterns through
enumeration is critical for the success of rcons.

B. SyGuS Competition Benchmarks

We also evaluated rcons on a subset of the SyGuS bench-
marks [20], a set of 877 benchmarks used in previous SyGuS
competitions [21], [22], [12], [13], which come from a variety
of user applications. The subset contains only SyGuS solution
fitting problems, the focus of rcons.

The results are shown in Table II and Figure 3. Again,
cvc5-rcons outperformed the competition. In particular, it
managed to solve 49 and 81 more benchmarks than cvc5-
enum and EUSolver, respectively. Overall, cvc5-rcons solved
42 benchmarks that were not solved by any other solver.

The cactus plot from Figure 3 provides further evidence
of the robustness of our approach with respect to previous
solutions. In particular, the graph shows that a previous
approach for matching and enumeration (cvc4-rcons) is able to
solve many benchmarks quickly, but is eventually eclipsed in
performance by cvc4-enum. In contrast, cvc5-rcons solves an
even larger percentage of benchmarks quickly and continues to
compete with cvc5-enum for the entire 30 minute timeout. We
note that cvc5-enum performs well in this set of benchmarks
because 66% of it consists of circuit synthesis problems, which
are not well-suited for unification and matching approaches.
Nevertheless, cvc5-rcons still surpasses cvc5-enum by solving
25 additional problems in this category.

C. Key Insights

Our analysis reveals two factors that have a significant
impact on the performance of rcons across both benchmark
categories.

The first significant factor concerns the extent of rewrites
supported by a particular theory. The presence of an increased
number of rewrite rules often allows rcons to generate solu-
tions that markedly differ from those produced by enumerative

196

0 200 400 600

10−2

10−1

100
101
102
103

Tests solved

Ti
m

e
(s

ec
s)

cvc4-enum cvc4-rcons cvc5-enum
cvc5-match cvc5-rcons EUSolver

Fig. 3. Cactus plot comparing performance of solvers on SyGuS Competition
benchmarks.

Parameter General (877)

0.5 643
0.9 616
0.99 634
0.999 643
0.9999 721
0.99999 718

TABLE III
THE TABLE SHOWS THE NUMBER OF SYGUS 2019 COMPETITION

BENCHMARKS SOLVED BY CVC5-RCONS WITH DIFFERENT PARAMETERS.

approaches. For instance, within Table I, we observe that cvc5-
rcons outperforms alternative solver configurations in the bit-
vector benchmarks. This enhanced performance is primarily
attributed to the prevalence of rewrite rules within this theory.
Conversely, when dealing with circuit synthesis benchmarks,
where meaningful boolean rewrite rules are lacking, cvc5-
rcons exhibits only marginal improvements over cvc5-enum,
as it frequently converges to solutions identical to those found
by cvc5-enum.

The second significant factor revolves around the number
of patterns employed. The core principle guiding rcons is
to mitigate the constraints imposed by the provided gram-
mar rules by producing patterns that offer greater flexibility
for matching purposes. Nonetheless, an excessive number
of patterns can lead to extended durations in the match
phase, thereby degrading overall performance. Our approach
involves initially generating a substantial number of patterns
and subsequently transitioning to enumerating ground terms.
The optimal number of patterns depends on the specific
grammar and theory. In our implementation, we leverage a
geometric distribution to regulate pattern generation. Table III
underscores the substantial impact of varying the geometric
distribution parameter on the performance of cvc5-rcons.

IV. CONCLUSION AND FUTURE WORK

We have presented a novel procedure for the SyGuS solution
fitting problem. The procedure enabled the development of
an advanced enumerative solver that significantly outperforms
other state-of-the-art SyGuS solvers. Our experimental results
show that our procedure finds solutions efficiently by deriving
complex patterns through enumeration, and using them for
matching. The procedure is not restricted to a particular

background theory and can be used in combination with any
theory solver that supports rewrites and equivalence checks.

