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Kurzfassung

Das Modellieren des allgemeinen Lösens von Problemen als Suche in einem Zustands-
raum ist eine wohlbekannte Abstraktion. Eine komplexe Aufgabe wird dabei in eine
wohldefinierte Modellwelt transferiert, in der das Finden von und Argumentieren über
Algorithmen ungleich einfacher ist. Ein Hauptmerkmal ist die Zerlegung einer Lösung
für ein Problem in eine Abfolge von Aktionen, wobei diese gewisse Eigenschaften haben
soll. Es ist ein mächtiges Paradigma welches u.A. in den Bereichen künstliche Intelligenz,
kombinatorische Optimierung und stochastischer Planung zum Einsatz kommt.

Das Ziel dieser Arbeit ist das Voranbringen der Zustandsraumsuche angewandt auf stati-
sche kombinatorische Optimierungsprobleme und stochastische Entscheidungsprobleme, in
der eine Reihe von abhängigen Unterproblemen gelöst werden muss. Wenngleich schon gut
entwickelte Theorien und viele exakte und heuristische Lösungsansätze existieren, gibt es
immer noch genügend Raum zur Weiterentwicklung. Einerseits setzt die kombinatorische
Explosion praktischen Lösungsverfahren Grenzen, welche immer wieder ein Stück versetzt
werden wollen. Andererseits haben dynamische und stochastische Probleme vermehrt
an Bedeutung gewonnen. Datengetriebene Ansätze und Hochleistungs-Computer bieten
neue Werkzeuge, die weiter mit bestehenden Methoden kombiniert werden möchten.

Im ersten Teil dieser Arbeit konzentrieren wir uns auf wohlbekannte statische Opti-
mierungsprobleme. Wir beginnen damit eine neue Zustandsraum-Formulierung für ein
praktisch besonders schwieriges Problem aufzustellen, für das Traveling Tournament
Problem (TTP). Wir schlagen heuristische Lösungsverfahren basierend auf Beam Search
vor, einem heuristischen Suchalgorithmus. Wir untersuchen unterschiedliche, auf unteren
Schranken basierende Evaluierungsfuntionen und zeigen wie diese randomisiert werden
können, um die Suche erfolgreich zu diversifizieren und zu parallelisieren.

Mit der steigenden Verfügbarkeit von Mehrprozessor-Systemen und gleichzeitigem gerin-
geren Wachstum von Einzel-Prozessor Durchsatz im letzten Jahrzent, gewinnt Parallelisie-
rung noch mehr an Bedeutung. Inspiriert durch die erfolgreiche Anwendung auf das TTP,
erweitern wir unseren Ansatz zu einem generellen parallelen Beam Search Framework,
entwickelt in der Programmiersprache Julia, für kombinatorische Optimierungsprobleme.
Angewandt auf das TTP, das Permutation Flowshop Problem (PFSP) und das Maximum
Independent Set Problem (MISP), zeigen wir die erhebliche Verkürzung der Laufzeiten
durch mittel bis hohe parallele Effizienz für ausreichend große Probleminstanzen, und
finden viele neue beste Lösungen für TTP Benchmark-Instanzen.
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Im zweiten Teil befassen wir uns mit dynamischen und stochastischen Problemen. Zeit
betritt als zentraler Parameter die Bühne und Information wird uns Stück für Stück
serviert, wobei wir stochastische Informationen in Form von Wahrscheinlichkeitsvertei-
lungen von Beginn an zur Verfügung haben. Aktionen sind nicht mehr deterministisch
und der Ablauf im Zustandsraum kann oft über einen Markov decision process (MDP)
modelliert werden, in welchem Aktionen und Zustandsübergänge probabilistischer Natur
sind. Das allgemeine Ziel ist das Finden sogenannter Policies, welche die Entscheidungen
determinieren und gut für eine Instanzklasse eines Problems funktionieren sollen.
Als exemplarisches, schwieriges stochastisches Entscheidungsproblem, führen wir ein
Lieferung-binnen-einer-Stunde Problem ein, welches von einem Online-Supermarkt in
Wien stammt, der Lieferungen innerhalb einer Stunde verspricht. Im Kern ist es ein
dynamisches und stochastisches Tourenplanungsproblem mit einem dynamischen Schicht-
planungsaspekt, da wir auch die möglichen Überstunden der Fahrer managen müssen. Das
Ziel ist die automatische Tourenplanung und Entsendung der Lieferflotte über einen Tag
hinweg, um auf die eingehenden Bestellungen bestmöglich zu reagieren. Das Primärziel
ist Kundenzufriedenheit, wobei die Lieferkosten als Sekundärziel minimiert werden sollen.
Ob der Problemkomplexität, führen wir einen Zerlegungsansatz durch. Für die statische
Tourenplanung schlagen wir eine wohlbekannte Adaptive Large Neighborhood Search
(ALNS) vor. Zur dynamischen Schichtplanung verwenden wir einen Dual-Horizont Ansatz.
Dabei wird vor jeder Entscheidung ein vereinfachtes Unterproblem für die Zukunft gelöst,
um die benötigten Überstunden der Fahrerinnen abzuschätzen. Als Wartestrategie für
Routen schlagen wir eine Heuristik vor, welche Routen, die bereits effizient genug sind,
früher startet als ineffiziente. Wir evaluieren unsere Ansätze auf repräsentativen Instanzen
und zeigen, dass diese einen balancierenden Effekt auf die drei Dimensionen Verspätungen,
Fahrtkosten und Überstunden haben.
Die Verteilung der mittleren Lieferdauer, welche wir auch Routen-Performance nennen
ändert sich mit der Zeit und hängt stark von der Anzahl der Bestellungen – der aktuellen
Last – und der Verkehrssituation ab. Eine Abschätzung bzw. Vorhersage dieser Kenngröße
ist sehr wichtig für verschiedene Aspekte wie der statischen Schichtplanung im Vorhinein,
der dynamischen Schichtplanung am selben Tag und der vorher erwähnten Wartestrategie.
Zu diesem Zwecke untersuchen wir unterschiedliche Vorhersagemodelle basierend auf
überwachtem Lernen auf simulierten und echten Daten.
Der klassische Ansatz aus der Literatur ist eine Stichprobe von Szenarien der nahen
Zukunft zu ziehen und die sich daraus ergebenden statischen Tourenplanungsprobleme
bestehend aus echten und virtuellen Bestellungen zu lösen und daraus eine Konsensus-
Entscheidung abzuleiten. Sein größter Nachteil ist der Berechnungs-Aufwand, da die
Stichprobe ausreichend groß sein muss. Wir schlagen daher eine günstigere Methode
zur Nachahmung des Stichproben-Ansatzes vor, bei dem in einer offline Trainings-
Phase die stochastische Information als eine approximative Bewertungsfunktion direkt
in die Zielfunktion transferiert wird. Dadurch bleiben die Berechnung für die kurzfristig
benötigten online Entscheidung schnell, aber berücksichtigen auch implizit die nähere
Zukunft und nicht nur den kurzsichtigen Ertrag.



Abstract

State-space search is a well-known abstraction for general problem solving. Its merit is
the transformation of a complex task into a well-behaved model world in which it is easier
to devise algorithms and to reason about them. A main feature is the decomposition
of a problem’s solution into a sequence of actions, where we are interested in finding
a sequence with some desired properties. It is a powerful paradigm used for instance
in artificial intelligence, planning, combinatorial optimization, and stochastic decision
making.

In this work, we aim to advance state-space search for static combinatorial optimization
and for stochastic decision making, where a series of dependent subproblems has to be
solved. Well-developed theories and many exact and heuristic solution approaches to
tackle this broad class of problems already exist. Still, there is room left for improvement
due to the combinatorial explosion with growing problem size and the shift from static
towards dynamic and stochastic problem variants, creating new challenges. With the
recent rise of data-driven approaches based on machine learning methods and the increase
of high performance computing resources, we have new tools at our disposal to be
incorporated into existing solution approaches to face these challenges.

In the first part of this thesis, we focus on state-space search for static combinatorial
optimization problems. We start by introducing a novel state-space formulation to a
particularly challenging benchmark problem from sports league scheduling, the traveling
tournament problem (TTP). We propose to solve it heuristically with different beam
search variants, a heuristic search algorithm, extending lower bound calculation methods
from the literature to guide the search with randomization to diversify the search. This
allows us to find several new best feasible solutions for long-standing difficult benchmark
instances. Additionally, we study bounded suboptimal weighted A∗ search behavior.

With the increased availability of many-core system clusters and the reduced slope in single-
threaded performance increase over the last decade, parallelization in solvers becomes
even more of a topic. Inspired by the success on the TTP, we propose and implement a
general parallel beam search framework in Julia for combinatorial optimization problems.
The natural approach is to split each layer’s workload and distribute it among multiple
cores. We demonstrate substantial speedups on the TTP, the permutation flowshop
problem (PFSP), and the maximum independent set problem (MISP), with medium to
high parallel efficiency for sufficiently large problem instances.
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In the second part of the thesis, we move from static to dynamic and stochastic opti-
mization problems. Time enters as a parameter and information is revealed to us bit by
bit and we have only stochastic information in form of probability distributions available
upfront. Actions are not deterministic anymore and the overall problem is best modeled
as Markov decision process (MDP), where actions and state transitions are probabilistic.
The general goal is to devise policies and decision rules, using handcrafted heuristics or
approaches based on approximate dynamic programming (ADP).

As a challenging stochastic decision-making problem, we introduce a real-world same-hour
delivery problem originating from an online supermarket in Vienna, which promises
to deliver orders within the hour. The task is to automatically dispatch a fleet of
vehicles by planning their delivery routes and potential overtime to react to dynamically
arriving orders by stochastic customers. The primary objective is to maximize customer
satisfaction while minimizing the real delivery costs as a secondary objective.

Due to the problem complexity we employ a decomposition approach. For the static
route optimization part, we propose and tune a well-known adaptive large neighborhood
search (ALNS). To dynamically plan shifts, we propose a dual-horizon approach, where
at each decision epoch a simplified subproblem is solved in a sampling horizon to derive
desired overtime for the drivers, which is then fed back into a modified objective function
for the ALNS. As a waiting strategy, we propose a simple yet effective heuristic that lets
sufficiently efficient routes start earlier than inefficient ones. We compare our approaches
on different real-world inspired artificial instances and show the balancing effect on the
three dimensions tardiness, travel times, and driver overtime.

The distribution of mean order delivery times, which we also call route or driver perfor-
mance, changes over time, depending mostly on the number of orders available and the
traffic. Having an estimate for this performance value is important for other decisions,
like the static shift planning upfront, the dynamic shift planning during the day, and the
aforementioned waiting strategies. To this end, we study different predictors trained by
supervised learning on simulated and historical real-world data which can be used in the
online decision making.

A classical approach from the literature is to sample multiple scenarios in a short horizon
and solve static vehicle routing problems combining real and sampled orders. The resulting
solutions are then used to derive a consensus decision taking the stochastic knowledge
into account, unlike a myopic approach. The main drawback is its high computational
effort since sufficiently many scenarios have to be evaluated. In the two final chapters of
this thesis, we, therefore, build on the approximate dynamic programming paradigm to
emulate the behavior of scenario sampling driven policies by training an approximation
function offline, which is then incorporated into an augmented objective function for the
ALNS. The online computation is then still sufficiently fast for near real-time decisions
and also makes use of the stochastic information considering the value decisions instead
of only considering the current reward.
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CHAPTER 1
Introduction

Search is an essential technique in general problem solving applied both by humans and
machines. It is a mental or mechanical exploration of a model world as to find a desirable
sequence of actions to either come closer or achieve a certain goal. In computer science, it
prominently appears in the fields of artificial intelligence, planning, combinatorial games,
and optimization. For instance, multiple agents with initial positions on a grid have to
find a path to their goal states without colliding while minimizing the time needed for
the last one to be in its final state [140]. Newell and Simon in their epic book from 1972
[112] “Human problem solving” argue that searching in a so-called problem space is also
how parts of human thinking work.

The focus of this thesis is on combinatorial optimization problems modeled as search
problems in state spaces. This well-known paradigm amounts to decomposing the solving
process of problem instances into a sequence of decisions associated with costs and using
local information to guide this process or to exclude unpromising decisions early. For
static optimization problems, the transitions between the states are deterministic and
we have complete information from the start. For dynamic and stochastic optimization
problems time appears as a parameter and we operate within a non-deterministic setting.

Combinatorial optimization problems have the distinguishing feature that for a problem
instance the number of solutions is finite and could in principle be enumerated to find a
best solution according to defined criteria, e.g., finding the shortest path from a start to
a goal vertex or finding a minimum cost Hamiltonian cycle in a graph. Still, the solving
faces the challenges of combinatorial explosion, i.e., the rapid growth of the way elements
can be arranged or selected with the instance size, and the curse of dimensionality, the
growth of the number of possible value combinations when adding finite-domain variables
to the problem—new dimensions. Most interesting problems are often N P-hard, i.e., are
widely believed to have in general a worst-case runtime which is at least exponential in
the input size, unless P = N P .
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1. Introduction

Classical complexity theory goes back to the late 60s and 70s [31, 63]. Since then the
concepts of fixed parameter tractability and parameterized complexity [42, 34] have
emerged, where the complexity of instance classes can be captured and isolated into
a certain structure with parameter (e.g., treewidth of a graph), and instances become
tractable again if this parameter is bounded.

Another natural way to practically attack large problem instances is to drop the need for
optimality, i.e., it suffices or even is required to find high-quality solutions in reasonable
time without seeking to provide an optimality guarantee. This is then called heuristic
optimization in general or heuristic search when we emphasize the search aspect in
problem solving, our main research field.

In Chapter 3 of this thesis, we begin with static optimization problems, where we make
contributions to advancing state-space search based algorithms. To this end, we consider
the traveling tournament problem (TTP) as a prototypical benchmark problem introduced
by Easton, Nemhauser, and Trick [46]. The goal is to construct a double round robin
tournament for an even number of teams so that their total travel distance is minimized
(teams go directly from venue to venue) with a maximum number of home or away games
in a row and no games between two teams back-to-back. It is a challenging benchmark
problem for exact and heuristic methods combining difficult feasibility and optimality
aspects and rapid growth of the search space with many symmetries in the search space.

We propose a novel state-space formulation on which we apply a randomized beam search
algorithm, for which we provide a thorough empirical study using different guidance
functions and compare with the so-far state-of-the-art simulated annealing approach. We
observe that a combination of beam search and a fast local search comes close to so-far
best-found solutions and finds new best solutions for several long-standing instances.
Furthermore, we show the behavior of bounded suboptimal weighted A∗ search on the
TTP’s state graph over different optimality guarantees, and how the number of node
expansions can be reduced by beneficial variable ordering and duplicate detection.

The recent increase in computational resources is largely attributed to parallelization
on CPU core and GPU level, as the clock frequencies of CPUs have reached a natural
physical limit. To address this, we generalize our TTP beam search algorithm to a
general, parallel beam search framework for optimization in Chapter 4, where we focus
on shared-memory systems with many cores and uniform memory. We demonstrate
large speedups and medium to high parallel efficiency on three NP-hard combinatorial
optimization problems: For the permutation flowshop problem (PFSP), said TTP, and
the maximum independent set problem (MISP). For the TTP we perform large-scale runs,
by which we could find many new feasible solutions for difficult benchmark instances
from the literature and are on par with the state of the art in terms of the mean solution
quality.

Afterwards, we move on to dynamic and stochastic optimization, where we focus on
same-day delivery problem variants [162] originating from a corporation with an online
supermarket in Vienna, which promises to deliver goods within the same hour. These
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kinds of problems are dynamic and stochastic vehicle routing problems [126] in which
orders of customers, which are only revealed over time and unknown at the beginning of
the planning horizon, have to be delivered within short deadlines given a fleet of vehicles.
The task is to automatize the process of deciding which orders should be delivered
when and by which driver, so that we first maximize customer satisfaction and second
minimize the company’s expected costs. Furthermore, we are also given a spatiotemporal
distribution of the load pattern over the day and the question is how to incorporate this
stochastic information into our near real-time decision making process.

In Chapter 5, we introduce the general problem and a solution approach decomposing
the different aspects of this complex problem. The routing and dynamic shift planning is
based on an adaptive large neighborhood search (ALNS) and a dual horizon optimization
[109]. The latter solves a simplified problem for a larger horizon into the future and feeds
this information into the shorter horizon optimization done by the ALNS to subsequently
derive near real-time decisions. Another important decision is when to start routes
[86, 163]. We propose a simple yet effective heuristic that starts more efficient routes
earlier and still inefficient routes later. Combined to a whole decision making entity, we
compare our approach on different real-world inspired artificial instances with baseline
strategies and show the balancing effect regarding the three objective dimensions tardiness,
travel times, and driver overtime, when considered as multiple objectives.

Estimating the mean order delivery time of drivers throughout the day depending on
the load pattern and traffic is an important parameter for the decision making, e.g., to
anticipate how many drivers we need or to estimate the relative performance of the routes.
In Chapter 6 we study different machine learning models to predict the performance of
drivers, which mainly depends on traffic and load, given real-world data from Vienna
and discuss how it can be used in the optimization. While for small-load situations the
prediction remains challenging due to high variance, for medium and high-load situations
effective unbiased predictors could be trained.

One standard method from the literature is the multiple scenario sampling approach
(MSA) with consensus function [11, 162], where within a sampling horizon a number of
scenarios are sampled, solved as offline problems, and then the obtained scenario plans
are used to derive the next decision. A drawback is that this approach is computationally
very demanding and therefore often prohibitive for real-time use. In the last two Chapters
7 and 8 of the thesis’ main body we discuss supervised learning approaches to train either
a surrogate function or a value function [158, 89] for the routing decisions of same-hour
delivery in a computationally demanding offline phase, which is then incorporated in the
objective function for the time-critical online optimization. We show that the routing
behavior of MSA, which reduces travel duration and tardiness substantially compared
to myopic policies, can be successfully emulated using this surrogate function approach
while still allowing near-realtime decisions.

To summarize, the main contributions of this thesis are:

• State-space formulation and randomized beam search for the challenging TTP.
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1. Introduction

• Thorough computational study on difficult TTP benchmark instances from the
literature of said beam search compared with weighted A∗ search and state-of-the-art
simulated annealing.

• Extension to a general, parallel beam search framework for combinatorial opti-
mization with large speedups and medium/high parallel efficiency over a range of
exemplary problems with different properties.

• A dual-horizon approach for same-hour problems with shift flexibility, a challenging
dynamic vehicle routing problem with stochastic customers.

• A supervised learning approach to predict simulated and real-world mean order
delivery times for same-hour delivery problems.

• A supervised learning approach to estimate value functions/surrogate functions to
be used in the point-in-time optimization to account for the dynamic and stochastic
aspects of problems.

We now give an overview of the structure of this thesis and our related previous publica-
tions upon which it is based.

1.1 Structure of the Thesis
The next chapter is dedicated to the methodology, where we concisely discuss relevant
aspects of heuristic optimization, state space search, shared-memory parallelization,
Markov decision processes, approximate dynamic programming, and supervised learning
for regression problems.

The main body of the thesis can be seen as split into two parts. The first part deals
with state-space search for static combinatorial optimization problems. In particular, we
focus on the heuristic method beam search, which we apply to the famously challenging
traveling tournament problem in Chapter 3. Driven by its computational demand, we
derive a general, parallel beam search framework for combinatorial optimization problems
in Chapter 4 which we study on an exemplary set of combinatorial optimization problems
with different properties. The work on beam search for the TTP was first presented at
the EvoCOP 2020 conference and published in its proceedings. Afterwards, a subsequent
invited extended journal version was published in the Evolutionary Computation Journal:

Nikolaus Frohner, Bernhard Neumann, and Günther R Raidl. A beam search
approach to the traveling tournament problem. In Evolutionary Computation in
Combinatorial Optimization – 20th European Conference, EvoCOP 2020, volume
12102 of LNCS, pages 67–82. Springer, 2020

Nikolaus Frohner, Bernhard Neumann, Giulio Pace, and Günther R Raidl. Approach-
ing the traveling tournament problem with randomized beam search. Evolutionary
Computation Journal, 2022. in press
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The concepts behind the parallel beam search framework were published as extended
abstract in the proceedings and presented in the poster session at the SoCS 2022:

Nikolaus Frohner, Jan Gmys, Nouredine Melab, Günther R Raidl, and El-Ghazali
Talbi. Parallel beam search for combinatorial optimization (extended abstract).
International Symposium on Combinatorial Search, 15(1):273–275, 2022

The full version of the paper was presented at the 51st International Conference on
Parallel Processing (ICPP) in the Parallel and Distributed Algorithms for Decision
Sciences (PDADS) workshop and published in the corresponding proceedings:

Nikolaus Frohner, Jan Gmys, Nouredine Melab, Günther R Raidl, and El-Ghazali
Talbi. Parallel beam search for combinatorial optimization. In 51th International
Conference on Parallel Processing Workshop, ICPP Workshops ’22. Association for
Computing Machinery, 2022

Before we shifted our focus to heuristic methods, in particular beam search, we also
worked on improving dual bounds using relaxed binary decision diagrams for combinatorial
optimization problems (not included in this thesis), in particular on the MISP:

Nikolaus Frohner and Günther R Raidl. Towards improving merging heuristics
for binary decision diagrams. In Proceedings of LION 13 – 13th International
Conference on Learning and Intelligent Optimization, volume 11968 of LNCS, pages
30–45. Springer, 2019

Nikolaus Frohner and Günther R Raidl. Merging quality estimation for binary
decision diagrams with binary classifiers. In Machine Learning, Optimization, and
Data Science – 5th International Conference, LOD 2019, volume 11943 of LNCS,
pages 445–457. Springer, 2019

In another separate project not presented here, we combined constraint programming
with metaheuristics to tackle a real-world employee scheduling problem:

Nikolaus Frohner, Stephan Teuschl, and Günther R Raidl. Casual employee scheduling
with constraint programming and metaheuristics. In Computer Aided Systems Theory
– EUROCAST 2019, volume 12013 of LNCS, pages 279–287. Springer, 2020

In the second part of the thesis, time is introduced as a parameter moving to dynamic
optimization problems. In Chapter 5 we introduce a new same-day delivery problem
variant originating from the real world, a challenging dynamic and stochastic vehicle
routing problem. It is based on the work published at the PATAT 2020 (due to COVID-19
postponed twice, became PATAT 2022):
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1. Introduction

Nikolaus Frohner and Günther R Raidl. A double-horizon approach to a purely
dynamic and stochastic vehicle routing problem with delivery deadlines and shift
flexibility. In Proceedings of the 13th International Conference on the Practice and
Theory of Automated Timetabling - PATAT 2021: Volume I, 2020

The subsequent chapters deal with further aspects and variants of this problem class.
In Chapter 6 we study different machine learning models on real-world data to predict
the performance of drivers in form of the mean order delivery time for a given time
and day. The work has been presented at the ISM 2020 and has been published in the
corresponding open access proceedings:

Nikolaus Frohner, Matthias Horn, and Günther R Raidl. Route duration prediction
in a stochastic and dynamic vehicle routing problem with short delivery deadlines.
In Proceedings of the 2nd International Conference on Industry 4.0 and Smart
Manufacturing (ISM 2020), volume 180 of Procedia Computer Science, pages 366–
370. Elsevier, 2021

In Chapters 7 and 8, we present approaches to replace the computationally heavy
sampling method with offline learning of a value function that is used in the online
optimization augmenting the myopic objective function to account for stochastic and
dynamic aspects of the problem. These works have been presented at the CPAIOR 2021
and the EUROCAST 2022 conferences, respectively, and published in the corresponding
proceedings:1

Adrian Bracher, Nikolaus Frohner, and Günther R Raidl. Learning surrogate functions
for the short-horizon planning in same-day delivery problems. In 17th International
Conference on Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR’21), volume 12735 of LNCS, pages 283–298. Springer,
2021

Nikolaus Frohner and Günther R Raidl. Learning value functions for same-day
delivery problems. In Computer Aided Systems Theory – EUROCAST 2022, LNCS.
Springer, 2022. accepted

Where applicable, relevant extensions to the publications in this thesis are discussed at
the end of each chapter’s abstract. Corresponding new sections/paragraphs are marked
with a dagger† symbol.

1publication of the EUROCAST paper has been accepted but delayed to the next edition 2024
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CHAPTER 2
Methodology

In this chapter, we introduce the main methods used to approach our static and dynamic
optimization problems. We begin by giving an overview on heuristic optimization in
general, which deals with finding high-quality solutions to practically relevant instance
classes of optimization problems in reasonable time, while not necessarily having an
optimality guarantee. We subsequently focus on state space search, a well-known paradigm
modeling a problem as—either heuristic or exact—search for a goal state in a state graph
starting from an initial state. It is well known in AI and planning but also applicable to
static combinatorial optimization problems. Apart from devising stronger heuristics to
reduce the number of search nodes to be expanded or to improve the solution quality
given the same number of nodes searched, increasing the throughput by parallelization is
another method to speed up corresponding search algorithms. We briefly discuss data
parallelism on multi-core shared memory systems which is the main parallelization tool
in this thesis.

So far, we have focused on static optimization which results in deterministic transitions
on the state graph. In the second main part of this thesis, we discuss same-day delivery
problems, which are dynamic vehicle routing problems with stochastic customers. Time
and uncertainties enter our scope and information is only revealed dynamically, such
that we end up with a sequence of linked optimization problems together with stochastic
decision making. Our state space is now best modeled as Markov decision process,
which we discuss together with approximate dynamic programming. Its transitions are
probabilistic and we can only reason about statistics of solution approaches (e.g., expected
costs) by considering many realizations from an instance class. One method to tackle
such problems is to perform roll-outs at decision epochs and derive an actual decision
to perform. Such roll-outs are often computationally expensive and we therefore aim
at learning auxiliary functions in a training phase to perform informed online decisions
more quickly. To this end, we discuss supervised learning for regression problems, to use
suitably trained models as estimators and predictors in our dynamic problems.
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2. Methodology

2.1 Heuristic Optimization
Many interesting problems in combinatorial optimization are difficult to solve to proven
optimality in practice, where even methods with clever reasoning struggle with the enor-
mous size of the search space of sufficiently large instances. The concrete quantification of
the practical limit for the instance size is dependent on the considered problem, whether
we focus on particular instance classes with a certain exploitable structure reducing com-
plexity, the currently available state-of-the-art solution approaches and implementations,
computing resources, potential parallelization, and how much time we grant ourselves to
wait for the solution.

As illustration, consider the traveling salesperson problem (TSP), where a non-trivial
problem instance with 85 900 vertices based on circuit design was solved within hundreds
of CPU years on a cluster in the 2000s to proven optimality using a highly sophisticated
branch-and-cut algorithm implemented in the Concorde1 solver—the journey of its genesis
is presented in the book by Applegate, Bixby, Chvátal, and Cook [6]. On the other side
of the spectrum lies the traveling tournament problem (TTP), where a double round
robin (DRR) tournament with n teams has to be scheduled while minimizing the travel
distance over all teams subject to constraints on the schedule. Instances with as little as
ten teams could be solved within one to two CPU years to optimality with a sophisticated
state-of-art iterative deepening A∗ approach [155], while instances with 12 teams and
more still remain unsolved in an exact fashion up to this date. What many interesting
optimization problems share is that sooner or later the combinatorial explosion kicks
in and that any exact algorithm is believed to have at least exponential runtime in the
size of the input, unless P = N P . We formalize combinatorial optimization problems as
follows:

Definition 2.1. A combinatorial optimization problem (COP) is defined by a set of
instances C, where a given problem instance C ∈ C, C = ⟨S, f⟩ has a finite solution space
S together with an objective function f : S → R to be minimized.2 The goal of the
corresponding search problem is to find a globally optimal solution x∗, i.e., for which the
objective value z∗ = f(x∗) ≤ f(x′) ∀x′ ∈ S. (Papadimitriou and Steiglitz [114])

In heuristic optimization, we make a trade-off. We sacrifice solution quality in return
for shorter runtime. On a high level, this is done by drastically reducing the considered
search space, since we do not have the burden of providing optimality guarantees anymore.
We still need to balance between diversification, to cover much of it on a coarse level
and not to miss interesting parts, and intensification, to more closely look into promising
regions to find high-quality solutions. Metaheuristics, like simulated annealing (SA, [91]),
variable neighborhood search (VNS, [110]), tabu search (TS, [69]), genetic algorithms
(GA [82]), and many more, provide algorithmic templates related to this dilemma
applicable on a wide variety of problems. A detailed compilation of this weaponry is

1https://www.math.uwaterloo.ca/tsp/concorde.html
2Maximization can be converted into a minimization by applying the transformation f(x) → −f(x).
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2.1. Heuristic Optimization

presented in the Handbook of Metaheuristics [66]. Suitable problem-specific methods and
operators concerning the exploration of the search space and the exploitation of promising
information have to be devised for a successful solution approach. Proper algorithmic
tuning is necessary to avoid premature convergence to unsatisfactory solutions.

To categorize heuristics, we mainly distinguish them along the following two dimensions.

• Constructive methods to create a solution from scratch or complete a partial
solution vs. local improvement methods, which seek to improve complete solutions
by moving around in the solution space—this distinction can sometimes be blurry,

• single-trajectory approaches, traversing the search space by keeping only one current
solution vs. population-based approaches, where we keep a set of solutions spread
across the search space with potential interaction between them (“the sum is more
than its parts”).

Different types of (meta-)heuristics are meant to work together, we often encounter
representatives of each category entangled in complete and in particular competitive
solution approaches. For example, in a genetic algorithm (a population-based method) we
need to create solutions for a diverse initial population and may apply a single-trajectory
local improvement algorithm on each individual before moving to the next generation.
More sophisticated combinations of metaheuristics and other search methods are discussed
in the book by Blum and Raidl [18], under the umbrella of hybrid metaheuristics.

Constructive methods are discussed in greater detail in the next section in the framework
of state-space search. Beam search [105, 113] will be the star of the first part of the main
body of this thesis, which is rather simple in its design yet proven to be an empirically
effective search algorithm. It follows a varying bundle of promising partial solutions in
parallel on a graph that represents the set of partial solutions (also called construction
graph) and returns the best found complete solution if it has found one. Therefore,
it clearly falls in the category of constructive heuristics and additionally can be seen
as population-based, in the sense of keeping a population of partial solutions. In the
remainder of this section, we first discuss the basics of neighborhood-based methods and
then focus on two neighborhood-based metaheuristics we will build on in this thesis,
namely simulated annealing (SA) and adaptive large neighborhood search (ALNS).

Local search. The classic neighborhood-based improvement heuristic is local search,
often part of other, more sophisticated metaheuristic approaches. The key element
is a neighborhood structure N . It maps from a solution x ∈ S to a set of neighbors
N(x) ⊂ S, the neighborhood. This allows us to define local optima, i.e., all solutions
x̃ ∈ S, for which f(x̃) ≤ f(x′) ∀x′ ∈ N(x̃). For a solution to be globally optimal, it also
has to be locally optimal, which is the motivation behind the local search procedure:
Starting from an initial solution x0, it finds a local optimum by maintaining a current
solution x ∈ S with objective value f(x) and performing small improving steps in the
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Figure 2.1: Exemplary SA run on a TSP instance with 2-opt neighborhood showing the objective value of the
current solution, the rejection rate, and the temperature over the iterations.

solution space. A well-known neighborhood structure is 2-opt for the TSP which seeks to
remove path crossings by reversing and reconnecting path segments. Another algorithmic
component is the step function, which defines how these steps in the neighborhoods are
performed. We distinguish between best-improvement, which selects an x′ ∈ N(x) for
which |f(x) − f(x′)| is a maximum over N(x), next-improvement, which iterates over
all neighbors in a defined order and takes the first x′ that improves the objective value,
and random-improvement, which randomly samples neighbors for a number of iterations
and takes the first x′ that improves the objective value. The search terminates at a
(probabilistic) local optimum x̃, when no strict improvement has been found. One key
goal of single-trajectory based metaheuristics is to escape such local optima to cover a
wider area of the search space, in the hope to find a local optimum that is also (or close
to) globally optimal, as done by, e.g., iterated local search (ILS) [104] or VNS [110].

Simulated annealing. The name originally derives from metallurgy where by repeat-
edly heating and cooling metal, crystal defects are reduced. The method itself is related
to the Metropolis-Hastings algorithm [107, 80] to sample from a distribution via a guided
random walk in a sample space, where drawing samples directly is difficult. The original
application comes from statistical mechanics where we consider states with different
energies, on which their probability to occur depends. In thermal equilibrium, lower
energy states have a higher probability of being occupied than higher energy states.

In the adaption for optimization as proposed by Kirkpatrick et al. [91], the energy is
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Algorithm 2.1: Simulated Annealing.
Input: initial solution x0, neighborhood structure N , initial temperature T0,

equilibrium iterations N eq, cooling schedule function τ
Output: best found solution x∗

1 x∗ ← x0, x ← x0, T ← T0;

2 while Termination-Criterion not met do
3 foreach i ∈ {1, . . . , N eq} do
4 x′ ← sample from N(x);
5 if f(x′) < f(x) then
6 x ← x′;
7 if f(x′) < f(x∗) then
8 x∗ ← x;
9 end

10 else
11 q ← sample from [0, 1];
12 if q < e− |f(x)−f(x′)|

T then
13 x ← x′;
14 end
15 end
16 T ← τ(T );
17 end
18 return x∗;

replaced by the objective value, and the goal is to guide the sampling by the Boltzmann
distribution ∝ e−f(x)/T . SA performs a guided random walk by iterative sampling from
the neighborhood N(x) of the current solution x and conditionally moving to the sampled
neighbor. In each iteration, a neighbor x′ is proposed and its acceptance is probabilistic
(denoted as P(x → x′)) following the famous Metropolis criterion [107]. Improving
solutions are always accepted, otherwise it depends on the distance in objective value to
the current solution and the current temperature:

P(x → x′) = e− |f(x)−f(x′)|
T (2.1)

Keeping the objective distance fixed, the higher the temperature, the more likely we will
move to a neighbor, and the focus is still on diversification. What actually happens is that
for higher temperatures the probability differences related to objective value differences
are smeared and become similar (e−f(x)/T is flat in its tail, the derivative is almost zero),
while for low temperatures the sample space becomes pronounced (the exponential close
to zero is steep). The initial temperature T0 is set to have a rather high acceptance rate
and therefore to be more explorative in the beginning of the search. Over the time of
the search, we decrease T following a cooling schedule and move to the intensification
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regime. A pseudo-code of SA is shown in Algorithm 2.1. A common cooling schedule is
geometric cooling where T is multiplied by β < 1 after N eq equilibrium iterations on a
temperature level have been performed. Additionally, reheating to a higher temperature
can be performed when we have reached a low temperature/high rejection rate, since at
some point we may get probabilistically stuck in a local optimum and search effort goes
to waste.

The course of the objective value of the current solution, the rejection rate of the
sampled neighbors, and the temperature on an example SA run on a TSP instance
with 2-opt neighborhood are depicted in Figure 2.1. The temperature tunes the balance
between diversification (high temperature, high acceptance rate) and intensification (low
temperature, low acceptance rate), so it is versatile in this sense. Another advantage is
that when enumerating all neighbors of x is expensive, a sample-accept-reject procedure
may be fast and allows traversing the search space more quickly.

If feasible solutions and neighbors cannot easily be enumerated or the natural solution
encoding has many infeasible solutions, it makes sense to also allow infeasible solutions
and penalize the “degree of infeasibility” γ(x). The objective could then be extended to
a sum f(x) + wγ(x), where w can be made time-dependent and oscillating to balance
the search between infeasible and feasible regions and allow easier traversals of infeasible
parts of the search space. This approach is called strategic oscillation and was originally
proposed for tabu search, see for instance the book by Glover and Laguna [70].

Apart from an efficient implementation to achieve a high solution evaluation throughput,
parameter tuning is necessary for simulated annealing to be effective and efficient. For
the details of a recent example application to a difficult and highly constrained sports
league scheduling problem, see Rosati et al. [128], where a multi-neighborhood SA is
used in multiple properly tuned search phases to achieve highly competitive results.

(Adaptive) large neighborhood search. As opposed to classic local search, large
neighborhood search (LNS) considers neighborhoods that are too large for naive enu-
meration. Instead, the related sub-problem of finding a best or promising neighbor
is solved efficiently. LNS was originally introduced by Shaw [136] in the context of
constraint programming, where the search was implemented by iteratively destroying and
reconstructing parts of the solution, i.e., where a part of the solution remains fixed and all
the possible feasible completions correspond to the neighborhood. The destruction and
recreation are performed by heuristic operators with stochastic elements. The general
idea is to search neighborhoods of exponential size to be able to leave unpromising regions
of the search space more quickly.

Ropke and Pisinger [127, 117] have extended the idea to Adaptive LNS (ALNS) in the
context of vehicle routing problems. Instead of using only one operator pair, multiple
potentially parameterized destroy and repair (we use the different names so far inter-
changeably) operators are at our disposal and their usage frequency is learned online by
adapting corresponding weights depending on their success so far.
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Algorithm 2.2: Adaptive Large Neighborhood Search.
Input: initial solution x0, set of destroy operators Ω− and repair operators Ω+,

initial temperature T0, equilibrium iterations N eq, cooling schedule
function τ , weight decay λ

Output: best found solution x∗

1 x∗ ← x0, x ← x, T ← T0;
2 initialize weights vectors ω−, ω+ with 1s;

3 while Termination-Criterion not met do
4 foreach i ∈ {1, . . . , N eq} do
5 sample ρ− according to weights ω−;
6 sample ρ+ according to weights ω+;
7 x′ ← ρ+ρ−x;
8 conditional acceptance and update of x, x∗ as in SA Alg. 2.1;
9 update weights ω−, ω+;

10 end
11 T ← τ(T );
12 end
13 return x∗;

In Algorithm 2.2, we present a variant of ALNS in pseudo-code, where the accept/reject
mechanism of a proposed neighbor is borrowed from SA. The main differences are the
sampling by roulette wheel selection of the operators to create new solutions and the
updating of their weights. More concretely, after a corresponding application, the destroy
operator pair receives a score ψ, depending on four different outcomes—new best solution,
better solution, accepted, rejected. This is used to gradually update the weights via the
weight update rule ωρ ← λωρ + (1 − λ)ψ, where ωρ is operator ρ ’s weight and λ ∈ [0, 1]
controls the weight decay. The vector of destroy operators are denoted by ω− and for
repair operators by ω+.

As hinted in the handbook of metaheuristics [66, Chapter 13], the scores could be
normalized by a measure of time for the operators, otherwise, time-consuming operators
that automatically lead to better solutions have an unfair advantage, with a potentially
negative impact on the diversification of the search. Another important aspect is the
size of the fraction of the solution (which can itself be sampled) that is destroyed, which
should not be too large, to not degenerate to an iterated greedy approach, and not
too small, to not be too constricted in the reconstruction. Again, one sees that many
parameters are involved and automated tuning of an ALNS could be beneficial, e.g.,
using irace [103].
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Figure 2.2: Left: Example initial state and goal state of the 15-puzzle. Right: Solution to example MAPF
problem instance (planned agents paths), created with Keisuke Okumura’s mapf-visualizer (https://github.
com/Kei18/mapf-visualizer).

2.2 State Space Search
In this section, we begin by following Russel and Norvig’s famous “Artificial Intelligence:
A modern approach” [132, Chapter 3] to introduce search on general artificial intelligence
(AI) problems and discuss how this methodology can be transferred to combinatorial
optimization problems. There, problem instances are modeled as state graphs, with the
goal to find a sequence of actions leading from a given initial state to one of possibly many
goal states (if there is one); in the optimization variant a cost-optimal action sequence.

More formally, we are given

• states s ∈ S, with an initial state sI and a set of goal states SG ⊂ S.

• actions a ∈ A(s), potentially depending on the state s,

• a state transition function τ(s, a) ,→ s′ to move to a new state,

• and costs assigned to such transitions c(s, a, s′).

A solution for such an AI problem is a sequence a = (a1, . . . , an) of actions transforming
the initial to a goal state. A prototypical problem is the 15-puzzle, where on a 4 × 4 grid,
tiles numbered from 1 to 15 have to be sorted by orthogonal moves having one empty field
available. A shortest sequence of such moves has to be found for an example initial state
as depicted in Figure 2.2 (right). A sequence of actions for another example problem
could be jointly planned moves of robots in a time-discrete grid world so that they reach
their respective, mutually different goal positions on said grid, without colliding with
each other, while minimizing the sum of timesteps over the robots to achieve this—the
multi-agent path-finding problem (MAPF, [140]). An example solution of such planned
paths is shown in Figure 2.2 (left). To find such a sequence, a graph search algorithm can
be employed, a systematic exploration of the underlying state graph until a termination
criterion is reached.
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Figure 2.3: Layered state graph for the example LCS problem instance with S = {bcadcdc, caabadd, bacddcd} and
Σ = {a, b, c, d} from Blum, Blesa, and Lopez-Ibanez [19]. On the right with filtering of dominated letters, left
without. The single longest common subsequence is badd.

Combinatorial optimization problems. Splitting a solution to a problem into a
sequence of steps is a natural problem solving paradigm and can likewise be applied to
combinatorial optimization problems. There, the actions of a search agent amount to
extending a partial solution like assigning a value to a decision variable or selecting an
element to be part of the solution under construction. Goal states are of such kind that
they cannot be extended further.

We consider the longest common subsequence (LCS) problem as an example, where we
are given m strings S = (s1, . . . , sm) with maximum length n from an alphabet Σ. With
a fixed number of strings m, the problem is solvable in polynomial time with increasing
n, for m being an input parameter it is an N P-hard problem [106]. Any string t that can
be derived from another string s by deletion of characters while keeping the remaining
characters in exactly this order is called a subsequence thereof. The goal is now to find a
string t∗ with maximum length that is a subsequence of all strings si. A meaningful state
graph is formally defined by Ðukanović, Raidl, and Blum [41], where the key elements
are:

• Every state v (v for a vertex in the state graph) is induced by a common subsequence
t of length lv, constructed from left to right.

• States are encoded by a position vector where the i-th element is the smallest begin
position of the remaining substring of the i-th string, s.t. t is still a subsequence
for the string excluding this remaining substring.

• A feasible extension (action) makes a transition from state v to v′ by choosing
an a ∈ Σ, where a occurs at least once in all remaining substrings, increasing the
length (costs/reward) by one.

15



2. Methodology

Algorithm 2.3: Algorithmic pattern for state space search.
Input: initial state sI, goal states SG, action function A, transition function τ ,

state-action cost function c, heuristic function h, primal cut u
Output: solution encoded sequence of actions a or no solution found

1 abest ← (), sbest ← Nil;
2 search frontier Q ← {sI}, reached states R;

3 while Termination-Criterion not met do
4 s ← next-state-from(Q);
5 if s ∈ SG ∧

(
sbest = Nil ∨ g(s) < g(sbest)

)
then

6 sbest ← s, abest ← derive-solution-from(sbest);
7 end
8 for s′ ← τ(s, a)|a ∈ A(s) do
9 g̃ ← g(s) + c(s, a, s′), f̃ ← g̃ + h(s);

10 if f̃ ≤ u ∧ (s′ /∈ R ∨ g̃ < g(s′)) then
11 R ← R ∪ s′, g(s′) ← g̃;
12 incorporate(Q, s′, h);
13 end
14 end
15 end

16 if abest ̸= () then
17 return abest;
18 else
19 return no solution found;

• Dominated letters b ∈ Σ are not considered, i.e., for which there exists another
letter a which results in a better position vector, i.e., there would be no string with
a shorter remaining substring when choosing a over b.

• The initial state is induced by the empty string, states without feasible extensions
are goal states.

The resulting state graph is a finite directed acyclic graph with a depth bound of
n. A longest path from the initial to a goal state corresponds to a longest common
subsequence t∗. Example state graphs of an example problem instance of the literature
are displayed in Figure 2.3.

Best-first search. When we make use of problem-specific knowledge, e.g., by means
of a heuristic function evaluating how desirable a node is for further consideration, we
speak of informed search, as opposed to uninformed search, cf. Russell and Norvig [132,
Chapters 3 and 4]. One well-known informed search method is A∗ search by Hart, Nilsson,
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and Raphael (1968, [78]); it first expands better-ranked nodes according to the so-called
f -value which includes the currently best known costs-so-far g(s) and a heuristic h(s),
an estimate of the costs-to-go to the nearest goal state from the current state s:

f(s) = g(s) + h(s) (2.2)

Hence it is a best-first search, as opposed to breadth-first (BFS) and depth-first search
(DFS). The basic algorithmic pattern of a state space search is shown in the pseudocode
in Algorithm 2.3. As input, the implicit state-space specification as described before is
provided and either a solution is returned or the statement that none has been found.
We assume minimization of the costs, where maximization can be modeled by negative
costs, corresponding to the prize or reward we collect for an action. The main loop
selects a next state (or somewhat interchangeably called search node) from the current
search frontier, checks and conditionally updates the currently best-found solution to
a goal node, and expands the successors (children) of the node, extending the search
frontier. As standard termination criterion, we stop after having pulled a goal state from
the search frontier. If we select always a node with the smallest f -value as the next state
from the search frontier, we end up with A∗ search, if h is non-trivial—if h(s) ≡ 0, then
this amounts to Dijkstra’s classical shortest path algorithm. If we use a queue for the
search frontier, we end up with BFS, for a stack with DFS.

Optimal efficiency. We assume that the state graph is finite, which is true by definition
for combinatorial optimization problems, and that there is no zero-cost cycle, e.g., every
subsequence eventually results in a finite cost increase. Furthermore, let h be admissible,
i.e., it never overestimates the real costs-to-go h∗:

h(s) ≤ h∗(s) ∀s ∈ S. (2.3)

A well-known corollary is then that A∗ is cost-optimal and complete, i.e., it returns a
solution with minimum costs, if there is such, otherwise it terminates with the statement
that no solution exists. If the heuristic is consistent (also called monotonous), i.e.,

h(s) ≤ c(s, a, s′) + h(s′) ∀s′ = τ(s, a), a ∈ A(s), s ∈ S, (2.4)

then A∗ is optimally efficient. This means that no cost-optimal path-extending search
algorithm (following our algorithmic pattern) with the same heuristic can expand fewer
nodes up to tie-breaking for the nodes with f(s) = C∗, where C∗ are the optimal costs.
An intuitive argument is that for cost-optimality we cannot neglect reachable states with
f(s) < C∗, otherwise, we might miss a cost-optimal path or must have used additional
information. Furthermore, for consistent heuristics, states are once expanded not touched
again, since the f -values cannot decrease during the search. Otherwise, shorter paths to
already expanded states can be found which have to be re-expanded. Cases can then be
constructed where A∗ is not optimal, as discussed in detail by Dechter and Pearl [37].
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Space complexity. One major drawback of A∗ is the worst-case exponential space
complexity since all newly visited states have to be retained in the search frontier (open
list) until expanded and are then moved to the closed list for solution reconstruction
and to check for duplicate states, e.g., due to cycles in the state space or multiple paths
reaching the same state. To overcome this, iterative-deepening A∗ (IDA∗) has been
devised combing a memory-efficient depth-first search with the optimality results (under
some assumptions) of A∗. It iteratively runs a DFS with an increasing cut-off value on
the costs (called u in Algorithm 2.3), starting from the initial root heuristic estimate and
always setting u to the minimum f -value over the cut-off nodes. It terminates when a
goal state is found and with an admissible heuristic, the corresponding path is an optimal
solution. The DFS is implemented recursively and only has to store the current path of
states, leading to a space complexity of O(d), where d is the maximum search depth.

We assume a consistent heuristic and a most-recent state tie-breaking rule, and that we
have tree-like search graphs. Then, in the last iteration, IDA∗ expands the same set of
states as A∗ without using an open or closed list and the previous iterations do not affect
the asymptotic time complexity. For a detailed analysis by Korf with proofs see [93]. In
the end, an empirical study is necessary for the concrete problem instances, as to whether
A∗ with its overhead of keeping the states in memory (if there is sufficient), generally
allowing duplicate checks at the price of more expensive state expansions potentially
reducing the number of expanded nodes, results in an overall faster runtime than IDA∗.

Another approach aiming for memory efficiency is frontier search [96], where the closed
list (reached list) is either completely abandoned or only nodes close to the frontier are
kept. A tricky question is then how to reconstruct solutions. The standard method is
to keep in each search node a pointer to the predecessors from which the best path was
found to backtrack from a goal state to the initial state. In frontier search, the trick is to
apply a divide-and-conquer method. Instead of saving all reached nodes, only those in
an intermediate layer are kept (if we have means to estimate the number of actions) and
pointers are stored to those. If the search is finished, the problem is split into a search
from the start to the intermediate state on the best path, and from this intermediate
state to the goal state. This is applied recursively until the problem becomes trivial.

Bounded suboptimal search. Another approach to reduce computational effort
and memory footprint is to sacrifice optimality, since it may be satisfactory to find a
high-quality solution faster as solving to optimality is impractical anyway. A well-known
modification of the A∗ algorithm is weighted A∗ (WA∗) introduced by Pohl in 1970 [118],
where the heuristic is weighted by a constant factor 1 + ε ≥ 1:

fε(s) = g(s) + (1 + ε)h(s) (2.5)

It follows that the quality of the solution found by WA∗ C is bounded by C∗ ≤ C ≤
(1 + ε)C∗. For many problems, an empirical observation is that increasing ε results in
fewer expansions to find a goal node. But this is not necessarily the case as discussed
by Wilt and Ruml [164]. For some problems with many local optima regarding an
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Figure 2.4: Beam search with beam widths two and one (the latter is equivalent to a greedy construction), guided
by the upper bound which sums over the alphabet the minimum number of occurrences over the remaining
substrings. Both still find the optimal solution since the guidance is almost perfect in this case, except for the root
state.

inaccurate h, greedy best-first search (ε = ∞) may get stuck in them and would not
find a solution quickly. A∗ on the other hand would skip them more quickly since it
also considers the costs-so-far g and does not only trust h, so larger values of ε would
eventually result in more states being expanded. Due to its astounding simplicity, it is a
natural step to study WA∗’s behavior when an A∗ solver is already available.

Beam search. Many variants of beam search exist, with the defining property that the
search frontier is of bounded size over the whole search. For instance, we could modify
the incorporate function in our algorithm 3.1, as to keep the open list bounded by a
beam width β, i.e., if it is full and we need to add another node, it enters the beam if it is
better in the f -value than the worst f -value fmax in the beam and a state is at the same
time removed from the beam with fmax. The most common variant in combinatorial
optimization though is a layer-wise truncated breadth-first search. For COPs, the state
graph is a directed acyclic graph, so we know that we expand polynomially many states
O(βd) in the maximum depth d. In each layer, the successor states are sorted by f and
the β best states are kept. If the evaluation function runs in polynomial time, so does
the whole beam search.

Beam search has been introduced by Lowerre [105] for a speech recognition system and
studied in detail for scheduling by Ow and Morton [113]. Its main drawback is that the
basic variant is incomplete, so complete anytime variants have been proposed by Zhang
[165] (iterative weakening) and Zhou and Hansen [167] (beam-stack search). Another
natural method is iterative broadening/widening [68], where the beam width is iteratively
increased and additional pruning is optionally applied, when a dual bound is available,
similar to heuristic breadth-first search by Zhou and Hansen [168].

In Figure 2.4 example beam search runs with beam widths two and one (which degenerates
to a greedy construction) are shown on the LCS instance from before, where the exact
state graph had a width of three (or four without filtering of dominated letters).
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Figure 2.5: Left the fringe pattern, right the corner pattern for the 15-puzzle from Culberson and Schaeffer [32].

Pattern databases. Crucial for the performance of state space search is the quality of
the heuristic, which more in the case of optimal solver relates to the pruning capability
to exclude states that are not on an optimal path as early as possible and more in the
inexact case to the guidance towards more promising nodes by ranking them as similar
to the real costs-to-go as possible. One major tool to create strong heuristics are pattern
databases by Culberson and Schaeffer [32]. The idea is to decompose the problem into
subproblems or define subgoals that have to be passed to reach the goal, solve them
once beforehand, and save the results in the database, which can then be used to quickly
calculate strong heuristics when solving the actual problem.

In Figure 2.5 the subgoal states of two such databases for the 15-puzzle are shown, where
seven tiles and the blank have to be brought into their final position, while the other
tiles remain abstract but their moves are counted. The shortest path length from any
state to that pattern is calculated and stored in the eponymous database, which itself is
an admissible heuristic. During the search, for the calculation of h, indices for the given
databases are calculated and the maximum over the retrieved values is taken, which itself
is admissible. Together with symmetry considerations, this allowed to reduce the number
of expanded nodes for an IDA∗ search to be reduced by a factor of 1 000 [32].

Korf and Felner [94] in 2002 pushed this idea further and suggested a disjoint decom-
position into subproblems, where elements of the states (e.g., the tiles in the 15-puzzle)
are decomposed into disjoint groups and only moves within the groups count towards
the solution length. The calculation of an admissible heuristic can then also be achieved
by summation instead of only taking the maximum, resulting in stronger heuristics.
They were able to practically solve random 24-puzzle instances within days using this
approach, before only achievable with a more complicated heuristic and a finite state
machine (FSM) based duplicate state pruning technique [95]. Felner et al. [50] elaborate
on the general idea of additivity further and present a detailed study of additive pattern
database heuristics on a wide set of planning and optimization problems.
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Figure 2.6: From https://github.com/karlrupp/microprocessor-trend-data by Karl Rupp, licensed un-
der https://creativecommons.org/licenses/by/4.0/. In the last decade, the single-threaded performance
increase has declined and application performance increase more relies on parallelization.

2.3 Shared-Memory High Performance Computing

Solving optimization problems well is intricately connected to efficient and fast implemen-
tations on modern computer architectures, exploiting their capabilities while avoiding
pitfalls and being aware of performance bottlenecks. In the last two decades, the rate
of increase of single-threaded performance has declined and for an overall application
performance increase focus on parallelization on multicore architectures has become even
more important (see Figure 2.6). In this section, we briefly discuss selected crucial aspects
for high performance computing (HPC) on cache-based multicore processors based on
the first five chapters of the practice-oriented book “Introduction to High Performance
Computing for Scientists and Engineers” by Hager and Wellein [77]. For implementations,
we follow the practices for HPC for the LLVM JIT-compiled language Julia described in
“Julia High Performance - Second Edition” by Sengupta and Edelman [134], which is our
HPC language of choice, also with increasing popularity in the scientific community.

Uniform vs. non-uniform memory access. In this work, we focus on parallelization
on multi-core systems with shared memory. Multiple processors or cores have direct,
transparent access to the main memory via a bus or crossbar switches, see Figure 2.7.
If the behavior over the whole physical memory is the same—uniform—over the whole
address space, we speak of uniform memory access (UMA). A common performance
pitfall is to neglect so-called non-uniform memory access (NUMA, Figure 2.7 on the
right), where processors/cores are grouped into NUMA domains with fast access to their
local memory but relatively slow to other NUMA domains.
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Figure 2.7: Left: Visualization of a shared-memory architecture with one NUMA domain on a Macbook Pro
Mid 2015 with Intel Core i7 processors created with OpenMPI’s hwloc/lstopo [25] (https://www-lb.open-mpi.
org/projects/hwloc/). Right: NUMA with multiple domains and processor groups, each with their own local
memory, visualization from https://commons.wikimedia.org/wiki/File:NUMA.svg

Pipelining and caching. Modern computer architectures suffer from the “DRAM
gap” or the “memory wall”. The speed increase of the memory is below the one for
microprocessors, the two have diverged. In particular, it has a rather high latency on
random access (time until data becomes available on the bus) and limited bandwidth.
Therefore, a key challenge of fast computing is that the arithmetic (integer/floating
point) logical units (ALUs) that execute the desired instructions are fed at a sufficient
rate with data. Instructions are retrieved from the main memory, interpreted, and
executed involving the necessary units of a CPU core. In scientific computing, we often
encounter a streaming pattern, where sequential bulks of data are retrieved from memory,
arithmetically and logically manipulated, and stored back to memory. Two main concepts
enable good streaming behavior, namely pipelining and caching.

In pipelining, operations that concern different units of the CPU are split into instructions
that are executed staggered in parallel operating on different data. The output of each
stage’s instruction is the input of the subsequent stage. In particular loading data to
registers and storing to memory would stall the arithmetical unit, if not performed
in parallel. Pipelining allows increasing the average number of results delivered (e.g.,
floating point operations) per second, depending on the depth of a pipeline (i.e., the
wind-up where not all workers are busy yet and wind-down where not all workers are
busy anymore) and the number of performed iterations (e.g., length of the vector on
which a pipelined manipulation is performed).

In Figure 2.8, we see an example pipeline of four instructions where each consists of four
operations (fetch, decode, execute, write-back). Executing this set alone sequentially
would take 16 cycles, due to the pipeline and independent micro-instructions, it only takes
7 cycles (in cycle number 8 we are done). The throughput is the number of independent
instructions N divided by the steps needed to execute them N + m − 1 in a depth-m
pipeline and calculates to (1 + (m − 1)/N)−1. The shorter the m and the larger the N ,
the closer we are to the ideal (neglecting superscalarity) throughput of one instruction
per cycle.

To bridge the memory gap, caching hierarchies have been employed, which serve as
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Figure 2.8: Example pipeline of depth four where each instruction takes four clock cycles, from https://en.
wikipedia.org/wiki/User:Cburnett licensed under https://creativecommons.org/licenses/by-sa/
3.0/. Right with a bubble, where an instruction is stalled due to missing data.

intermediate, high-speed stores for instructions (L1i) and data (L1d, L2, L3). The closer
to the core (L1), the faster but the smaller. Instead of single-word interactions with
memory, they are retrieved and saved in so-called cache lines. The assumption is that
applications obey to some extent a spatial (data close to already retrieved one is more
likely to be retrieved sooner than other) and temporal (already retrieved data is likely
to be reused again soon) access pattern. This is why it makes sense to store data in
the cache where it can be quickly loaded from and stored in the registers. Furthermore,
prefetching is employed to load instructions or data from higher cache levels or the main
memory when it is likely to be needed soon, i.e., the chunk of instructions or bytes of a
vector.

In Figure 2.9, we see a combination of both effects when considering a simple stream
manipulation of three length-N vectors B, C, D of reals. We calculate the vector triad
B + C · D by a for loop that iterates over all elements and stores the results in a vector
A, each denoting two floating point operations (FLOPS), multiplication and addition.
Special SIMD instructions are not employed, which perform multiple instructions in
parallel on a sequence of data like four floats in parallel. We recreated this example
from [77, Chapter 1] and tested it on two different platforms (AMD EPYC, Intel Core)
with different clock frequencies and cache layouts, once with single and once with double
precision. We observe that in the beginning there is a somewhat steady increase in the
MFLOPS/sec, which can be largely attributed to the increasing pipelining throughput
and that the whole vectors can be streamed from the L1 cache. Starting from roughly
103 there is a sudden drop in performance. This is when the L1 cache (in the range
of 32 to 64 KB per core) cannot hold the whole vectors anymore and has to perform
costly interactions with L2 cache (more cache misses and write-backs occur, also causing
pipeline bubbles, see Figure 2.8, where data is not ready at a certain stage). Further
drops occur when L2 is not large enough anymore and either L3 cache has to be used, or
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Figure 2.9: Recreated vector triad operation example from [77, Chapter 1] in Julia 1.8 for single precision (SP)
and double precision (DP) floats.

eventually the data has to be streamed directly from and to memory. The exact analysis
is much more intricate and also depends on compiler optimizations but should convince
us that cache-friendly implementations are important.

Data parallelism, cache coherence, and false sharing. A common parallelization
pattern is to split the input data across multiple workers and combine the results into
a single output in a final synchronization step for further processing. The operations
applied to the data elements are the same and independent from one another. This is
well-suited when the sequential overhead to distribute the workload and join the results
is relatively small. For instance, we could evaluate a set of nodes in a layer of a search
tree or calculate a histogram over a list of numbers by data parallelism.

A common pitfall and anti-pattern related to data parallelism on shared-memory systems
is false sharing. This happens when the cache lines related to the seemingly independent
memory regions assigned to each thread overlap causing undesired reads and premature
write-backs to the main memory to ensure cache coherence. This can have a severe impact
on cache efficiency which is crucial for high performance on cache-based architectures as
discussed before, as memory access is orders of magnitude slower than cache access.

As an example, we consider the task of calculating a histogram for a given input array of
N numbers into b bins. In a data-parallel algorithm (visualized in Figure 2.10), we first
create a b × τ matrix, where each of the τ threads has its own histogram bins. A static
scheduler then assigns τ consecutive approximately equal chunks to the threads which
then loop over the data to calculate the bin of each element and increase a counter of
their zero-initialized thread-local histograms. In a final sequential synchronization step,
the matrix is reduced to a vector of length b by summing over the corresponding axis,
encoding the histogram, our final result.

We implement this in Julia and measure the runtime over the number of threads on an
AMD EPYC 7642 with uniform memory access for N = 1.5 · 109. The memory layout
of the b × τ matrix is actually a linear vector of length b · τ . A common pitfall here is
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Figure 2.10: Illustration of data parallel histogram calculation with four threads and N = 1000 integers sampled
uniformly from {0, 1, . . . , 10}.
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Figure 2.11: Left: parallel histogram creation speedups, once with false sharing where we observe an ir-
regular speedup behavior due to strong cache coherence related thread interference. Right: row-major
vs. column-major order, created https://commons.wikimedia.org/wiki/User:Cmglee licensed under https:
//creativecommons.org/licenses/by-sa/4.0/.

the distinction between row-major order, where columns are neighbors, as used in C or
Python, and column-major order, where rows are neighbors, as in Fortran or Julia, see
Figure 2.11 on the right. In Julia we, therefore, need to create a matrix with b rows
to have the histogram bins contiguous in memory for access locality and τ columns, to
separate the thread-local regions from one another, adding a cache line length to b as a
safety buffer. When we do it the opposite way we end up with false sharing and strided
memory access. On the left of Figure 2.11 we see the runtime of the number of threads
and the irregular speedup behavior with false sharing, which is even below one in the
beginning and approaches three for 46 threads. Without sharing, the shape looks much
better and we end up with a speedup of over 13. This is also not too strong but likely due
to the small amount of work in the loop body and the task being more memory-bound.

Load balancing. Keeping the threads in parallel sections busy as much as possible is
another important aspect to achieve high parallel efficiency. In the histogram example
from before, the approximate splitting in equal chunks of data assigned to threads was
sufficient, since the executed instructions were data-independent and we resolved false
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Figure 2.12: Comparison of speedups and runtimes for different load patterns, where for active numbers the sin
√

x
has to be calculated.

sharing to avoid interference between threads. For more complex tasks, as we will see
in our state-space search settings, the performed instructions and actual runtime may
well vary due to data-dependent branching and loops. If the load is not well-balanced
over the threads, the longest-running thread up to a synchronization point may then
substantially reduce parallel efficiency and limit speedup.

If the number of elements is large and there is no hidden structure, we can assume in a
first step that this variance is smoothed out in the average over many elements processed
by each thread with only a minor impact efficiency. We consider another simple example
to study the principle effects. We are given again a list of N random numbers sampled
uniformly from [0, 1], while this time we perform a computationally more demanding task
calculating for each number x the sine of the square root sin

√
x. Additionally, a boolean

masking vector is provided that states whether a calculation for a number should be
performed or not, separating active from inactive data.

We compare three different masks, one where all numbers are active (full), one with
an equal probability of 0.5 over all numbers (uniform half), and one with a skewed
distribution where the probability for a number to be active decreases linearly with the
index, starting from 1.0 for the first to 0.0 for the last index (ramp half). We implement
this again in Julia and measure the speedup over the number of threads on an AMD
EPYC 7642 processor with uniform memory access for up to N = 1 · 109 numbers. In
Figure 2.12 we show corresponding speedups and runtimes. For the first two load patterns,
we observe a nearly perfect speedup up to 23 threads and then a gradual decline until a
speedup of 36× for 46 threads, a parallel efficiency of approximately 80%. The ramp on
the other hand suffers from workload imbalance since the threads for memory regions
with smaller indices have a higher average number of calculations to perform. Uniform
half and ramp have almost the same number of actual calculations to perform (N/2),
but the single-threaded runtime for ramp is smaller, which is likely due to the benefit of
more access locality/cache efficiency and more successful branch prediction.
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2.4. Modeling and Solving Dynamic Problems

2.4 Modeling and Solving Dynamic Problems
So far, we have considered perfectly observable, deterministic problems. In real-world
problems, we frequently have to consider uncertainties regarding the perception of our
surroundings, their evolution, and the effect of actions an agent performs. A common
way to model these are Markov decision processes (MDPs, [122]), where we are again
given states and actions, but the transitions between the states and potentially also the
reward (replacing the term costs) are probabilistic. Still, we assume the Markov property,
where a state s ∈ S contains all the information we need to make statements about the
future, i.e., we do not need to know the history of state-actions transitions to arrive at
the current state.
In this section, we briefly describe the main elements of MDPs relevant for us, where we
follow the treatments of Sutton and Barto [142, Chapter 3] in the context of reinforcement
learning and Powell [119, Chapters 2,3,5] in the more suitable context of approximate
dynamic programming (ADP), focusing on practical aspects and less the underlying
theory. We later use it in the main body to model dynamic and stochastic vehicle routing
problems as done in the literature, e.g., by Voccia et al. [162], Ulmer et al. [149, 150].

Basic modeling framework. Following Powell [119, Chapters 2], there are some basic
ingredients to formulate a stochastic and dynamic optimization problem with a finite
time horizon:

• discrete time steps t ∈ {0, . . . , T }, also called decision epochs,

• states St, containing all the information we need to make an informed decision,

• state and therefore time-dependent actions at ∈ A(St),

• an exogenous process Wt, e.g., a process with known probability distribution that
creates orders to be served,

• a transition function St+1 = SM (St, at, Wt+1),

• and a contribution Ct(St, at), the costs/reward when applying action at while in
state St.

The goal is to find a policy π ∈ Π—a decision rule Aπ(St) selecting the action in a
state—to maximize the expected contribution (also called reward):

max
π∈Π

E
T∑

t=0
Ct(St, Aπ(St)) (2.6)

Small problems, for which both state and action space are limited, can be solved recursively
by backward dynamic programming to calculate the value of each state

Vt(St) = max
at

(Ct(St, at) + E{Vt+1(St+1)|St}) (2.7)
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Algorithm 2.4: ADP approach for post-decision states using value function
approximation, adapted from [119, p. 241].

Input: initial estimate of post-decision value function Ṽ a,0, number of training
iterations N

Output: approximate value function Ṽ a

1 foreach i ∈ {1, . . . , N} do
2 Ω ← create sample path;
3 S0 ← initialize start state;
4 foreach (ω, t) ∈ Ω do
5 solve a∗ = arg maxat

(
Ct(St, at) + Ṽ a,i−1

t (Sa
t )

)
|Sa

t−1;
6 optionally update from Ṽ a,i−1 to Ṽ a,i;
7 apply optimal action to move to post-decision state Sa

t ← a∗
t (St);

8 move to pre-decision state St+1 ← SM (St, at, Wt+1(ω))
9 end

10 update value function Ṽ a,i−1 to Ṽ a,i using encountered state-value pairs;
11 end
12 return Ṽ

and then select in each state the action that maximizes Ct(St, at) + E{Vt+1(St+1)|St}.

Approximate dynamic programming. For larger optimization problems, where
either the state space and/or the action space grows exponentially with the instance
size, backward induction becomes quickly intractable. Instead, we have to apply forward
dynamic programming, where we iteratively improve an estimate Ṽ of our value function
and use it to make decisions by taking the action:

ã = arg max
at

(
Ct(St, at) + E{Ṽt+1(St+1)|St}

)
(2.8)

If we have means to simulate our exogenous process, we can apply what is called Monte
Carlo sampling to improve the knowledge about our value function. Introduced by
Powell [119], a powerful modeling trick is to separate a state into the pre-decision state,
where we have new information but not yet made a decision, and the post-decision
state, where we have made a decision but not yet received new information. We call the
post-decision state Sa

t to indicate that an action a has been performed. The optimality
equation to obtain the value of a post-decision state then looks like:

V a
t−1(Sa

t−1) = E
[
max

at
(Ct(St, at) + V a

t (Sa
t ))

,,,,,Sa
t−1

]
, (2.9)

The maximization is now inside the expectation. When we are in the post-decision
state Sa

t−1, we make a transition to the pre-decision state St by the next element of
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a given sample path. Then, we have a deterministic optimization problem to solve,
i.e., maximizing the sum of the contribution of an action in St plus the value of the
corresponding post-decision state. The expectation is now directly encoded in the value
function.

In Algorithm 2.4, an abstract algorithm to improve an initial estimate of a value function
Ṽ is given. In each iteration, a sample path for the exogenous process is followed, where
the optimal decision is used to traverse the state space, according to the sum of the
current contribution and the current approximate value of the resulting post-decision
state. Furthermore, an update for the value function estimate is performed based on
the experience so far in form of state-value pairs. Which exactly is left unspecified here
and depends on the concrete algorithm, e.g., it could be an approximate value iteration
scheme, where we have a lookup table with values for each state and an α-update rule is
applied. Common in reinforcement learning is to employ temporal difference learning,
where often a neural network is used to approximate the value. The experience—the
replay buffer—is randomly sampled and used to update the weights of the neural networks
to reduce the loss on this sample by a stochastic gradient descent step. Another important
aspect is to not always select the currently optimal decision based on the—potentially
inaccurate—value function approximation (VFA), but to also sample random decisions
occasionally to explore the state space. More details can be found, e.g., in Sutton and
Barto [142, Chapter 9].

A recent methodological survey for stochastic optimization is provided by Powell [120].
Besides VFA, further important methods are policy function approximation (PFA), where
parameterized functions take the state as input and directly output a decision. Another
approximation method, in particular, relevant for us is cost function approximation
(CFA), where a decision is derived by solving an optimization problem over a suitably
modified/augmented contribution function, which we also call surrogate function [97]).

2.5 Supervised Learning for Regression Problems
The goal of supervised learning is to form an agent able to solve a given task with a desired
performance making use of labeled training data. For regression problems, the agent’s
task is to predict or estimate an output depending on input data, so-called features. To
achieve this, a set of known input-output examples is available to learn a connection
between those. A classical regression problem motivated by physics and astronomy
dates back to the 19th century when Legendre and Gauss derived the method of least
squares. The setting is an experiment where a series of noisy measurements is performed.
The collected data is afterwards fit (using a learning algorithm, often formulated as a
continuous optimization problem) to hypotheses, e.g., a family of functions with learnable
parameters capturing the suspected relations between input and output. The result is to
see how well the data matches the theory and to estimate physical properties of objects
or even fundamental constants.

Supervised learning for regression (and classification) has a well-understood theoretical
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Figure 2.13: Top-5 accuracies appraching more than 99% over time for different network architectures on ImageNet
[38] classification challenge, starting with the famous AlexNet [98] based on deep convolutional neural networks,
taken from https://paperswithcode.com/sota/image-classification-on-imagenet licensed under CC-
BY-SA https://creativecommons.org/licenses/by-sa/4.0/.

foundation, statistical learning theory, as presented, e.g., by Vapnik [161] and Hastie
et al. [79]. We mainly follow the treatment of Goodfellow et al. [75], the “Deep Learning
Book”3 from 2016, in particular Chapters 5 to 7 discussing the basics, with strong focus
on neural network based learning for different kinds of problems. Successful applications
were made possible by the recent advances in computational power due to massive
multicore parallelization by GPUs, availability of huge labeled training data sets, and
network architectural and learning algorithm advances. This has led to an AI revolution,
in particular in image classification, in the last decade. In Figure 2.13, the increase in
top-5 accuracy for the ImageNet image classification challenge consisting of 15 million
high-res labeled images categorized in 22 000 classes is shown, starting from the landmark
work by Krizhevsky et al. [98], using a deep convolutional neural network (CNN) with 60
million trainable parameters as a classifier.

Model-based approach. Informally, we can state our problem as learning a function
f̂ that approximates an unknown function f , the ground truth, sufficiently well

f̂(x; θ) ≈ f(x), (2.10)

where we are given as input (to our learning problem) a set of m examples T =
{(xi, f(xi))}m

i=1—feature/label pairs—which we call the training set. We call f̂ a model
with learnable parameters θ. A starting point is often a linear model f̂(x; θ) = βT x + b,
where we assume that the output can be explained by a linear combination of the inputs
plus a bias.

The labels are often referred to as y and may themselves be subject to noise, so it could
very well be that the same or very similar input features result in a substantially different

3http://www.deeplearningbook.org
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label. It is often implicit that we assume an additive noise model and data is distributed
by the random process y = f(x) + ϵ(x), where f is deterministic and ϵ is stochastic.
Filtering this noise is precisely the goal of classical regression approaches like the method
of least squares. Noise can occur due to limitations of our measurement apparatus—a
lack or inaccessibility of information and features—or intrinsic, i.e., based on physical
events believed to be truly random.

What we then have is a conditional probability distribution p(y|x), i.e., given input x,
what is the probability of measuring output y. A well-established paradigm in frequentist
statistical inference is maximum likelihood estimation (MLE). Given a set of measurements
T and a parameterized model distribution p̂(y|x; θ), we try to find the parameters θ∗

which maximize the probability of the given measurement ∏
i p̂(yi|xi; θ), or equivalently

minimizing the negative log-likelihood sum:

JT (θ) = −
m∑

i=1
log p̂(yi|xi; θ) (2.11)

Remark: A different philosophy is Bayesian statistics [64], where the model parameters
are assumed to have a distribution p(θ) themselves, in contrast to being unknown
but fixed. We can introduce prior information about θ into our learning process and
Bayesian statistics provide the machinery to update our current belief over them when
new information arrives. Still, if desirable the knowledge about θ can also be reduced
into a single point estimate by the maximum a-posteriori (MAP) estimate.

Linear models. As mentioned before, in a first-order approximation of dependencies
between x and y, we often assume a linear model with weights β and a bias b, forming
together the weights θ:

f̂(x; θ) = βT x + b (2.12)

For instance, we are given a two-dimensional input vector x = (x1, x2) and end up with
the model f̂(x; θ) = β1x1 + β2x2 + b. A common trick to capture non-linear relations is
the so-called kernel method. The input feature vector x is extended by further elements
ϕj(x), where the ϕj are different non-linear transformations. To continue our example
from before, assume we add the quadratic relations x1x2, x2

1, and x2
2. The advantage is

that by this kind of transformation, we can apply learning algorithms designed for linear
models during which the features are constants. The disadvantage is that we increase the
dimensionality of the model and may have to apply regularization to avoid overfitting, as
discussed in the next paragraphs. Besides linear models, which we will frequently use in
this thesis as a baseline, we briefly discuss feed-forward neural networks at the end of
this chapter. They are layered computational graphs also including non-linear functions
and have a high capacity to predict arbitrary relations between input and output.

Generalization. The goal of a learning algorithm is to minimize a measure of error
of a predictor, called the loss function. If we assume the noise to be Gaussian with
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zero-mean and constant variance, MLE provides as a measure the mean squared error
(MSE):

MSEθ[f̂ ] = E[(y − f̂(x; θ))2] (2.13)

For practical calculations, this measure is estimated by sample averages, where we assume
that the (x, y) follow a data generation distribution p(x, y). We use one sample for
training, the aforementioned training set, and one for estimating its performance on
unseen data, the test set:

MSEdata
θ [f̂ ] = 1

m

m∑
i=1

(yi − f̂(xi; θ))2 (2.14)

If all samples are i.i.d. (identically independently distributed), we can establish a relation
between MSEtrain and MSEtest. The test MSE describes the performance on unseen data
and must not be used in the training process, otherwise, information might be included
in the learned model which is actually not available—it can only use the training data.

This poses the problem of how to make use of the training data to generalize well to the
unseen data, which is related to the concepts of model capacity, underfitting, overfitting,
and the bias-variance dilemma. Assuming a fixed unseen x with repeated sampling of
training data determining different f̂ , bias is the expected deviation of our prediction
from the true value. Variance is the expected squared deviation of our prediction from
the expected prediction. If we have some prior knowledge about p(y|x), e.g., we assume
a linear model, then we introduce a high bias but are robust towards noise, i.e., have low
variance. If we have non-linear effects included in our measurements then this may lead
to underfitting, our bias is too high. Naturally, we want both to be low but since they
are counteracting, we have to find a sweet spot.

Stochastic gradient descent. A well-known learning framework is stochastic gradient
descent (SGD) or minibatch gradient descent. There, we iteratively take a single example
or a batch of examples drawn from the training set and calculate the gradient of the loss
function ∇θJ , where J corresponds, e.g., to the MSE. Then we make a step scaled with
a learning rate α in the negative direction as the goal to minimize the loss:

θ ← θ − α∇θJ (2.15)

The gradient is noisy itself since every time it depends on a different example or batch.
An assumption is that we have access to the gradient of our model ∇θf̂ .

The advantage of SGD and its minibatch variant is the computational efficiency since we
do not need to iterate over the whole training batch for each iteration. The outcome of
learning algorithms on concrete data depends on so-called hyperparameters (to distinguish
them from the learnable parameters), the algorithmic parameters. Common hyperpa-
rameters are the weight initialization strategy, model complexity and regularization
parameters, the learning rate, and the number of iterations.
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Figure 2.14: Left: Ridge regression examples to fit a fifth-order polynomial to noisy data from ground truth
f(x) = 1 − x + x2. Right: Root mean squared error w.r.t. ground truth over increasing regularization parameter λ.

There are many different, more sophisticated variants of gradient-based optimizers [129]
where the goal is to improve convergence speed and make them more robust towards
noise, e.g., the Adam optimizer [90].

Regularization. It is desirable that our learning algorithm automatically finds the
sweet spot for our bias-variance tradeoff. A general concept to avoid overfitting and
improve generalization of models is regularization. One method is to augment the loss
function as to penalize model complexity so that the learning algorithm prefers models
with less complexity, but still has sufficient capacity to potentially model more complex
relations. A well-known variant is Tikhonov regularization, also called ridge regression
or weight decay, where the squared L2 norm of the weight vector is added to the loss
function, resulting in an adapted SGD update rule:

J reg(θ) = J(θ) + α||θ||22 (2.16)
θ ← (1 − αλ)θ − α∇θJ (2.17)

At every iteration, the weights are shrunk, controlled by the λ hyperparameter.

In Figure 2.14, ridge regression fits using scikit-learn [115] of a fifth-order polynomial to
noisy (zero-mean Gaussian with σ = 0.25) data over different λ are shown, to see the
transition between overfitting (λ = 0.0) and underfitting (λ = 10), loosely corresponding
to a capacity transition of the model.

Feed-forward neural networks. In their feed-forward variant, artificial neural net-
works (ANNs), also called multilayer feed-forward perceptrons, are computational graphs
with an input x, an output y, and k + 1 layers (k − 1 hidden layers, one input layer, and
one output layer). Their building blocks are neurons (called units) i in layer j which
perform an affine transformation of their inputs defined by the weights Wji and biases
bji, apply an activation function zji, and pass the resulting signal on to their output,
potentially to all the next layer’s neurons in the fully connected case. The behavior of a
neural network based model f̂ is determined by its architecture, the edge weight matrices
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Figure 2.15: Example learning curve using TensorFlow/Keras and validating a neural network with Adam optimizer
on a regression task.

{Wj}j∈1,...,k and biases {bj}j∈1,...,k—the learnable parameters θ—and the activation
functions {zj}j∈1,...,k over all layers, where for regression the final activation function zk

is scalar, i.e., we have one neuron in the output layer:

f̂(x; θ) = zk(WT
k . . . z2(WT

2 z1(WT
1 x + b1) + b2) + · · · + bk) (2.18)

By the famous results of Cybenko [33], Hornik et al. [83], and later Leshno et al. [100],
with at least one hidden layer, sufficiently many units, and non-polynomial activations,
a neural network acts as a universal function approximator. It is also trainable by
gradient-based methods using the famous backpropagation algorithm by Rumelhart et al.
[130]. This makes them an ideal starting point for black-box modeling, where we are
not so much interested in the concrete inner workings of our model but merely in its
behavior in terms of input-output relations.

Due to its potential high capacity overfitting is a serious issue. Hyperparameter tuning
and regularization are even more important than with high-bias models. While weight
decay is again an important basic technique, further techniques have been developed
specifically for neural networks like dropout (Srivastava et al. [139]), batch normalization
(Ioffe and Szegedy [87]), and—in particular for the setting of sparse data for image
classification tasks—data augmentation (Shorten and Khoshgoftaar [138]). A simple yet
effective technique is early stopping, where during an iterative training procedure, the
performance on an independent validation set is monitored (see Figure 2.15) and stopped
as soon as there is no more improvement after a number of iterations. Then, we revert
to the weights of the best-performing iteration.
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CHAPTER 3
State Space Search for the

Traveling Tournament Problem

The traveling tournament problem (TTP) introduced by Easton, Nemhauser, and
Trick [46] in 2001 is a well-known sports league scheduling problem famous for its
practical hardness. Given an even number of teams with symmetric distances between
their venues, a double round robin tournament has to be scheduled minimizing the
total travel distances over all teams. We consider the most common constrained variant
disallowing games back-to-back between two teams and setting a limit on consecutive
home/away games of three. At the time of writing, only instances with as little as 10
teams have been solved to optimality using a parallel iterative deepening A∗ search [155],
while those with 12 teams remain open.

Inspired by the state-of-the-art exact tree search approaches by Uthus et al. [154, 155], we
propose a novel state space formulation on which we apply two classic search algorithms.
On the one hand beam search, a heuristic incomplete search algorithm without optimality
guarantees, on the other hand weighted A∗ search, a best-first search algorithm, which is
complete and guarantees bounded suboptimality when using an admissible heuristic.

We compare different lower bounds to guide our search, where we solve the arising
subproblems either exactly or heuristically. For small to medium-sized instances up
to 18 teams, we can precompute a disjoint pattern database to quickly calculate lower
bounds for states—admissible heuristics for the search. For larger instances up to 24
teams, we solve the subproblems inexactly resulting in inadmissible heuristics. In a
randomized variant of beam search, we employ shuffled team ordering and add small
amounts of Gaussian noise to the nodes’ guidance for diversification when multiple runs
are performed. This allows for a simple yet effective parallelization of the beam search.

A final comparison for beam search is done on the NL, CIRC, NFL, and GALAXY
benchmark instances with 12 to 24 teams, for which we report a mean gap difference
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to the best known feasible solutions of 1.2% and five new best feasible solutions. In the
subsequent chapter, we demonstrate how a large-scale beam search variant with a more
sophisticated parallelization and large amounts of memory allows reducing this mean
gap difference below zero providing many more new best solutions up to 22 teams (see
Appendix A).

The work on beam search for the TTP was first presented at the EvoCOP 2020 conference
and published in its proceedings. Afterwards, a subsequent invited extended journal
version was published in the Evolutionary Computation Journal:

Nikolaus Frohner, Bernhard Neumann, and Günther R Raidl. A beam search
approach to the traveling tournament problem. In Evolutionary Computation in
Combinatorial Optimization – 20th European Conference, EvoCOP 2020, volume
12102 of LNCS, pages 67–82. Springer, 2020

Nikolaus Frohner, Bernhard Neumann, Giulio Pace, and Günther R Raidl. Approach-
ing the traveling tournament problem with randomized beam search. Evolutionary
Computation Journal, 2022. in press

The weighted A∗ search together with a stronger heuristic for the TTP is an additional
yet unpublished contribution of this thesis. We show that duplicate state detection
and a dynamic team ordering may substantially reduce the A∗ search effort in terms of
expanded nodes and runtime. While we suspect more memory and parallelization are
required to improve lower bounds, competitive solutions can be derived for instances up
to 14 teams using an anytime variant of this search.