We conjecture that the scalability of our procedure can
be leveraged in synthesis problems involving optimization
constraints. One class of problems is software optimization, as
applied in compilers for embedded SQL queries, linear algebra
operations, and circuit synthesis [23], [24], [25]. Current
approaches based on synthesis rely on enumerative techniques
to generate optimal programs, which does not scale well. A
more practical approach could be to first synthesize an initial
program, which may not be as efficient as the optimal one,
and then gradually optimize it by optimizing its subterms.
Although this does not always guarantee optimal performance,
it is much more scalable for larger programs. We plan to
investigate enhancements to the rcons procedure to handle
weighted grammars and support this use case.

REFERENCES

[1] R. Alur, M. M. K. Martin, M. Raghothaman, C. Stergiou, S. Tripakis,
and A. Udupa, “Synthesizing finite-state protocols from scenarios and
requirements,” in Hardware and Software: Verification and Testing - 10th
International Haifa Verification Conference, HVC 2014, Haifa, Israel,
November 18-20, 2014. Proceedings (E. Yahav, ed.), vol. 8855 of Lecture
Notes in Computer Science, pp. 75–91, Springer, 2014.

[2] A. Solar-Lezama, “Program sketching,” Int. J. Softw. Tools Technol.
Transf., vol. 15, no. 5-6, pp. 475–495, 2013.

[3] A. Solar-Lezama, L. Tancau, R. Bodík, S. A. Seshia, and V. A. Saraswat,
“Combinatorial sketching for finite programs,” in Proceedings of the
12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2006, San Jose, CA,
USA, October 21-25, 2006 (J. P. Shen and M. Martonosi, eds.), pp. 404–
415, ACM, 2006.

[4] S. Srivastava, S. Gulwani, and J. S. Foster, “Template-based program
verification and program synthesis,” Int. J. Softw. Tools Technol. Transf.,
vol. 15, no. 5-6, pp. 497–518, 2013.

[5] R. Alur, R. Bodík, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-
Gazit, P. Madhusudan, M. M. K. Martin, M. Raghothaman, S. Saha,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in Dependable Software Systems Engineering
(M. Irlbeck, D. A. Peled, and A. Pretschner, eds.), vol. 40 of NATO Sci-
ence for Peace and Security Series, D: Information and Communication
Security, pp. 1–25, IOS Press, 2015.

[6] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program
synthesis via divide and conquer,” in Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part I (A. Legay and T. Margaria, eds.), vol. 10205
of Lecture Notes in Computer Science, pp. 319–336, 2017.

[7] K. Huang, X. Qiu, P. Shen, and Y. Wang, “Reconciling enumerative
and deductive program synthesis,” in Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15-20, 2020 (A. F.
Donaldson and E. Torlak, eds.), pp. 1159–1174, ACM, 2020.

[8] S. Padhi, R. Sharma, and T. D. Millstein, “Data-driven precondition
inference with learned features,” in Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016
(C. Krintz and E. D. Berger, eds.), pp. 42–56, ACM, 2016.

[9] A. Reynolds, H. Barbosa, A. Nötzli, C. W. Barrett, and C. Tinelli,
“cvc4sy: Smart and fast term enumeration for syntax-guided synthesis,”
in Computer Aided Verification - 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II
(I. Dillig and S. Tasiran, eds.), vol. 11562 of Lecture Notes in Computer
Science, pp. 74–83, Springer, 2019.

[10] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. W. Barrett,
“Counterexample-guided quantifier instantiation for synthesis in SMT,”
in Computer Aided Verification - 27th International Conference, CAV

197

2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II
(D. Kroening and C. S. Pasareanu, eds.), vol. 9207 of Lecture Notes in
Computer Science, pp. 198–216, Springer, 2015.

[11] R. Alur, P. Cerný, and A. Radhakrishna, “Synthesis through unification,”
in Computer Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II
(D. Kroening and C. S. Pasareanu, eds.), vol. 9207 of Lecture Notes in
Computer Science, pp. 163–179, Springer, 2015.

[12] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “SyGuS-Comp
2016: Results and analysis,” in Proceedings Fifth Workshop on Synthesis,
SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016 (R. Piskac and
R. Dimitrova, eds.), vol. 229 of EPTCS, pp. 178–202, 2016.