3.1 Introduction
In 2001, Easton, Nemhauser, and Trick introduced the traveling tournament problem
(TTP), an N P-hard combinatorial optimization problem in the realm of sports league
scheduling. It is concerned with the construction of a double round robin tournament for
a sports league, where the sum of the travel distances over all teams shall be minimized.
Teams start and end at their respective home venues and are assumed to always travel
directly from their current position to their next designated game venue, which is either
at home or away. Each team is only allowed to play a certain maximum number of games
away or at home consecutively, and two teams must not play against each other in two
subsequent rounds. At the time of writing, proven optimal solutions have been found for
classical benchmarks instances with up to ten teams, but not for twelve and more teams,
as can be checked on the recent RobinX solution repository.1

Due to the problem’s practical hardness, many different metaheuristics have already
been applied to create high-quality but not necessarily optimal solutions in reasonable

1https://www.sportscheduling.ugent.be/RobinX
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time. Neighborhood search based approaches such as tabu search [39] or simulated
annealing [4, 160] provide particularly strong results. Inspired by the success of the exact
tree search methods of Uthus et al. [154, 155] on small to medium-sized instances, we
present in this chapter a variant of the heuristic search algorithm beam search based
on a state space formulation of the problem. We compare different lower bound based
heuristics used to order the nodes in a layer of the state graph, which is traversed in
a truncated breadth-first-search manner. These guidance heuristics are calculated by
solving corresponding capacitated vehicle routing problems (CVRPs) either exactly,
resulting in an admissible heuristic, or heuristically2, losing the guarantee of admissibility.
The presented CVRPs are relaxations of the TTP which are N P-hard themselves.

Competitive results and new best feasible solutions can be achieved on difficult benchmark
instances with a randomized variant of the beam search in which we shuffle the team
ordering and add Gaussian noise to the heuristic estimates. This randomization enables
a simple yet effective parallel execution of multiple diversified beam search runs. We
compare the beam search approach with a state-of-the-art simulated annealing approach
from the literature [4] and with weighted A∗ search on the proposed state space formulation.
We made our implementation available open source on GitHub.3

Structure. We formally introduce the TTP in Section 3.2 and give an associated state
space formulation in Section 3.4, where an optimal solution corresponds to a shortest
path through a directed acyclic state graph. The same state may be reached by different
partial schedules and determines the set of feasible completions, i.e., all the continuations
leading to a complete TTP schedule when combined with any of the partial schedules.
The approach, therefore, allows detecting isomorphisms to reduce the search effort. In
between in Section 3.3, we summarize related work on which our approach is based.
Specifically worth mentioning are the papers of Uthus et al. [153, 154, 155], which broadly
fall into the class of tree search based techniques. In particular, we build upon their
bound precalculation method.

Section 3.5 is concerned with the schedule construction algorithm on the state graph
using beam search driven by lower bound based heuristics and infeasibility checks that
are derived from the states. These lower bounds are calculated by solving related CVRP
instances independently for each team, introduced as independent lower bound (ILB) by
Easton et al. [46] for the root state and strengthened by Uthus et al. [155] for arbitrary
states. We describe in more detail in Section 3.6 how we solve these subproblems either
beforehand for all states up to 18 teams exactly via recursive constrained shortest path
problems on decision diagrams, or heuristically on the fly with Google OR-Tools4 up to
24 teams, also providing experimental results.

In Section 3.7, we study the impact of the beam width, reflective symmetry breaking, and
different static team orderings on selected instances. In Section 3.8, we describe a weighted

2Be aware of the two different meanings of heuristics in this thesis.
3https://github.com/nfrohner/ttpbeam
4https://developers.google.com/optimization/
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A∗ approach to the TTP, with the advantage over beam search of being complete and
providing bounded suboptimality guarantees. Section 3.9 presents final computational
results for beam search, split into experiments with our first implementation in Python
[57] and our revised and faster version in Julia [62]. We first compare the performance
of different algorithm variants on randomly generated instances on a two-dimensional
grid to make final design choices. After that, we present a head-to-head comparison
with a reimplemented state-of-the-art simulated annealing approach, where our approach
proves to be competitive in a time-limited setting. We conduct final tests on the classical
benchmark instances derived from teams of the US Major League Baseball (NL), the
national football league instances (NFL), the circular instances (CIRC) by Easton et al.
[46], and the instances derived from three-dimensional distances between stars (GALAXY)
by Uthus et al. [155], with up to 24 teams. We observe that our constructive approach
with a final short best-improvement local search delivers competitive results with a mean
gap difference to the best-known feasible solutions of 1.2%. Moreover, we could find new
best solutions for four GALAXY instances and one CIRC instance.

We finalize our computational study by a study of weighted A∗ search in Section 3.10,
where we show how to substantially reduce the search effort using duplicate states
detection, dynamic team ordering, and a stronger admissible heuristic. Finally, we
conclude in Section 3.11 and make suggestions for further research.

3.2 Problem Formalization

We are given a set V = {1, . . . , n} of n teams, where n is even, and a distance matrix d
where d(i, j) is the traveling distance from team i’s home venue to team j’s home venue,
i, j ∈ V . A home stand (or away streak) of a team is a maximal sequence of consecutive
games where the team plays always at home (or always away). The goal is to construct a
double round robin tournament, where all home stands and away streaks consist of at
most U games consecutively at home or on the road (at-most constraint), teams do not
play against each other in subsequent rounds (no-repeat constraint), and the total travel
distance over all teams is minimized. Each team starts and ends at its home venue and
travels directly between the venues.

Adopting the formulation of De Werra [36] and Ribeiro and Urrutia [124], we see the
teams V as vertices of a complete weighted directed graph G = (V, A), where the weights
are given by the distance matrix d. The graph is now directed to model the venue of a
game, which is represented by a single arc. A double round robin schedule T is an ordered
1-factorization T = (G1 = (V, A1), . . . , G2n−2 = (V, A2n−2)) of G, which is an ordered
partitioning of the arcs into 2n − 2 perfect matchings (1-factors) Ar, r ∈ {1, . . . , 2n − 2}.
An arc (i, j) (or i →r j) denotes that team i plays against team j at j’s venue in round
r. The location of team i in round r is denoted pr

i ∈ V and determined by the single arc
in Ar incident to team i. The objective value of a schedule T is the total travel distance
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Figure 3.1: Left: The NL6 problem instance from [46] shown as complete undirected graph. Right: A feasible
double round robin tournament schedule represented by a (2n − 2) × n matrix, where the value j of entry (r, i)
corresponds to the game i →r |j| if j is negative, otherwise to the game j →r i.

given by

z(T ) =
n∑

i=1

(
d(i, p1

i ) +
2n−2∑
r=2

d(pr−1
i , pr

i ) + d(p2n−2
i , i)

)
. (3.1)

Throughout this paper and as in most previous work, we only consider U = 3, for which
Thielen and Westphal [144] have shown strong NP-completeness of the corresponding
decision variant of the problem. Furthermore, we assume that the distances are symmetric.

Figure 3.1 shows on the left an example instance with n = 6 teams depicted as an
undirected complete graph. A corresponding feasible TTP schedule is shown on the right,
represented as a (2n − 2) = 10 rounds by six teams matrix, denoting the opponent and
venue for each round and team. We denote an abstract opponent of a team’s home game
by H and of an away game by A, when only the venue is important.

3.3 Related Work
Van Bulck et al. [157] provide a recent literature overview and classification of round-robin
sports timetabling problems, where the TTP belongs to a class encoded as 2RR, C, ∅ |
CA3, SE1 | TR. The first part of the classification defines the structure of the tournament,
the second the constraints, and the third the objective function. Another recent review
of sports league scheduling and related topics with a focus on Latin America is presented
by Durán [44].

The TTP itself, together with the NL and CIRC benchmark instances, and the ILB
were introduced by Easton et al. [46]. They also provide two first solution approaches,
one mainly based on constraint programming with an enumeration scheme on the
increasing number of trips strengthening the independent lower bound, and one on
integer programming with a formulation that directly operates on all possible trips.
These are limited to solve instances only up to six teams. Easton et al. [47] present a
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3. State Space Search for the Traveling Tournament Problem

parallel branch-and-price approach where the columns are the concrete single team tours,
combining integer programming with constraint programming for the pricing problem
and as a primal heuristic. This approach is able to solve instances with up to eight teams
without no-repeat constraints to optimality with 20 processors in a couple of days.
Irnich [88] introduces a compact formulation where the schedules are modeled as combined
movements on a time-discrete network for each team. An extensive formulation to be
solved with branch-and-price is derived where the separate tours for the teams are
modeled on related state graphs where restricted shortest path problems are solved for
the pricing problems. Together with reflective symmetry breaking, the NL instance
with eight teams (NL8) and no-repeat constraints could be solved for the first time to
optimality within 12 hours in single-threaded mode.
Uthus et al. [154] propose a DFS∗ approach to solve the TTP, guided by heuristic
estimates based on the ILB derived from states and using reflective symmetry breaking to
solve instances up to eight teams by orders of magnitude faster than previous approaches.
More specifically, the authors reported solving NL8 in minutes instead of hours as by
Irnich [88]. Pushing it further, Uthus et al. [155] suggest an exact iterative deepening
A∗ search, which allows them to solve benchmark instances with ten teams to proven
optimality for the first time and to improve lower bounds for instances with 12 and 14
teams. To achieve this, their approach features special symmetry breaking techniques,
memoization, and was executed in parallel using subtree splitting on 120 processors for a
wall clock time of a couple of days. From Uthus et al. [154, 155], we adopt and extend
the idea to populate disjoint pattern databases [94] by precalculating independent lower
bounds for teams’ states to occur during the state space traversal.
We aim at solving larger instances heuristically and therefore compete with today’s state-
of-the-art metaheuristic approaches, which we consider to be the simulated annealing
(TTSA) from Anagnostopoulos et al. [4] and its parallel variant, the population-based
simulated annealing from Van Hentenryck and Vergados [160] (PBSA). The latter found
the so far best solutions for most of the larger NL, NFL, and CIRC instances using
a cluster consisting of 60 nodes within a few hours per instance. TTSA starts on a
randomly generated solution and makes use of five neighborhood structures. It allows the
traversing of infeasible regions of the search space steered by a modified objective function
and strategic oscillation. A thorough analysis of these neighborhoods is performed in the
tabu search approach by Di Gaspero and Schaerf [39].
On the more constructive side, the ant colony optimization from [153] (AFC-TTP)
makes use of constraint propagation, sophisticated home-away pattern generation and
matching, and backjumping to favor the creation of feasible solutions. Solution quality
guidance is derived from experience encoded into the pheromone matrix without a local
heuristic, since it turned out to be misleading. The ants’ solutions are improved with
a fast tabu search operating in the feasible region of the search space. Goerigk and
Westphal [73] propose a hybrid approach with alternating phases of tabu search and
integer programming, where the latter in a fix-and-optimize manner either optimizes in
the space of opponents per slot with fixed home-away patterns or vice versa, achieving
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best feasible solutions for larger GALAXY instances. Goerigk et al. [74] introduce a new
schedule construction heuristics based on a minimum-length three-vertex path packing of
the team graph determining the teams’ away streaks, limited to instances with n ≡ 4
mod 6 teams. This heuristic is combined with the alternating tabu search and integer
programming approach from before and achieved new best feasible solutions for large
GALAXY and NFL instances.

Beam search can be seen as a constructive metaheuristic, where multiple solutions are
created in parallel using a truncated breadth-first search. In each layer of the search, only
a certain number of the most promising nodes are pursued further to keep the number of
search nodes considered polynomially bounded. It was introduced by Lowerre [105] to
find high-quality solutions in a state transition network for a speech recognition system.
For beam search with the focus on scheduling see, e.g., Ow and Morton [113]. We model
the capacitated vehicle routing problems corresponding to the state-related independent
lower bounds as recursive constrained shortest path problems on decision diagrams, a
close relative of state graphs, used as a compact data structure to encode solution spaces.
For a thorough introduction to decision diagrams in combinatorial optimization, we
recommend the book by Bergman et al. [14].

We adopt and extend the formulation of the ILB as a vehicle routing problem from
Urrutia et al. [152], in which they present a tightening of the independent lower bound
incorporating information of the TTP instances with unit distances (CONST) as solved
by Rasmussen and Trick [123]—the minimum number of trips (MNT) lower bound. This
drops the independency between teams and in some cases enforces them for feasibility
reasons to make more tours than would be optimal in an isolated fashion.

Real-world applications of variations of the traveling tournament problem are described
by Bonomo et al. [20] for the Argentinian volleyball league and in Durán et al. [45] for
the Argentinian basketball league.

3.4 State Space Formulation
We model the solution space, i.e., the set of feasible schedules of a TTP instance (V, d), by
a state graph. This is a rooted directed acyclic graph representing the feasible schedules
by corresponding paths from a root state to a dedicated terminal state. The states
(nodes) are organized into n2 − n + 2 layers, where layer 0 only contains the root state sr,
layer n2 − n + 1 only the terminal state st, and layers l = 1, . . . , n2 − n contain states
representing the situations after the l-th played game.

Each state is a tuple s = (Ms, ys, rs, xs, hs, os), where Ms = (M s
i,j)i,j∈V ∈ {0, 1}n×n

is an incidence matrix that indicates the games left to be scheduled and vectors ys =
(ys

i )i∈V , rs = (rs
i )i∈V , xs = (xs

i )i∈V , hs = (hs
i )i∈V , and os = (os

i )i∈V represent for each
team i the currently forbidden opponent ys

i , the current round rs
i , its location xs

i , and the
number of still possible home or away games left to play in a row hs

i and os
i , respectively.

The forbidden opponents ys are used to implement the no-repeat constraint and hs and
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Figure 3.2: Left: Exemplary partial schedule for an instance with six teams before ending the third round, for
which the teams six and five (in bold) are selected to play the next game. Right: Corresponding state updates
where in the matrix of the games left the currently forbidden games implied by ys, os, hs are grayed out, changed
elements are set in boldface (and underlined for the games matrix). We omitted rs and ys for space reasons.

os to take care of the at-most constraints. Moreover, the information contained in a state
implies for each team i ∈ V the set P s

i of the games that can be played next without
violating the TTP constraints.

A state transition from a state s at layer l to a state s′ at layer l + 1, l = 0, . . . , n2 − n,
corresponds to a specific game i →r j being played by teams i and j at j’s venue in
round r. Each state transition is weighted by the sum of the distances both teams have
to travel from their previous locations to play the game

∆z(s, s′) = d(xs
i , xs′

i ) + d(xs
j , xs′

j ). (3.2)

Teams for the game are selected in a way that the partial schedule grows round by round
in ascending order where each round is completed before the next one starts. All paths
starting from the root state and leading to the terminal state correspond to feasible
solutions. Paths that end before the terminal state at a state without further transitions
represent partial schedules that cannot be feasibly continued. A shortest path from the
root to the terminal state, therefore, corresponds to an optimal feasible solution for a
given problem instance.

We introduce two special rounds r = 0 and r = 2n − 1 where every team is at its
home location. Let Msr be the matrix with non-diagonal ones and diagonal zeros,
corresponding to all games to be played, and matrix Mst be the all-zeros matrix. If
there is no forbidden opponent for a team i ∈ V in state s, then ys

i is set to −1. The
root state is then sr = (M sr , ysr = (−1, . . . , −1), rsr = (0, . . . , 0), xsr = (1, . . . , n), hsr =
(U, . . . , U), osr = (U, . . . , U)) and the terminal state st = (Mst , yst = (−1, . . . , −1), rst =
(2n − 1, . . . , 2n − 1), xst = (1, . . . , n), hst = (0, . . . , 0), ost = (0, . . . , 0)). Transitions to
the terminal state are special in the sense that they do not correspond to a played game
but represent the return of the teams which are on the road in the last round to their
respective home venues.
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3.5. Beam Search

Transitions from a state s at some layer l to a subsequent state s′ at layer l+1 are done by
selecting a game (i, j) ∈ P s

i (or (j, i)) where we impose the condition ri = rj = mink∈V rk.
This ensures that the teams are in the same round and games are assigned to teams
round by round. We denote the layer of a state by layer(s). If there exists a dead team
i with P s

i = ∅, our current state has no feasible completion. Since there is no meaning
in which order we select the teams within a specific round r, we break this symmetry
by defining a specific team permutation π : V → V . At each state of layer l, a game
from P s

πi
has to be played for which i and rπi are minimal. A trivial ordering π is the

lexicographic ordering of the teams.

Selecting a game (i, j) yields state s′ with Ms′ being a copy of Ms except that M s′
i,j = 0,

which implicitly removes this game from P s′
i and P s′

j as well. The position, round, and
streak-related information of i and j are updated from s to s′ accordingly. To respect
the no-repeat constraints, the forbidden opponent vector ys is copied to ys′ except that
ys′

i = j and ys′
j = i, if M s

j,i = 1; otherwise these values are set to −1. For every other
team k ∈ V \ {i, j}, ys′

k = −1 is set if ys
k ∈ {i, j}. The at-most constraints are already

implied by the updates in os′ and hs′ . If os′
i = 0, then away games are not allowed in the

next round for team i; analogously, a continuation of j’s home stand is not allowed, if
hs′

j = 0.

An exemplary state transition is shown in Fig. 3.2 for an instance with six teams before
and after ending the third round with the game (5, 6). We see that team five hits its
away streak limit and all its away games are not available for the next round and that
the game (6, 5) is forbidden.

3.5 Beam Search
We perform a layer-by-layer breadth-first-search traversal of the state graph, where for
each state all permitted games for a selected team are played by performing the respective
transitions to corresponding successor states. The current shortest path value and the
corresponding partial schedule are cached for each state during construction and updated
if a shorter path to an already visited state is discovered.

Due to the complexity of the problem, only instances with four teams admit in practice
a complete construction of the state graph, providing a guaranteed optimal solution. We,
therefore, restrict the search to an incomplete beam search (see Section 2.2) where at each
layer at most β states are kept for further consideration; parameter β is hereby called the
beam width. In this way, the total number of expanded states is polynomially bounded
by O(n2β). A shortest path through such a restricted state graph then corresponds to
a feasible heuristic solution. To guide the search, in each layer the β most promising
states are kept according to some state ranking heuristic b(s), in the hope that the finally
shortest path corresponds to an optimal or close-to-optimal solution. Classical beam
search sorts the states by an f -value known from A∗ search that combines the length of
the currently shortest path g(s) to the state s with a heuristic estimate b(s) for a best
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3. State Space Search for the Traveling Tournament Problem

further continuation to the terminal state:

f(s) = g(s) + b(s) (3.3)

As tie breaker, we use the shortest path length to the state g(s).

In our beam search implementation, we only keep the current layer in a queue and the
successive layer in a priority queue sorted according to f that contains at most the β
best successor states so far. The current layer’s queue is sorted once by the f -value
and iterated from smallest to largest. The priority queue for the successor states is
implemented by a max-heap with a bounded number of items combined with a hash map
to access arbitrary states in expected constant time. Before creating a successor state, we
check in case of a full beam utilizing incremental evaluation whether the potential new
state’s f -value is worse than the worst f -value in the heap. If this is the case, we do not
need to consider the state further. Otherwise, we create the successor state and check
whether it already exists in the max-heap, in which case we conditionally update its
shortest path value and current best partial schedule. If the state was not yet contained
in the heap, we replace its so far worst state with the newly created successor state.
This approach gives us a smaller memory footprint than storing all created states until
termination, allowing us to work with higher beam widths. The current partial schedule
is cached along each state in a growing vector.

As will be discussed in detail in Section 3.6, the heuristic estimates are also cached along
the state for each team, together with the number of home and away games left for each
team. The latter allows quickly checking whether or not there are enough home games in
relation to away games to make a feasible completion.

To diversify the search, we further introduce a randomized variant of the beam search. We
apply it in a multi-start fashion for a simple yet effective parallelization of independent
workers. To this end we add a normally distributed random offset with standard deviation
σ to each state’s original f -value:

f̃(s) = f(s) + N (0, σ). (3.4)

The motivation is that states which would be pruned when just considering their de-
terministic f -value get a chance to survive, and they may lead to superior solutions.
Initially promising states can also get cut off early by drawing a too-high random offset.
It also acts as a random tie breaker for states with the same f -value. This approach has
similarities to stochastic ranking, where a stochastic bubble search is applied to rank a
population, see [131].

Crucial is the standard deviation σ for which we make the following parameterized ansatz:

σ = σrel · b(sr) (3.5)

Parameter σrel thus determines the fraction of the heuristic estimate of the root state to
be used as σ, so that the order of magnitude of the expected solution length of a given
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Algorithm 3.1: Randomized beam search for the TTP.
Input: number of teams n, distance matrix d, start state sstart, terminal state st,

noise parameter σrel, state heuristic estimate function b, beam width β
Output: feasible schedule T

1 queue Q ← {sstart};
2 for l ← layer(sstart) + 1 to n2 − n do
3 H ← empty maximum heap;
4 while Q ̸= ∅ do
5 s ← Q.pop;
6 t ← next-team(l, s);
7 foreach (i, j) ∈ {(i′, j′) ∈ P s

t | rs
i′ = rs

j′} do
8 ε ← N (0, σrel · b(sstart));
9 if feasibility-and-optimality-check(H, β, s, b, ε, (i, j)) then

10 s′ ← copy s and make transition by playing (i, j) and updating
state along with cached data accordingly;

11 s′.current_schedule ← s′.current_schedule ∪ (i, j);
12 f(s′) ← g(s′) + b(s′) + ε;
13 include s′ into H respecting f(s′);
14 if H.size > β then
15 remove worst element of H;
16 end
17 end
18 end
19 end
20 Q ←sorted-by-f-value(H);
21 end
22 if Q ̸= ∅ then
23 create going home transitions for all states Q to st;
24 return st.current_schedule;
25 else
26 return no feasible schedule found ;

instance is respected. Tuning of this parameter is performed later in the computational
study.

Algorithm 3.1 shows our beam search in pseudo-code. In our setting, the starting state
sstart is the root state sr as defined in Section 3.4, but more generally it could be a state
corresponding to an already non-empty partial solution. Function next-team(l, s) selects
the team to consider for a given layer l and state s. Trivial options are to take the
lexicographically smallest team that is in a minimal round or to initially fix a random
permutation of the teams. Further static orderings are considered and evaluated on
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artificial tuning instances in Section 3.7.

The computational complexity of a state transition implemented in a straight-forward
way is in O(n2) as the games matrix and the solution vector are copied and modified.
Since n is rather small (≤ 40) and contiguous memory copying is a fast operation, this is
not a bottleneck in our implementation.

Procedure feasibility-and-optimality-check(H, β, s, b, ε, (i, j)) incrementally checks whether
the transition would lead to a state for which we know for sure that it does not have a
feasible completion or for which the f -value would be worse than the currently worst in
a full beam. Regarding feasibility, we consider the cases when not enough home or away
games are available for a specific team to not violate the at-most constraint, the only
two remaining games for a team would be against one another, violating no-repeat for
certain, or because one team has an empty possible games set in this round, called dead
teams check. The first two checks are performed in constant time, while the last one is in
our implementation the most expensive check requiring time O(n2) since we iterate over
all teams and their remaining games to find a team without a permitted game. We speed
this up in the implementation by caching the number of teams that just hit the streak
limit to make a worst-case estimate per team in constant time regarding the number of
forbidden games. If this value is less than the number of the team’s remaining games, we
can immediately proceed to a next team, without iterating over its specific games. The
impact of the dead teams check on the runtime and solution quality is studied in Section
3.9.

The optimality check is done by considering the increase in the f -value by the move and
if it is worse than the maximum f -value in a full, i.e., containing β states, max-heap H.
In this case, the transition for game (i, j) does not need to be considered and state s′ is
not created, which saves a costly state expansion operation that would require copying
the whole current state and cache variables. After all successor states have been checked
and potentially added to the heap H, they are transferred to queue Q, sorted according
to state priorities, and thus these nodes become the new current layer. The sorting is
done to fill the beam earlier with likely better states to increase the odds of rejecting the
creation of successor states during incremental evaluation, and for the duplicate states
filtering as described before.

In the next section, we study in detail the crucial part of devising and efficiently calculating
a heuristic estimate b(s) for a state s based on the independent lower bound to ultimately
determine the state’s f -value.

3.6 Lower Bound Based Heuristics
To guide the beam search, we use the f -value of a state s as defined in Equation (3.3),
consisting of the shortest path length to the state so far g(s) plus a heuristic estimate b(s).
The latter is derived from a lower bound over the feasible completions from state s, either
determined exactly or heuristically. We first consider three bounds of different strengths
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Figure 3.3: Imagine an instance with ten teams and two similar states where a team has already played four away
games, being currently away, and either two or three home games. In the latter case, six home games are left, for
which at least two home stands (U = 3) are necessary, corresponding to the constraints of having at least two
tours, an optimal solution is shown in the middle (objective value: 2252). In the former case, seven home games
are left and therefore one more home stand is required, an extra tour, which results in a worse optimal solution
shown on the right (objective value: 2542). On the left, an optimal solution to the team’s root state is shown.

all based on the main idea to consider all teams and their away games independently, as
proposed by Easton et al. [46]. These bounds are the Traveling Salesperson Problem (TSP)
bound bTSP(s), the Capacitated Vehicle Routing Problem (CVRP) bound bCVRP(s), and
the CVRP-Home (CVRPH) bound bCVRPH(s).

Each bound is calculated by accumulating the solution lengths of independent subproblems
for the teams. The TSP bound drops the at-most constraint, which is considered by
the CVRP bound. The latter, however, ignores the minimum number of home stands
required (induced by the number of away games remaining) and the maximum number
of home stands allowed (induced by the number of home games remaining), which are
respected by the last and tightest one, the CVRPH bound. Therefore

bTSP(s) ≤ bCVRP(s) ≤ bCVRPH(s). (3.6)

Exact bounds calculation. The main idea for obtaining lower bounds is to relax the
problem by considering the tours of all teams independently. Easton et al. [46] already
suggested the independent lower bound (ILB) that applies this principle. This bound
neglects the home games and the no-repeat constraints and considers only the away
games for a given team i ∈ V with only the away at-most constraints. This amounts to a
capacitated vehicle routing problem (CVRP), also formulated as such by Urrutia et al.
[152], where the depot is at i’s home venue, the customers are the away teams with unit
demand, and the vehicles’ capacities are U = 3. The CVRP itself is strongly N P-hard
but for few customers tractable in practice.

Given an arbitrary state s and team i, we have to consider the remaining away teams
As

i for i, the position xs
i , and the remaining away streak os

i . If xs
i ̸= i ∧ os

i = 0, then we
consider an artificial state in which the team is assumed to have returned home (this
is the only option it has at that moment), os

i = min(As
i , U), and add d(xs

i , i) to the
resulting bound. Let the optimal total length for this problem for team i be bCVRP

i (s).
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Then, the sum of the optimal values over all teams is a lower bound for the optimal value
of the corresponding TTP-feasible completion of s

bCVRP(s) =
n∑

i=1
bCVRP

i (s). (3.7)

A natural further relaxation is to drop even the away at-most constraints, and a traveling
salesperson problem based lower bound bTSP emerges, if the triangle inequality holds,
otherwise it relates to a VRP with unlimited capacity. In both cases, we do not have to
consider the current away streak of team i in state s.

To provide better guidance and pruning power for our search algorithms, we are more
interested in tighter lower bounds while keeping their computational costs in mind.
A first natural strengthening is to consider also the home at-most constraints. Let
hleft

i = |Hs
i | be the number of home games left for team i in state s. Then we need at

least h̃min
i = ⌈(hleft + h̄i)/U⌉ home stands to accommodate for the home games, where h̄i

is the length of the current home stand. Translated to the CVRP, this amounts to the
constraint that we need to perform at least h̃min

i non-trivial tours (after every away streak
comes a home stand), minus one if the team is currently at home. Analogously, every
away streak (tour) needs at least one remaining home game from where it came (except
for the first tour), i.e., we can have at most 1 + hleft

i tours. This gives us a maximum
to the home stands h̃max

i = 1xs
i =i + 1 + hleft

i we can realize from a given state.5 We can
therefore define a home stand constrained lower bound bCVRPC

i (s, h̃) and tighten the
CVRP bound by finding the minimum within the range of allowed home stands, summed
over all teams resulting in the CVRP with home stands bound (CVRPH)

bCVRPH(s) =
n∑

i=1
min

h̃∈{h̃min
i ,...,h̃max

i }
bCVRPC

i (s, h̃). (3.8)

In Figure 3.3 an effect of these constraints on an example instance with ten teams is
illustrated. If a bCVRPC

i (s, h̃) has no feasible solution, then we set it to ∞. To exclude
them in the minimization, we can strengthen the lower and upper bound to h̃ further, by
inferring the minimum number of required and maximum number of possible tours (and
therefore home stands) based on the remaining away games, with analogous arguments
as before for the remaining home games.

Disjoint pattern database. In principle we could evaluate any given state by feeding
a corresponding integer programming (IP) model into a solver like Gurobi6, but this is
expected to be too costly in practice. To speed up our search algorithms, we pre-calculate
the lower bounds for the states that can occur for a given TTP instance, similarly as done

5We denote by 1expr the indicator function, which maps to 1 when the subscripted expression holds,
otherwise to 0.

6https://www.gurobi.com/
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by Uthus et al. [155]. We do this by representing the whole space of feasible solutions to
the given CVRP instance for each team i with an exact multi-valued decision diagram
(DD) [14] and finally store the lower bounds for the states that occurred in a lookup table,
which can then be used as disjoint pattern database [94, 155] during the search. Each
node in this DD is associated with a state q consisting of the away games left to play
Aq (represented by the subset of other teams against which team i still has to play), the
team i’s position xq and the current number of consecutive away games, the away streak
ōq. The root state for a given team i is therefore qr = ({1, . . . , i − 1, i + 1, . . . , n}, i, 0).
Transitions are made until the terminal state qt = ({}, i, 0) is reached, where in every layer,
all available transitions are performed. Hereby we distinguish between three possibilities:

• Select any away team left j ∈ Aq to visit next if there are such, and go home
afterwards, where costs d(xq, j) + d(j, i) accrue. The state is updated accordingly
to (Aq \ {j}, i, 0).

• If ōq is less than U − 1, then select any away team left j ∈ Aq to visit next, if
there are such, and stay at j afterwards, where costs d(xq, j) accrue. The state is
updated to (Aq \ {j}, j, ōq + 1).

• If Aq is empty, go home if not already at home, where costs d(xq, i) accrue. The
state is updated to the terminal state qt.

Paths from the root to the terminal node in the DD then correspond to the feasible
solutions of the CVRP, and with the costs associated with the transitions (i.e., arcs in
the DD), the lengths of such paths correspond to solution lengths. For each node in the
CVRP decision diagram, the shortest path to the terminal node is calculated and saved
in the lookup table, serving as a lower bound for a team with given away teams to play,
being at a position either at home or at some away team and its current away streak.
Being a layered directed acyclic multigraph, the shortest paths for each node in the
decision diagram can be calculated efficiently by doing a breadth first search backwards
from the terminal to the root node.

The TSP-based bound values can also be pre-calculated by this method by simply ignoring
the away streak and allowing always a direct transition to a next away team without
going home first.

Furthermore, for the CVRPH bound, we consider constrained shortest path lengths
zsp(q, h̃) from any node to the terminal node, with the constraint that exactly h̃ home
stands occur. This means that at most h̃U − h̄i home games can be played from a given
node, where h̄i is the length of the current home stand for team i. At the terminal
node zsp(qt, 1) = 0 and ∞ for every other node. In the backward sweep from q′ to q
with arc costs cq,q′ , if xq ̸= i, then we set zsp(q, h̃) = min{zsp(q′, h̃) + cq,q′ , zsp(q, h̃)}. If
on the other hand xq = i, i.e., a new home stand has occurred, we set zsp(q, h̃ + 1) =
min{zsp(q′, h̃) + cq,q′ , zsp(q, h̃ + 1)}. For each state, we now have all the constrained
lower bound values available that correspond to bCVRPC

i (s, h̃). Additionally, we define
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bCVRPC,≥
i (s, h̃) = minh̃′∈{h̃,...,h̃max

i } bCVRPC
i (s, h̃′) ∀h̃ ∈ {h̃min

i , . . . , h̃max
i }, which gives us

the lower bounds when using at least h̃ home stands.

In the lookup for the CVRPH bound of a single team, the minimum over a sequence is
fetched, defined by the minimum and maximum number of home stands determined by
feasibility and optimality considerations of the team’s state. For instance, the number of
remaining home games may require a certain number of home stands to play them, while
performing more than one length-one tour is never strictly optimal for a capacitated
vehicle routing problem with a capacity greater than one, providing a tighter maximum
number of home stands. The latter is true if the triangle inequality holds and therefore
merging two length-one tours never increases the traveling distance. Furthermore, since
we do not model abstract home games explicitly in our state graph, we need to take the
minimum of going home first or directly continuing a current away streak. The slight
increase in lookup complexity allows for a reduction of the state space complexity.

Dropping independence.† So far, we had to solve independent subproblems and
made use of the disjoint pattern database to quickly calculate an admissible heuristic for
TTP states. Single team strengthening constraints allowed to further tighten the bound
which can be modeled as a joint—all teams have their own vehicles and remaining away
games—CVRP with separate lower and upper limits for the number of vehicles.

By dropping this independence we can add further strengthening constraints based on
rules derived from feasibility considerations on how streaks can be continued. We assume
a TTP state s and consider a team i which is currently away and has a set of away games
left As

i . If it were to continue its streak by visiting opponent ωi ∈ As
i away, we know that

(i, ωi) is i’s next game in the schedule and (ωi, i) is ωi’s game in the corresponding round.
The set of possible opponents to continue i’s streak can be reduced to A′s

i by removing
opponents ω, against which it is currently not permitted to play, for which we know the
following reasons:

• Opponent ω is one round ahead of i, i.e., has already played in this round.

• Opponent ω is in the same round, currently at home, and has reached the home
streak limit U .

The dependence on the global TTP state remains static, the joint CVRP still consists
of n independent ones, one CVRP for each team. This changes with further linking
constraint, for all teams i:

• If ωi = j and xs
j ≠ j, then ωj = ∅, i.e., if opponent j is away, it cannot continue its

streak, since it has to return home to play against i.

• If ωi = j, then ωk ≠ j ∀k ̸= i : xs
k ̸= k ∧ rs

k = rs
i , i.e., no two teams in the same

round can continue their current away streak with the same opponent.
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We call the resulting problems and related bounds derived from optimal solutions Joint-
CVRPH (JCVRPH, containing only the static constraints), and JCVRPH2 (containing
also the linking constraints) to emphasize the connected CVRPs have to be solved jointly.
We formulate them as three-index IP models with decision variables xarc

ijk, costs cijk based
on the venue distances, and unit demands for each team’s remaining away games, and
depots at the team venues. A decision xarc

ijk = 1 indicates that team i moves directly from
venue j to venue k in some tour. If a team i is currently away at xi, its current position
is also added to the model with a demand equal to the streak length, forcing xarc

iixi
= 1,

and setting ciixi = 0. The outgoing arcs xarc
ixik

, xi ̸= i need special treatment in terms of
additional constraints since they decide how team i’s current streak will be continued.

The JCVRPH can also be solved rather quickly by using the single team instances’
decision diagrams/pattern databases and summing over each team’s minimum over the
allowed outgoing arcs of the current state (costs plus lower bound to goal state).We
believe JCVRPH2 can be reduced to a minimum-weight matching problem and solved
directly without an IP, but leave this as future work.

Minimum number of trips bound. For an even further tightening of the CVRPH
and the JCVRPH bounds, we make use of the minimum number of trips (MNT) bound
by Urrutia et al. [152]. As the JCVRPH bounds, it does not assume strong independence
between the teams anymore. Instead, the relaxed CONSTANT variant of the problem,
where all distances are set to one is solved to optimality (or taking a lower bound),
yielding a minimum number of trips all teams together have to perform in a feasible
solution to the problem. A trip in this case is an atomic movement of a team from one
venue to another. Given a state s, let us call τ = ∑n

i=1 ti the number of trips performed
so far by all teams in the shortest path from sr to s, where τ is now also part of the state.
By the CVRPC bound, each team has an optimal number h̃opt

i of home stands from s to
st. This translates to an optimal number of trips topt

i = |As
i | + h̃opt − 1xi=i. Let τ lb be

the lower bound for the minimum number of trips. If τ lb ≤ τ + ∑
i topt

i , then we cannot
tighten the CVRPH bound further. Otherwise, we can add the constraint that the teams
have to perform ∆τ = τ lb − τ − ∑

i topt
i extra trips, yielding the MNT bound

bMNT(s) = min
n∑

i=1
bCVRPC,≥

i (s, h̃i) (3.9)

s.t. h̃i ∈ {h̃min
i , . . . , h̃max

i } ∀i ∈ 1, . . . , n (3.10)

τ +
n∑

i=1
|As

i |. .. .
|P s|

+h̃i − 1xi=i ≥ τ lb (3.11)

This bound can be calculated by solving a corresponding integer linear program using
binary decision variables yh̃

i with costs derived from the CVRPC lower bound function
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Figure 3.4: Left: Mean bounds by team relative to the CVRP bounds over layers for two exemplary single beam
search runs with beam width 1 000 on the classic NL10 instance, either guided by the TSP bound or by the
CVRPH bound. The TSP bound is as expected quite weak, the CVRPH bound is most of the time identical
to the CVRP bound but provides sometimes substantially more strength. Right: In blue, the evolution of the
minimum and the spread of the relative f -values over nodes by layer for a beam search run on NL10 with beam
width 1 000 guided by the CVRP bound. We observe that after two-thirds of the layers, the f -values’ minimum
and spread increase substantially, where the possibilities are already quite constrained by the earlier decisions and
bad decisions become necessary more likely. In orange, we additionally hint the first three rounds (15 games) by a
known optimal solution, leading to this optimal solution when completing this stub by beam search.

ch̃
i and counting values dh̃

i ∈ {h̃min
i , . . . , h̃max

i }:

bMNT(s) = min
n∑

i=1
ch̃

i yh̃
i (3.12)

s.t.
∑

h̃

yh̃
i = 1 ∀i ∈ 1, . . . , n (3.13)

∑
i,h̃

yh̃
i dh̃

i ≥ τ lb − |P s| − τ +
n∑

i=1
1xi=i (3.14)

We take the τ lb values from [123], where Rasmussen and Trick present a Benders
decomposition approach to solve the CONSTANT instances for up to 16 teams each
within at most five minutes. A constraint on the lower trips can also be directly
incorporated into a JCVRPH(2) IP model by a lower bound on the active arcs.

Illustrative bounds comparison. The performance of the fastest bounds7 is exem-
plarily illustrated in Figure 3.4. On the left, we compare two different beam search runs
with beam width 1 000 on TTP benchmark instance NL10 guided by either the TSP or
the CVRPH bound. In each layer mean bounds per team relative to CVRP bounds are
presented. The TSP bound is as expected rather weak and the CVRPH bound is often
the same as the CVRP bound but provides additional strength at certain parts of the
search. On the right with the same configuration and guidance by the CVRP bound, the
minimum and spread of the f -values over the layers are plotted. As commonly observed
for greedy approaches (e.g., the nearest neighbor heuristic for the traveling salesperson

7the JCVRPH bound was developed later and is therefore not part of the beam search experiments
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Table 3.1: Comparison of independent lower bound calculations on randomly generated Euclidean instances with
{18, 20, 22} teams, 30 instances each, Gurobi 8.1 vs. the local cheapest arc construction heuristic and subsequent
greedy descent from Google OR-Tools 7.5. ~topt is Gurobi’s median time in seconds to prove optimality, tOR[s]
the mean time in seconds to obtain the heuristic solution, and urel

OR are the corresponding optimality gaps with
standard deviations.

class ~topt[s] tOR[s] urel
OR

I18
L2 865 0.9 0.011 ± 0.007

I20
L2 1256 1.2 0.011 ± 0.007

I22
L2 37183 1.6 0.012 ± 0.005

or the Hamiltonian cycle problem), seemingly good decisions in the beginning may lead
to a decline in performance deeper down in the construction, where costly choices are
forced to ensure feasibility. Steep relative increases of the f -values after two-thirds of the
beam search layers are a manifestation of this effect. We deem the provided example for
the TTP instructive where only a rather small part of the solution needs to be fixed—the
first three or 1/6 of the rounds—to a known optimal solution as a seed for the beam
search, which is then able to continue it to an optimum. In this case, sacrifices are made
in the beginning which eventually pay off. While the general pattern of the spread is
similar, we also observe that the maximum f -value within a layer increases more rapidly
above a value of one, corresponding to states that do not lead to an optimum for sure.

Heuristic calculation. CVRPH bounds for instances with 18 teams could be pre-
calculated by our Julia 1.4 implementation on an Intel Xeon E5-2640 processor with
2.40 GHz in single-threaded mode and 32 GB memory in about 70 minutes each, for
smaller instances within 10 minutes each. Starting from 20 teams, calculating the CVRPH
bounds for all team states in advance becomes intractable due to the growth of the
number of bounds which is in O(n32n). A key observation is that the number of node
expansions in the beam search is polynomially bounded, and so is the number of lower
bounds used. The idea now is to calculate the desired bounds not beforehand but on the
fly and keep them in a global cache. One transition in the beam search concerns only
two teams, where the bounds for the rest can be used from the cache. Also, when the
same single team state is reached from a different source TTP state, the value can be
retrieved from the global cache. Preliminary results show a cache efficiency ≥ 99%. Still,
the absolute number of calculations is substantial and the on-the-fly calculation needs to
be fast which leads us to a heuristic f̃ -function

f̃(s) = g(s) + b̂(s), (3.15)

where b̂(s) is a heuristically obtained upper bound to the corresponding lower bound b(s).
We refer to the heuristic versions of our bounds by prepending “Heuristic” to the exact
bound’s name, e.g., Heuristic CVRP (HCVRP) and Heuristic CVRPH (HCVRPH).