[13] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “SyGuS-Comp
2017: Results and analysis,” in Proceedings Sixth Workshop on Synthe-
sis, SYNT@CAV 2017, Heidelberg, Germany, 22nd July 2017 (D. Fisman
and S. Jacobs, eds.), vol. 260 of EPTCS, pp. 97–115, 2017.

[14] A. Reynolds, V. Kuncak, C. Tinelli, C. W. Barrett, and M. Deters,
“Refutation-based synthesis in SMT,” Formal Methods Syst. Des.,
vol. 55, no. 2, pp. 73–102, 2019.

[15] A. Nötzli, A. Reynolds, H. Barbosa, A. Niemetz, M. Preiner, C. W.
Barrett, and C. Tinelli, “Syntax-guided rewrite rule enumeration for SMT
solvers,” in Theory and Applications of Satisfiability Testing - SAT 2019
- 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12,
2019, Proceedings (M. Janota and I. Lynce, eds.), vol. 11628 of Lecture
Notes in Computer Science, pp. 279–297, Springer, 2019.

[16] Q. Hu, J. Breck, J. Cyphert, L. D’Antoni, and T. W. Reps, “Proving
unrealizability for syntax-guided synthesis,” in Computer Aided Verifi-
cation - 31st International Conference, CAV 2019, New York City, NY,
USA, July 15-18, 2019, Proceedings, Part I (I. Dillig and S. Tasiran,
eds.), vol. 11561 of Lecture Notes in Computer Science, pp. 335–352,
Springer, 2019.

[17] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings (G. Gopalakrishnan and S. Qadeer,
eds.), vol. 6806 of Lecture Notes in Computer Science, pp. 171–177,
Springer, 2011.

[18] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, “cvc5: A
versatile and industrial-strength SMT solver,” in Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Con-
ference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2-7, 2022, Proceedings, Part I (D. Fisman and G. Rosu, eds.), vol. 13243
of Lecture Notes in Computer Science, pp. 415–442, Springer, 2022.

[19] A. Stump, G. Sutcliffe, and C. Tinelli, “Starexec: A cross-community
infrastructure for logic solving,” in Automated Reasoning - 7th Interna-
tional Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings
(S. Demri, D. Kapur, and C. Weidenbach, eds.), vol. 8562 of Lecture
Notes in Computer Science, pp. 367–373, Springer, 2014.

[20] S. Padhi, A. Reynolds, A. Udupa, and E. Polgreen, “SyGuS bench-
marks.” https://github.com/SyGuS-Org/benchmarks, 2019.

[21] R. Alur, D. Fisman, S. Padhi, R. Singh, and A. Udupa, “SyGuS-Comp
2018: Results and analysis,” CoRR, vol. abs/1904.07146, 2019.

[22] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama, “Results and
analysis of SyGuS-Comp’15,” in Proceedings Fourth Workshop on Syn-
thesis, SYNT 2015, San Francisco, CA, USA, 18th July 2015 (P. Cerný,
V. Kuncak, and P. Madhusudan, eds.), vol. 202 of EPTCS, pp. 3–26,
2015.

[23] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, vol. 2 of
The Kluwer International Series in Engineering and Computer Science.
Springer, 1984.

[24] S. Chaudhuri, “An overview of query optimization in relational systems,”
in Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 1-3, 1998, Seattle,
Washington, USA (A. O. Mendelzon and J. Paredaens, eds.), pp. 34–43,
ACM Press, 1998.

[25] M. Willsey, Y. R. Wang, O. Flatt, C. Nandi, P. Panchekha, and
Z. Tatlock, “egg: Easy, efficient, and extensible e-graphs,” CoRR,
vol. abs/2004.03082, 2020.

198

https://github.com/SyGuS-Org/benchmarks

	Introduction
	Related Work
	Technical Preliminaries
	Motivating Example

	A Procedure for SyGuS Solution Fitting
	The Term Reconstruction Procedure
	Rewrite Rule Discovery
	Revisiting the Motivating Example
	Properties

	Experimental Evaluation
	Crafted Benchmarks
	SyGuS Competition Benchmarks
	Key Insights

	Conclusion and Future Work
	References