As first empirical motivation, we compare in Table 3.1 the exact independent lower bound
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3. State Space Search for the Traveling Tournament Problem

calculated using Gurobi 8.18 for the root states of 90 randomly generated instances with
respective upper bounds obtained by a local cheapest arc construction heuristic and a
subsequent greedy descent from the Google OR-Tools 7.5. We observe promising mean
optimality gaps of about 1% with little variability achieved within seconds, while for the
22 teams instances proving optimality takes hours.

The CVRP bound for a single team in a given state is modeled in Google OR-Tools by
providing it with the distance matrix of the away games left for a team and the team’s
home venue as depot. Capacity constraints of the TTP streak limit of U are employed
for the vehicles and a demand of one is set for each away team. If the team is currently
away, its position is also added to the problem, where the distance from the depot is set
to zero. The current streak is set as a demand, in our case either one (two more teams
possible in team’s away streak) or two (one more team possible in team’s away streak).
To solve the CVRPH bound problems heuristically, which sometimes strengthens the
CVRP bound since it takes required home stands into account, additional constraints are
added to use a minimum and maximum number of home stands. We have therefore two
different models, one for HCVRP (arbitrary number of vehicles) and one for HCVRPH
(bounds on number of vehicles), for which we observe the Google OR-Tools solver to
behave differently.

To compare different combinations of construction heuristic (aka first solution strategy)
and improvement heuristic (aka search strategy) in Google OR-Tools, we created the
aforementioned artificial TTP instances on a 1000×1000 integer grid with uniform spatial
distribution and rounded Euclidean distances with 18, 20, and 22 teams, 30 instances
each, resulting in 90 instances in total. For each, we solved the independent lower bound
to optimality using Gurobi 8.1. In the following experiment, we compare the performance
and running times of different combinations of construction and improvement heuristics.
The performance is measured as the relative gap between the heuristic solution and the
independent lower bound that we previously calculated.

The construction heuristics tested are path cheapest arc, path most constrained arc, local
cheapest insertion, local cheapest insertion, parallel cheapest insertion, global cheapest
insertion, first unbound min value, and Christofides. The improvement methods under
consideration are greedy descent, guided local search, simulated annealing, and tabu search.
Local cheapest arc is excluded since it becomes very slow for larger instances with the
HCVRPH model. As a trade-off between runtime and solution quality deduced from
preliminary tests, we set the solution limit to 30 except for greedy descent which we
let converge to a local optimum. Otherwise, we use for all search methods the default
configuration of Google OR-Tools, which we assume to be already sensible for solving
vehicle routing problems. The results of the potentially tighter HCVRPH model for
instances with 18 and 22 teams are shown in Figure 3.5, presented as boxplots for relative
gaps and runtimes over all configurations.

8https://www.gurobi.com/
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Figure 3.5: Comparison of gaps and running times for different construction heuristics and improvement methods,
solving the root independent lower bounds using our Google OR-Tools HCVRPH model. Top left: comparison of
gaps for instances with 18 teams. Top right: comparison of running times for instances with 18 teams. Bottom
left: comparison of gaps for instances with 22 teams. Bottom right: comparison of running times for instances
with 22 teams.

Table 3.2: Comparison of beam search with β = 1 000 over different state ordering heuristics on 90 randomly
generated test instances with 8, 10, and 12 teams, using rounded Euclidean distances, evenly split. Mean values of
final solution lengths and standard deviations over 30 test instances are shown. As baseline, SHORT uses only the
currently shortest path length to a state g(s) as guidance in the beam search, and no costs-to-go estimate derived
from the state (b = 0).

class SHORT CVRP CVRPH HCVRP

I8
L2 34412 ± 5088 33034 ± 5109 32965 ± 5071 32919 ± 5051

I10
L2 55019 ± 5872 51723 ± 5988 51269 ± 5808 51227 ± 5727

I12
L2 79699 ± 7293 74231 ± 6933 73700 ± 6456 74722 ± 7250

Heuristic guidance. So far, we considered only heuristic solutions to the independent
lower bound problem to see whether there the resulting gaps are plausible. This allows
no direct judgement on whether this gives good guidance for the beam search, since also
the variability of the heuristic quality over the layers of the search is deemed important.
As first sanity check of whether HCVRP is suitable as guidance for solving the TTP
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with our beam search approach, we evaluate its performance on artificially generated
instances with smaller numbers of teams in {8, 10, 12} from [57] in comparison with
guidances by the exact CVRP and CVRPH bounds. Table 3.8 shows the mean and
standard deviation of the objective values achieved by beam search with a beam width of
1 000 for different instances classes, each of size 30. HCVRP with the local cheapest arc
construction heuristic and the greedy descent improvement heuristic performs similarly
to its exact counterpart, the CVRP bound. With a Wilcoxon signed rank sum test on
our sample with a significance level of α = 5%, we cannot reject the null hypothesis that
they have equal performance—still, a possible type II error should be kept in mind.

In the next experiments, we tune algorithmic parameters on our larger artificial instances
with 18, 20, and 22 teams, where the exact bound calculations become intractable and
therefore heuristic solutions become more relevant. Based on the results from the root
lower bounds before, we have fixed greedy descent as improvement method to calculate
the bounds, where we observe a good trade-off between runtime and solution quality.
As construction heuristic, we find that parallel cheapest insertion for HCVRP and first
unbound min value for HCVRPH provide the best guidance. For HCVRPH, the other
methods like Christofides or parallel cheapest insertion fall behind and seem to not work
well with our Google OR-Tools problem formulation of the corresponding vehicle routing
problems.

3.7 Beam Width, Symmetry Breaking, and Team
Orderings

In this section, we study the impact of different aspects of the beam search on the
solution quality. More concretely, we evaluate different combinations of beam width,
team ordering, and reflective symmetry breaking on artificial random instances and a
selected subset of benchmark instances from the literature to justify preparatory design
choices for the subsequent computational study in Section 3.9.

Beam width. Intuitively, we seek to increase the beam width as much as possible
within our computational and memory limits to explore a wider range of the solution
space. Still, the monotonic increase in solution quality is not guaranteed since we might
introduce misleading states. In our randomized multi-start beam search setting, this
is to some extent mitigated, since we add noise to the guidance for diversification and
therefore different parts of the solution space may be explored in each run even with the
same beam width.

In Table 3.3 the number of feasible solutions found and the solution quality for two
exemplary team sizes n ∈ {8, 20} of our random Euclidean instances are compared for
three orders of magnitude of the beam width β ∈ {1 000, 10 000, 100 000} and different
configurations of team ordering and symmetry breaking; the latter two are described in
the remaining paragraphs. Since the search may run into dead-ends due to a limited
look-ahead capability of our approach in favor of construction speed and the constraint

56



3.7. Beam Width, Symmetry Breaking, and Team Orderings

Table 3.3: Number of feasible solutions found on random Euclidean instances with 30 instances for two exemplary
team sizes n ∈ {8, 20} and beam widths β ∈ {1 000, 10 000, 100 000} and different combinations of team orderings
and reflective symmetry breaking, also random team ordering run once per instance. Due to dead-ends in the
search, we observe that an increased beam width is required for increasing team sizes to find feasible solutions with
high probability. Furthermore, the mean solution lengths ū and standard deviation σu over the feasible results of
all 12 configurations show the unsurprising tendency that higher beam widths lead to higher expected solution
quality.

n β highest_total_distance lexicographic lowest_total_distance random #inf ū σu

away home none away home none away home none away home none

8 1 000 30 28 29 30 30 30 30 30 30 30 30 29 4 32975.0 5023.2
10 000 30 30 30 30 30 30 30 30 30 30 30 30 0 32401.4 4933.5

100 000 30 30 30 30 30 30 30 30 30 30 30 30 0 32072.8 4863.3
20 1 000 27 30 29 25 29 28 27 28 28 29 29 28 23 201995.0 14756.8

10 000 29 29 29 30 30 30 30 30 30 29 30 28 6 195383.6 14091.9
100 000 30 30 29 30 30 30 30 30 30 30 30 30 1 191079.3 13656.5

satisfaction aspect of the problem itself, we see that high beam widths are required to find
feasible solutions with high probability, in particular for a large n. In our previous work
([57], Table 3), we observe the same behavior for NL and CIRC benchmark instances
comparing beam widths 1 000 and 10 000, where only with a beam width of 10 000 we
could find feasible solutions for all instances—also better solutions are consistently found
with the larger beam width. This should justify the use of a beam width ≥ 100 000 for
the experiments in our computational study.

Reflective symmetry breaking. Symmetry breaking has been proven beneficial
for exact methods for instance by Uthus et al. [154, 155]. It decreases the runtime by
reducing the search space over which has to be reasoned. Since the beam search’s runtime
is already polynomially bounded, we seek to study the impact of reflective symmetry
breaking along with different team orderings on the final solution quality. State transitions
that are forbidden during construction by symmetry breaking should make space for
other states to be explored further.

Due to the symmetric distances, schedules show a reflective symmetry. Look for instance
at Fig. 3.1, where the solution displayed as a matrix can be mirrored across the horizontal
middle line, i.e., the whole schedule could be reversed round-wise without changing the
total sum of travel distances. To break this symmetry, we employ two different symmetry
breaking methods adopted from Uthus et al. [155], there coined “symmetry-H” and
“symmetry-A”. We enforce for a given selected team—the pivot—that more away (home)
games are scheduled in the first half of the schedule. This works because the number of
away (home) games is odd. To respect this during construction, we additionally disallow
home (away) games for the pivot at state s in the first half of the schedule, if playing it
would make the accommodation of enough away (home) games in the first half impossible.
Imagine an instance with eight teams and an abstract partial schedule HH (AA) for the
pivot, where two home (away) games have been played and five games are remaining in
the first half of the schedule. Would it be continued by another home (away) game, then
we could not play the minimum requirement of four away (home) games in the first half
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Table 3.4: Relative objective values (in percent) to the instance-wise best objective of single beam search runs with
beam width 10 000 for selected NL instances guided by the CVRP bound and a beam width of 100 000 guided
by the HCVRP bound for selected NFL instances over different combinations of team orderings and reflective
symmetry breaking, also random team ordering run once per instance. For one configuration and instance, no
feasible solution has been found. A Friedman test cannot reject the hypothesis that all configurations perform
equally well with α = 5%. The median relative objective values are for all configurations approximately in the
range of 1 − 2%.

inst highest_total_distance lexicographic lowest_total_distance random
away home none away home none away home none away home none

NL8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.7 0.4 0.0
NL10 1.9 0.8 0.8 2.1 2.4 2.1 2.2 0.0 0.0 1.1 0.9 0.0
NL12 1.9 2.8 2.0 0.0 0.6 0.0 2.4 3.0 2.3 3.2 0.8 1.9
NL14 0.8 4.3 0.8 2.4 2.2 2.4 5.0 4.5 5.0 0.0 3.9 3.6
NL16 2.6 0.0 0.0 0.8 1.8 1.8 5.0 1.9 1.9 1.5 3.1 3.4

NFL16 0.1 1.2 0.8 1.5 1.3 1.3 0.0 0.4 0.0 1.8 1.1 0.9
NFL18 3.5 0.9 0.9 2.5 1.1 1.1 0.0 1.2 0.0 1.7 0.6 0.3
NFL20 6.7 3.4 3.4 2.1 1.1 1.1 2.4 4.5 ∞ 1.2 0.0 4.5
NFL22 0.0 0.5 1.9 3.7 1.9 1.9 3.1 3.2 3.1 1.9 1.7 2.6
NFL24 5.9 4.3 5.2 1.7 0.0 2.6 2.0 2.3 1.2 1.6 3.0 2.7

median 1.9 1.1 0.9 1.9 1.2 1.5 2.3 2.1 1.6 1.6 1.0 2.2

of the schedule without violating the at-most constraint.

Team ordering. As static team ordering during the layer-by-layer construction of the
beam search, we consider lexicographic, highest (lowest) total distance to other teams,
and random ordering as control group. As suggested by Uthus et al. [155], the motivation
for the sorting by total distance is to decide first for teams that are farther away (or
closer) to the other teams, to observe earlier in the search an impact on the costs. For a
beam search run, we have to select one out of these four team orderings and either no,
away, or home reflective symmetry breaking, resulting in 12 different configurations.

Evaluation on benchmark instances. We evaluate the performance of the 12
different configurations on 10 different instances from the benchmark set of the literature
(NL8-16, NFL16-24). For the NL we use the CVRP bound as guidance and a beam
width of 10 000, for the larger NFL instances HCVRP as guidance and a higher beam
width of 100 000. We show relative objective values in percent to the instance-wise best
configuration in Table 3.4. Multiple different configurations yield the best solution for at
least one instance, and the median relative objective values are approximately within
the range of 1 − 2% for all configurations. Given our sample, a Friedman test with
significance level α = 5% cannot reject the null hypothesis that all configurations have
equal performance, while a possible type II error should be kept in mind. It could also
be that higher beam widths overshadow the effects of the team ordering, but small beam
widths are not interesting for us and therefore not considered here.
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Since no configuration seems to set itself substantially apart from the others, we decide
to keep the symmetries in all the experiments and use lexicographic sorting for single-run
beam search and random team ordering for diversifying the search in randomized multi-
start beam search runs. After the preparatory experiments of the last paragraphs and
resulting design choices, we are about to move to the main computational study, where
we compare HCVRP with HCVRPH guidance and discuss the impact of a local search
performed after the beam search as postprocessing. We finally make a head-to-head
comparison with a state-of-the-art approach—Traveling Tournament Simulated Annealing
(TTSA) by Anagnostopoulos et al. [4]—which we reimplemented, and compare with the
best-known results over a wide range of benchmark instances from the literature. Before
that, we make a slight detour to weighted A∗ search for the TTP.

3.8 Weighted A∗ Search†

As discussed in the methodology in Section 2.2, A∗ search guarantees optimality given an
admissible heuristic but generally suffers from exponential space complexity in the case
of hard problems. One way to avoid this is iterative deepening A∗ [93] where the search
graph is explored with an iteratively increasing cut on the f -value in a depth-first fashion,
keeping the memory linearly bounded in the depth. Optimality and completeness are
retained and the number of expanded nodes is asymptotically equal to A∗. A sophisticated
parallelized variant by Uthus et al. [155] allows solving TTP instances up to 10 teams
within days. Still, a drawback in practice can be the numerous re-expansions of already
visited states. We, therefore, study the performance of weighted A∗ [118], which trades
optimality with bounded suboptimality in the hope of substantially reducing the number
of expanded states. This is performed by rescaling the heuristic with a weight w > 1
so that it provides more pruning power and puts more focus on the nodes that look
promising for the heuristic. As the heuristic may become inconsistent, it may become
necessary to re-expand states to guarantee w-optimality, otherwise, the analysis is more
intricate, as discussed in the review of weighted A∗ by Ebendt and Drechsler [48].
The high-level description of weighted A∗ for the TTP is displayed in Algorithm 3.2. It
features state re-expansions by retaining a closed list and performing duplicate checks
on expansion. Furthermore, to reduce the number of children generated, a cut u on the
(unweighted) f -value can be supplied. As discussed by Wilt and Ruml [164], increasing
w does not necessarily reduce the number of nodes expanded since the search can then
get stuck in local extrema. Furthermore, for the TTP we may have dead-ends in the
search, real ones by the constraints and artificial ones by the f -value cut and symmetry
breaking. The algorithm is complete in the sense that if there is a solution satisfying
the cut u, then it will be eventually found. Practical problems are likely the memory
footprint and also runtime. In the computational study, we will study the performance
of this approach over different parameter combinations for the weight w and the f -value
cut u. If we do not have a cut, the focus is on finding a w-optimal solution, whereas
when we have a cut, to prove either its w-optimality or even a lower bound, if no feasible
solution is found.
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3. State Space Search for the Traveling Tournament Problem

Algorithm 3.2: Weighted A∗ Search for the TTP.
Input: number of teams n, distance matrix d, start state sstart, terminal state st,

admissible heuristic b, beam width β, weight 1 + ϵ, f -value cut u
Output: feasible schedule T with bounded suboptimality

1 priority queue Q ← {sstart} sorted by weighted f -value;
2 closed list C as hash map with state as key, so far best f -value as value;
3 sfinal ← ();

4 while Q ̸= ∅ do
5 s ← Q.pop;
6 break if state s = st setting sfinal ← st;
7 continue if state s ∈ C ∧ C[s] ≤ f(s);
8 C[s] ← f(s);
9 if s has games to play then

10 t ← next-team(s);
11 foreach (i, j) ∈ {(i′, j′) ∈ P s

t | rs
i′ = rs

j′} do
12 f(s′) ← g(s′) + (1 + ε) · b(s′); // by incremental evaluation
13 if feasibility-and-symmetry-breaking-check(s, (i, j)) ∧ f(s′) ≤ u then
14 s′ ← copy s and make transition by playing (i, j) and updating the

state along with cached data accordingly;
15 s′.game_played ← (i, j);
16 s′.parent ← s;
17 include s′ into Q respecting weighted f(s′);
18 end
19 end
20 else
21 create going-home transitions for s to st;
22 include st into Q respecting weighted f(st);
23 end

24 if sfinal ̸= () then
25 return sfinal.current_schedule;
26 else
27 return no feasible schedule found adhering to the f -value cut u;

For A∗ search, a small memory footprint for the search nodes (state plus auxiliary
information) is even more desirable due to its worst-case exponential space complexity.
To achieve this, we construct state graphs for each team and encode a complete TTP
composed of such single team states, stored as pointers. A team state is a 4-tuple
consisting of the remaining opponents to play away, the number of remaining (abstract)
home games, the current position, and the remaining games allowed on the current
streak. The arc weights are the distances between the two incident states’ positions.
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Figure 3.6: UFO-shaped state graph with abstract home games for instance NL4’s first team, resulting in 74 nodes
and 144 edges. In each node, the state, the shortest path g, and the perfect heuristic h∗ are shown.

It corresponds to a directed acyclic graph which can be constructed by a breadth-first
search—furthermore, the shortest paths g from the root to any other state, and from
any state to the terminal node h∗ (this amounts to a perfect single team heuristic) can
be computed in linear time by corresponding forward/backward sweeps and dynamic
programming. The graph without weights is the same for all instances with n teams
and can be calculated once up-front, which grows exponentially in n. For a concrete
instance, the forward and backward sweeps have to be performed to calculate the h∗, see
Figure 3.6. Then we end up with a combined state representation and disjoint pattern
database (as before, we use here the letter b to indicate that it is a bound and therefore
an admissible heuristic) in a single data structure:

s = s1 ⊕ · · · ⊕ sn (3.16)
b(s) = h∗(s1) + · · · + h∗(sn) (3.17)

Since we explicitly model home games, the memory footprint and growth are substantially
larger as compared to the approach from before used in the beam search, where we
modeled only abstract home stands.

3.9 Computational Study: Beam Search
We present two computational studies of our randomized beam search approach, one based
on a prototypical Python implementation [57] and the other on a Julia implementation
[62], where we observe a substantial speedup. Additionally, we present results of a
weighted A∗ search which provides bounded suboptimality.

3.9.1 Python Implementation
We conducted all our experiments on Intel Xeon E5-2640 processors with 2.40 GHz in
single-threaded mode and a memory limit of 32 GB. We implemented our approach as a
prototype in Python 3.7, being aware that an implementation in a compiled language
would likely be substantially faster and have a smaller memory footprint. To solve the
integer linear programs for the MNT bound, we use Gurobi 8.1.
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3. State Space Search for the Traveling Tournament Problem

Table 3.5: Memory demand for different lower bound lookup tables over the number of teams in GB assuming two
bytes per bound value.

n TSP CVRP CVRPH

14 0.003 0.009 0.127

16 0.016 0.047 0.75

18 0.079 0.237 4.27

20 0.390 1.172 23.43

Table 3.6: Runtimes in minutes for CVRPH bound calculations for NL14 to NL16 and CIRC14 to CIRC18.

14 16 18

NLn 25 169 -

CIRCn 25 173 903

In Table 3.5, we see the memory demand for the three different lower bound lookup tables
in GB assuming 2 bytes per bound value. Up to 16 teams, they all have reasonable size
and our experiments have shown that the 16 teams instance bounds can be pre-calculated
within three hours in a prototypic Python 3.7 implementation in our testing environment,
see Table 3.6. 18 teams instances are also within reach with the strong CVRPH bound
taking already 15 hours—we suppose that an order of magnitude in time can be saved
using a compiled language. For larger instances, these numbers and the computation
times increase dramatically, since the number of bounds grows for the CVRPH bound
with O(n32n)—already the TSP bound, being the weakest, needs 42 GB for 26 teams.

In Table 3.7, we present a comparison of the results obtained by the deterministic beam
search with beam widths 1 000 and 10 000 for the instance sets NL and CIRC9 [46] over
the different lower bounds used in the state ordering. We see that the weak TSP bound
does not provide good guidance and even misguides the search for larger instances, where
using no bound (b(s) = 0) and sorting the nodes only by the currently shortest path
length to them (SHORT) provides better results. Much better guidance can be observed
for the CVRP-based bounds, where we see similar improvements over all instances.

Since the number of classic benchmark instances is limited and to further validate the
guidance quality of the different bounds, we created two different types of random
instances. First, the set IL1 , where we sample 30 instances for team numbers 8, 10, and
12 each on an integer grid of size 1000 × 1000 using Manhattan distances to compute the
resulting distance matrices; second, the set IL2 , using the same sampling procedure but
using the rounded to the nearest even integer Euclidean distances. This yields in total 180
additional test instances. We exclude the TSP bound from our further experiments since
it did not show promising results for the tests on the NL and CIRC instances. In Table 3.8,
we see mean values of final solution lengths and corresponding standard deviations when

9https://mat.tepper.cmu.edu/TOURN/
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3.9. Computational Study: Beam Search

Table 3.7: Final solution lengths of deterministic beam search runs with different state ordering heuristics and
beam widths with lexicographic team orderings. Sorting the states by the currently shortest path length to them
(SHORT) does not use any lower bound; for a description of the TSP, CVRP, CVRPH, MNT lower bounds refer
to Section 3.6. For CIRC16 with MNT we did not achieve a final result due to excessive runtime.

β = 1 000 β = 10 000

inst SHORT TSP CVRP CVRPH MNT SHORT TSP CVRP CVRPH MNT

NL6 24876 24759 23954 23916 23916 24876 23978 23916 23916 23916
NL8 42308 41977 40687 40687 40687 40970 41762 39776 39776 39776
NL10 67094 66469 62329 60713 62400 66087 64700 61129 60757 60554
NL12 131046 129209 116976 114499 114499 127238 119271 113294 114475 114824
NL14 217763 233765 211643 211116 211116 224537 219708 203519 203279 203279
NL16 309227 - 283985 285326 286085 301989 322567 276599 275562 271251

CIRC6 66 64 64 64 64 64 64 64 64 64
CIRC8 144 146 134 134 134 136 142 134 134 134
CIRC10 280 284 264 262 266 268 276 246 246 250
CIRC12 452 502 428 430 430 444 468 418 418 418
CIRC14 734 774 674 672 672 710 760 668 656 656
CIRC16 - - 1012 1000 990 1012 1114 956 966 n/a

Table 3.8: Comparison of our beam search algorithm with β = 1000 over different state ordering heuristics on 180
randomly generated test instances with 8, 10, and 12 teams, using Manhattan and Euclidean distances, evenly
split. Mean values of final solution lengths and standard deviations over 30 test instances are shown.

β = 1000

class SHORT CVRP CVRPH MNT

I8
L1 42532 ± 5384 40530 ± 5214 40405 ± 5030 40405 ± 5030

I10
L1 70049 ± 7280 65483 ± 6886 64760 ± 6689 64964 ± 6922

I12
L1 99086 ± 7991 92838 ± 8089 91728 ± 7726 91465 ± 7694

I8
L2 34412 ± 5088 33034 ± 5109 32965 ± 5071 32965 ± 5071

I10
L2 55019 ± 5872 51723 ± 5988 51269 ± 5808 51057 ± 5829

I12
L2 79699 ± 7293 74231 ± 6933 73700 ± 6456 73524 ± 6403

performing the deterministic beam search with the different state ordering heuristics
on the randomly generated instances. The gap between SHORT and CVRP is well
observable, especially with 10 and 12 teams. The gap between CVRP and CVRPH is
closer, a Wilcoxon signed rank sum test reveals that CVRPH is significantly better than
CVRPH with a significance level of α = 1%. The difference between CVRPH and MNT
is for the L1 distance instances inconclusive, and for the L2 instances slightly in favor of
MNT, but at the cost of substantially higher runtime due to the linear programs that
need to be solved for every state. For further experiments, we, therefore, limit ourselves
to the CVRP/CVRPH bounds.

Finally, Table 3.9 compares our randomized beam search variant with either lexicographic
or random team ordering performed in parallel and independently on 30 cores with several
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Table 3.9: Comparison of the final solution lengths of multi-start randomized beam search using either lexicographic
team ordering or random team ordering (RTO) with 30 independent runs each, parameters σrel = 0.001, β = 105,
and the CVRPH lower bound function (RBS-CVRPH) with the reported solution lengths of ant-colony optimization
(AFC-TTP) [153], composite-neighborhood tabu search (CNTS) [39], simulated annealing (TTSA) [4], and
population-based simulated annealing (PBSA) [160], where the latter is either used from scratch (PBSAFS) or
starting from an already high-quality solution (PBSAHQ) provided by a TTSA run. †New best feasible solutions.

inst RBS-CVRPH RBS-CVRPH-RTO AFC-TTP CNTS TTSA PBSAFS PBSAHQ

min mean min mean min mean min mean min mean min mean min mean

NL12 112680 113594.6 112791 113581.5 112521 114427.4 113729 114880.6 112800 113853.0 110729 112064.0 n/a n/a

NL14 192625 198912.6 196507 199894.8 195627 197656.6 194807 197284.2 190368 192931.9 188728 190704.6 188728 188728.0

NL16 266736 271367.1 265800 270925.9 280211 283637.4 275296 279465.8 267194 275015.9 261687 265482.1 262343 264516.4

CIRC12 410 415.7 410 414.6 430 436.0 438 440.4 n/a n/a 404 418.2 408 414.8

CIRC14 632 641.0 630† 640.7 674 692.8 686 694.4 n/a n/a 640 654.8 632 645.2

CIRC16 918 933.8 910† 931.6 1034 1039.6 1016 1030.0 n/a n/a 958 971.8 916 917.8

CIRC18 1300 1322.0 1296 1320.4 1486 1494.8 1426 1440.8 n/a n/a 1350 1371.6 1294 1307.0

state-of-the-art approaches on three difficult NL and CIRC instances. Each beam search
run was conducted with beam width β = 105 and randomization parameter σrel = 0.001
resulting in equally gentle noise applied to the f -values of the states in every layer. The
noise parameter was determined using irace [103] on the randomly generated instances.
The table shows minimum and mean values for solution lengths of finally best solutions.
We observe that we can compete well with the other mainly constructive approach “ant
colony optimization with forward checking and conflict-directed backjumping” (AFC-
TTP) from Uthus et al. [153] and the composite-neighborhood tabu search (CNTS) from
Di Gaspero and Schaerf [39] on the NL instances and obtain better results than these for
the CIRC instances, without hybridizing with a final local search. For CIRC instances
we can also obtain similar results to population-based simulated annealing from scratch
(PBSAFS) from Van Hentenryck and Vergados [160], which uses parallel simulated
annealing. For the circular instances with 14 and 16 teams, we found new best feasible
solutions, as of the time of writing according to Michael Trick’s TTP web page. The
strongest results overall for NL and CIRC are provided by simulated annealing (TTSA)
from Anagnostopoulos et al. [4] and its parallel variant PBSA from Van Hentenryck and
Vergados [160].

Runtimes of our approach are shown in Fig. 3.7 measured for deterministic beam search
on the NL instances up to 16 teams for β ∈ {103, 104, 105}. For example, a run on an
instance with 12 teams and a beam width of 105 takes roughly 10 hours. We believe it is
possible to improve this further by an order of magnitude using a compiled language.

3.9.2 Julia Implementation

In our computational study using the Julia implementation, we conducted all our
experiments on the same Intel Xeon E5-2640 processors with 2.40 GHz as before in
single-threaded mode and a memory limit of 32 GB. We implemented our approach in
Julia 1.6 interfacing Python 3.9 via PyCall to make use of Google OR-Tools 9.0, for which
there are no native Julia bindings. We made the source code of our beam search solver
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Figure 3.7: Runtimes in hours for deterministic beam search runs on NL instances with β ∈ {103, 104, 105}.
.

and all the considered instances available on GitHub.10

To make final algorithmic design choices, we first measure the impact on runtime
and solution quality of the beam search utilizing different heuristic guidance methods,
additional feasibility checks, and combining it with a final local search procedure. After
that, we compare our approach with a reimplementation of the classical Traveling
Tournament Simulated Annealing (TTSA) in Julia in a time-limited setting on the well-
known NL benchmark set. Finally, we make a full comparison of our tuned randomized
beam search with the best-known upper and lower bounds over a wide range of benchmark
instances from the literature with up to 24 teams.

Guidance comparison. In Table 3.10 we compare the guidance quality by heuristically
derived upper bounds to the CVRP bound and the CVRPH bound with and without
dead teams check. Clearly, the guidance based on tighter bounds and detecting infeasible
nodes in the beam search earlier results in better solutions to the TTP instances at the
cost of moderately higher runtimes. In subsequent experiments, we, therefore, select
HCVRPH with dead teams check to focus on solution quality.

Local search. We further study the impact of a final local search applied to the
best-found solution of each beam search run. As neighborhood structure, we combine five
classic neighborhood structures from Anagnostopoulos et al. [4] into one: Swap Homes,
Swap Rounds, Swap Teams, Partial Swap Rounds, and Partial Swap Teams. We also
allow to chain it with a second move but only from the swap neighborhoods, which lie
in O(n2), to keep the runtime small. The intermediate solutions on this chain may be
infeasible but the final one has to be feasible. As discussed in Di Gaspero and Schaerf

10https://github.com/nfrohner/ttpbeam
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Table 3.10: Comparison of mean relative upper bounds and mean runtimes in seconds of the HCVRP and the
HCVRPH bound with (w/) and without (w/o) dead teams check (DTC) and with (w/) and without (w/o) applying
local search (LS) on artificial test instances with 18, 20, and 22 teams, 30 instances each, and a beam width of
10 000. We observe that the mean relative upper bounds improve from left to right with a moderate increase in
runtime. No randomization is used for the beam search guidance. The impact of the local search is quite small
but leads to further improvement while its runtime only depends on the number of teams n and will not increase
when larger beam widths β are used.

HCVRP w/o DTC HCVRP w/ DTC HCVRPH w/o DTC HCVRPH w/ DTC

LS n ūrel t̄[s] ūrel t̄[s] ūrel t̄[s] ūrel t̄[s]

w/o 18 0.140 663 0.135 804 0.130 838 0.128 961

20 0.159 758 0.154 1034 0.144 836 0.143 1238

22 0.181 950 0.174 1409 0.162 1223 0.159 1671

w/ 18 0.137 +123 0.132 +104 0.128 +128 0.125 +113

20 0.156 +248 0.151 +239 0.142 +234 0.140 +221

22 0.177 +537 0.177 +483 0.160 +464 0.157 +479

[39], different moves may lead to the same neighbor, so we keep track of already-seen
neighbors to avoid duplicate evaluation and chaining. As step function, we choose best
improvement, either consisting of one or two moves in the neighborhood. We terminate
when there is no more strictly improving neighbor. As seen in Table 3.10, this gives us a
mild return improving the mean relative upper bounds for our concrete experiment by
up to 0.3%. Since the runtime only depends on n and does not increase with the beam
width β, we apply local search for our final experiments on the benchmark instances
from the literature, where we increase the beam width by an order of magnitude.

Comparison with simulated annealing. For a fairer comparison with a state-of-the-
art approach, we implemented the classic Traveling Tournament Simulated Annealing
(TTSA) by Anagnostopoulos et al. [4] in Julia and reran experiments on the NL instances.
The algorithm is local search based and uses the aforementioned five neighborhood
structures to perform a guided random walk through the solution space of double round
robin tournaments. During that, it permits constraint violations and uses strategic
oscillation to traverse infeasible regions of the search space. A highly parallelized variant
by Van Hentenryck and Vergados [160] is responsible for many best feasible solutions
found so far over the benchmark instances.

After preliminary experiments, we made the following implementation detail choices,
which are not specified in the original paper: We add a penalty proportional to the
streak limit excess, to stronger penalize longer streaks. For example, a stand of five
home games counts as two violations since it is two games longer than the maximum
length of U = 3. Moreover, violations of the no-repeat constraint are counted team-wise,
therefore we count a no-repeat constraint violation twice. Anagnostopoulos et al. [4] use
five neighborhoods: Swap Homes, Swap Rounds, Swap Teams, Partial Swap Rounds, and
Partial Swap Teams. In our implementation, each of those neighborhoods is equally likely
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Table 3.11: Parameters used for our TTSA experiments with a time limit of two hours. The parameters for NL16
are taken from the fast cooling experiment of [4], the parameters for the other instances were changed accordingly
based on the parameters of their full-run experiments. Initial temperatures (T0), constraint violation penalty
weights (w0), weight change factors (δ and θ) and reheating factors (γ) stayed the same. Cooling factors (β) were
set to 0.98, maxC was halved, maxP was divided by 100, and maxR was multiplied by 200.

n T0 β w0 δ θ maxC maxP maxR γ

8 400 0.98 4000 1.04 1.04 2500 70 2000 2
10 400 0.98 6000 1.04 1.04 2500 70 2000 2
12 600 0.98 10000 1.03 1.03 2000 14 10000 1.6
14 600 0.98 20000 1.03 1.03 2000 70 6000 1.8
16 700 0.98 60000 1.05 1.05 5000 70 10000 2

Table 3.12: Comparison of TTSA with fast-cooling and a time limit of two hours on the NL instances with a
deterministic beam search run and multi-start randomized beam search runs with a beam width of 100 000 (except
for NL8 with 500 000) running no longer than two hours with 30 runs for each instance. We observe that the
randomization is effective in retrieving stronger best-found solutions and can compete well with TTSA(FC).

Beam Search Randomized Beam Search TTSA(FC)
instance min min max mean std min max mean std runs
NL8 39776 39721 39776 39741.2 27.0 39721 39721 39721.0 0.00 30
NL10 60034 59727 60167 60052.3 77.5 59583 60769 60113.9 346.0 30
NL12 113662 112409 115021 113513.3 2915.95 114920 130829 120651.4 2916.0 30
NL14 204305 193891 202777 198590.9 1363.86 195144 201506 198947.0 1363.9 30
NL16 275235 265533 274697 270707.0 1967.3 279226 287312 284137.1 2209.1 30

to be chosen when generating the next neighbor. We managed to obtain a moderate
decrease in runtime using incremental evaluation for calculating changes of the objective
value for the more round-local moves but found achieving this rather difficult, likely due
to the rather small schedule size n × (2n − 2) and that we did not consider large n.

To generate an initial double round tournament (possibly with constraint violations), a
randomized backtracking algorithm is used in the original paper, which constructs the
schedule team-wise. It is observed that this does not scale well starting already from 16
teams with runtime outliers in the range of hours. As used in the ant colony optimization
approach by Uthus et al. [153], we restart the construction in a Las Vegas algorithm
fashion after a backtracking limit is hit, which we set empirically to 30 000. This allows
the construction of random double round robin tournaments even up to 20 teams below
one minute.

There are nine parameters for the algorithm that can be set: T0 defines the initial
temperature for the SA, β declares the cooling rate, w0 is the initial weight with which
constraint violations are penalized, δ and θ define how the weight changes when a
new best feasible or a new best infeasible schedule is found. The number of iterations
until equilibrium is reached is specified by maxC, the number of phases by maxP ,
and the number of reheats by maxR. While γ was not explicitly defined in the paper,
we reasonably assumed it to be the reheating factor which is the factor by which the
temperature is multiplied when reheating.

With our beam search approach, we believe we can construct competitive solutions for up
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to 16 teams within two hours. We, therefore, compare it with TTSA using fast cooling,
which is also described by Anagnostopoulos et al. [4], to quickly generate good solutions
by a faster intensification of the search and more reheats. The used parameters are
shown in Table 3.11, together with a fixed time limit of two hours. For beam search,
we use the CVRPH bound for guidance, a beam width of 100 000 (except for NL8 with
500 000), a relative noise of σrel = 0.1%, and a final local search as described before.
We make also one run for each instance without noise. The beam search runs finish
always under two hours. The results on the NL instances are displayed in Table 3.12,
where we observe that our approach is at least competitive (leading also to stronger
schedules for NL12-NL16) and that it is beneficial to use our type of stochastic ranking
for diversification. Extensions of TTSA regarding refined neighborhoods [159, 99] and a
much larger computational budget using parallelization [160], allow finding best solutions
on a wide range of benchmark instances, as we will see in the subsequent comparison.
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Table 3.13: Comparison with the best known lower bounds lbest and upper bounds ubest from the literature over the CIRC, GALAXY, NFL, and NL benchmark
sets of our randomized beam search (30 runs, beam width 250 000) with random team ordering and Gaussian noise with a standard deviation of 0.1% of the root
heuristic estimate, once guided by the exact CVRPH bound with resulting solution lengths u1 and once by the heuristic version HCVRPH calculated via Google
OR-Tools with resulting solution lengths u2. Bold entries with a † indicate new best feasible solutions found.

instance best l best u best urel [%] min u1 u1 min u2 u2 min urel
1 [%] min urel

2 [%] ∆ min urel
1 [%] ∆ min urel

2 [%] t1 [h] t2 [h]

CIRC12 388 404 4.1 406 413.2 408 414.5 4.6 5.2 0.5 1.0 4.6 5.4

CIRC14 588 630 7.1 630 637.4 634 643.3 7.1 7.8 0.0 0.7 8.0 9.1

CIRC16 846 910 7.6 912 926.3 934 946.9 7.8 10.4 0.2 2.8 12.2 13.5

CIRC18 1188 1294 8.9 1284 1309.9 1302 1324.2 8.1 9.6 †-0.8 0.7 22.2 22.5

CIRC20 1600 1732 8.3 - - 1778 1803.0 - 11.1 - 2.9 - 31.3

GALAXY12 7034 7197 2.3 7251 7304.6 7180 7311.3 3.1 2.1 0.8 †-0.2 5.0 5.3

GALAXY14 10255 10918 6.5 11000 11096.9 10957 11125.3 7.3 6.8 0.8 0.4 7.7 9.1

GALAXY16 13619 14900 9.4 14655 14924.8 14820 14947.5 7.6 8.8 †-1.8 -0.6 12.9 13.1

GALAXY18 19050 20845 9.4 20489 20712.5 20646 20880.4 7.6 8.4 †-1.9 -1.0 24.1 22.5

GALAXY20 23738 26289 10.7 - - 25818 26214.5 - 8.8 - †-2.0 - 32.6

GALAXY22 31461 33901 7.8 - - 35043 35335.7 - 11.4 - 3.6 - 46.6

GALAXY24 41287 44526 7.8 - - 46127 46532.1 - 11.7 - 3.9 - 70.7

NFL16 223800 231483 3.4 238281 241921.2 238479 242232.1 6.5 6.6 3.0 3.1 13.2 13.3

NFL18 272834 282258 3.5 289250 294615.0 293914 298623.7 6.0 7.7 2.6 4.3 22.3 22.7

NFL20 316721 332041 4.8 - - 341602 349917.0 - 7.9 - 3.0 - 34.0

NFL22 378813 402534 6.3 - - 411241 419778.8 - 8.6 - 2.3 - 50.1

NFL24 431226 463657 7.5 - - 469538 477533.1 - 8.9 - 1.4 - 76.4

NL12 108629 110729 1.9 112048 113107.8 111987 113309.8 3.1 3.1 1.2 1.2 5.0 5.3

NL14 183354 188728 2.9 193513 198575.9 194424 199230.3 5.5 6.0 2.6 3.1 7.7 9.0

NL16 249477 261687 4.9 267684 270172.3 267992 271786.6 7.3 7.4 2.4 2.5 13.6 14.7
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3. State Space Search for the Traveling Tournament Problem

Final comparisons. In Table 3.13, we finally compare the results of our randomized
beam search approach with the best-known feasible solution values ubest from the litera-
ture. For the considered NL, CIRC, and NFL instances, these are from Van Hentenryck
and Vergados [160], except for CIRC14 and CIRC16 which we could improve in our
previous work. For GALAXY12, GALAXY14, GALAXY16, and GALAXY20 they are
from Langford [99], for GALAXY18 and GALAXY24 taken from Hirano, Abe, and
Imahori11, and for GALAXY22 from Goerigk et al. [74]. The best-known lower bounds
lbest were retrieved from the RobinX repository.12 We performed 30 runs in parallel per
instance with a beam width of 250 000 guided by either the exact CVRPH bound from 12
up to 18 teams or the HCVRPH variant from 12 up to 24 teams on the NL, CIRC, and
NFL benchmark instances from [46] and the GALAXY benchmark instances from Uthus
et al. [155]. For the HCVRPH bound, we use as construction heuristic first unbound min
value together with greedy descent, since we find local cheapest arc unable to construct
initial solutions for larger instances in a reasonable time when we add constraints for the
minimum and maximum number of vehicles, which is necessary to tighten the bounds.
Diversification is achieved by randomly shuffling the team ordering for each run and
using Gaussian noise for the guidance values with a standard deviation of 0.1% of the
root heuristic estimate, as tuned in our previous work.

We index performance figures of the runs guided by the exact CVRPH with 1 and by
the HCVRPH with 2. The gaps urel

i , i ∈ {1, 2} are calculated as urel
i /lbest − 1, where

∆ min urel
i are the relative gap differences between the best found ui and the best known

feasible solutions ubest. Values ti are the mean runtimes in hours, excluding the bound
precalculations for the exact guidance, which is once 70 minutes for the instances with
18 teams and otherwise less than 10 minutes. We observe a mean relative gap difference
between the minimum over our 60 runs (30 with CVRPH, 30 with HCVRPH) and
the best feasible solutions from the literature over the considered 23 instances of 1.2%.
Furthermore, we report new best feasible solutions for five instances, one from CIRC and
four from GALAXY.

3.10 Computational Study: Weighted A∗ Search†

Apart from beam search, we also implemented and tested weighted A∗ search in Julia 1.7.
The main difference to the beam search implementation is that we enumerate the team
graphs (see Section 3.8 and also [88]) with explicit abstract home games instead of only
the home stands and use an array of pointers to teams states to represent a complete
TTP state. Since A∗ is memory hungry, we performed first experiments on an AMD
EPYC 7642 in single-threaded mode with 512 GB uniform memory and subsequent
anytime weighted A∗ experiments on an Intel Xeon E5-2680 v4 with 768 GB non-uniform
memory.

11no publication found, from RobinX repository
12https://www.sportscheduling.ugent.be/RobinX
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Figure 3.8: Results regarding numbers of expanded nodes and gaps to the best known feasible solutions for weighted
A∗ runs with duplicate states detection on NL instances from 6 up to 14 teams over ε ∈ {0.01, 0.02, . . . , 0.2}.
Missing points indicate that we ran out of memory since we observe a non-monotonous exponential trend in
expanded nodes when decreasing the weight parameter ε. The dashed line is an upper bound to the gap due to
the suboptimality guarantees of weighted A∗.

Implementation details. We check for duplicate states when dequeuing a search
node from the open list. If we have found a shorter path to an already discovered state,
we re-expand it, if the path is at least as long, then we safely discard the corresponding
search node. All the reached search nodes and pointers to their parents are kept in
memory to reconstruct the schedules and for the duplicate checks. These reached nodes
are stored and preallocated in a contiguous static memory region with a size limit to
reduce memory management activity and garbage collection effort. We use symmetry
breaking on the away teams using the first team as pivot and static lexicographic team
ordering as described in Section 3.7.

First results. The first results are shown in the plots in Figure 3.8 tested on the famous
NL instances from 6 to 14 teams. On the left, we see the number of nodes expanded
over varying weight parameter ε ∈ {0.01, 0.02, . . . , 0.2} providing a guarantee on the
optimality gap. As expected, the trend when decreasing ε is an exponential increase in
expanded nodes, although with substantial variability. For instances with more teams,
the memory limit is hit earlier (for NL10 εmin = 0.05, for NL12 εmin = 0.08, and NL14,
εmin = 0.14), since the node density grows, the number of nodes per f -value. On the
right, we show the relative gaps to the best-known upper bounds. The tendency is that
a tighter optimality guarantee results in better solutions but not monotonously, see the
decrease for, e.g., NL12 from ε = 0.13 to ε = 0.14. For instances NL6, NL8, and NL10,
the optimum is known and we observe an optimality gap below 1% already with ε = 0.05.

Dynamic team ordering. To further decrease the number of expanded nodes, we
propose a dynamic team ordering mechanism. At every search node, we iterate through
all teams that have not played in the current round and calculate for each the minimum
increase in the f -value over their allowed games. Then we select as the next pivot team
the one with the maximum over its minimum increases. The intuition is to tighten the
bound and to detect inevitable cost increases earlier in the search tree. Furthermore, we
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3. State Space Search for the Traveling Tournament Problem

Table 3.14: Comparison weighted A∗ runs on selected instance/ε combinations plain, with duplicate detection
(dup), with dynamic team ordering (dyn), and both (dd), where r∗

exp are the fractions of expanded nodes compared
to the plain run and t∗ the corresponding runtimes.

inst ε #exp #succ t [s] rdup
exp [%] tdup [s] rdyn

exp [%] tdyn [s] rdd
exp [%] tdd [s]

NL6 0.01 214 382 496 187 2.1 95.4 2.3 61.8 2.0 59.3 2.2
NL8 0.04 755 368 2 653 367 3.8 77.8 4.3 50.6 3.3 37.1 3.4
NL10 0.08 70 337 826 222 503 742 242.6 13.9 106.0 21.9 339.9 2.3 18.5
NL12 0.09 10 326 694 37 283 179 39.5 77.3 57.6 3.9 3.6 2.6 3.5
NL14 0.16 3 017 268 30 834 322 27.6 99.6 61.8 26.6 23.2 24.0 24.1

check whether there is one team without any playable games. Then we know that this
state has no feasible completions and can safely discard the node.

We empirically study the impact of duplicate detection and the dynamic ordering on the
search by comparing the combinations (either one or both) with the baseline without
duplicate detection and static team ordering, to see whether the additional overhead to
the node expansions pays off. In Table 3.14 the number of expanded nodes and runtimes
on selected instance/ε combinations are shown. We observe that both algorithmic features
used together not only substantially reduce the search effort in terms of the number of
expanded nodes up to two orders of magnitude, but also decrease the runtime by one
order of magnitude. Another advantage is that the memory demand is reduced. We,
therefore, use both for the remaining experiments.

Heuristics comparison. Other important aspects are the heuristics and symmetry
breaking. Using the abstract home game formulation for the teams’ state graphs, we
automatically receive the CVRPH heuristic to guide the search. The JCVRPH heuristic
provides further strengthening, which we can also calculate in reasonable time using
directly the teams’ state graphs—for details on the lower bound based heuristics, see
Section 3.6. A weakening is the CVRP heuristic which does not include information
about the home games. In Table 3.15, we compare the impact of different combinations
of symmetry breaking and these heuristics on an exact A∗ search (ε = 0) for the instances
NL6 to NL14 with a memory limit of 108 reached nodes. As expected, the strongest bound
JCVRPH together with symmetric breaking proves optimality with either the smallest
number of expanded nodes or provides the tightest lower bound, when the memory limit
is hit. Further strengthening using a computationally efficient JCVRPH2+MNT bound
would be interesting future work.

Memory efficiency. Since the successor creation rate is in the order of 105 nodes per
second, we encounter earlier a memory problem than with runtime. Therefore we shall
now focus on memory efficiency of the search by sensibly trading it for extra runtime.
We reduce the size of a search node to only include the changed states of the teams that
just played a game. This adds overhead to recover a state when dequeuing a node from
the open list, where we have to traverse over a bounded number of predecessors.
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Table 3.15: Comparison of best found f -value and number of expanded nodes of A∗ runs (ε = 0) using the best
known feasible solution as cut and a limit on the number of reached nodes of 108 for different combinations of
heuristics (heur) and symmetry breaking (sym). For NL6/NL8 proven optimal solutions were found and the
number of expanded nodes is used as figure of merit, whereas for the others the best found f -values, i.e., lower
bounds achieved within the memory limit are used.

f -value #exp
sym none away none none away none
heur CVRP CVRPH JCVRPH CVRPH JCVRPH CVRP CVRPH JCVRPH CVRPH JCVRPH
inst
NL6 23916 23916 23916 23916 23916 384 403 161 921 131 061 304 775 232 942
NL8 39721 39721 39721 39721 39721 23 271 844 8 281 457 6 239 131 22 886 865 16 251 829
NL10 57525 57616 57676 57540 57603 15 941 328 16 393 288 15 905 523 16 005 183 15 495 812
NL12 107753 107788 107826 107787 107825 12 689 630 12 098 849 12 093 831 12 060 218 12 063 342
NL14 182818 182836 182854 182818 182824 7 384 490 7 591 273 7 168 704 7 384 490 7 064 109

For a memory-efficient duplicate detection, we use an open hash table in form of a
fixed-length array with linear probing. As length, we take the next prime number greater
than the maximum number of search nodes. We artificially limit the number of additional
probing steps—extra steps when the slot determined by the hash function is occupied by
a hash collider—to 10, to avoid long probing sequences. Preliminary experiments have
shown that this limit is rarely hit. Including the size of the hash table and open list, this
results in a constant search node size of 64 bytes, independent of the number of teams n.

Anytime search. We embed this memory-efficient weighted A∗ in an anytime A∗

search variant, where the optimality guarantee ϵ is iteratively decreased according to a
given schedule, known from anytime repairing A* (ARA∗) [102]. The so-far best feasible
solution decreased by one (to enforce finding a strictly better solution) is used as primal
cut to further reduce the growth of the open list through pruning. If in the current
iteration given an ε and a primal cut u no goal state is found abiding the current cut,
then we know that the corresponding solution is optimal. If a solution with length u′ is
found, we gain a corresponding lower bound by u′/(1 + ε), and maintain the maximum
so far. If the memory limit is hit, no conclusion is drawn.

In Figure 3.9 we show the number of expanded nodes over ε and anytime plots regarding
the solution quality as gap to the best-known solution on the instances NL6 to NL14,
with a maximum number of reached nodes of 1010. As heuristic, we use the JCVRPH
bound together with away symmetry breaking. It can prove optimality for NL6 and
NL8 quickly, find the optimal solution for NL10 (although not prove it), and provide
competitive solutions to NL12/14 compared with the previous beam search runs, albeit
with a larger memory footprint.

3.11 Conclusions and Future Work
We first investigated a beam search approach for the well-studied traveling tournament
problem. To this end, we proposed a state space formulation, which is traversed by a
restricted breadth first search to create heuristic solutions. This beam search is realized
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Figure 3.9: Anytime weighted A∗ results, left the number of of expandes nodes over ε, right the gaps to the best
known solutions.

in a memory-efficient variant allowing for large beam widths. For guiding the search, we
studied different lower bounds derivable from a state and also considered calculating these
bounds inexactly but quickly, by solving related subproblems heuristically. Moreover,
we introduced a randomized beam search variant that shuffles the team ordering and
applies parameterized Gaussian noise to the guidance values in order to diversify the
search when performing multiple runs in parallel.

We solved the capacitated vehicle routing problem instances for the lower bounds exactly,
modeled as recursive constrained shortest path problems on a separate state graph for
each team, and heuristically on-the-fly with Google OR-Tools. We found that with the
latter, sufficient guidance quality can be retained to construct high-quality solutions for
instances up to 24 teams, where the exact bound calculation is limited to instances with
up to 18 teams.

We report a mean relative gap of 1.2% to the best-known solution values over 23 benchmark
instances and new best feasible solutions for five instances, one from the CIRC and
four from the GALAXY instance set, three constructed by guidance with exact bounds
and two by heuristic estimates. The artificial instances created for tuning algorithmic
parameters and the source code of our approach which we implemented in Julia were
made available on GitHub. We compare our approach with our own implementation of a
state-of-the-art simulated annealing approach in a time-limited setting of two hours and
found our results to be mostly superior on the NL instances. While we could improve
best known feasible solutions of difficult instances from the literature, the state-of-the-art
approach for up to 24 teams still seems to be simulated annealing based approaches
without time bounds and parallelization, which found the best-known solutions for all the
considered NL and NFL instances, many CIRC and some GALAXY instance. Hybridizing
our approach with simulated annealing could therefore be interesting future work.

The random team ordering and the Gaussian noise added to the guidance were an
effective way to diversify the search when performing multiple runs. Promising future
work includes the consideration of machine learning and more specifically transfer learning
techniques on top of the proposed methods to possibly come up with even better guidance
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functions. As seen for other approaches due to the complexity of the problem, we will
investigate a heavily parallelized beam search variant in the next chapter.

We also studied a weighted A∗ search on our state space, which has the advantage of
providing a suboptimality guarantee and being complete, i.e., returning a solution if there
is one, which is not necessarily the case for beam search. We devised a memory-efficient
variant using a stronger heuristic, dynamic team ordering, and duplicate detection
to substantially reduce the number of expanded nodes required. This allows proving
optimality quickly for NL6 and NL8, and find the optimal solution for NL10 (which we
did not achieve with beam search), and high-quality results for NL12/14, with a memory
limit of 1010 reached search nodes. Still, the memory demand at some point becomes
a problem. As shown by Uthus et al. to solve instances with ten teams, we believe a
parallelized variant using subtree splitting to distribute subproblems on different workers
with large amounts of memory and many-core parallelization, possibly with GPUs, to
speed up the local solving process is necessary to attack NL12 instances, together with a
further strengthening of the lower bounds.
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CHAPTER 4
Parallel Beam Search for

Combinatorial Optimization

Inspired by the recent success of parallelized exact methods to solve difficult scheduling
problems [72, 71] and successful parallelization efforts for breadth-first search [166],
we present a general, parallel beam search framework for combinatorial optimization
problems. Beam search is a heuristic search algorithm traversing a search tree layer
by layer while keeping in each layer a bounded number of promising nodes to consider
many partial solutions in parallel, thereby already suggesting a cooperative handling
of the workload. We propose a variant that is suitable for intra-node parallelization by
multithreading with data parallelism based on layer synchronization. Diversification
and inter-node parallelization are combined by performing multiple randomized runs on
independent workers communicating via the message passing interface (MPI).

For sufficiently large problem instances and beam widths, our prototypical implementation
in the JIT-compiled Julia language admits speedups between 30–42× on 46 cores with
uniform memory access for three difficult classical problems, namely permutation flow
shop scheduling (PFSP) with flowtime objective, the traveling tournament problem
(TTP), and the maximum independent set problem (MISP). This allows us to perform
large-scale runs with beam widths in the order of millions to find 11 new best feasible
solutions for 22 difficult TTP benchmark instances with up to 20 teams with an average
wallclock runtime of about one hour per instance.

An extended abstract for the parallel beam search framework was first published in the
proceedings of the SoCS 2022 conference and presented in the respective poster session:

Nikolaus Frohner, Jan Gmys, Nouredine Melab, Günther R Raidl, and El-Ghazali
Talbi. Parallel beam search for combinatorial optimization (extended abstract).
International Symposium on Combinatorial Search, 15(1):273–275, 2022
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This chapter is mostly based on the successive full paper presented at the 51st International
Conference on Parallel Processing (ICPP) in the Parallel and Distributed Algorithms for
Decision Sciences (PDADS) workshop and published in the respective proceedings:

Nikolaus Frohner, Jan Gmys, Nouredine Melab, Günther R Raidl, and El-Ghazali
Talbi. Parallel beam search for combinatorial optimization. In 51th International
Conference on Parallel Processing Workshop, ICPP Workshops ’22. Association for
Computing Machinery, 2022

Here, this work is further extended by a study of parallel beam search for the MISP and
we further elaborate on related work regarding beam search and parallel breadth-first
search. Moreover, we additionally consider an anytime variant with iterative widening of
the framework.

4.1 Introduction
Over the last decade, the increase in computational power can be largely attributed
to parallelization, while single-threaded performance tends to saturate, as indicated by
Figure 2.6. Clusters with hundreds of nodes equipped with multiple CPUs and GPUs
consisting of thousands of cores become available to more and more researchers all over
the world. With semiconductor geometries still shrinking we can expect the core density
to still grow even further over the next years.

Accordingly, solution approaches to difficult combinatorial optimization problems were
designed and implemented to benefit from these technological transitions. One solution
paradigm is to formulate a problem recursively and model the solution process as traversal
of a search tree, for instance as done by classic branch-and-bound (B&B) algorithms or
A∗ search. In this work, we describe a parallel beam search framework for combinatorial
optimization problems. Beam search is a well-known search method where a search graph
is traversed layer-wise keeping a bounded number of nodes in each layer, resulting in a
polynomial number of nodes to be evaluated—a truncated breadth-first-search (BFS).

Beam search has been used to construct high-quality feasible solutions in the context of
branch-and-bound, standalone, or combined in a hybrid setting with an improvement
heuristic like local search. Quite recently, strong results have been obtained on difficult
scheduling problems, see Libralesso et al. [101] on Permutation Flow Shop Scheduling
(PFSP) and Frohner et al. [57] on the Traveling Tournament Problem (TTP). The crucial
parts are always the evaluation of the nodes, the guidance, and the beam width, limiting
the maximum width of the search tree.

We propose a framework for combinatorial optimization problems that admit a recursive
formulation, i.e., where there exists the notion of partial solutions with a corresponding
state which we can evaluate to guide our search. While at first focusing on CPU execution
models, we already have heap-less systems with preallocated memory regions in mind

78



4.2. Related Work

to pave the way for GPU implementations. Parallelization is nested in two levels, the
inter-node and intra-node level. The latter is achieved by evaluating nodes, selecting the
most promising nodes, and making the state transitions by multithreading with data
parallelism on shared memory while minimizing sequential code part runtimes. On the
inter-node level, multiple randomized runs are distributed on independent workers to
diversify the search.

We implement the framework in the Julia programming language [16], available on
GitHub,1 and study it for three well-known N P-hard optimization problems, namely
Permutation Flow Shop Scheduling (PFSP) with flowtime objective, the Traveling
Tournament Problem (TTP), and the Maximum Independent Set Problem (MISP), based
on previously proposed search spaces and guidances of state-of-the-art approaches from
the literature. We observe an intra-node parallel efficiency with 46 cores of around
60–90% on sufficiently large problem instances and beam widths, resulting in speedups
between 30–42×. Combining large beam widths in the millions and diversification, we
could derive 11 new best feasible solutions for 22 difficult TTP benchmark instances
with an average wallclock runtime of about one hour per instance and a mean gap to the
best-known solutions of virtually 0%, matching the state of the art.

The next section discusses previous works on tree exploration approaches related to
our test cases. Afterwards, we give a brief formalization of combinatorial optimization
problems suitable for our state-space search setting. Next, we describe the details of our
parallel beam search approach and the concrete implementations for our three example
problems. A computational study with focus on parallelization aspects is presented
afterwards. Finally, we conclude and discuss promising future work.

4.2 Related Work
Beam search was invented in the 70s in the AI community for the speech recognition
system HARPY described in the PhD thesis of Lowerre [105] supervised by R. Reddy.
The challenge was to combine advantages of two previous systems, one using a best-first
search approach and the other a full breadth-first search through a state transition
network. The compromise here was to construct a number of solutions in parallel guided
by strong heuristics until acceptance, avoiding the backtracking of best-first search and
reducing the search complexity of a breadth-first search.

Ow and Morton [113] provide a short historical discussion and a general introduction,
related algorithmic design decisions, trade-offs, and empirical properties of beam search.
They introduce filtered beam search, where in a first step a fast, local evaluation is used
to reduce the set of successors down to a filter width. These are then further evaluated
in a second step by a global evaluation function (one that seeks to estimate the least
costs to a goal node) and only the best up to a beam width are kept. They provide an
empirical study of filtered beam search applied to two example scheduling problems.

1https://github.com/nfrohner/parbeam
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Bisiani [17] and Zhang [165] formulate beam search more general in terms of pruning rules
added to any underlying search algorithm like breadth- or depth-first search to reduce
search complexity. If not explicitly stated otherwise, we view beam search throughout
this work as a layer-wise state-space traversal where the up to the beam width best nodes
according to a heuristic are pursued further while the excess nodes in each layer are
irreversibly pruned.

Zhang [165] emphasizes the incompleteness of beam search, i.e., there is no guarantee
that we find a solution if there is one, and proposes an complete anytime beam search by
iterative weakening of the pruning rules, until an acceptable solution has been found or
until the last iteration, where no inadmissible pruning rule has been applied.

Korf et al. [96] in the context of A∗ search and Zhou and Hansen [168] in the context of
BFS, coined breadth-first heuristic search, introduce frontier state space search methods,
where only the search frontier (the open list) and nodes close to it are kept. This
allows being memory efficient since no closed list is used. The solution reconstruction
is performed by a divide-and-conquer method, keeping nodes in an intermediate layer
and solving subproblems (from start to intermediate node of best-found solution plus
from intermediate to goal node) recursively. For memory efficiency, we also keep only the
current and the next layer in memory, but directly encode the solution into the search
node. A large part of a search node’s memory footprint is associated with the state and
caching information to facilitate fast incremental evaluation of successors.

Zhang and Hansen [166] propose a parallel breadth-first heuristic search on shared-
memory architectures and demonstrate high parallel efficiency with six threads on a
NUMA system for the 15-puzzle problem. Workload distribution is performed layer-wise,
introduced as layer synchronization, with dynamic scheduling of chunks of nodes and
concurrent hashing for layer-wise duplicate detection. In a project work, Guan presents a
layer synchronization based parallel beam search algorithm for a 3D matching problem.2
We adopt and suitably extend this concept for our large-scale beam search, additionally
parallelizing the selection of the best nodes, with the focus on fast implementations for
different combinatorial optimization problems.

Hifi and Saadi [81] present a controller-worker approach using a global list to guide beam
search runs over subtrees on a cutting-stock problem, where we restrict ourselves with
straightforward randomized multi-starts and possible pruning when applying the beam
search iteratively.

Gmys et al. [72] present a highly efficient parallel branch-and-bound approach for the
PFSP with makespan objective, able to improve best-known solutions of many benchmark
instances including numerous new optimality proofs. In related work, Gmys [71] develops
a sophisticated GPU-accelerated branch-and-bound framework with which long-standing
Taillard PFSP benchmark instances [143] were solved to optimality. In it, the beam search
algorithm as proposed by Libralesso et al. [101] is applied to obtain primal bounds, which

2https://isaacguan.github.io/projects/comp5704
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Figure 4.1: Example schedule of PFSP instance with n = 4 jobs and m = 3 machines. The resulting sum of
finishing times is 42 and the makespan is 15.

combines forward and backward branching and a guidance function based on a weighted
sum of idle time and a fast lower bound to achieve state-of-the-art heuristic results for
the makespan optimization of the PFSP. The latter algorithm is also competitive for
the flowtime optimization case and serves as basis for our parallel PFSP beam search
implementation. Its original implementation is based on the Discrete Optimization Global
Search (DOGS)3 framework, an anytime tree search framework written in Rust, related
to which we did only find computational results in single-threaded mode in the literature.

The traveling tournament problem was introduced by Easton et al. [46] and has since
then been a prominent benchmark problem for all kinds of metaheuristics and exact
approaches due to its nature of having a rapidly exploding but highly constrained search
space. An iterative-deepening A∗ approach from Uthus et al. [155] is the state-of-the-art
exact method to tackle it. This method allows solving instances with 10 teams in between
one day and one week using 120 workers in parallel with subtree splitting. Improved
lower bounds and heuristic solutions could be found for instances with up to 14 teams.
Inspired by this successful tree search approach, Frohner et al. [57] present a randomized
beam search algorithm that allowed finding new best feasible solutions for two benchmark
instances up to 18 teams, on which we base the implementation of the TTP parallel
beam search solver in our framework.

We base and modify our formulation for the MISP on the works of Bergman et al. [12, 13]
and our works [53, 54] where decision diagrams, close relatives of state graphs, are studied
to construct discrete relaxations for MISP instances.

4.3 Formalization
We build on the state-space formulation for combinatorial optimization problems as
presented in Section 2.2. To reiterate, assume that every solution x ∈ S is represented
by at least one sequence of assignments of values from an arbitrary finite domain D to
n decision variables xl ∈ D, l = 1, . . . , n. All possible assignments are described by a
directed acyclic graph G(C) = (V, A), the search graph belonging to the problem instance

3https://github.com/librallu/dogs

81



4. Parallel Beam Search for Combinatorial Optimization

(1, 7)

(2, 8)

(3, 4)

(4, 8)

(2
, 6

)

(3
, 1

)

(4, 5
)

(1, 1
)

(3, 1)

(4, 2)

(1, 5)

(2, 6)

(4, 6)

(1, 1)

(2, 5)

(3, 1)

(3
, 1

)

(4
, 2

)(2
, 6

)

(4
, 6

)

(2
, 5

)

(3, 1)

(3, 1)

(4, 4)

(1, 1)

(4, 2)

(1, 1)

(3, 1)

(2, 6)

(4
, 
5
)

(1, 1)

(4, 2)

(1, 1)

(2, 5)

(2, 6)

(3, 1)

(1, 1)

(3, 1)

(1, 2)

(2, 5)

(4, 2)(3, 1)(2, 5)
(3, 1)
(2, 5)
(4, 5)
(3, 1)
(4, 5)
(1, 1)
(3, 1)

(4, 2)

(4, 4)

(1, 1)

(2, 6)

(1, 1)

(3, 1)

(2, 6)

(3, 1
)

(1, 1
)

-1,-1,-10,0,0

4,6,7

1,4,8

2,3,4

2,6,8

5,9,13

6,7,8

6,10,12

5,7,9

3,5,9

3,8,10

6,8,9

3,6,10

4,8,10

6,8,9

3,9,13

4,7,9

7,10,14

7,13,15

8,12,14

7,13,17

8,11,13

7,8,10

7,11,13

7,9,10

5,9,11

7,10,11

7,11,15

7,9,11

5,10,12

8,10,11

5,11,15

7,11,15

8,9,10

7,11,14

5,10,14

Figure 4.2: State graph of a PFSP example instance with makespan objective. Optimal paths are color-coded in
red. Arc tuples consist of the selected job and the increase in the makespan, the finishing time of the last job on
the last machine.

C, consisting of nodes v ∈ V corresponding to partial solutions of C and labeled, weighted
arcs a ∈ A representing the assignment of at least one unassigned decision variable to an
element of D. The root node r specifies the empty partial solution, the set of terminal
nodes T corresponds to complete solutions, and is by construction isomorphic to S.

If the objective function is separable, an arc carries the costs of the associated assignment
as weight and we have meaningful costs-so-far for search nodes g : V → R, where g(v)
corresponds to the shortest path length from r to v. Otherwise, the arcs leading to
terminal nodes carry the weight corresponding precisely to the solution cost of the terminal
node and all other arcs before have zero weight. The set of optimal terminal nodes
T ∗ consists of those v∗ for which g(v∗) ≤ g(v′) ∀v′ ∈ T and correspond to the optimal
solutions. Furthermore, a function h : 2{1,...,n} → R estimates the costs of the subproblem
of optimally assigning values to the yet unassigned decision variables.4 Common for h is
a lower bound function or the value of a heuristic solution to the subproblem.

The space of partial solutions which is represented by a search graph can be extended to
a state graph, where each partial solution induces a state and multiple partial solutions
can map to the same state. The state determines the set of feasible completions to all

42X denotes the powerset of a set X , the set of all subsets of X
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Table 4.1: State-space formulations for the three example problems. Costs are per action, the two different
objectives flowtime and makespan are shown for the PFSP, goal is a condition for a state to be goal state. For the
MISP all states are goal states since all independent sets are feasible solutions.

.
Problem State Actions Costs Initial Goal

PFSP jobs left to schedule J̄ , earliest starting times te select next job j ∈ J̄ flowtime: finishing time of j on machine m
makespan: machine m’s time marker’s increase

J̄ = J, te = 0 J̄ = ∅

TTP games left to schedule G, for each team:
positions, streaks, forbidden opponents

first select pivot team
then select permitted game for pivot

travel distance for team and its opponent G = G, all teams at home
no streaks/forbidden opponents

G = ∅
all teams at home

MISP free vertices V̄ first select v ∈ V̄ , then either exclude v or
include v and exclude its neighbors N(v)

0 or 1 V̄ = V any state

the partial solutions inducing the state. Isomorphic substructures can be detected by
checking states for equality and keeping only non-dominated search nodes.

4.3.1 Permutation Flowshop Problem
As first example problem, we choose the permutation flowshop problem (PFSP) with
flowtime minimization. We are given n uninterruptible jobs J = {j1, . . . , jn}, each of
which needs to flow through m machines in a predefined order. Each machine can process
one job at a time, has a specific processing time pij for each job j on machine i, and can
only start a job when it has been finished by the previous machine. The goal is to find a
permutation of the jobs, so that the total flowtime, the sum of finishing times on the last
machine over all jobs according to this schedule, is minimal. An example schedule of an
instance with n = 4 jobs, m = 3 machines, and processing times pij =

( 4 1 2 2
2 3 1 4
1 4 1 2

)
is shown

in Figure 4.1.

Following our formalization with partial solutions, the finite domain D ≡ J are the
jobs and the decision variables xl, l ∈ {1, . . . , n} assign a job to a position l, where
each job can be selected at most once—only permutations of D are valid schedules.
The terminal nodes have all n jobs selected and are therefore isomorphic to S, all
permutations of J . The objective function is separable and the costs of a partial solution
d ⊕ dk = (x1 = d1, . . . , xk−1 = dk−1) ⊕ dk can be defined recursively:

g(d ⊕ dk) = g(d) + t̃m,dk
=

k∑
l=1

t̃m,dl
(4.1)

t̃i,dk
= max(t̃i,dk−1 , t̃i−1,dk

) + pidk
(4.2)

t̃0,j = 0, t̃i,0 = 0, (4.3)
∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n} (4.4)

where the binary operator ⊕ extends a partial solution d by assigning the next remaining
unassigned variable xk = dk, t̃i,j is the finishing time of job j on machine i, including a
dummy machine 0 and job 0 with finishing times 0 for notational convenience.

A related state-space formulation for the PFSP and the other example problems is listed
in 4.1. A state for the PFSP consists of the jobs left to schedule J̄ and the earliest
starting times on each machine, the time markers, te. An example state graph for the
PFSP with makespan objective is shown in Figure 4.2.
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4.3.2 Traveling Tournament Problem
The traveling tournament problem (TTP) deals with finding a double round robin
tournament given n′ teams and a symmetric distance matrix δ between the teams’ venues.
It is assumed that teams start and end at their home venue and travel round by round
directly from one game venue to the next. The total traveling distance over all teams
has to be minimized. According to the no-repeat constraint, teams are not allowed to
play back-to-back against each other, and the at-most constraint, teams are allowed to
play at most U = 3 games consecutively at home or away.

The TTP can also be formulated as a mixture of a permutation and a subset selection prob-
lem, where the finite domain are all games G ∋ g = (t, t′) ∈ {1, . . . , n′} ×{1, . . . , n′}|t ̸= t′

and we decide round by round which games to play. The number of games is therefore
n = n′(n′ − 1). Many permutations of games are not feasible solutions, since they are
not a double round robin tournament or violate the two additional schedule constraints.
Furthermore, many permutations correspond to the same solution, since the ordering
within a round has no meaning—this is the subset selection part.

The objective function is again separable and we can assign costs to a partial solution
recursively by adding the actual travel distances for involved teams t, t′ to play a selected
game dk = (t, t′) in round r ∈ {1, . . . , 2(n′ − 1)}:

g(d ⊕ (t, t′)) = g(d) + δ(posr−1(t′), t) + δ(posr−1(t), t) (4.5)
+ 1r=2(n′−1)δ(t′, t), (4.6)

where posr−1 maps to the team’s position in the previous round r − 1 and pos0(t) = t.
Similar to the traveling salesperson problem, after a two teams’ final game the away team
t′ has to return from t to its home venue and this travel distance has to be added as
achieved by 1r=2(n′−1)δ(t, t′). A heuristic guidance h can be provided in form of a lower
bound by summing the solution lengths of optimal tours under capacity constraints to
the remaining away games over all teams independently ([46, 155], also Section 3.6).

The key aspects of the related state-space formulation are summarized in Table 4.1 and
have already been presented in great detail in Section 3.4 of the previous chapter.

4.3.3 Maximum Independent Set Problem†

In the maximum independent set problem (MISP), we are given a graph G′ = (V ′, E′),
with vertices V ′, |V ′| = n and edges E′, |E′| = m. The goal is to find a subset of vertices
I ⊂ V ′, where for each pair v, w ∈ I =⇒ (v, w) ̸∈ E′ holds—an eponymous independent
set—with maximum cardinality.

It is a subset selection problem, which we model with binary decision variables xi, i =
1, . . . , n over all vertices, where xi = 1 denotes the selection of a vertex i, xi = 0 the
explicit exclusion. Only those assignments are feasible without a corresponding edge in
E′ between any vertex pair in I. Every path from the root to an arbitrary node induces
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a corresponding state, a set of vertices V̄ for which no decision has been made yet and
which are not adjacent to any previously selected vertex—the so-called free vertices [5].

The objective function amounts to the number of selected vertices and is trivially
separable—at each layer it is either increased by one if we select a vertex, or zero
otherwise. A detailed discussion of this state space formulation in the context of decision
diagrams is presented in the works of Bergman et al. [12, 13, 15].

As mentioned before, the corresponding states are identified by the free vertices V̄ , i.e.,
the maximal subset of vertices, for which every vertex could still be added to every
independent set (encoded by a path) that has led to that state. We encode our solutions
as a sequence of binary decisions. A specific aspect is so-called zero-suppression. When a
free vertex v ∈ V̄ is selected, all of its neighbors N(v) cannot be included anymore in
any of the feasible extensions of the corresponding state. We can therefore implicitly set
the corresponding decision variables to zero and have performed multiple decisions per
arc, thereby saving us the explicit, already implied decisions later. Note that solutions
are not anymore encoded by paths of equal length as for problems before and that in
each layer a potentially different set of decision variables is involved depending on the
set. Remark: Comparing this with decision diagrams, we break with the assumption that
every layer corresponds to one decision variable but allow more general decisions—actions
in a state-space search setting. The main reason for this is that we apply frontier search
and cannot make use of long-arcs that skip layers.

Another potential optimization is to enforce 1-decisions due to optimality considerations.
For this we have to keep track of the residual degrees of the free vertices, i.e., the number
of free neighbors. If a free vertex has no free neighbor (an isolated vertex), a residual
degree of zero, then it does not make sense not to include it. Likewise, if it has one free
neighbor (a leaf vertex), we can include it, since we cannot find strictly better feasible
extensions by excluding it. In the setting of beam search, this optimality reasoning
cannot be directly applied [19] and needs to be empirically checked.

4.4 Parallel Beam Search
In this section, we present the algorithmic details of our framework and also implementa-
tion details which we observed are important to achieve higher parallel efficiency in Julia.
As mentioned multiple times (Sections 2.2, 3.5, 4.2), the main idea of beam search is to
traverse a search graph layer by layer and keep in every layer the β most promising nodes
and therefore consider many partial solutions in parallel. If the evaluation function, also
called guidance, to rank the node runs in polynomial time, so does the whole construction
algorithm. Often the nodes carry additional state information to facilitate an incremental
evaluation of its successors. Relevant parts determining the runtime are said evaluation
of successor nodes, determining the β best ones, and performing the actual transitions to
the next layer.

Our goal is a parallelized layer-by-layer traversal of the search graph, splitting the
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workload evenly between cores to reach high parallel efficiency. In the spirit of frontier
search [96], we only keep the current and the next layer of the search in memory, but
with the partial solution directly encoded in the node. We make use of intra-node data
parallelism and aim to reduce sequential code part runtimes to achieve high parallel
efficiency. The key steps and ideas of our parallel beam search are the following:

• We keep the nodes of the current layer, the next layer, and information about the
successor nodes in fixed-length preallocated shared memory regions.

• Each node carries the costs-so-far, the layer number, a fixed-length encoding of the
corresponding partial solution, and optional state information/auxiliary data to
facilitate incremental evaluation.

• Since the memory layout is static and updates are performed by copy & in-place
modification, a node is active if its layer number equals the current layer of the
search, otherwise inactive.

• The at most β search nodes are split evenly at each layer among the threads for
the evaluation of their successors, assuming an approximate homogeneity over the
resulting workload.

• As a result, threads write the incremental information about the successors into
their preassigned memory region, most importantly the priority g + h (the costs-
so-far plus the costs-to-go estimate) to determine a nodes’ rank, and the decision
leading to the successor (like the selected next job for the PFSP).

• A histogram is created by data parallelism over the successor priorities and sequen-
tially cumulated to identify the β best successors. If there are ties in the bin where
the successor with rank β lies, they are sorted by a sequential partial quicksort.
See Figure 4.3 for an illustrative example.

• Again with data parallelism, the next layer is created by copying over all nodes
with surviving successors and performing the actual transitions as defined by the
successor information.

• Every layer is checked for terminal nodes to keep track of the currently best objective
value and solution.

The fixed-length representation of solutions and static memory layout allows a great
reduction of heap operations and therefore the work of the garbage collector in Julia.5
Each incremental successor information is stored in a predefined slot of its preallocated
memory region, depending on the index of its parent in the beam. The storage is
potentially sparse since fewer than the maximum number of successors might be stored,
depending on the parent state. For instance, in the TTP a successor might be discarded

5https://docs.julialang.org/en/v1/manual/performance-tips/
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Figure 4.3: Cumulated numbers of successors binned by rounded down priorities with beam width β = 10 000 for
an exemplary layer. At a distance to the minimum priority of 87 more than β successors are present, therefore all
successors with priority ≥ 88 will be discarded, those with ≤ 86 kept. At 87 we perform a tie breaking by partial
sorting to select the best ones that lead to exactly β successors.

since a check reveals that it has no feasible completions and in both problems, the number
of possible successors decreases by one for each layer. Whether a slot in an array is active
is checked by comparing its layer number with the current layer. The storage of the
nodes in the beam is dense due to their comparably larger memory footprint.

Since we want to increase the beam widths in the range of millions with a branching factor
between two and three orders of magnitude, also the partial sorting to filter the β best
successors could become a sequential bottleneck. This is why we suggest a data parallel
histogram approach with integer bins, similar to counting sort. The key assumptions for
this to work well are that the range of the priorities is small when compared with the
maximum number of successors, it is quasi-constant w.r.t. the beam width β, and the
number of ties in the cut-off bin remains small relative to the total number of successors.
If this is not naturally the case, then the bin sizes could be dynamically adapted instead
of using integer bins, which we leave as future work.

For some problems, making use of dominance filtering within beam search has shown to
be beneficial. There, dominated partial solutions are not pursued further, i.e., those for
which another partial solution in the beam exists whose feasible extensions are a superset
and whose costs-so-far are not worse. See for example Blum et al. [19] in the case of the
longest common subsequence problem. A drawback is the quadratic growth, if we were
to check all pairs of nodes or successors. A restriction is to check only for nodes with
duplicate states where hashing can be employed for amortized linear runtime. In this
work, we focus on parallelized detection of duplicate states for the TTP.
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Algorithm 4.1: Data-Parallel Beam Search Algorithm
Input: instance C, auxiliary data A, beam width β, guidance function h, noise

parameter σ, beams Qup, Qdown, successor region QS, dominance rel. ⪯,
dual bound function b, global primal cut c

Output: feasible schedule d

1 dbest = (), Q ← Qup, Qnext ← Qdown, nQ ← 1;
2 initialize root node in Q[1];
3 for l ← 1 to lmax(C) do
4 optionally-filter-dominated-nodes(C , A, Q, ⪯);
5 nS ← create-successors(C, A, nQ, Q, QS, β, h, σ, b, c);
6 nQ ← process-successors(C, l, nS, QS, Q, Qnext);
7 if nQ = 0 then

// no remaining successors
8 return dbest;
9 end

10 dbest ← check-for-terminals(C, Qnext, nQ, dbest);
11 Q, Qnext ←flip-beams(Qup, Qdown);
12 end
13 return dbest;

In Algorithm 4.1, we give a high-level description of the intra-node parallel beam search
procedure. It receives the preprocessed instance C and corresponding auxiliary data
A as input, along with preallocated memory regions for the nodes and the successors
Qup, Qdown, QS, respectively, and search parameters beam width β, the guidance function
b, and a noise parameter σ. The latter adds zero-mean Gaussian noise with standard
deviation σ to gradually randomize the ranking of the successors. Optionally, a dual
bound function b and a global primal cut derived beforehand from a feasible solution
enables pruning of search nodes, for which the dual bound is not strictly better than
the global cut. The algorithm returns the best-found solution or the empty solution if
no solution was found, which can happen for constrained problems. The parallelized
functions create-successors and process-successors call functions themselves to evaluate
successor nodes and make the actual transitions on concrete data types, which is the
problem-specific part that has to be implemented by the user of the framework. Both
functions return the number of successor information entries evaluated and the number of
actually created successors after the selection. We flip between two preallocated beams,
each representing alternatively the current or the next layer.

Optionally, depending on the settings of our beam search for a concrete problem, we
filter dominated nodes in the parallelized optionally-filter-dominated-nodes function in
the beam before creating successors, to make space for successors from non-dominated
parents. Note that this could in principle already be performed one step earlier when
creating the successors. But since we make use of incremental evaluation for performance
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Figure 4.4: Conceptual visualization of the straightforward randomized multi-start approach with multiple
distributed workers. The independent runs are parallelized by statically sharing the workload of each layer among
the threads.

reasons, we do not have access to the state of the successors yet, since we avoid potentially
costly expansions of low-ranked successors.

To distribute the work across threads, we make use of the Julia Threads module, which
allows loop parallelization with static scheduling of consecutive chunks of data to threads.
A data-parallel pattern is employed, where each thread writes into its own private memory
region and, if necessary, those are combined in a final sequential step to achieve the
desired result, e.g., to calculate the minimum and maximum over an array of numbers.
A pitfall is false sharing, where threads interfere with each other due to overlapping
cache lines of seemingly independent memory regions. Furthermore, Julia stores arrays
in column-major ordering, hence for two-dimensional arrays, the thread dimension has
to be second and a safety buffer of a cache line length is added between the data.6 We
observed that the histogram binning would otherwise not parallelize at all with even
slightly increasing runtimes when multithreaded.

We embed this procedure in a straightforward inter-node parallelization where multiple
such randomized runs are statically scheduled on independent MPI workers (visualized
in Figure 4.4) over which the best result is then collected and returned. In a start-up
phase, the problem instance is preprocessed and potential auxiliary data structures are
prepared to facilitate faster/incremental evaluation of successors.

4.5 Computational Study
We implemented the framework in Julia 1.7 and made the source code available on
GitHub.7 In this section, we present computational results on the parallel efficiency and
speedup for our implementations of parallel beam search solvers for the PFSP, the TTP,
and the MISP. All experiments were run on a cluster with single-socket AMD EPYC
7642 machines each with 48 cores and uniform memory access on 512 GiB of RAM.8 For

6https://juliafolds.github.io/data-parallelism/
7https://github.com/nfrohner/parbeam
8https://www.grid5000.fr/w/Lyon:Hardware#neowise
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Figure 4.5: Parallel efficiency and speedup over the number of threads for a PFSP parallel beam search on a
VFR instance with 100 jobs, 60 machines, and a beam width of 640 000, for a TTP parallel beam search on NL16
instance with 16 teams and beam width 2 000 000 shown without precalculation of the disjoint pattern database,
and a MISP parallel beam search on DIMACS instance C2000.9 with beam width 30 000.

medium to large instances, we were able to obtain speedups for single runs in the range
of 30-42× using 46 threads (sparing two cores). Furthermore, we obtained many new
best feasible solutions for the TTP with large beams on high memory machines within
reasonable time by making nested use of intra-node and inter-node parallelization with
diversification.

For a fair comparison with ahead-of-time compiled languages, all runtimes are presented
without Julia’s compilation time by performing a start-up run on a tiny instance before
running the actual instance, not included in the measurement. In a production environ-
ment, repeated compilation can be avoided by keeping the Julia process running after
such a start-up phase.

4.5.1 Permutation Flowshop Problem
We implemented a single-run variant of the iterative widening beam search approach by
Libralesso et al. [101] for the flowtime variant of the problem within our framework. With
the focus on parallelization and jointly implementing the basics of the framework, we
did not implement such an anytime variant for the PFSP which performs multiple runs
on the same instance while geometrically increasing the beam width and making use of
pruning by the best global upper bound known so far. For the subsequent problems, the
TTP and the MISP, we also study such an iterative variant, extending our framework.

More concretely, in each layer, all possible extensions (additions of one from the remaining
jobs) are incrementally evaluated and the β best according to the guidance are expanded
in the subsequent layer, which is repeated until complete solutions are reached. As
guidance h to rank the extensions, the costs-so-far g, i.e., the sum of the finishing times
of the so-far scheduled jobs on the last machine, and the total idle time over all machines
are combined by means of a weighted sum. The weight for the former is the fraction of
jobs scheduled and for the latter the fraction of remaining jobs times the layer number
divided by the number of machines.
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Figure 4.6: Actual distribution of the runtime over the most relevant algorithmic parts, successor creation, filtering,
and transition for PFSP parallel beam search on a VFR instance with 100 jobs, 60 machines, and a beam width of
640 000.

In Figure 4.5, we see the parallel efficiency T1/τTτ and the speedup T1/Tτ over the
number of threads τ , where Tτ is the runtime of one beam search run with τ threads.
From the recent VFR benchmark [156], we consider a medium-sized instance with 100
jobs, 60 machines, and a beam width of 640 000, where we measure a single-threaded
runtime of 2516 seconds and a runtime with 46 threads of 60 seconds, resulting in a
parallel efficiency of 90% and a speedup of over 41×.

Some parts of the concrete implementation of the algorithm admit a better parallel
efficiency than others. Depending on their relative contribution to the overall runtime,
which itself depends on the algorithmic parameters like the guidance function and the
beam width, these parts determine the shape of the parallel efficiency. For instance, if
a parallelized part is memory-I/O heavy or the workload is not well distributed over
the threads to keep them busy, then we observe more loss of parallel efficiency. The
potentially runtime dominating parts of our algorithm are the instance preprocessing,
the successor evaluation, the selection of the β best, the filtering of dominated nodes,
and performing the actual transitions. In Figure 4.6 we see the runtime distribution
over the first 16 (for better visibility) threads for the example instance from before. The
largest portion of work, the successor creation, admits a high parallel efficiency of 94%,
followed by the transition parallel efficiency of 89%. The selection drops down to 42%,
but itself is a only small part of the runtime resulting in the total parallel efficiency of
90%. Instance preprocessing is negligible (below half a second) and dominance filtering
is not performed.
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Table 4.2: speedups with 46 threads each pinned on its own physical core measured with single runs for VFR
instances with different beam widths β, number of jobs n and machines m.

β 10k 20k 40k 80k 160k 320k
n m

50 10 10.5 16.1 15.5 15.7 21.3 28.3
20 12.7 18.8 18.5 19.4 26.9 34.8

100 20 16.2 22.0 22.5 27.9 31.9 37.0
40 18.1 23.3 27.2 30.9 34.2 40.3
60 20.5 26.5 30.7 33.8 35.7 41.5

200 20 21.9 25.7 26.4 31.1 33.3 39.0
40 26.8 28.7 31.9 34.8 35.0 41.6
60 28.2 30.4 35.3 36.5 36.3 42.0

400 20 27.3 27.9 30.1 31.3 34.0 39.7
40 32.3 32.9 33.9 35.3 35.9 41.8
60 33.1 34.4 36.4 37.1 37.0 41.7

Table 4.3: Solution qualities u with a beam width of 320 000, and rounded runtimes t in seconds using 46 threads
for the first VFR instance of each group.

n 50 100 200 400
m 10 20 20 40 60 20 40 60 20 40 60
u 84 212 121 401 367 712 517 049 645 544 1 207 649 1 576 878 1 899 743 4 283 142 5 165 345 5 973 412
t 2 3 11 20 30 42 75 111 160 286 428

To better understand the impact of the instance and algorithmic parameters (the number
of jobs n, of machines m, and the beam width β) on the parallelization, we performed
runs with different such configurations and measured the speedup with 46 threads. We
use the first VFR instance of each group of 11 different combinations of the number
of jobs and machines. The results are shown in Table 4.2. For smaller instances and
configurations the speedup is limited by Amdahl’s law [3], but still already in the double
digits. We observe that increasing m has a positive impact on the speedup since it
increases the workload of the successor evaluation alone. Increasing the number of jobs n
and beam width β increases the overall workload for all parts, which is beneficial since
selection is not yet a bottleneck. Lastly, we show in Table 4.3 the concrete solution
qualities, the total flowtimes, for the considered instances together with runtimes using a
beam width of 320 000 and 46 threads.

4.5.2 Traveling Tournament Problem

We base the implementation of our parallel variant on the beam search for the TTP from
Frohner et al. [57]. The latter makes use of a max-heap for the successors, incrementally
evaluates successors, and creates them (performs the transition) only when they are better
than the worst so far successor if the max-heap has already β successors. A potential
advantage is that the memory footprint can be kept lower. In a first preliminary test,
we tried to parallelize this by locking the shared resource, the beam, but this was not
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Figure 4.7: Runtime distribution up to 16 threads for TTP parallel beam search on NL16 instance with 16 teams
and beam width 2 000 000.

promising, since the critical region appeared to be too long. Therefore, we moved to a
data-parallel variant, where the information on the incremental evaluation information
(the layer, priority for determining the rank, its parent, and the move leading to the
successor) for all successors is saved sparsely in a large preallocated array of size β times
the maximum branching factor of the instance.

The schedule is constructed round by round and game by game employing symmetry
breaking selecting a pivot team (the one with the smallest number which has not played
in the current round) since the order in which games are scheduled in a round is not
important. The beam search is guided by the sum of the costs-so-far g, i.e., the travel
distances of the teams so far, and the independent lower bound for states as introduced by
Uthus et al. [155] for exact tree search approaches applied to the TTP. To calculate this
bound, for each team the subproblem of visiting its remaining opponents with minimal
travel distance given its current position and streak length while respecting the at-most
constraints and the number of home stands required for feasibility, but ignoring all
other teams’ schedules, is solved and the corresponding solution lengths are summed up.
Furthermore, for each node’s possible games to be played it is checked whether it would
lead to another team being without a feasible game to play in this round, and therefore
allows detection of dead-ends in the construction earlier. Also, it is checked whether
enough home and away games would be left to, in principle, accommodate the remaining
away and home games due to maximum streak lengths.

We implement duplicate state filtering to detect nodes with isomorphic feasible extensions
by a fixed size hash table with lists of non-dominated states using as the size the closest
prime smaller than β. The position of a node in the table is determined by using Julia’s
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Table 4.4: Impact on mean solution quality ū (non = no state filtering, dup = duplicate state filtering) and mean
runtimes t̄ with 32 threads on filtering duplicate states for random TTP instances with team sizes n′ ∈ {8, 10, 12},
30 instances each, using a beam width of 100 000. The rate of filtered nodes as fraction of expanded nodes is
rf and #udup

<,> counts the number of strictly better (or strictly worse) solutions over the instance groups using
duplicate state filtering.

n unon tnon udup tdup rf [%] #udup
< #udup

>

8 32058.8 1.2 32037.0 1.4 3.5 7 0
10 49405.5 1.7 49274.0 2.0 1.9 14 0
12 71488.5 3.0 71236.4 3.4 1.2 19 0

hash function on the state data modulo this hash size. Each list is associated with a
spinlock to manage thread-safe concurrent access. Since the number of duplicate states
for the TTP is small and the critical region is short, this is assumed to parallelize well. On
the conditional insertion of a new state into the list of a slot, we iterate over the existing
states and check each for dominance. If an existing state is dominated (equal state and
strictly worse priority), then it is replaced in the list and deactivated—if it dominates
the new state, the latter is deactivated and not added to the list. If neither occurs it is
appended to the list of currently non-dominated states. In Table 4.4 evidence for the
positive impact on the solution quality of duplicate state filtering is provided. Parallel
beam search runs on artificial Euclidean test instances from Frohner et al. [57] provide
at least as good or better solution qualities with an acceptable increase in runtime. For
team sizes n′ = 8, 10, 12, solutions are never worse and 7, 14, and 19 times out of 30 each
are strictly better ones provided at the cost of 10–20% runtime increase. Therefore, we
activate it for all further experiments.

To calculate the lower bounds quickly during construction an exponentially growing lookup
table per instance is calculated and stored compressed in a file upfront by constructing a
directed acyclic graph separately for each team representing all possible single-team states
for the given instance and solving restricted shortest path problems. With one core per
team and multiprocessing, this is possible on our cluster for 16 teams instances within 20
seconds, for 18 teams within 120 seconds—for 20 teams we use a slightly relaxed variant
of the bound ignoring the number of remaining home games which is then calculable
within less than 7 minutes.

For the medium to large sized instance NL169 with 16 teams, we observe a behavior
not as strong as for PFSP test instance, as the parallel efficiencies of all parts decline,
resulting in total parallel efficiency of about 57% for 46 threads, a speedup of 26×, or
an amortized parallel efficiency of 67% with corresponding amortized speedup of 31×
excluding the bounds precalculation time, see Figure 4.5. The latter consideration is
meaningful since for the beam search to be competitive we later employ a multi-start
procedure over distributed independent workers randomizing the beam search by adding
noise to the guidance. There, the precalculation needs to be performed only once for all
runs.

9Instances/solutions repo at https://www.sportscheduling.ugent.be/RobinX/index.php
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Table 4.5: Solution qualities of parallel beam search runs as relative percentage deviation from the currently
best-known results uρ

rel and runtimes in minutes tρ,w
τ , where ρ is the number of randomized runs and w the number

of independent MPI workers. New best feasible solutions are printed in bold.

inst u1
rel [%] t1,1

46 [’] u32
rel [%] t32,8

46 [’]
NL10 0.15 2.3 0.15 9.6
NL12 0.56 4.3 0.42 18.0
NL14 3.60 7.2 1.65 29.8
NL16 0.61 12.2 0.15 49.9
CIRC10 1.65 3.8 0.83 30.2
CIRC12 2.48 6.8 0.50 61.1
CIRC14 1.27 10.7 -0.96 110.6
CIRC16 -0.44 16.9 -1.32 148.8
CIRC18 1.87 25.9 -1.25 220.9
CIRC20 0.92 37.8 -0.35 284.7
NFL16 1.40 12.0 0.87 49.6
NFL18 2.66 19.8 0.60 77.0
NFL20 3.92 30.8 2.26 105.2
GALAXY10 0.37 2.5 0.29 11.5
GALAXY12 0.84 4.5 -0.15 22.5
GALAXY14 0.35 7.6 -0.01 37.7
GALAXY16 -0.07 12.5 -0.04 61.6
GALAXY18 -0.38 20.4 -1.22 96.9
GALAXY20 0.12 31.5 -1.43 129.4
SUPER10 0.01 2.3 0.00 9.5
SUPER12 -0.15 4.3 -0.41 17.9
SUPER14 -0.12 7.2 -0.48 30.6
mean 0.98 12.9 0.01 73.3

The reason for the reduced parallel efficiency is likely due to higher variance in the
distribution of the load to the workers due to the problem’s constraints and generally
the less cache-friendly memory-IO since the evaluation of the successors includes random
access memory lookups of the precalculated data. The runtimes of the different algorithmic
parts up to 16 threads are shown in Fig. 4.7, with a speedup of 13×. This time, also
instance preprocessing (precalculation, storing, and loading of bounds) and the duplicate
state filtering are relevant and also parallelize sufficiently well.

In a ballpark comparison of absolute runtimes, it is worth noting that the heap-based
single-threaded beam search implementation in Julia took about half a day for a run with
a beam width of 250 000, while it took our parallel variant only about 12 minutes with 46
cores and an even larger beam width of 20M. This amounts to a gain (speedup × beam
width ratio) of three to four orders of magnitude, attributed to a faster single-threaded
implementation reducing garbage collector usage and good parallel efficiency.

Having machines available with much memory to go for large beam widths, we make a
comparison with the best-known results for a diverse set of well-known instances from
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Table 4.6: Exemplary tie rates for beam search runs with beam width 15 M, either with (σrel = 0.1%) or without
noise (σrel = 0.0%), and the corresponding sequential partial quicksort times tqs

rel,46 as fraction of the total runtime
with 46 threads. The relative standard deviation σrel is the fraction taken from the root lower bound to act as an
instance’s absolute standard deviation of the Gaussian noise.

inst NL14 NL14 CIRC14 CIRC14 GAL14 GAL14 SUP14 SUP14
ties [%] 2.1 0.2 56.3 34.0 8.5 2.5 1.3 0.1

tqs
rel,46 [%] 1.2 0.4 27.6 24.2 3.0 2.5 0.5 0.1
σrel [%] 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1

the literature, the NL, CIRC, NFL, GALAXY, SUPER benchmark instances, between
10 and 20 teams. We first perform single runs with a beam width of 20 M and 46 threads
and provide the relative percentage deviation u1

rel (negative means that we improve the
best-known solutions) to the best-known upper bounds and the overall runtime t1,1

30 in
minutes in Table 4.5. We observe in the mean a relative deviation of about 1% and
obtain four new best feasible solutions. To go further, we perform 32 randomized parallel
beam search runs distributed on 8 independent MPI workers, resulting in approximately
4× the runtime of the single runs. In the right two columns of Table 4.5 we see that this
diversification pays off since we find 11 new best feasible solutions out of 22 instances and
obtain a mean percentage deviation of close to zero with an average runtime of below
75 minutes per instance. We randomize by adding Gaussian noise to the guidance with
zero mean and an instance-dependent standard deviation of σrel = 0.1% of the root lower
bound. Its effect is a tie breaking and gradual shuffling of the search nodes.

To better understand the runtime dependency on the instances, we study the impact
of the tie rate—the number of successors in a cut-off bin divided by the total number
of successors—on the potential speedup, since for the tie breaking we make use of a
sequential partial quicksort. It is a very efficient sorting algorithm in practice to select
the best k elements of a list, still when going to large beam widths and branching factors
to sort hundreds of millions of tied successors can become a sequential bottleneck. This
is why we use our parallelized histogram approach in the first place. In Table 4.6 we see
the fraction of the runtime in percent of the sequential partial quick sort for different
exemplary instances for parallel beam search runs with 46 threads and a beam width
of 15 M. The impact is limited by up to 3%, except for the CIRC instances, which have
additional symmetries since the teams are placed on a circle with unit distance between
each other. Also the galaxy instances have somewhat more ties which we believe is
attributed to the instances’ rather small and more uniformly distributed distances. Those
trends on the runtime for different instances with the same number of teams can also be
observed in Table 4.5.

Finally, we perform an iterative widening approach [68, 101], an anytime variant of beam
search iteratively increasing the beam width and potentially applying pruning by dual
bounds. In our case, we perform randomized batches of data-parallel beam search runs
with increasing beam widths while making use of the global primal bound to prune the
search tree using a dual bound. We set a time limit of 40 minutes and a beam width limit
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Table 4.7: Solution qualities of iterative widening parallel beam search runs on a single machine with 46 threads
and a time limit of 40 minutes. Beam width increases by a factor 2 after every batch of two randomized runs with
σrel = 0.1. The percentage gaps urel relative to the best-known feasible solution, the best-found solution length u,
the log-beam widths of the last run β̃ = log2 β, and the times of the last improvement tlast in minutes are shown.

inst best u urel[%] β̃ tlast [’]
NL12 110729 111174 0.40 26 17.2
NL14 188728 191927 1.70 25 27.1
NL16 261687 264170 0.95 24 10.9
CIRC12 404 404 0.00 25 18.5
CIRC14 628 628 0.00 25 0.6
CIRC16 910 898 -1.32 24 13.8
CIRC18 1284 1284 0.00 23 5.9
NFL16 231483 233805 1.00 24 17.8
NFL18 282258 286375 1.46 24 9.1
GALAXY12 7180 7163 -0.24 26 8.7
GALAXY14 10879 10903 0.22 25 28.2
GALAXY16 14648 14598 -0.34 24 14.5
GALAXY18 20489 20392 -0.47 23 39.1
SUPER12 460870 459115 -0.38 26 20.7
SUPER14 571632 568093 -0.62 25 23.4
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Figure 4.8: Anytime behavior of iterative widening 46-threads parallel beam search runs on selected TTP instances.
Solutions with a gap to best-known solutions below 3% can be created rather quickly between 10–100 seconds.

of 227 (whichever is exceeded first), start with a beam width of one and increase it by a
factor of two every two runs, based on preliminary manual tuning. As randomization,
we perform random variable ordering, random tie breaking in the cut-off bins of the
histogram to select the β best successors and add a noise of σrel = 0.1 as before. The
results are summarized in 4.7 and show that competitive solution qualities can also be
obtained quickly in a single-machine many-core setup that way when time should be the
natural termination criterion. Furthermore, the anytime behavior of selected instances is
displayed in Figure 4.8. We see that good solutions are found quite quickly while closing
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Figure 4.9: Gaps and runtimes to best-found solutions by NuMVC 10-minute runs for different beam search
configurations on random graphs over increasing edge probabilities with β = 1 000, single-threaded.

the remaining gap remains time intensive and distributing the runs on multiple workers
as done before still makes sense.

4.5.3 Maximum Independent Set Problem†

We first study the impact of different combinations of guidance function, variable ordering,
zero-suppression, and duplicate detection on solution quality and runtime. To this end,
we create a set of random graphs following the Erdős–Rényi G(n, p) model [49], where p
is the independent probability for the existence of a given edge. We set n = 1 000 and
vary p from 10% to 90% in steps of 10% with 20 instances each. As a baseline, we run
each instance with the state-of-the-art local search based NuMVC solver by Cai et al.
[27] for 10 minutes and calculate gaps to this baseline for the beam search runs.

The results are shown in Figure 4.9 for β = 1 000, single-threaded and 4.10 for β = 10 000
using 14 threads. The more difficult graphs are the sparse ones, whereas for the dense
the gaps come close to 0%. As guidance, we compare the g-value (the costs so far) with
a PILOT-style approach [43], where we evaluate each search node by a greedy rollout
using the minimum residual degree heuristics. For variable orderings, we select the next
vertex either lexicographically, with a static minimum degree, or dynamically with a
current minimum residual degree. We use either zero-suppression (zs) or not (nozs) and
duplicate filtering by hashing (df ) or not (nodf ).

Unsurprisingly, we observe that the guidance has the strongest impact. The rollouts
appear to provide a good estimate for the optimal feasible completions. In particular,
when the rollouts using the minimum residual degree heuristics are paired with the
same variable ordering in the high-level search, the gaps are overall below 0.25% for
β = 1 000 and below 0.2% when increasing the beam width to 10 000. The main benefit
of zero-suppression is the large decrease in runtime since fewer node expansions have to
be performed, at no or very small loss in quality. The impact of duplicates filtering is
quite small and therefore not used in further experiments.
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Figure 4.10: Gaps and runtimes to best-found solutions by NuMVC 10-minute runs for different beam search
configurations on random graphs over increasing edge probabilities with β = 10 000, 14 threads.

As expected the PILOT guidance approach has a substantial impact on runtimes, since
for every node the corresponding subproblem is solved by the minimum residual degree
heuristic. In the binary branching, it either excludes or includes a vertex and iteratively
selects a free vertex with a minimum residual degree to evaluate the remaining subproblem
and calculate the f -value. The runtime of such a rollout depends on the data structure
used to keep the residual degrees and to select a minimum-degree vertex. The denser
the graph, the greater the number of edges and the smaller the independent set. There
we observe that keeping an array of residual degrees and selecting the minimum degree
vertex by a linear scan is sufficient and the overhead of using a min-heap is beginning
from some density not justified anymore. For sparse graphs, the number of edges becomes
smaller and the independent sets longer. Using a linear scan then results in a O(n2)
runtime behavior for the rollout and a heap is therefore preferable with only O(n log n).

In Figure 4.11, we compare the (more complicated) runtime behavior of complete beam
search runs using the two different data structures in the critical region for random graphs
with n = 1 000. At first, the runtime increases when going to smaller edge probabilities,
since the search trees become larger as the independent set cardinalities increase. Near
the critical point log(n)/n, the graph becomes decomposed into increasingly smaller
connected components, which combats this increase. This prunes the search since we
always add currently isolated and leaf vertices to the independent set to reduce the
branching factor and to some extent emulate preprocessing.

After the algorithmic parameter tuning, we now move to the famous DIMACS benchmark
instances10 [146], where we use the complement graphs as common for the MISP. We first
measure the speedup and parallel efficiency on a rather large DIMACS instance, as shown
back in Figure 4.5, together with the other problems. It exhibits a parallel efficiency of
almost 80% when going to 46 threads, corresponding to a speedup up to 36×. In contrast

10https://lcs.ios.ac.cn/~caisw/graphs.html
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Figure 4.11: Left: runtimes on sparse random graphs with 1 000 nodes and a beam width of 100 over different
increasing probabilities with 20 graphs each. We compare the runtime once with a binary heap to select the next
vertex with minimum residual degree in the heuristic evaluation in constant time O(1) but an update factor on
every edge of O(log n) vs. a simple arg min in O(n) over a residual degrees array with an update factor in O(1).
Right: mean and standard error of the number of connected components, critical point at log n/n ≈ 0.7%.

to the implementations for the PFSP and TTP, almost all the computational effort goes
into the successor evaluation, where we perform the greedy rollouts as described before.

In a comparison with state-of-the-art solvers, we employ an iterative widening approach
[68, 101], an anytime variant of beam search, where we perform runs with increasing
beam widths while making use of the so-far best known global primal bounds to prune the
search tree using a dual bound. We set a time limit of 10 minutes and beam width limit
of 222 (whichever is exceeded first), start with a beam width of one and increase it by a
factor of four every two runs, based on preliminary manual tuning. As randomization,
we perform random tie breaking in the cut-off bins of the histogram to select the β best
successors. We compare the results with fast iterative local search approaches by Andrade
et al. [5] (also based upon Grosso et al. [76], called ILS and GLP), using directly their
reported results, and 10-minute runs of NuMVC [27] on our computational test bed. As
reported by the authors, ILS and GLP are run 15 times each on a 3.16 GHz Intel Core 2
Duo CPU with 4 GB of RAM, where as termination criterion a maximum number of arc
scans is used instead of a time limit.

The results for selected difficult DIMACS instances are shown in Table 4.8. When the
best objective value has been found is unfortunately not reported, which makes the
comparison a bit more difficult, while as additional information the frequency of the best
solutions found over 15 runs for each instance and algorithm is shown in parentheses.
We observe that the iterative widening beam search is close but a bit behind the local
search approaches in terms of solution quality. We observe diminishing returns for larger
beam widths and we believe there is at some point more room for improving the beam
search in terms of diversification, e.g., randomizing the variable ordering and guidance,
possibly by performing Monte Carlo rollouts [29] instead of applying fixed heuristics.
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Table 4.8: Results on selected difficult DIMACS instances, reprinting and comparing results from iterative local
search approaches by [5, 76] (ILS, GLP) with parallel beam search (PBS) and NuMVC [27] run on our test beds
with a time limit of 600 seconds. Mean times t̄ reported for ILS and GLP, last improvement tlast for PBS and
NuMVC, and last log-beam width employed β̃ = log2 β.

ILS GLP PBS-30 NuMVC
inst n density best |I| t̄ |I| t̄ |I| β̃last tlast |I| tlast

C1000.9 1000 0.1 68 68(15) 25 68(15) 50 67 22 40.3 68 0.8
C2000.5 2000 0.5 16 16(15) 436 16(15) 967 16 20 3.9 16 0.5
C2000.9 2000 0.1 80 77(14) 103 79(2) 182 78 20 423.6 78 28.1
C4000.5 4000 0.5 18 18(1) 1897 18(15) 3708 17 18 5.8 18 125.6
DSJC1000.5 1000 0.5 15 15(15) 103 15(15) 258 15 20 2.0 15 0.5
MANN_a27 378 0.0 126 126(15) 1 126(15) 2 126 22 1.2 126 0.0
MANN_a45 1035 0.0 345 345(8) 3 344(12) 5 345 18 13.3 345 18.1
MANN_a81 3321 0.0 1100 1100(15) 10 1098(9) 17 1100 14 50.4 1098 3.9
brock200_2 200 0.5 12 12(15) 4 12(15) 13 12 24 1.1 12 0.0
brock200_4 200 0.3 17 17(15) 4 17(15) 9 17 24 1.9 17 0.9
brock400_2 400 0.3 29 25(15) 11 29(10) 20 25 24 1.4 29 188.5
brock400_4 400 0.3 33 33(10) 11 33(15) 16 33 24 40.9 33 8.8
brock800_2 800 0.3 24 21(15) 60 21(15) 111 21 22 1.3 21 0.3
brock800_4 800 0.3 26 26(1) 60 26(2) 112 21 22 2.0 21 0.4
hamming10-4 1024 0.2 40 40(15) 39 40(15) 98 40 22 2.5 40 0.1
keller6 3361 0.2 59 59(15) 519 59(15) 862 56 18 258.0 59 2.7
p_hat1500-1 1500 0.7 12 12(15) 173 12(15) 808 12 20 80.9 12 0.3
p_hat1500-2 1500 0.5 65 65(15) 150 65(15) 252 65 20 2.0 65 0.1
p_hat1500-3 1500 0.2 94 94(15) 88 94(15) 136 94 20 11.4 94 0.0

4.6 Conclusions and Future Work

We presented a parallel beam search framework for combinatorial optimization problems
performing a cooperative construction of the search tree layer by layer using multithreaded
data parallelism. We published an implementation in the Julia language together with
example implementations for three well-known optimization problems, the permutation
flowshop problem (PFSP) with flowtime objective, the traveling tournament problem
(TTP), and the maximum independent set problem (MISP), based on state-of-art beam
search approaches from the literature. By appropriate algorithmic design and following
Julia performance optimization best practices, we were able to achieve speedups between
30–42× with 46 threads for medium to large problem instances and sufficient beam
width, and a parallel efficiency in the range of 60–90%. Additionally, we implemented a
straightforward inter-node parallelization with the message passing interface (MPI) to
perform multiple randomized runs on distributed independent workers. For the TTP,
the large absolute speedup when compared to previous implementations allows attacking
the problem with very large beam widths up to 20 million on high memory machines
with which we found 11 out of 22 new best feasible solutions for difficult benchmark
instances with up to 20 teams. Furthermore, we show that an anytime beam search
variant, iterative widening parallel beam search, can also provide strong solutions for the
TTP in a single-machine multi-core setup within a short time.

For the considered problems the occurrence of search nodes with the same rank according
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to our histogram-based sorting—ties— is an important issue to consider. We employed
a random tie breaking by adding small Gaussian noise to these values. Alternatively,
a second informed criterion (e.g., costs-so-far) could be added with a small factor. In
both cases, a smarter binning strategy would be interesting future work to reduce the
number of ties in the cut-off bin. The sequential partial sort could be replaced with a,
e.g., parallel radix sort. It would also be interesting to compare the efficiency of the
Julia implementation with other languages/frameworks focusing on parallelization like
OpenMP or Chapel, and further workload scheduling approaches. On the inter-node
level, a natural continuation would be to spread the beam over distributed workers,
connecting to existing large-scale parallel BFS approaches, e.g., by Buluç and Madduri
[26]. Extending the framework to AI and planning problems would also be interesting
future work.

A general disadvantage of large-scale beam search over other methods is the notoriously
high memory demand. At some point, we observe diminishing returns for larger beam
widths and there is more room for improving the beam search in terms of diversification
and guidance. Apart from focusing on achieving a high throughput of the search as
we did in this chapter, it is at least equally important to improve diversification and
guidance of the search, which can often provide a more powerful lever. A recent direction
is to learn heuristics using data-driven machine learning based approaches as proposed
by, e.g., Huber and Raidl [84] or Choo et al. [30].
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CHAPTER 5
Same-Hour Delivery with Fair

Tardiness and Flexible Shifts

In the second part of this thesis, we are moving from static to dynamic and stochastic
optimization. More concretely, we are facing a fully dynamic vehicle routing problem
with stochastic customers motivated by a real-world application where orders arrive at
an online store dynamically over a day to be delivered within a short time—a same-hour
delivery problem (SHDP).

Full dynamism is given since we do not know any orders in advance, whereas the
stochastic aspect comes into play by having estimates for the hourly numbers of orders.
The goal is to satisfy the daily demand by constructing closed routes from a single
depot to the customers given a set of drivers with a predefined shift plan and the hourly
demand estimates as input while first minimizing and balancing due time violations
across customers and then labor and travel costs. Labor costs are subject to optimization
since the end times of shifts have a certain amount of flexibility since we can either
dynamically book overtime or send them home a bit earlier.

In this chapter, we present a novel double-horizon approach based on the shifts and the
hourly demand estimation. Within the shorter horizon, we optimize the routes for the
orders currently available. In the longer horizon, we extrapolate until the end of the
day to determine target shift end times for the drivers, which are then fed back into the
point-in-time objective function. Furthermore, we devise a route departure time strategy
that balances route quality and risking due time violations. The route optimization is
performed by an adaptive large neighborhood search (ALNS).

We consider real-world inspired artificial instances and compare the results for full-day
online problem simulations with those for the offline scenario where all orders of a day
are known in advance. We observe a sensible trade-off between tardiness and costs as
compared to extreme fixed route departure time and shift end strategies.
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This work has been published in the proceedings of the PATAT 2020 conference and
presented at its postponed and accumulated edition PATAT 2022:

Nikolaus Frohner and Günther R Raidl. A double-horizon approach to a purely
dynamic and stochastic vehicle routing problem with delivery deadlines and shift
flexibility. In Proceedings of the 13th International Conference on the Practice and
Theory of Automated Timetabling - PATAT 2021: Volume I, 2020

5.1 Introduction
Motivated by a real-world application where customers place orders at an online store to
be delivered within a few hours, we introduce a specific dynamic vehicle routing problem
with stochastic customers (DVRPSC) variant called Same-Hour Delivery Problem with
Fair Tardiness and Flexible Shifts. Orders arrive dynamically over the day, and each
order is due only hours after arrival, where the specific due times vary and depend on the
orders’ types. These orders are picked at a single depot and are subsequently available
for delivery to the customers by drivers with predefined shifts.

The goal is to assign the orders to the drivers and perform the routing in a way to avoid
or minimize due time violations. Drivers perform multiple routes over the day and for
each route a decision has to be made about when to start it. This is crucial since after
the departure of a driver, the corresponding route cannot be changed anymore. As a
secondary objective, the labor costs, which are determined by the actual shift end times,
and the travel times, determined by the performed delivery routes, are to be minimized.
The shift end times are subject to some flexibility and may be ended earlier or extended
to account for the uncertainty of the actual load.

In particular, we need to account for the strong dynamism of the problem by making use
of the stochastic information known in advance. As such, an estimation of the demand
for each hour over the day is available upfront. To link this information to the shifts,
the time-dependent average number of orders drivers can handle per hour—the driver
performance—needs to be estimated. In this work, we combine the well-known ALNS for
vehicle routing [117, 127] with a double horizon approach [109] to handle dynamism and
stochasticity. In the short horizon planning, we present a driver performance-dependent
route departure time strategy—more efficient routes are started earlier than inefficient
routes, where improvement is still expected. To avoid sending drivers home too early, we
look ahead until the end of the day—the large horizon—by solving a simplified assignment
problem on the expected orders without concrete routing to predict target shift end times
for the drivers.

In Section 5.2 we discuss related work. The formalization of the different problem variants
(offline, point in time, online), the solution representation, and the objective function is
presented in Section 5.3. Short-horizon route construction is done by ALNS using classical
insertion and regret heuristics and a diverse set of destroy operators as briefly discussed
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in Section 5.4. We present the details of our driver performance estimation in Section
5.5 which is crucial for our departure time strategy (Sect. 5.6) and our double horizon
approach (Sect. 5.7). The latter is also used to enable informed shift ending strategies
as described in Section 5.8. In the computational study (Sect. 5.9), we compare the
double-horizon approach with fixed, less sophisticated strategies, on artificial instances
with different load patterns (business day vs. weekend) and shift plans (generous vs.
tight vs. shortage). We observe substantial advantages of the former. We conclude in
Section 5.10.

5.2 Related Work
For general overviews on methods to solve dynamic and stochastic VRPs, see the surveys
by Ritzinger and Puchinger [125], Ritzinger et al. [126], Pillac et al. [116], and Psaraftis
et al. [121]. Our problem falls into the general class of dynamic VRPs (DVRPs) with
stochastic customers [126], i.e., where information is revealed over time with connected
stochastic available upfront. Mor and Speranza [111] provide another recent classification
of what they call VRPs over time, in which the orders need not only to be assigned
to vehicles and sequenced but also the starting time of routes is emphasized as an
important decision. In the offline view assuming perfect knowledge for a considered
time horizon, our problem can be seen as a multitrip VRP with release and due dates
(MTVRPRD) [28, 137]. In the online view, focusing on the day as the delivery horizon
and timely delivery of highly dynamic customer requests as the primary goal, the problem
is best categorized as same-day delivery problem (SDDP, [150, 162]) with soft deadlines
(SD, Ulmer [147]). A recent survey from a broader operations research perspective on
established and emerging (e.g., autonomous delivery, crowdshipping) last-mile delivery
concepts is provided by Boysen et al. [21], discussing also strategic decision making and
sustainability aspects while the focus remains on routing and scheduling.

To handle uncertainties existing approaches typically fall into one of two categories:
those based on sampling and those based on stochastic modeling [116]. As their name
suggests, sampling strategies incorporate stochastic knowledge by generating scenarios
based on realizations drawn from suitable random variable distributions. Each scenario
is optimized by solving the implied static and deterministic (i.e., offline) problem variant.
Then, a consensus solution is typically derived from all scenario solutions, which is applied
in the next time step, until a re-optimization takes place. The advantage of sampling is
its relative simplicity and flexibility on distributional assumptions, while its drawback is
the massive generation and required solving of scenarios to accurately reflect reality.

On the other hand, approaches based on stochastic modeling integrate stochastic knowl-
edge analytically. They try to formally capture the stochastic nature of the problem
and are usually highly technical in their formulations and require to efficiently compute
possibly complex expected values. Typically, only strong abstractions from the real world
allow for stochastic modeling. Applied methods to solve such stochastic models include
Markov models and stochastic dynamic programming. For example, Klapp et al. [92]
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consider a dynamic dispatch wave problem (DDWP) assuming a set of potential orders
with known locations to be served by a single vehicle from a depot until the end of the
day. An a priori policy is derived dictating whether a vehicle either waits or is dispatched
with certain orders at discrete decision epochs (waves) by minimizing expected costs
in form of travel times and probability-weighted penalties for unserved orders using an
integer programming model. In the case of our problem, precise and flexible enough
analytical models, unfortunately, appear to be out of reach.
Bent and Van Hentenryck [11] describe an event-based model to solve a dynamic VRP.
In their multi plan approach (MPA) a set of possible routing plans is maintained at any
time and updated at certain events, inspired by previous work from Gendreau et al. [65].
There is one distinguished “best” plan which is determined by an appropriate selection
function. The events are new customer requests, vehicle departures according to a current
distinguished plan, the availability of newly generated plans, and the timeout of plans.
The authors further extend the MPA by sampling to a multiple scenario approach (MSA)
in order to obtain more robust solutions concerning the stochastic aspects. A number
of scenarios are created by adding randomly sampled artificial orders, these scenarios
are solved, and then a consensus solution is derived for the original online problem at a
certain time. A tabu search is used for actually solving the occurring subproblems. We
essentially also follow the fundamental concept of the event-based model of the MPA,
although with just one current solution.
Hvattum et al. [85] propose another sampling scenario-based approach in conjunction
with a rather simple hedging heuristic. Gendreau et al. [65] describe a parallel tabu search
approach with adaptive memory for a dynamic vehicle routing problem. Essentially,
an MPA-like event model is used in conjunction with tabu search and the problem is
resolved whenever new information is available while solutions are continuously improved
in the meantime. Stochastic aspects are not considered here, but the focus lies on an
effective parallelization.
Ropke and Pisinger [127] and Pisinger and Ropke [117] proposed Adaptive Large Neigh-
borhood Search (ALNS) for more general vehicle routing problems, which is nowadays
widely used as a framework for a large variety of optimization problems. ALNS is
appreciated for its practical efficiency as well as robustness on many occasions. The
main idea of ALNS is to repetitively destroy a current candidate solution partially and
repair it in a sensible way. Both are done by using sets of different basic operators,
which are typically randomized. Improved solutions are always accepted as new current
ones, while worse solutions are only accepted according to a Metropolis criterion. The
application probability of the individual destroy and repair operators are adapted over
the iterations based on their successes in previous iterations. ALNS is today among the
most often applied metaheuristics for VRPs in general, and we find it also most useful as
core optimization technique for solving our routing problem, see Section 5.4.
Azi et al. [8] consider a VRP with a particular focus on multiple routes per vehicle, as we
also have to do. A major difference to our problem is that here the focus is on deciding
upon the acceptance of requests. The solution approach is an ALNS that is in several
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aspects similar to those from Ropke and Pisinger. Azi et al. [7] extend this work towards
the dynamic problem variant. Multiple scenarios combined of real and sampled orders
are maintained to evaluate the profitability of new requests.

Schilde et al. [133] describe a variable neighborhood search metaheuristic for a dynamic
dial-a-ride problem. The authors also apply sampling to deal with the stochastic aspects.
In their variable neighborhood search the shaking moves bear some similarities with the
destroy and repair operations of ALNS.

Mitrović-Minić et al. [109] describe a double horizon approach for solving a dynamic
pickup and delivery problem. A large horizon is considered for maintaining routes in a
state to be able to easily respond to future dynamically appearing requests, while a short
horizon is considered for the actual goal to minimize the route lengths based on the so
far known requests. While the considered problem is quite different from ours, we adopt
the basic idea of considering two planning horizons in our double horizon approach in
Section 5.7.

As routes frequently have slack induced by their orders’ time windows, waiting strategies
are identified as an important component to anticipate future requests. There, they are
discussed in several works, e.g., [108, 24, 145, 10, 163], including both theoretical results
for problems with limited complexity and empirically studied parameterized heuristic
strategies. For a recent overview, see Vonolfen and Affenzeller [163]. In our problem,
waiting can only be performed at the depot but not at the customer locations, which
amounts to scheduling planned routes as a whole. We compare two extreme strategies,
earliest and latest, with a thresholding strategy [86, 163] based on the route efficiency
comprising two learnable parameters.

A more recent research direction concerns same-day delivery problems (SDDPs), with
which we share the customer satisfaction under tight delivery deadlines aspect as being
the prime goal. Voccia et al. [162] introduce a general same-day delivery problem with
the single objective to maximize the number of accepted customers. They solve it with
an aforementioned online scenario sampling approach [11] proposing a new consensus
algorithm. Ulmer [147] provides a real-world case study of the impact delivery deadlines
have on the costs in the context of same-day delivery. All customers have to be served
with the objective to minimize the sum of tardiness over the customers. As a dynamic
policy a myopic but fast cheapest insertion heuristic is employed, which starts from
the current route plan and inserts the new customer cost-optimally with the potential
rerouting of depot visits of the affected vehicle. Ulmer and Thomas [148] propose a policy
function approximation approach to quickly decide whether to use in a heterogeneous
fleet either a high-capacity/low-velocity vehicle or a low-capacity/high-velocity drone to
deliver an order, based on the distance to the depot. It reduces the online computation
time by training related parameters in an offline simulation and training phase. Similarly,
Van Heeswijk et al. [158] learn for driver dispatching problem a linear value function
approximation with basis functions through offline simulations with backward passes to
be used online for fast decision making.

107



5. Same-Hour Delivery with Fair Tardiness and Flexible Shifts

tavl
v1 trel

v1 tavl
v2 trel

v2 tavl
v3 trel

v3 tdue
v2 tdue

v3 tdue
v1

t
Figure 5.1: Visualization of order-related times of an example route r = {0, v2, v3, v1, 0}. tavl

v ≤ trel
v ≤ tdue

v holds
for all orders: first, it is placed by the customer (tavl

v ), then it is picked from the warehouse (trel
v ) and ready for

delivery by a driver, and then due (tdue
v ). Note that orders that are placed later may be due earlier. The earliest

route departure time is bound from below by the latest release time of the corresponding orders. For this particular
example τr ≥ trel

v3 must hold.

5.3 Problem Formalization
We distinguish between three problem variants: the offline problem with full knowledge
of the day in advance (OFF), the dynamic problem at a specific time t̃ (DYN-t̃), and the
full dynamic problem for a whole day (DYN-DAY).

5.3.1 Full-Knowledge Offline Problem (OFF)
Here all orders of the day are known in advance together with their release times, i.e.,
the times the orders have been picked in the warehouse and are ready for delivery by the
drivers. Although this problem variant is not what we are confronted with in reality, it is
nevertheless interesting as its (optimal) solution provides a baseline of what might ideally
be achieved in the online problem. We denote the set of all orders by V = {1, . . . , n}
and the corresponding release times by trel

v , ∀v ∈ V . Moreover, we are given due times
tdue
v , ∀v ∈ V , which are related to a promised maximum delivery duration starting from

the time tavl
v the order v was placed by the customer. Fig. 5.1 visualizes the order-related

times of an example route consisting of three orders.

Furthermore, for all relevant vehicles u ∈ U , with m = |U |, planned shift time intervals
[qstart

u , qend
u ] and earliest shift ends q0

u ∈ [qstart
u , qend

u ] are provided. Lastly, expected travel
times δ(v, v′) from location v to location v′, where v, v′ ∈ V ∪ {0} with 0 representing
the warehouse, are given. These travel times include average stop times at the customers,
average times for loading a vehicle at the warehouse, and postprocessing times when
returning to the warehouse. We further assume that the triangle inequality holds w.r.t.
the travel times and that they are constant throughout the day.

Solution Representation. We have to plan the drivers’ routes, the route departure
times, and the drivers’ flexible shift end times. Hence, a candidate solution is a tuple
⟨R, τ, q⟩ where

• R = (Ru)u∈U denotes the ordered sequence of routes Ru = {ru,1, . . . , ru,ℓu} to be
performed by each vehicle u ∈ U , and each route r ∈ Ru is an ordered sequence
r = {vr

0 = 0, vr
1, . . . , vr

lr
, vr

lr+1 = 0} with vr
i ∈ V, i = 1, . . . , lr, being the i-th order

to be delivered and 0 representing the warehouse at which each tour starts and
ends,

• τ = (τr)r∈Ru,u∈U are the departure times of the routes, and
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• q = (qu)u∈U are the shift end times of the vehicles.

The time at which the i-th order vr
i of route r, i = 1, . . . , lr, is delivered is

a(r, i) = τr +
i−1∑
j=0

δ(vr
j , vr

j+1). (5.1)

The total duration of a route r ∈ Ru of a vehicle u ∈ U is

d(r) =
lr∑

i=0
δ(vr

i , vr
i+1), (5.2)

and the route, therefore, is supposed to end at time τr + d(r).

Let τmin(r) = maxi=1,...,lr trel
vr

i
be the earliest feasible starting time of a route r, which

corresponds to the maximum release time of the orders served in the route. Furthermore,
let τmax(r) be the latest starting time without violating any due time, i.e.,

τmax(r) = min
i=1,...,lr

((tdue
vr

i
−

i−1∑
j=0

δ(vr
j , vr

j+1)

)) . (5.3)

Feasibility. A solution is feasible when

• each order v ∈ V appears exactly once in all the routes in U
u∈U Ru,

• each route r ∈ Ru, u ∈ U , is started in the planned shift time of the assigned
vehicle, i.e., τr ∈ [qstart

u , qend
u ],

• and not started before all corresponding orders are released, i.e., τr ≥ τmin(r),

• the routes in each Ru, u ∈ U start at increasing times and do not overlap, i.e.,
τru,i + d(ru,i) ≤ τru,i+1 , i = 1, . . . , |Ru| − 1,

• and the actual shift end time is not smaller than the finishing time of the last route (if
there is one) and the minimum shift time, i.e., qu ≥ max(q0

u, supr∈Ru
(τr+d(r))), u ∈

U .

Objective. The primary goal is to avoid tardiness or distribute it evenly among the
customers. The secondary goal is to reduce labor and travel costs. This leads to the
following objective function to be minimized

f(⟨R, τ, q⟩) = L
( ∑

r∈Ru,u∈U

lr∑
i=1

max(0, a(r, i) − tdue
vr

i
)2, γ ·

∑
u∈U

(qu − q0
u) +

∑
r∈Ru,u∈U

d(r)
)

. (5.4)
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Figure 5.2: Visualization of a solution for an artificial instance with 22 vehicles. The x-axis denotes the time
and the discrete y-axis the drivers’ shifts. The whole bar indicates the actual shift duration. The green triangle
indicates the earliest shift end time for each driver, where excess labor time contributes to our considered costs.
The red triangle depicts the planned shift ending, after which no route can be started, but the last route may end
arbitrarily late. The distinct green bars stand for routes and contribute to the travel time part of our objective
function. If the latter is shaded light green, the route contains at least one tardy order, which can be observed
around hour 15. The remaining orange of the shift bars denotes waiting time of the driver at the depot. The blue
stars denote the target end shift times as determined by the large horizon planning at the beginning of the day.

L denotes the lexicographic combination of two terms, which are a quadratic penalty for
the tardiness of deliveries and a linear combination of the sum of labor and travel costs.
More precisely, the latter is calculated as the sum of the actual shift durations above the
minimum shift times q0

u weighted by a factor γ and the sum of travel times.

In a real-world comparison of results, it is also worthwhile to view it as a multi-objective
optimization problem. A small increase in tardiness may be acceptable, if it comes with
a substantial reduction of costs.

5.3.2 Dynamic Problem at a Specific Time t̃ (DYN-t̃)
This problem variant is actually the one that needs to be iteratively solved during the
whole day, for increasing current time t̃. It extends OFF by having as additional input
the current time t̃ and the expected number of orders ω̂(t) that become available in the
time intervals [t, t + 1h) for all relevant business hours. Moreover, we assume knowledge
about the distribution of order types w.r.t. the promised delivery durations. The set of
all orders V is reduced to those which are already available at time t̃ and whose delivery
has not yet started. The set of vehicles U is reduced to those whose shift has not been
finished, and shift start times are updated to the expected return times of vehicles that
are currently on a tour. The route construction must now additionally consider these
unknown future orders in an appropriate way. The ultimate goal is to lead to an optimal
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solution w.r.t. the full dynamic problem below.

5.3.3 Full Dynamic Problem (DYN-DAY)
This is the actual problem to be solved from the point-of-view of the whole day. Time
is considered to continuously increase over the whole relevant time horizon, expected
numbers of future orders are known as above, but each concrete order becomes available
only at the availability time tavl

v , ∀v ∈ V . The decision on each route r ∈ R must be
fixed with only the knowledge available up to the route’s respective departure time τr.
An example solution of a DYN-DAY instance with 22 vehicles is depicted in Fig. 5.2 as a
bar chart displaying the waiting times (orange), routes (green), and routes with tardy
orders (light green) of the drivers. Stars show the target shift end times derived from our
initial large horizon planning (Sect. 5.7).

More specifically, we solve the successive DYN-t̃ instances every time an order is released:

t̃ ∈
{

t | ∃v ∈ V : t = trel
v

}
(5.5)

Having obtained a solution for a time t̃, we extract any routes that start before the next
value for t̃ in the above sequence, adopt these routes for the final solution of DYN-DAY,
and remove all the orders served in these routes from any further consideration.

5.4 Routes Construction and Optimization
To be suitable for a real-time application, an important property that an optimization
method must exhibit is a good anytime behavior : a somehow reasonable heuristic solution
must be found very soon (within seconds), and over time the solution should continuously
be improved up to (or close to) optimality. In other words, the optimization can be
interrupted almost at any time and a reasonable solution with respect to the invested
time is available. We achieve this by using a carefully designed ALNS [116, 127].

ALNS heuristics. As construction heuristics to insert orders into either an empty
solution or to repair a partial solution in the ALNS, we use the well-known insertion
and regret-k heuristics as described in [117]. We distinguish between the zero-tardiness
and tardiness regimes. In a two-stage approach, we first seek to insert an order without
introducing additional tardiness, which can be checked in constant time with caching
of suitable slack values for existing orders and routes. If this is not possible, we search
for an order position with the smallest sum of squares increase of tardiness, which is
computationally more demanding by a factor of O(n).

Our destruction heuristics are mostly adopted from Pisinger and Ropke [117], Ropke and
Pisinger [127], Shaw [135], and Azi et al. [8] and suitably adapted to our problem. There
are two kinds of destruction heuristics, those that remove a certain number of orders
from routes and those that remove a certain number of whole routes. More specifically,
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5. Same-Hour Delivery with Fair Tardiness and Flexible Shifts

we use random order, random route, related order, related route, worst order, and worst
and related order removal.

Shift End Times. The vehicles’ actual shift end times qu are set to max(q0
u, supr∈Ru

(τr+
d(r))), i.e., for each vehicle u to the end of the last route or the earliest possible shift
end time, whichever comes later. In Section 5.7, we introduce the large horizon planning,
where we estimate desired shift ends for the vehicles in advance so that we can satisfy
the expected workload. Since in the objective function we penalize labor time after the
earliest possible shift end times q0, we grant vehicles that are below their desired shift
end time q̃u > q0

u a labor time bonus that equalizes the incurred labor time costs up
until q̃u—otherwise, the insertion heuristic would avoid assigning orders to vehicles after
their earliest possible shift end q0

u, in case there is no tardiness yet and other vehicles not
close to their shift end are available. The labor time bonus is implemented by using the
augmented objective function

f̃(⟨R, τ, q⟩)) = f(⟨R, τ, q⟩) − γ ·
∑
u∈U

min(qu − q0
u, q̃u − q0

u). (5.6)

During the optimization, the route departure time is always set to the earliest possible
time. Afterwards, we are free to postpone the routes up to the latest time within the
departure time slacks of the routes so that the objective value is neither increased by
tardiness nor by labor costs.

5.5 Driver Performance Estimation
For both an informed route departure time strategy and our large horizon approach, we
need to estimate the driver performance of a given hour. It is the average time needed to
serve an order. It is strongly related to the expected duration of all routes involved to
serve the customers at the considered time interval divided by the number of customers.
We introduce this as a function ϕ : R → R, depending on the load λ. We define the load
λ to be the expected number of orders due in a given hour.

A classical result by Beardwood et al. [9] shows that the expected length of an optimal
traveling salesperson tour with n randomly sampled cities given some geometry with area
A grows with k

√An. k is an empirical constant depending on the spatial distribution and
the metric. This result is extended to capacitated vehicle routing problems by Daganzo
[35] and refined by Figliozzi [51], from which we adapt the following model

ϕ(λ; km, kl) ≈ km + kl√
λ + 1

. (5.7)

km corresponds to constant costs occurring for each customer like the stop time at the
customer. kl relates to the empirical k from [9] and accounts together with (λ + 1)−1/2

for the expected travel time to a customer. We shift the load by one to avoid divergence
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Figure 5.3: Mean order delivery times ϕ in minutes with standard errors over ten instances for each load value
λ ∈ {0.5, 1.0, . . . , 20, 21, . . . , 60} with fitted curves for the two and three-parameter models. The three-parameter
model seems to explain the region of little load λ ≤ 10 better than the two-parameter model.

at zero load. As we can see, it is a function that decreases with the square root of the
load. As a more flexible model, we further suggest the following inverse power law

ϕ(λ; km, kl, α) ≈ km + kl

(λ + 1)α
. (5.8)

To check the validity of these models in our setting and tune the parameters, we create
ten artificial instances each for loads starting from 0.5 up to 20 in steps of 0.5 and further
in steps of 1 up to 60, i.e., to one order due per minute. The geometry is the unit disk
with a central depot, Euclidean metric, and vehicles driving a constant pace of 20 minutes
per unit distance. Furthermore, constant stop times at the customers, loading times
when leaving the warehouse, and postprocessing times when returning to the warehouse
are added. Orders arrive randomly throughout a whole day at a given constant rate λ
sampled from a Poisson process following a uniform spatial distribution. Optimization at
each DYN-t̃ is done for 60 seconds using ALNS. Sufficient drivers are available so that
no tardiness occurs, and the drivers wait to start their routes as long as possible. For
each instance, we average over all routes the time needed to serve a customer.

In Fig. B.2 we see a scatter plot of the mean order delivery times including standard
errors (N = 10) over the different loads. Weighted least squares fits of the models are
displayed. Both models explain the data starting from load λ ≥ 10 similarly well with
weighted R2 values of 0.97 and 0.99. For low-load regions λ ≤ 10, the model with the
inverse power as an arbitrary parameter lies closer to the means.

5.6 Departure Time Strategies
In the dynamic problem, at every time t̃ we construct and optimize the routes for the
drivers. In a decomposition approach, we decide afters separately when these should be
started, i.e., the scheduling of the routes. A departure time window [τ earliest

r , τ latest
r ] is

attributed to each route, within which the departure time τr of the route may be set
while maintaining a feasible solution and not increasing the objective value. Setting
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5. Same-Hour Delivery with Fair Tardiness and Flexible Shifts

τr < τ earliest
r or τr > τ latest

r makes the solution either infeasible or increases tardiness,
labor, or travel costs. This decision is crucial since routes cannot be adapted anymore
after they have been started.

Two extreme strategies can immediately be devised by either always starting the route
at τ earliest or at τ latest, see, e.g., [109]. The latter, τ latest, seems favorable in terms of
route quality since not yet started routes may later still be adapted in order to more
efficiently include newly emerged orders as opposed to the earliest strategy where in the
extreme case a route is immediately started with just one order. However, experiments
have shown that the start-latest strategy is not always the better strategy, since we may
run into tardiness at a later time when working at or shortly before critical utilization
and letting vehicles wait instead of delivering orders.

A more informed heuristic approach takes into account the current performance of a
route, measured by its number of minutes per order dO

r , i.e., the route duration divided
by the number of orders served. The main idea is: the better the performance of a
route, the closer we can set its departure time τr towards τ earliest

r , the worse, the closer
towards τ latest

r , so that there is a performance-dependent time for improvement by further
incoming orders. As we have seen in detail in Section 5.5, the performance depends on
the load by an inverse power law.

We assume a Gaussian distribution of dO
r ∼ N (ϕ(λ), σ2

ϕ(λ)) and set the departure time
of a route to

τr(dO
r , λ) = τ earliest

r + (τ latest
r − τ earliest

r ) · Φ
(

dO
r − ϕ(λ)
σϕ(λ)

)
, (5.9)

where Φ is the cumulative normal distribution function. For example, when dO
r corresponds

exactly to the expected mean order delivery time ϕ(λ) in the given load situation, the
departure time of r will be set to (τ earliest

r + τ latest
r )/2, the middle of the route departure

time slack. We estimate σϕ(λ) by calculating sample standard deviations from our
experiments described in the previous section. An illustration of this strategy is shown
in Figure 5.4.

We will refer to the three different strategies as τ -earliest, τ -latest, and τ -route.

5.7 Double Horizon Approach
This approach adopts from Mitrović-Minić et al. [109] the idea of considering in the
optimization two planning horizons simultaneously, a short horizon and a large horizon.
In the large horizon planning (LHP), which we always perform as the first step, we
consider a strongly simplified approximate problem variant of DYN-t̃ where, in addition
to all available requests, also all the expected future requests for either the whole day
or at least several hours into the future. The primary goal is to make a rough plan for
the utilization of the vehicles and recognize times when we might exceed the available
capacity or have enough time to finish vehicle shifts earlier. A detailed routing is not
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Figure 5.4: Illustration of Gaussian switch strategy with different variances controlling the smoothness of the
transition. The more efficient a route relative to the mean performance is, the earlier it is started, and vice versa.

done in the LHP. The short horizon problem corresponds to our definition of DYN-t̃
so far but utilizes an adapted objective function that includes additional terms defined
by the LHP’s results in order to meet the long-term goals as closely as possible. In our
case decisions on the labor time to be used beyond the minimum q0

u for each vehicle are
most critical in the long term in order to avoid later deliveries becoming tardy due to
insufficient driving resources for the given workload.

We, therefore, define and solve the following LHP subproblem at time t̃ in order to derive
target shift end times q̃u for each vehicle u ∈ U . We consider as V all currently relevant
orders of the current DYN-t̃ plus expected orders V exp for the remaining day. These
expected orders are artificially created according to the estimated numbers of orders
becoming available per hour ω̂(t), equidistantly spaced over each hour. For each of these
orders, we further derive a due time randomly based on the distribution of expected
order types and their promised maximum delivery times.

Let z : R+ → R+ be a function that estimates the average shift duration needed to serve
one order v ∈ V ∪V exp within the current hour of t̃ and a few subsequent hours, assuming
a reasonable routing and an average number of available orders. The basis for z is the
mean order delivery time ϕ(λ) derived from the routes with latest departure time strategy
as presented in Section 5.5. To account for a slight increase due to waiting times in the
depot and an intermediate departure time strategy, we introduce an additional factor
ζ ⪆ 1, which needs to be tuned. With Λ(t) being the load at hour t, we then calculate a
weighted average to estimate the average shift duration

z(t̃) = ζ ·
∑t̃+ρ

t′=t̃
Λ(t′) · ϕ(Λ(t′))∑t̃+ρ

t′=t̃
Λ(t′)

, (5.10)

with ρ corresponding to three hours in our implementation. We make the strongly
simplifying assumption that any order v can be independently served by any available
vehicle within time z(t̃) from trel

v onward. Each vehicle’s shift is split into successive time
slots of duration z(t̃), and in each of these time slots, one order can be served. This
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t̃ q0

q̃
t

u

Figure 5.5: View on an example DYN-t̃ problem instance as seen by the large horizon planning. The x-axis
represents the time, discretized by time slots of the average expected shift time needed to deliver an order z(t̃).
The drivers that are still available at or after t̃ are stacked on the y-axis. Blue rectangles indicate orders that have
already been delivered or are en route. Brown rectangles represent greedily assigned orders, either real (available
at the moment) or expected up until the end of the planning horizon. The maximum of the earliest shift end time
q0

u and the latest assigned order define for each driver the target shift end time q̃u. For the last four drivers, q0 is
exceeded, since otherwise, tardiness would have arisen. Note that unassigned slots may occur if no more orders are
ready for delivery at that time.

implies that we do not allow arbitrary start times to serve orders but only times that are
multiples of z(t̃) away from a vehicle’s shift start time (or t̃). We do not have a strict last
slot, i.e., in principle further orders to be served might always be appended to a vehicle’s
shift. An instructive visualization of the LHP’s view on an example DYN-t̃ instance is
provided in Figure 5.5.

A solution to our LHP is a complete assignment of all the orders V ∪ V exp to vehicle
slots. As actual delivery time of an order, we consider the respective time slot’s middle
point, i.e., the time slot’s start time plus z(t̃)/2. The objective function corresponds to
our main objective function (5.4), but as we do not consider routing the last travel time
term is omitted.

This LHP is heuristically solved by a greedy assignment procedure, in which orders are
assigned in increasing due time always to the earliest feasible time slot of a vehicle that
increases the objective the least. In case of ties, a vehicle u ∈ U whose end of the shift
exceeds q0

u the least, i.e., where the vehicle’s excess labor time is smallest, is chosen. This
aspect automatically balances the deviations from the planned shift times among the
vehicles if there are no particular other reasons such as avoiding tardy orders. Further
ties are resolved randomly by a random processing order of the vehicles.

The obtained shift end times of this solution, i.e., the end times of the last used time
slots of each vehicle, are finally used as target shift end times q̃u, for all u ∈ U in the
short horizon optimization, i.e., the ALNS from Section 5.4.

This is achieved by augmenting objective function (5.4) to

f̃(⟨R, τ, q⟩)) = f(⟨R, τ, q⟩) + γ ·
∑
u∈U

Qu (5.11)
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with
Qu = − min(qu − q0

u, q̃u − q0
u). (5.12)

This non-positive term can be seen as a bonus that exactly compensates any arising labor
time costs above q0

u up to the target time q̃u for each vehicle u ∈ U . Thus, the time up
to q̃u can be used “for free”. Note that the factor γ by which the bonus is multiplied is
the same as by which the labor time is weighted in (5.4).

5.8 Shift Ending Strategies
In the online problem, we also have to decide if a shift should be ended by sending a
driver (vehicle) u ∈ U home, providing this is allowed, i.e., t̃ ≥ q0

u, u is in the depot, and
no more routes are planned for u, or if the driver has to wait at the depot to possibly
receive further orders. Again, two naive strategies are immediately available: The first
option is to send a vehicle u home as early as possible, i.e., after its last so far planned
route or at q0

u, whichever comes later. This is also the default of the insertion heuristic.
The other extreme is the latest strategy that waits until qend

u in any case, even if the last
route ends before qend

u . The earliest strategy seems to be an attractive choice since we
can save labor costs and during peak hours, it is likely that a vehicle has already a next
route planned during its current route, therefore it is not sent home prematurely when
arriving at the depot if there is still enough work to do.

A more sophisticated approach makes use of the estimated shift end times q̃ provided by
the LHP. The earliest shift end time is then modified to be q̃u − d̃, where d̃ is a threshold
duration of an efficient route. The rationale is that if a vehicle cannot start a somewhat
efficient route that ends before its target shift end q̃u, it is better to send it home.

We will refer to the three different strategies as q-earliest, q-latest, and q-LHP.

5.9 Computational Study
We conducted all our experiments on Intel Xeon E5-2640 processors with 2.40 GHz in
single-threaded mode and a memory limit of 8 GB. We implemented our approach as a
prototype in Python 3.7, being aware that an implementation in a compiled language
would be substantially faster and have a smaller memory footprint. We consider six
different instance classes, each with 20 instances: Artificial instances1 on the Euclidean
unit disk as described in Section 5.5 using either a business day (BD) or a weekend (WE)
load profile with generous (GE), tight shift planning (TI), and with a shortage (SH) of
drivers. The instance generation algorithm is described in detail in Appendix B.1. The
idea is to observe the transition from a more generous shift planning to a tighter one and
to simulate a driver being absent on short notice where in the latter cases more tardiness
is expected to occur. Furthermore, in the generous case, dynamically ending shifts earlier

1https://github.com/nfrohner/pdsvrpddsf
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Algorithm 5.1: Simulated DYN Problem Solver with ALNS and LHP.
Input: Orders V , drivers U , shift starts qstart, earliest shift ends q0, planned

shift ends qend, hourly expected number of orders ω̂, travel time matrix δ,
mean order delivery time ϕ, efficient route threshold duration d̃.

Output: Solution ⟨R, τ, q⟩ with routes R, route departure times τ , and actual
shift end times q for the whole day.

1 V deliv ← {}, Uhome ← {};
2 R′ ← ()u∈U , τ ′ ← ()r∈R′ , t̃′ ← 0, q̃ ← qend;
3 ⟨R, τ, q⟩ ← <

R′, τ ′, q0>
;

4 foreach t̃ ∈
{

t | ∃v ∈ V : t = trel
v

}
∪ {∞} do

5 foreach (u, r) ∈ R′ : t̃′ ≤ τ ′
r < t̃ do

6 V deliv ← V deliv ∪ {vr
1, . . . , vr

lr
};

7 ⟨R, τ, q⟩ ← ⟨R, τ, q⟩ ⊕ (r, τ ′
r);

8 qstart
u ← u’s return time at depot after t̃;

9 end
10 Uhome, q ← SENDHOME(t̃, t̃′, Uhome, U \ Uhome, qstart, q0, qend, q̃, d̃);
11 V avl ← {v ∈ V \ V deliv : tavl

v ≤ t̃};
12 q̃ ← LHP(t̃, V avl, U \ Uhome, ω̂, ϕ, qstart, q0, qend);
13 ⟨R′, τ ′, q⟩ ← ALNS(t̃, V avl, U \ Uhome, qstart, q0, qend, q̃, δ);
14 τ ′ ← DEPART(R′, ϕ);
15 t̃′ ← t̃;
16 end
17 return ⟨R, τ, q⟩;

is expected to have more impact whereas in the tight case, shifts are more likely to be
extended by starting long routes shortly before the ending.

We aim at comparing the performance of the naive earliest and latest strategies with
the more sophisticated LHP and driver performance-based route departure strategy on
these DYN problem instances. In each case, we apply the ALNS with a limit of 1000
non-improving iterations and additionally a 60 seconds time limit for route optimization at
each arriving order. This should be consistent with a real-time setting, where orders may
arrive every minute during peak time or on weekends and routes already including them
should occasionally be started within a minute. Without LHP and driver performance
estimation, we are restricted to naive earliest and latest strategies regarding the departure
time of a route and the early shift termination. LHP extrapolates until the end of the
long horizon to set desired shift ending times for each driver, using an estimation of
the average driver performance in the window of the current and the upcoming three
hours. The target shift ending times may be before the planned shift ends to send drivers
home early or after them so that extending shifts is favored via the augmented objective
function.
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Table 5.1: Offline problem performance (OFF) and different solution strategies applied to 20 artificial instances for
each configuration using either a business day (BD) load profile with either generous, tight, or shift planning with
a driver shortage.

ntardy RMSE [min] dur [h] lab [h] d̄ [min] dO
r [min]

mean std mean std mean std mean std mean std mean std

load shift solving strategy

BD generous τ -earliest, q-earliest 4.500 4.536 0.680 0.798 98.134 3.580 1.491 1.069 56.425 4.315 18.386 0.692

τ -earliest, q-latest 3.850 4.771 0.592 0.795 98.087 3.984 11.940 0.698 55.930 3.707 18.372 0.631

τ -latest, q-LHP 6.250 6.257 1.107 1.208 88.221 4.447 2.685 1.199 74.935 2.832 16.512 0.426

τ -latest, q-earliest 7.600 6.065 1.157 1.091 87.716 4.443 1.673 0.889 74.745 2.818 16.420 0.479

τ -latest, q-latest 5.900 5.937 1.028 1.237 87.980 5.210 11.974 0.722 75.460 2.792 16.463 0.574

τ -route, q-LHP 4.400 4.604 0.841 1.134 89.369 4.568 2.197 1.560 71.340 2.113 16.728 0.483

τ -route, q-latest 4.350 4.782 0.757 1.082 89.956 4.241 12.036 0.797 70.060 2.398 16.839 0.379

OFF 0.550 1.572 0.056 0.174 78.897 4.763 0.377 0.479 64.170 2.039 14.760 0.384

shortage τ -earliest, q-earliest 19.950 16.804 3.991 4.966 91.863 4.294 8.334 3.843 63.415 4.985 17.259 0.468

τ -earliest, q-latest 19.100 13.726 3.381 2.568 92.763 4.305 14.775 2.426 62.930 4.941 17.430 0.533

τ -latest, q-LHP 14.800 10.928 2.705 2.915 88.099 4.742 12.262 3.854 74.640 3.749 16.544 0.350

τ -latest, q-earliest 26.200 14.207 4.179 2.747 87.507 5.044 9.946 4.296 74.355 4.007 16.430 0.370

τ -latest, q-latest 22.737 16.562 3.551 2.820 87.524 5.038 15.406 2.073 72.126 3.019 16.505 0.426

τ -route, q-LHP 15.450 11.019 2.546 2.525 89.483 4.717 11.454 4.103 71.270 3.763 16.806 0.388

τ -route, q-latest 18.150 11.864 2.988 2.338 89.992 4.691 16.304 2.145 70.045 3.622 16.903 0.375

OFF 2.050 5.826 0.255 0.721 81.655 4.358 4.671 3.230 57.595 1.676 15.336 0.400

tight τ -earliest, q-earliest 14.158 10.673 2.720 2.928 93.582 3.530 6.319 2.803 62.416 4.261 17.507 0.746

τ -earliest, q-latest 10.950 8.003 2.847 4.480 94.496 3.263 14.236 1.601 61.630 3.886 17.670 0.725

τ -latest, q-LHP 14.300 11.855 2.139 1.923 89.265 5.296 9.496 3.458 73.180 2.846 16.667 0.477

τ -latest, q-earliest 17.150 9.544 2.959 2.341 88.868 5.074 7.920 2.934 72.865 2.211 16.593 0.457

τ -latest, q-latest 13.900 9.754 2.466 2.179 88.732 4.822 14.810 1.636 70.945 2.330 16.571 0.514

τ -route, q-LHP 8.950 6.117 1.843 2.098 90.030 4.238 8.883 2.960 70.370 2.580 16.818 0.452

τ -route, q-latest 10.105 7.880 2.028 2.542 90.265 4.403 14.728 1.231 68.816 1.937 16.870 0.509

OFF 0.700 2.904 0.115 0.512 82.371 5.380 3.273 2.645 58.400 2.307 15.374 0.420

In Algorithm 5.1 we list a high-level pseudo-code of the simulated DYN problem solver,
combining the previously explained approaches based on the LHP and route performance.
The main loop goes over all times t̃ where an order is released, where the first inner
loop checks whether routes have been started between the last and the current t̃. If so,
they are added to the current solution, the corresponding orders are removed, and the
drivers’ shift starts are set to their return times at the depot. Afterwards, drivers are sent
home, if their target shift end time reduced by the efficient route threshold q̃ − d̃ passed
and they have no further routes planned. Then the route construction and optimization
begins with the large horizon planning to update the q̃. It further continues with the
ALNS—the optimization workhorse—that creates routes for the currently available and
not yet delivered orders. Finally, the departure time of the planned routes is set according
to the route performance strategy (more efficient routes are planned to start earlier).

In Table 5.1 and 5.2, we present the main results of our computational study. We
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Table 5.2: Offline problem performance (OFF) and different solution strategies applied to 20 artificial instances for
each configuration using a weekend (WE) load profile with either generous, tight, or shift planning with a driver
shortage.

ntardy RMSE [min] dur [h] lab [h] d̄ [min] dO
r [min]

mean std mean std mean std mean std mean std mean std

load shift solving strategy

WE generous τ -earliest, q-earliest 2.400 3.267 0.420 0.539 145.071 3.794 1.213 1.660 62.140 3.102 17.008 0.504

τ -earliest, q-latest 1.750 2.900 0.273 0.435 145.130 3.561 15.889 0.853 61.985 3.286 17.021 0.634

τ -latest, q-LHP 2.850 2.661 0.701 1.056 132.071 4.851 2.024 1.885 76.835 2.059 15.477 0.343

τ -latest, q-earliest 2.850 2.978 0.745 1.112 132.159 5.094 1.715 1.753 76.580 2.008 15.486 0.334

τ -latest, q-latest 1.600 2.137 0.358 0.531 132.161 4.962 16.099 0.859 76.015 1.727 15.488 0.335

τ -route, q-LHP 2.450 2.837 0.455 0.551 134.841 4.713 1.820 1.657 73.420 2.295 15.800 0.329

τ -route, q-latest 1.650 2.641 0.271 0.411 134.682 4.460 16.286 1.248 73.945 1.934 15.787 0.435

OFF 0.000 0.000 0.000 0.000 118.698 5.720 0.197 0.407 67.455 2.253 13.902 0.291

shortage τ -earliest, q-earliest 12.950 9.801 1.743 1.817 139.469 3.321 9.636 2.564 67.160 3.392 16.167 0.597

τ -earliest, q-latest 7.400 5.623 1.475 2.305 139.888 3.335 19.844 1.440 66.135 2.164 16.215 0.571

τ -latest, q-LHP 9.900 7.440 1.077 0.923 132.993 3.421 12.833 2.534 77.185 1.991 15.411 0.350

τ -latest, q-earliest 14.250 9.107 1.527 1.578 132.510 3.574 11.427 2.400 75.295 1.975 15.354 0.380

τ -latest, q-latest 11.700 9.985 1.632 1.878 132.087 3.426 20.397 1.485 75.850 2.883 15.305 0.320

τ -route, q-LHP 8.100 8.534 0.924 1.048 135.573 3.432 12.724 3.585 74.550 1.673 15.711 0.413

τ -route, q-latest 7.400 8.068 1.042 0.898 136.989 3.011 22.970 1.615 73.765 1.808 15.875 0.371

OFF 0.350 0.988 0.032 0.130 123.384 3.617 4.860 2.077 61.880 1.426 14.296 0.330

tight τ -earliest, q-earliest 12.200 16.938 2.372 3.017 141.820 3.805 8.029 3.336 64.295 3.578 16.608 0.526

τ -earliest, q-latest 8.350 7.707 1.558 1.924 142.144 4.282 19.164 1.851 64.055 3.246 16.643 0.528

τ -latest, q-LHP 7.050 8.587 1.121 1.442 133.109 5.952 11.178 4.118 76.335 2.057 15.575 0.261

τ -latest, q-earliest 10.850 10.246 2.109 2.531 132.394 5.840 9.369 3.762 75.115 1.923 15.490 0.285

τ -latest, q-latest 8.500 8.237 1.955 2.667 132.156 5.971 19.720 1.794 73.955 2.546 15.462 0.311

τ -route, q-LHP 6.050 6.739 1.113 1.610 135.414 5.522 10.216 4.080 73.805 1.910 15.848 0.365

τ -route, q-latest 5.050 6.700 1.021 1.536 136.518 4.566 21.582 1.895 73.285 2.089 15.980 0.347

OFF 0.800 2.118 0.079 0.189 122.279 6.193 3.716 2.530 62.540 1.653 14.303 0.285

compare for the different combinations of our approaches means and standard deviations
of the number of tardy orders ntardy, the root mean squared error (RMSE) of the
tardiness in minutes, the total travel time in hours, the labor time exceeding q0

u in
hours, the average route duration d̄, and the average route performance (labor time
to serve an order without waiting time) in minutes dO

r . The offline (full knowledge of
the day) results (OFF) where we applied ALNS to convergence with a limit of 1000
non-improving iterations without additional time limit provide a performance baseline.
All the other results are for the DYN-DAY problem variant and we see that the offline
baseline is somewhat out of reach, which is not too surprising due to the substantially
restricted knowledge that can be exploited in the online variant. Despite having used a
lexicographic optimization approach, where distributing tardiness evenly and reducing
it was the single most important objective, we analyze the results in the sense of a
multi-objective optimization problem. Small amounts of tardiness for a few customers
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Figure 5.6: Comparison of the root mean square error of the tardiness in minutes, the travel time duration in
hours, and the excess labor time in hours of different solution strategies (without offline solution) on six different
instances classes with 20 instances each. We observe that the more sophisticated strategies based on LHP and the
route performance decreases the tardiness at the cost of carefully introducing additional travel time (regarding
which τ -latest is best) and labor time (where q-earliest is best).

may in practice be acceptable when real costs may be substantially reduced. In Figure
5.6, we visualize the results by boxplots of the tardiness, travel time, and labor time,
for the different solution strategies (excluding the offline problem) on the six different
instance classes.

We observe that the τ -latest strategy provides the best route performances and therefore
smallest travel costs but sometimes runs into troubles regarding tardiness, where a
τ -earliest strategy would have been beneficial. Similarly, the q-latest strategy provides
the most shift time resources allowing to reduce tardiness, as opposed to the q-earliest
strategy. The goal of τ -route is to balance between the extremes of the τ determination
strategies considering the load development of the day. Likewise, the q-LHP strategy
should provide additional shift resources regarding the flexibility of shift endings times
only when necessary. We observe that the τ -route strategy sacrifices a slight amount of
route quality in exchange for substantially less tardiness. Likewise, the LHP carefully
provides additional labor time to be used to reduce tardiness. Combining both strategies
results in a reasonable trade-off over all the instances classes, where a decision maker
may also select a suitable combination of strategies given the load and shift structure of
the day.

For τ -latest, q-LHP we use ζ = 1.2 after preliminary tuning experiments to convert the
route performance values to the average time to serve an order as described in Section
5.7, and for τ -route, q-LHP ζ = 1.15. This is a first effective correction mechanism.
Further research is needed regarding the driver performance estimation, especially since
the waiting time, the route departure strategy, and the driver performance have an
immanent cyclic dependency. The parameters used for the three-parameter inverse power
law model to estimate the route performance ϕ(λ) given the load λ are tuned by means
of least squares optimization to kl = 23.144, km = 3.951, α = 0.174, with a 25% estimated
constant relative standard deviation. For the driver send home strategy, d̃ is set to 55
minutes. The labor time cost factor γ = 4.
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5.10 Conclusions
We considered a same-hour delivery problem variant, a purely dynamic and stochastic
vehicle routing problem with short delivery deadlines and shift flexibility arising from a
real-world application. Orders arrive at an online store throughout the day, regarding
which we have stochastic knowledge by means of hourly estimates. They have to be
delivered within only a few hours by drivers deployed at a single depot. The goal is to
reduce or evenly spread tardiness if not avoidable among the customers and to minimize
travel and labor costs. Drivers may be sent home early or have their shifts extended to
some degree to account for the uncertainty of the load.

Our proposed double-horizon approach is able to effectively address the dynamic and
stochastic shift planning aspect. The large horizon planning with its simplified order-to-
drivers assignment is able to derive meaningful target shift end times. These are exploited
in the short horizon planning—the actual routing performed by ALNS—by augmenting
its objective function, releasing additional shift resources in an informed way.

Another important aspect is to determine the route departure times, where neither the
naive earliest nor the latest strategy suffices. We devised a more balanced strategy that
estimates the expected route performance (average time per order in a route) depending on
the current load and start routes earlier that are already close to the desired performance
and later when the performance is worse.

The combination of both approaches leads to superior performance over the naive
strategies or allows for trade-offs regarding substantially reduced travel and labor time
versus a slight amount of more tardiness on artificially created instances for different
load profiles (business day vs weekend) and shift plans (generous vs tight vs shortage).

Further research is needed to improve the estimation of the driver performance over the
day, especially for real delivery areas in a city, also studying the impact of traffic. This
is also a basis for the accuracy of the LHP. A difficulty lies in the cyclic dependency
between the driver performance estimation and the route departure strategy, where we
used a bootstrapping mechanism by fitting a function on idealized randomized instances,
incorporating the driver waiting times by a constant factor over the whole day to
pragmatically resolve this in a first step.
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CHAPTER 6
Route Performance Prediction for

Same-Hour Delivery Problems

We are facing again the delivery problem from the previous chapter, a vehicle routing
problem where orders arrive dynamically over the day at an online store and have to be
delivered within a short time—this time with historical real-world data and not in the
real-world inspired simulation. Stochastic information in form of the expected number
of orders, the weight of orders, and the traffic congestion level is now available upfront
and shall be exploited for an improved planning. More specifically, the goal is to predict
the average time needed to deliver an order for a given time and day. This information
is desirable for both routing decisions in the short horizon and planning vehicle drivers’
shifts with just the right capacity prior to the actual day.
We compare a white box linear regression model and a neural network based black
box model on historic route data collected over three months. We employ an hourly
data aggregation approach with sampling statistics to estimate the ground truth and
features. The weighted mean square error is used as loss function to favor samples with
less uncertainty. A mean validation R2 score over 10 × 5-fold cross-validations of 0.53
indicates a substantial amount of unexplained variance, likely due to driver bias and
higher variance in low-load times of the day. Both predictors are slightly optimistic and
produce median standardized absolute residuals of about one.
This work has been presented at the ISM 2020 conference and published in the respective
proceedings:

Nikolaus Frohner, Matthias Horn, and Günther R Raidl. Route duration prediction
in a stochastic and dynamic vehicle routing problem with short delivery deadlines.
In Proceedings of the 2nd International Conference on Industry 4.0 and Smart
Manufacturing (ISM 2020), volume 180 of Procedia Computer Science, pages 366–
370. Elsevier, 2021
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6. Route Performance Prediction for Same-Hour Delivery Problems

6.1 Introduction
We consider a dynamic vehicle routing problem with stochastic customers arising in a
real-world application. Orders are placed at an online store throughout the day and
have to be delivered within one or two hours from a single depot. Decisions have to
be performed in real-time regarding the clustering of orders, the routes for the vehicles,
when to start these routes, and when to send drivers home from their shifts since we
have some flexibility concerning shift ends.

Stochastic information per hour regarding the number of arriving orders over the day,
their expected weight classes, and the traffic congestion levels is available upfront. The
goal is to facilitate this information to avoid myopic decisions for the aforementioned
aspects and account for the dynamism of the problem. Additionally, the prior shift
planning itself relies on this as we need to have the right amount, possibly including a
safety buffer, of driving capacity available over the day.

Our approach is to condense all this stochastic information into one single relation, the
mean order delivery time per hour ϕt(a), which maps for a given day a and hour t to the
time needed to serve an order. Conversely, the reciprocal value is the number of orders
that can be served per hour.

In this work, we train and evaluate corresponding predictors ϕ̃t(a) in a supervised learning
setting. Different white box and black box models are studied. Error analysis is performed
to allow selection between more conservative and more aggressive use of the prediction
that naturally comes with uncertainties.

Data on the daily activity has been collected over three months and is used both for
training and evaluation in 5-fold cross-validations. Data acquisition was subject to
substantial measurement noise due to the manual logging of route legs by the drivers.
Both, weighted least squares regression and a neural network (NN) with a weighted
sample loss function resulted in the best results on the collected data.

In Section 6.2, we discuss related work on which ours is based. Section 6.3 introduces
our linear white box model, whereas Section 6.4 describes the black box model with
the neural network. Results are presented in Section 6.5 after which we conclude in
Section 6.6.

6.2 Related Work
The dynamic and stochastic vehicle routing problem we consider is presented in detail
together with an adaptive large neighborhood search routing algorithm and large horizon
planning approach for handling dynamic shift ending flexibilities in Chapter 5. There,
also first steps towards predicting order delivery time on simulated data without traffic
and stop time variability are performed.

We make use of a classical result by Beardwood et al. [9] from the late 50s which proves
asymptotic dependence ∼ kl

√
nA of the length of an optimal traveling salesperson
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6.3. White Box Model

problem tour on the number of cities n, distributed on some geometric area A; kl is a
model parameter depending on the distribution of the cities and the metric.

An extension to the capacitated vehicle routing problem (CVRP) is presented by Daganzo
in 1984 [35], accounting for the capacity C of vehicles and the average distance to
customers r̄ in a delivery area. The suggested model for the length is 2r̄n/C + kl

√
nA.

An intuitive explanation is that n/C routes are needed and that each vehicle has to drive
to a dense region of customers yielding round trip distance 2r̄n/C and intra-customer
distance kl

√
nA, following [9].

Figliozzi [51] builds upon these results and proposes further refined white box models to
estimate route lengths of classical CVRP benchmarks with and without time windows
and a real-world freight forwarding problem. Results with high estimation accuracy are
obtained for corner-depot instances by making use of the known number of routes m
and adding a term kb

√A/n. The problem is similar to ours with the main difference
being that we do not know the number of routes in advance. The same author describes
a traffic-aware tour model [52] with optimization constraints that link the number of
vehicles needed and the variability induced by congestion to ensure service guarantees
with a certain confidence. From the latter, we adopt the approach to model the increase
of free-flowing travel times due to congestion by a corresponding factor.

6.3 White Box Model
Let Rt(a) be the set of all routes that start within the hour t on day a. We consider one
route r ∈ Rt(a) with lr ≥ 1 served customers v1, . . . , vlr . Its total associated duration
∆r is assumed to consist of the loading time of the goods, the total travel time, and the
total stop times at the customers, formally expressed by

∆r = ∆load
r + ∆travel

r + ∆stop
r . (6.1)

We assume that the mean time per customer ∆r/lr is a random variable drawn from an
unknown distribution D with mean ϕt(a)—our ground truth.

As stated before, we seek to create a predictor ϕ̃t(a). To this end, we propose three
features observed in the hour the route is started t and the subsequent hour t + 1 that
have likely the strongest influence1 on ∆r: The number of orders due n, the traffic
congestion level ξ as the average relative increase of base travel times within the delivery
area, and the orders’ weight w, each in the given hour.

We assume that the spatial distribution of the orders is stationary over the day. Then,
the features n and ξ have supposedly the strongest impact on ∆travel

r but are negligible
for the rest. In contrast, w determines the time needed for loading ∆load

r and delivering
the goods to the customers at the stops ∆stop

r . Predicting these features are difficult
problems in their own right. For this work, we assume corresponding predictors to be
given and do not explicitly analyze the uncertainties they introduce.

1orders are due within one or two hours after having been placed
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6. Route Performance Prediction for Same-Hour Delivery Problems

Adapting [51, 52] and normalizing the delivery area to A = 1, we propose the following
model with parameters to be estimated by (weighted) linear regression:

ϕ̃wb
t (a) = kc +

∑
t′∈{t,t+1}

kt′
wwt′ + kt′

mξt′ + kt′
l

ξt′

√
nt′ (6.2)

The superscript t′ indicates the feature with the corresponding parameter for the given
hour. We omit this for convenience everywhere else, the use of the features in the current
hour t and subsequent hour t + 1 is henceforth implicit.

Parameter kc represents the average loading and stop time, independent of any feature.
Additionally, kw accounts for an additional increase in those by the weight or bulkiness
of the delivered goods.

Parameter km belongs to a traffic proportional term arising from travel times to the first
and back from the last customer, loosely corresponding to the term 2r̄/C from [35]. We
make the simplifying assumption that on average, the maximum number of customers
in a route lr implied by the delivery deadlines is constant for our problem. The actual
relation is likely to be more complicated since we expect it to increase with larger n,
as more efficient routes can be created and the number of required routes decreases.
However, lr are limited by the finite stop times needed for each customer and the orders’
due times implied by the delivery guarantees of one or two hours.

Parameter kl [9] accounts for the travel times between the customers that are expected
to increase with traffic but decrease with the number of orders ∼ 1/

√
n, leading to the

feature ξ/
√

n.

Significance and contribution to the prediction quality of all the coefficients will be
studied in Section 6.5 with linear regression using scikit-learn [115].

6.4 Black Box Model
In contrast to the white box model, we consider a general function with learnable
parameters θ

ϕ̃bb
t (a; θ) = g(wt, ξt, nt, wt+1, ξt+1, wt+1; θ) (6.3)

which is realized by a fully connected feed-forward neural network with two hidden
layers of 64 neurons each and ReLU activation functions. This network should allow
for a piecewise linear approximation of ϕt(a) with reasonably high resolution which was
confirmed by preliminary tests to define its architecture. The traffic congestion factor
lies approximately in the range from 1.0 to 1.6, corresponding from free-flowing traffic to
heavy congestion with a 60% increase of travel time.
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As loss function, the weighted mean squared error is to be minimized, where ST denotes
a training set of day-hour tuples

L(θ) ∝
∑

(a,t)∈ST

(
ϕ̄t(a) − ϕ̃bb

t (a; θ))
)2 /

s2
ϕ̄t(a) (6.4)

and ϕ̄t(a) denotes the sample mean by averaging over the ∆r/lr occurring in (a, t).
According to the central limit theorem, the sample standard error sϕ̄t(a) decreases with
the inverse square root of the number of routes. Since ϕt(a) itself is unknown, hours,
where less variance and more routes are observed are given more weight in the loss
function than those with higher uncertainty.

We implemented the neural network approach using TensorFlow [1] with the Adam [90]
optimizer. Early stopping monitoring the performance on 30% validation data is used for
regularization. As initial learning rate we choose 0.01 with dynamic updates by factors
of one-tenth down to 10−4 when plateaus are encountered.

6.5 Results
We have prepared data by aggregating routes for day-hour tuples collected over three
months. Routing is performed in a semi-automatized way by experienced dispatchers
with the help of a routing software. Travel times to the customers and stop times at the
customers are logged by the drivers, whereas the loading time and the travel time back
to the depot are estimated.

The features vector is given as (w, ξ, n)(a,t), where w is estimated by calculating the hourly
average for the same weekdays (or holidays as own type) over the month, ξ is determined
by comparing the base driving times as provided by the HERE2 public routing API with
the logged driving times of the routes and taking the average for each (a, t), and n is
taken to be the number of orders due in (a, t). Since routes started at the end of an hour
are likely to be more influenced by the subsequent hour, we always present (w, ξ, n)(a,t+1)
to our models as well.

Routes with implausible logs were discarded, and a quantile cut of [0.02, 0.98] on the
congestion level ξ is applied to remove routes with unrealistic driving time logs and
outliers. This reduces the number of routes used for aggregation down to 87%.3

The labels are calculated as

ϕ̄t(a) = 1
|Rt(a)|

∑
r∈Rt(a)

∆r/lr. (6.5)

The sample standard error sϕ̄t(a) = sϕt(a)/
√|Rt(a)| is used for weighting the labels as

done in Eq. (6.4).
2https://developer.here.com/documentation/routing-api/dev_guide/index.html
3the total number of routes is not revealed
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Table 6.1: Standardized residuals’ R2 scores, medians (Med), and median absolute deviations from the medians
(MAD) averaged over ten 5-fold cross-validations with different models and feature ablation.

model R2
train R2

val Medres
train Medres

val MADtrain MADval

WLS-ξ/
√

n,ξ,w 0.52 0.50 -0.34 -0.34 1.37 1.39
WLS-ξ/

√
n,ξ 0.52 0.50 -0.34 -0.34 1.37 1.39

WLS-ξ/
√

n, w 0.47 0.45 -0.43 -0.43 1.44 1.45
WLS-ξ/

√
n 0.47 0.45 -0.43 -0.43 1.44 1.44

WLS-1/
√

n 0.36 0.34 -0.52 -0.52 1.51 1.52
WLS-ξ 0.28 0.27 -0.63 -0.63 1.46 1.46
NN-n,ξ,w 0.53 0.53 -0.32 -0.32 1.39 1.38
NN-n,ξ 0.52 0.51 -0.33 -0.33 1.41 1.39
NN-n 0.40 0.39 -0.47 -0.46 1.51 1.50

As first sanity checks, Pearson correlation coefficients are calculated yielding moderate
correlations ρ1/

√
n,ϕ̄t(a) ≈ 0.6 and ρξ,ϕ̄t(a) ≈ 0.5. Correlation between the weight w and

ϕ̄t(a) is much smaller, therefore we further check for significance in a t-test of a linear
regression

(
∆stop/l

)
t
(a) ∼ kc + kww + kmξ. We include also the traffic to check how it

contributes to the explanation of the stop times per customer when competing with the
weight. For kw this reveals significance with a t-score of almost 10 and no significance
for km with a t-score only slightly above zero. We are in the range where the t-score
approximately equals the z-score.

Table 6.1 compares average training and validation performance values on 10 × 5-fold
cross-validations (hence N = 50). Weighted least squares (WLS), the white box model,
is compared with the neural network based black box model. Only pairs (a, t) with at
least four routes are considered to have somewhat valid sample statistics, leading to the
total batch size of 1081. We measure weighted R2 scores, median residuals to measure
prediction bias, and median absolute deviation of the median (MAD). We make use of
robust statistics since our problem is subject to outliers. As an ablation study, we remove
each feature individually and observe that for WLS the order weights w have no impact
on our figures. This is backed up by the fact that t-tests on the significance of coefficients
in the linear model yield scores close to zero for kw when combined with and seemingly
dominated by the other features. In contrast for the NN, we see a slight increase in the
performance values when going from n, ξ to n, ξ, w.

As expected, using either n or ξ without the other feature hurts the performance
substantially. The neural network achieved the best performance averaged over the
10 × 5-fold cross-validation runs with an R2 score of 0.53, median of −0.32, and median
deviation from the median of 1.38 on the standardized residuals.

By comparing training and validation figures, we observe very little, if any, overfitting.
One reason for this is conjectured to be the substantial amount of noise in the data which
makes overfitting with the given small amount of features and small (WLS) to moderate
(NN) model capacity quite difficult. Possible noise sources are manifold and include the
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Figure 6.1: Left: QQ-plot for standardized residuals of neural network prediction on whole data batch. Right:
Standardized absolute residuals of neural network prediction on whole data batch over bins of number of orders n.

driver bias (each driver has a different pace), non-stationarity of the spatial distribution
of the orders, traffic variability over the delivery area, manual leg duration measurement
error, and the hourly estimation of the features.

The models consistently underestimate the time needed to serve an order, as indicated by
the negative bias. Figure 6.1 left depicts a QQ-plot of the standardized residuals (using
the sample standard errors) vs. a normal distribution. We observe a good resemblance
with a normal distribution (linear fit with R2 = 0.996) with the mentioned slight negative
bias. The standardized absolute residuals over the number of orders n bins are depicted in
Figure 6.1, right. We observe quite stable performance over n with median standardized
absolute residuals around one.

In conclusion, both model types with all features have comparable performance, whereas
the NN model shows marginally but consistently better validation performance. This
is illustrated by a comparison of both predictors in action on example days in Fig. 6.2.
Some outliers regarding the mean order delivery time are observed on this day, smoothed
out by the predictors. The behavior is not exactly the same, yet they are quite similar.
This leads us to the conclusion that data and feature bias are dominating and both
models act approximately equivalent in our high-noise setting on our historical data. Still,
the neural network does not show reasonable (asymptotic) behavior for unseen regions of
the features, in particular n, which is the advantage of the white box approach.

6.6 Conclusions
We analyzed the performance of a linear white box model and a neural network based
black box model on a route duration prediction problem in a stochastic and dynamic
vehicle routing problem. It is derived from a real-world setting where orders arrive in an
online store dynamically over the day and have to be delivered to customers within short
due times. The goal is to predict the mean order delivery time for a given day and hour.
This information is required for improved routing decisions and planning the number
of required drivers over the day. Stochastic information per hour is given regarding the
number of arriving orders, their average weight, and the traffic congestion level.
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Figure 6.2: Example days, comparing the ground truth in form of the relative mean order delivery time ϕ̄t(a)/ϕ0,
with ϕ0 a total average, with the NN and the WLS predictions. Right including the relative two-hour load and
relative traffic to see their influence on the driver performance.

Data has been collected over three months by manual logging of travel and stop times by
the drivers, subject to substantial measurement noise. The ground truth and the traffic
feature were accessed by sampling statistics and subject to noise themselves, depending
on the number of routes in a given hour. Hence we chose the mean squared error weighted
with the inverse sample standard errors. Based on results from the literature, we proposed
a linear model with parameters to be tuned by weighted linear regression and a small
two-layer neural network.

In an ablation study, we showed the importance of combining both the number of orders
and traffic congestion level as features. All features were presented to the models for the
current and the subsequent hours. Order weights have significant impact on the stop
times at the customers, but did contribute little to the overall predictive performance.

In the end, the neural network achieved the best performance with the cost of unreasonable
predictions for regions where no or not much training data was available. Smoother
approximation with reasonable asymptotic behavior is achieved with the weighted linear
regression approach, which also gives a comparable performance. Standardized absolute
residuals are both stable with a median about one over increasing numbers of orders.

The real-world performance of the predictors is an open question. High-quality data
collection including traffic information from a third-party source would be recommendable
to resolve travel time and stop time effects. The number of orders that are visible when
a route is started should be logged to learn how the number of orders feature could be
improved. One possible criticism of the suggested weighted loss functions is that hours
with more routes are likely hours with better performance, which is conjectured to result
in the negative (optimistic) bias of the predictors. Naturally, the less busy hours are
harder to predict, since less data is available and the variance is intrinsically higher.
This can be mitigated by employing a safety buffer based on the error analysis of the
predictors.

Further work is concerned with refining the models on simulated data where noise sources
can be excluded and further validation on newly collected data.
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CHAPTER 7
Learning Surrogate Functions for

the Short-Horizon Planning in
Same-Hour Delivery Problems

As we have learned so far about same-hour delivery, timely routing decisions have to be
made over the planning horizon of a day. The well-known sampling approach from the
literature for considering expected future orders is not suitable due to its high runtimes.
To mitigate this, we suggest using a surrogate function for route durations that predicts
the future delivery duration of the orders belonging to a route at its planned starting
time. This surrogate function is directly used in the online optimization replacing the
myopic current route duration. The function is trained offline by data obtained from
running full-day simulations, sampling and solving a number of scenarios for each route
at each decision point in time. We consider three different models for the surrogate
function and compare them with a sampling approach on challenging real-world inspired
artificial instances. Results indicate that the new approach can outperform the sampling
approach by orders of magnitude regarding runtime while substantially reducing travel
costs in most cases.

This work has been presented at the CPAIOR 2021 and published in its proceedings:

Adrian Bracher, Nikolaus Frohner, and Günther R Raidl. Learning surrogate functions
for the short-horizon planning in same-day delivery problems. In 17th International
Conference on Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR’21), volume 12735 of LNCS, pages 283–298. Springer,
2021

It has also been published and extended further to an iterative learning approach in
Adrian Bracher’s bachelor thesis [22].
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7.1 Introduction
Short delivery times are essential when it comes to selling goods online, especially during
the COVID-19 pandemic when many physical stores had to close temporarily. An
increasing number of online retailers are offering same-day delivery to satisfy the demand
for quickly available goods, further intensifying the need for cost and labor-efficient
dynamic vehicle routing. Same-day delivery problems [162] are stochastic and dynamic
in nature and are a subcategory of vehicle routing problems. We again consider the
problem variant from Chapter 5: Orders arrive dynamically over the day and are due
only a short time after arrival. The orders have to be assigned to drivers and routes are
generated with the goal to minimize delivery tardiness, travel times, and labor costs of
the drivers involved. The fleet is homogeneous and the orders are served from a single
depot. Each driver has a predefined shift, however, the shift end times can be advanced
or postponed to some extent to account for the uncertainty of the actual load.

The presented double-horizon approach focused on the dynamic shift planning aspect. As
its use in practice has shown, the existing short-horizon optimization may sometimes lead
to unsatisfactory results, which we declare myopic, due to the following aspect: Routes
that are optimal regarding all available orders sometimes have to start soon due to some
orders, but also include one or more less urgent orders with a delivery deadline relatively
far in the future. If these currently available orders with later deadlines introduce a
significant travel overhead, it would frequently be wiser to postpone their delivery as
they can likely be combined with future orders resulting in more efficient routes overall.
Thus, it would be beneficial to split routes between urgent and less urgent orders. Routes
can only be changed up to their departure, and possible future improvements for routes
with a later starting time are not considered in the static, myopic optimization. The aim
of this work is to present our adaptations to improve on this aspect.

The basic idea of our approach is to craft a function that discounts travel times based on
the aforementioned observations, making separate routes with later starting times more
attractive. We will refer to that function as a surrogate, since it replaces the normal
route duration in the objective function and also is used instead of a classical sampling
approach, which is the de facto standard for stochastic considerations. This surrogate
function is trained offline in a supervised learning fashion, reducing the computational
effort in the online application in comparison to a sampling approach substantially. The
necessary training data is generated by full-day simulations, in which we sample and solve
100 scenarios for each route at every decision point in time. Three different models for
the surrogate are considered, a manually crafted exponential function, a linear regression,
and a multi-layer perceptron.

In Section 7.2, an overview of related work is given and discussed. Section 5.3 of the
chapter introducing the same-hour delivery problem already defines and formalizes the
problem at hand. We illustrate the problem of myopic short-horizon routing in Section
7.3. Then, in Section 7.4, we explain our new approach in detail and describe the training
data acquisition and training process in a step-by-step manner. Details on our test setup,
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and a comparison of our approaches with a sampling approach on real-world inspired
artificial instances, can be found in Section 7.5. We observe that on our benchmark
instances, the new approach reduces route travel costs by up to ≈8% in the median
compared to the myopic optimization with similar tardiness. The sampling approach, in
comparison, achieves a similar route duration reduction but requires a computation time
that is larger by a factor of ≈540. We finally conclude in Section 7.6.

7.2 Related Work
For a review on dynamic and stochastic vehicle routing problems, see, e.g., Ritzinger
et al. [126] and also the related work section 5.2. Our underlying problem variant is
introduced in [55], see also Section 5, and derived from an online store with promised
delivery durations of one or two hours. The problem is fully dynamic with a planning
horizon of one day, where stochastic information regarding the hourly number and spatial
distribution of orders is available upfront. A distinguishing feature is a certain flexibility
of the shift ending times of the drivers, which is considered in the objective function
together with route durations and a penalty for delivery deadline violations.

So far, the pillars of solving this problem are an adaptive large neighborhood search
(ALNS) [127, 117, 8] for the repeated point-in-time optimization runs to obtain routes
for currently available orders and a dual horizon approach inspired by Mitrović-Minić et
al. [109]. At every decision epoch, a simplified assignment problem is solved for the larger
horizon (i.e., the whole day) using expected values for the orders and driver performance.
This allows an estimation of the required labor time which is subsequently fed back into
the objective function used in the point-in-time optimization runs considering only short
horizons. Near real-time decisions regarding planned assignments of orders to multiple
trips of drivers, when to send drivers home, and when to start routes are then derived
from the result of this optimization.

Due to the short delivery deadlines within a few hours after customers place their orders,
the problem falls into the class of same-day delivery problems (SDDP). In a recent notable
work, Voccia et al. [162] present an SDDP variant with hard time windows where orders
can also be delegated to a third party, apart from delivering it with the in-house fleet.
The number of orders to be delivered in-house is to be maximized and formulated as
reward of a Markov decision process (MDP). A multiple scenario sampling approach
(MSA) [11] is tailored to the problem, where at every decision epoch a multi-trip team
orienteering problem with time windows is solved heuristically and a consensus solution
is derived. This method increases the number of filled requests for some instance classes
substantially compared to a simple delay strategy, where decisions are postponed to
gather more information until an impact on the number of filled requests occurs. Still,
a relevant drawback is that at every decision a couple of minutes computation time is
required, making it unsuitable for our near real-time setting.

Although we do not model our problem as an MDP explicitly, we perform implicit state
transitions where actions (for each driver in the depot either wait, start an unalterable
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delivery route, or end shift) are derived from the heuristic solution. The goal of this work
is to further adapt the objective function so that the implied actions lead to states with
a higher expected reward in the near future.

Using the approximate dynamic programming paradigm [119], Ulmer et al. [150] solve a
single-vehicle SDDP with preemptive depot returns using an Approximate Value Iteration
(AVI) scheme where the value function is learned in an offline training phase over full-day
simulations. Furthermore, a dynamic state space aggregation is used to create a lookup
table facilitating near real-time online decision making.

Joe and Lau [89] build upon this approach for a dynamic vehicle routing problem with
stochastic customers and different degrees of dynamism where re-routing decisions have
to be performed on routing plans over the day. They replace the lookup table with a deep
Q network employing value function approximation via temporal difference learning with
experience replay. A heuristic search in the decision space is performed via simulated
annealing. This approach is compared with AVI [150] and MSA [11], and the authors
report reductions of the costs in the range of 10% for higher degrees of dynamism.

In a similar spirit, we approximate the value of states by predicting the future costs of
orders that are in a currently planned route utilizing parametric functions to be learned in
an offline training phase with training data derived from multiple realizations in the short
horizon—we consider the routes separately and do not roll-out until the end of the day,
hence we make use of a vehicle-based and temporal decomposition. This learned function
is then incorporated as a surrogate in the objective function to be solved heuristically
using our ALNS (Section 5.4), resulting in more anticipatory online decision making.

Another recent work related to highly dynamic delivery is the restaurant meal delivery
problem discussed by Ulmer et al. [151], a pickup and delivery problem with stochastic
customers and random ready times. They make use of cost function approximation
[120, 109] to implicitly consider the future impact of decisions and ready time uncertainties
by augmenting the assignment-guiding objective function with a time buffer and a
postponement strategy. The time buffer is tuned by offline simulations and subsequently
used in an online comparison of different policies.

As a similar idea in the realm of dynamic combinatorial optimization problems, Dickerson
et al. [40] propose learnable potentials for structural elements of graphs in a dynamic
matching problem applied to kidney exchange to capture their future usefulness. The
potentials are then incorporated in the initially myopic objective function for the point-
in-time optimization, leading to more matches overall.

Our approach also relates to surrogate-based optimization [97] applied to engineering
problems for which the objective value f(x) of solutions in a continuous design space
is potentially noisy and expensive to evaluate, and therefore approximated by a faster
surrogate model f̃(x).
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7.3 Illustrative Example
To make the issue we address in this work clear, we present a simple example of a
DYN-DAY instance, in which an optimal solution to a first DYN-t̃ instance leads to a
situation so that an overall suboptimal solution for DYN-DAY is achieved.

Let us assume orders 1–6 become available at t̃=0 and we are thus considering DYN-0.
Orders 1–5 are supposed to have the same due time 60 minutes later. The remaining
order 6 is located far away from orders 1 to 5 and has a substantially later due time
of 120 minutes. Considering only these orders an optimal solution to DYN-0 would be
to pack all orders into one route since only then the total route duration is minimal.
This single route r1 has to start at time τr1 = 5 to avoid any tardiness. This solution
is depicted in the top half of Fig. 7.1. The problem with this solution arises when half
an hour later new orders 7–10 are placed with some delivery locations close to order 6,
which itself, however, has been included in the already started first route. An optimal
solution for DYN-30min will then be a route r2 with the remaining orders 7–10 as also
pictured in Fig. 7.1. The resulting total objective value, which in this case is equal to
the sum of all route durations, is 220 minutes.

A better solution to this example can be seen in the second half of Figure 7.1. The
important difference is that the first route from the previous solution is split into two,
resulting in one route r3 comprising orders 1–5, starting at time τr3 = 5 and having a
mean order duration better than the former single route, and one route r4 containing only
order 6. This latter route has a bad mean order duration of 50 minutes per order, but also
a much later starting time of τr4 = 90. Even though this results in a worse short-term
objective value for DYN-0, this second route has now a lot of slack left and considering
expected future orders can likely be improved later. In our example, this happens when
the new orders 7–10 become available in DYN-30, and order 6 can be delivered in one
route r5 together with the new orders. Overall the objective value and sum of all route
durations for this solution is 190, which is an improvement of approximately 14% over
the myopic solution.

In conclusion, when orders are expected in the near future, it makes sense to postpone to
a certain degree the delivery of orders with due times farther in the future when they
cannot be well integrated into soon-to-start routes.

7.4 Discounting Travel Times to Consider Expected
Orders

As pointed out in Section 7.2, to at least partially avoid traps like the one sketched
above arising from the myopic view of the DYN-t̃ instances, the standard method from
literature is to sample scenarios into the near future by creating artificial orders from
expected spatial and temporal distributions, to solve these scenarios, and then to derive
a consensus solution [11, 162]. We propose the simpler approach of discounting durations
of routes in the objective function of the DYN-t̃ instances in dependence on their starting
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Figure 7.1: Myopic solution (top) vs. optimal solution (bottom). Node 0 represents the warehouse, all other nodes
orders.

times, the number of expected future orders, and further features. We make use of
supervised learning to come up with a surrogate function for the route durations to move
the computational effort into a one-time offline training phase. This function is then
directly used in the optimization of a given DYN-t̃. We now describe our approach in
detail.

In the definition of f(⟨R, τ, q⟩) in (5.4) on page 109 we replace the route duration d(r) of
each route r ∈ Ru, u ∈ U with a discounted duration d′(r) acting as a surrogate for the
future delivery time of the orders belonging to r. We define the following aims to guide
us to a sensible discounting function:

• Routes that are already efficient, i.e., have a low mean order duration ϕ(r), should
not be modified.

• The discounting of the duration should in general be stronger when more orders are
expected in the near future. On the contrary, we should not reduce d(r) if there
are no further orders expected until route r should start.

• Routes that are inefficient and combine orders that are due soon with orders that
have significantly more time left should be avoided in particular.

• In conclusion, the discounted route duration d′(r) should approximate the expected
total time it will take to perform the deliveries of that route in the future, taking
into account expected new orders and assuming optimal routing decisions also in
the future.
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A current route that will be started soon cannot be expected to be improved much as not
many new orders are expected. This includes routes with small slack max(0, τmax(r) − t̃)
but also any other case in which the route is started soon, e.g., due to an earliest starting
time strategy. In contrast, larger improvements are likely for any route that is planned
to be started much later and which is not yet efficient, particularly if many orders are
expected in the near future, more precisely in the time interval from the current time t̃
to the route’s planned starting time τr. Thus, this duration is an important parameter
of the discounting.

Another important parameter is the expected number of arriving new orders until the
start of the route, i.e., ω(t̃, τr). Moreover, the estimated mean order duration of a good
DYN-DAY solution ϕ̂ is also important for the following consideration. A route r to be
started at some distant time τr and whose mean order duration ϕ(r) is worse than ϕ̂ can
be expected to be adapted and combined with future orders so that the average times
for delivering the orders in r approaches ϕ̂.

Formally, we model this by the discounted route duration function

d′(r) =
(

gΘ(d(r), lr, ω(t̃, τr), ϕ̂, . . .) if τr > t̃ ∧ ϕ(r) > ϕ̂

d(r) else.
(7.1)

where function gΘ represents a machine learning model with trainable parameters Θ and
input features that include at least d(r), lr, ω(t̃, τr) and ϕ̂. This model is supposed to
yield reduced durations within [ϕ̂ · lr, d(r)] for routes that are not started immediately
(τr > t̃) and where the current mean order duration ϕ(r) is worse than ϕ̂. In Section 7.4.2
we will consider three different approaches for realizing gΘ, which are an exponential
function, a linear regression, and a multilayer perceptron.

An aspect of this approximation that deserves mentioning is that multiple routes of the
current solution may be scheduled at overlapping times in the future and may compete
for new orders. This may slow down the improvement of inefficient routes but may also
create new possibilities for more efficient combinations. As we do not see any meaningful
and efficient way to consider this aspect and also conjecture that the benefits and
disadvantages of concurrent routes in conjunction with the route improvement potential
may outweigh each other at least to a certain degree, we do not explore this further here.
Moreover, the actual impact may be partially mitigated by suitably tuning Θ.

7.4.1 Obtaining Training Data
To obtain training data for our route duration discounting models, we apply the following
sampling-based approach on a set of representative historic or artificial DYN-DAY training
instances.

1. We consider a DYN-DAY instance and iteratively solve the implied DYN-t̃ instances
in the classical way without any route distance discounting. For each obtained
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DYN-t̃ solution, we apply a decomposition approach, in which we consider each
route independently by the following steps.

2. Each route r to be started not immediately, i.e., at some time τr > t̃, and for which
ϕ(r) > ϕ̂, we create nsample scenarios, with nsample being a strategy parameter.
Each scenario consists of the original orders of route r and norders ∼ P(ω(t̃, τr))
additional artificial orders, where norders is a random number always sampled anew
from the Poisson distribution P(ω(t̃, τr)) with mean ω(t̃, τr). The motivation here
is that the arrival of orders can be seen as a Poisson process. Each artificial order
is assigned a randomly sampled geographical location from a set of sufficient size
representing the delivery area, a random availability time in (t̃, τr], and a due
time that corresponds to the availability time plus the maximum delivery duration
promised to the customers. Each scenario created this way is then solved as an
independent OFF instance.

3. In each obtained scenario solution we consider each original (i.e., not sampled) order
and take its route’s mean order duration. The sum of these times over all original
orders is then said to be the scenario’s total delivery duration for the original orders
of route r. Ultimately, we average these total delivery durations over all scenarios
to obtain the target duration d̂(r) which we want to approximate by our discounted
route duration d′(r).

4. We store the original route r together with d(r), t̃, τr, ω(t̃, τr), ϕ̂, and the obtained
d̂(r) for training and continue by processing all further routes in the same way.

7.4.2 Models for the Discounting
As introduced in Eq. (7.1), function gΘ(d(r), lr, ω(t̃, τr), ϕ̂, . . .) is a trainable model that
yields the discounted route duration when d(r) > ϕ̂ · lr. For training this model we apply
the mean squared error (MSE) with respect to the training targets, i.e., d̂(r), as loss
function. We investigate here three alternative models presented in the following.

Exponential Function.

gexp
ρ (d(r), lr, ω(t̃, τr), ϕ̂) = d(r) − (d(r) − ϕ̂ · lr) · (1 − e−ρ·ω(t̃,τr)) (7.2)

This function was manually crafted based on the previously explained considerations that
the mean order delivery time of orders in a current route with a distant starting time can
be expected to improve up to a certain amount. The expected maximum improvement
is assumed to be equal to d(r) − ϕ̂ · lr. However, actual improvement can only occur
with additional orders in the interval (t̃, τr]. This is expressed by the last term in the
function, where parameter ρ controls the speed of approaching ϕ̂ · lr in dependence of the
number of expected upcoming new orders ω(t̃, τr) until the route’s starting time τr in an
exponential manner. The parameter that needs to be learned here is just Θ = ρ, and we
apply grid search to find a value minimizing the MSE.
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Linear Regression.

Our second approach is a linear combination of a larger set of manually selected features,
i.e., linear regression, with the trainable parameters vector Θ being the respective
regression coefficients. We initially consider the following features in addition to a
constant bias.

1. The basic features d(r), lr, ω(t̃, τr), and ϕ̂ as in the exponential function.

2. The relative starting time of the route τr − t̃.

3. The difference ϕ(r) − ϕ̂, i.e., how far off the route’s mean delivery duration is from
the assumed target value ϕ̂.

4. The variance of the geographic locations of the orders for each route, denoted by
var(r); the farther apart the delivery locations are, the more likely it seems that a
new order fits nicely in between two existing orders.

5. The square and the logarithm of each of the above features to also accommodate
nonlinear dependencies in a simple form.

To avoid the inclusion of features that do not significantly improve the prediction and
reduce the danger of overfitting, we started off with just the basic features and iteratively
added a feature from the remaining pool that reduced the MSE the most. This process
of selecting features was continued until the MSE did not change by more than one
percent. 5-fold cross validation was used in this feature selection process to reduce the
risk of overfitting. Ultimately, we came up with the feature vector (d(r), lr, ω(t̃, τr),
log(ω(t̃, τr)), ϕ̂, ϕ(r) − ϕ̂, (ϕ(r) − ϕ̂)2, (τr − t̃)2, log(τr − t̃), var(r), var(r)2) used in all
further experiments.

Multilayer Perceptron.

Our third model for discounting travel durations is a multilayer perceptron (MLP). It is
fully connected with two hidden layers and ReLU activation functions in all layers, and
Adam [90] is used as optimizer. The considered pool of features was the same as in the
linear regression, and the same selection process was performed leading to the feature
vector (d(r), log(d(r)), lr, ϕ̂, τr − t̃, ϕ(r) − ϕ̂) used in all following experiments. Note
in particular that here the variance of the orders’ geographic locations did not show a
significant contribution and therefore was not included. Further details on the network
configuration and training will be provided below in the experimental results.

7.5 Computational Study
All algorithms were implemented in Python 3.8. Training and evaluation of the regressors
was performed with scikit-learn version 0.23.1. All tests were conducted on Intel
Xeon E5-2640 2.40 GHz processors in single-threaded mode and a memory limit of 4 GB.
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In all tests, a driver is sent home as early as possible, i.e., after the driver’s last so far
planned route or at the earliest shift end, to minimize labor costs. Planned routes always
start at the latest possible departure time which does not increase the costs for labor
time and tardiness to utilize the full slack for possible improvement. The three different
discounting models are compared with results using the myopic optimization as done
in [55] and the sampling approach with consensus function. The ALNS, which is the
fundamental optimization method for all mentioned approaches, stops after 100 non-
improving iterations, and we refer to [55] for all further details concerning its operators
and configuration.

7.5.1 Instances

We consider artificial DYN-DAY instances that are inspired by real-world instances of
an online retailer. We consider steady, linearly rising, and falling load patterns over 11
hours, where the average load over the day is either 10, 20, 30, or 40 arriving orders per
hour. Orders are due in one hour with 60% probability and with 40% in two hours. The
order locations are uniformly distributed in the unit square. Travel times between orders
are determined by the Euclidean distance multiplied by 50 minutes, additional constant
six minutes stop times at the customers, and small loading and postprocessing times from
and to the warehouse. The warehouse location is randomly chosen from {0.25, 0.75}2

inspired by the slight off-center location of the real-world situation. Since we focus on
the route duration costs, sufficiently many drivers are available all the time to ensure
zero or very little tardiness. We generated 240 instances in total, 20 for each of the 12
instance classes and perform a 50/50 training and test split. The mean performance ϕ̂
is provided for each class and calculated by performing full-day simulations with the
myopic ALNS. All instances were made available on GitHub.1

7.5.2 Training of the Discounted Route Duration Models

Following the training and test data generation as described in Section 7.4.1 applied
on the 120 full-day training instances, we end up with a 60% batch of 33 790 training
samples and a 40% batch of 22 527 test samples2 to train and evaluate an estimator
for d̂(r).

We train the learnable parameter ρ in the exponential model (7.2) by means of a grid
search. The result can be seen in Figure 7.2, which displays how the MSE changes
depending on ρ. Moreover, the instance’s ϕ̂ is reduced by 20%, which was empirically
determined to produce better results in previous experiments. The motivation behind
this is that the ϕ̂ were derived from full-day runs with myopic ALNS and we actually
aim to improve this performance, a desired lower ϕ̂. The single global optimum for ρ is
0.091, at which the test MSE is 154 909 and 154 265 for the training batch.

1https://github.com/nfrohner/pdsvrpddsf
2not to be confused with the test set for the full-day simulations
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Figure 7.2: Exponential model: MSE of predicted values gΘ(r) with respect to labels d̂(r), i.e., the loss over ρ.

In the case of the linear regression with the finally selected features as laid out in Section
7.4.2, MSEs of 144 785 and 143 329 were achieved on the training and test portions of
the data, respectively.

Concerning the MLP, preliminary tests suggested that two hidden layers with 50 nodes
each seem to be a reasonable choice, which we used further on. The learning rate that
is used for training is a constant 0.001. To avoid overfitting we utilize early stopping,
for which 300 iterations without improvement of a 10% validation set is the stopping
criterion. The resulting training and test MSEs are 80 032 and 79 219 respectively, slightly
less than half of the error of the exponential model.

Concerning the MSEs, we can conclude that the linear regression performs slightly better
than the exponential model, but the MLP is clearly superior. As we considered separate
training and test sets and the respective MSEs lie close together for all three models, we
conclude that overfitting seems to be no issue for all three models.

7.5.3 Full-day Simulation Results
The myopic short-horizon optimization serves as a baseline to quantify the improvement
that is achieved. Furthermore, the three route duration discounting approaches are
compared to a sampling approach with consensus function as the de facto standard
for considering stochastic aspects. This approach creates for each DYN-t̃ instance 100
scenarios by augmenting the original instance with randomly sampled orders. These
sampled orders are generated in the same manner as already explained in Section 7.4.1,
except that the time interval [t̃, t̃+1h] is used instead of the slack of the route, i.e., samples
are generated for up to one hour into the future. These scenarios are then solved with the
myopic short-term optimization utilizing ALNS. Then, all sampled orders are removed
from each scenario solution. Finally, a consensus solution is derived from the scenario
solutions in a way that was inspired by [162]. The selection is done by counting identical
scenario solutions and choosing the most frequent solution as a consensus solution. We
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define identical in this context as two solutions that assign identical routes to the same
drivers in the same sequence. Analogous to that identical routes are defined as routes
that contain the same orders in the same sequence.

We use the original objective function f(⟨R, τ, q⟩) as defined in (5.4) as the primary mea-
sure of success for comparing results, but also aim to gain a more in-depth understanding
of the different approaches by observing the total duration of all routes in a solution, the
total excess labor time of a solution, the mean order duration over the whole solution ϕ̄
and the running time on the specified test setup. A tardiness penalty factor of 1 000 is
chosen to approximate a lexicographic approach by a weighted sum. The excess labor
times cost factor γ is set to 4. Tardiness is not presented in this Section, because it is
negligibly small for all instance classes and approaches alike, which was one of our aims
when generating the test instances as explained in Section 7.5.1.

In Table 7.1 the median of the mentioned measures of success are compared for all
instance classes and the median of the relative changes to results of the myopic approach
is displayed for the most important measures as well. As the sampling approach did not
terminate within a time limit of 700 hours per full-day instance for average loads of 30
and higher, we only obtained results up to an average load of 20 for it. In Figure 7.3
boxplots of f(⟨R, τ, q⟩) are drawn over instance classes grouped by the average load as
well as the load pattern.

As expected, all approaches that consider possible future orders outperform the myopic
optimization, up to 8% in the median. We observe that the exponential approach
outperformed the other approaches for average loads of 30 and 40. Furthermore, a
positive correlation between the average load and the relative improvement over the
myopic short-term optimization can be seen. Falling load solutions have higher f(⟨R, τ, q⟩)
in general, but the differences in relative improvement over the myopic optimization
among load patterns is rather small, with steady load having a slight edge over falling
and rising load.

Considering that the MLP has the smallest training MSE, it is unexpected to observe that
some solutions are worse than the ones that utilize the exponential model. We suspect
that the cause for this is attributed to the way in which the training data is generated.
More specifically, we intentionally decided to restrict the training data generation to
routes in final DYN-t̃ solutions obtained from the ALNS. The reasoning behind that
decision is that we want to avoid an overwhelmingly large number of routes that are very
bad, to derive finer tuned models for better routes, which usually end up in the solution.
This is especially bad for the linear regression and the MLP which are more closely fitted
to the training data, whereas the exponential function benefits in this regard from its
simplicity and robustness.
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Table 7.1: The three discounting approaches, myopic optimization, and sampling applied to ten benchmark
instances for each combination of average load and a falling, rising, or steady load as the day progresses.

Load Pattern Approach f(⟨R, τ, q⟩) Trav. time [h] Labor ϕ Runtime [min]
Avg. Median Change Median Change Median Median Change Median
10 Falling Myopic 4057.258 0.00% 67.197 0.00% 136.5 36.125 0.00% 4

Exponential 3921.867 -2.92% 64.297 -3.14% 424.5 34.920 -3.14% 5
Linear Regression 3851.000 -4.28% 64.069 -4.32% 141.0 35.170 -4.33% 8
MLP 3912.190 -4.96% 64.349 -3.92% 147.9 34.404 -3.92% 11
Classical Sampling 3928.320 -4.20% 64.634 -3.80% 201.4 35.157 -3.79% 2950

Rising Myopic 3816.300 0.00% 63.413 0.00% 172.5 35.485 0.00% 4
Exponential 3695.408 -3.49% 61.564 -3.32% 37.0 33.920 -3.31% 5
Linear Regression 3662.175 -3.57% 61.036 -3.59% 117.5 34.505 -3.58% 8
MLP 3701.557 -3.89% 61.693 -3.79% 61.6 33.976 -3.81% 12
Classical Sampling 3749.525 -1.14% 62.464 -0.85% 45.5 34.845 -0.85% 3347

Steady Myopic 3984.472 0.00% 66.040 0.00% 0.0 35.475 0.00% 5
Exponential 3891.581 -4.31% 64.456 -5.01% 0.0 34.000 -5.00% 5
Linear Regression 3938.683 -4.97% 65.258 -5.63% 135.0 33.795 -5.63% 7
MLP 3845.711 -5.54% 63.349 -5.48% 0.0 33.064 -5.48% 8
Classical Sampling 3769.011 -8.56% 62.771 -8.41% 3.5 32.618 -8.41% 2543

20 Falling Myopic 7142.592 0.00% 118.993 0.00% 77.0 32.015 0.00% 24
Exponential 6802.900 -5.90% 112.105 -5.87% 19.0 30.025 -5.87% 32
Linear Regression 6823.300 -5.40% 112.755 -5.58% 25.0 30.265 -5.57% 49
MLP 6884.071 -5.10% 112.935 -5.10% 1.0 30.360 -5.10% 51
Classical Sampling 6693.054 -6.32% 111.639 -6.18% 4.0 30.127 -6.18% 30372

Rising Myopic 7027.803 0.00% 116.848 0.00% 380.0 32.365 0.00% 23
Exponential 6482.008 -6.51% 107.817 -6.53% 177.0 30.965 -6.53% 32
Linear Regression 6419.892 -6.62% 106.955 -6.52% 136.0 31.055 -6.54% 40
MLP 6432.858 -6.54% 107.044 -6.22% 124.2 31.065 -6.20% 62
Classical Sampling 6641.478 -3.79% 110.440 -3.72% 102.0 32.138 -3.72% 33728

Steady Myopic 7101.992 0.00% 117.963 0.00% 252.5 32.690 0.00% 26
Exponential 6765.575 -6.77% 112.431 -6.60% 137.5 31.465 -6.59% 28
Linear Regression 6830.842 -4.02% 113.435 -3.86% 127.5 31.585 -3.85% 37
MLP 6721.294 -5.68% 111.578 -5.53% 95.1 31.519 -5.54% 52
Classical Sampling 6735.598 -5.93% 112.078 -5.60% 94.0 31.060 -5.60% 25646

30 Falling Myopic 10432.136 0.00% 172.496 0.00% 487.5 31.150 0.00% 77
Exponential 9657.147 -7.07% 159.930 -7.01% 681.0 29.030 -7.00% 95
Linear Regression 9721.894 -5.92% 160.721 -5.55% 713.0 29.025 -5.55% 135
MLP 9689.704 -5.95% 160.690 -5.44% 714.7 29.072 -5.45% 176

Rising Myopic 10313.425 0.00% 170.299 0.00% 1308.5 31.055 0.00% 76
Exponential 9687.325 -6.66% 160.255 -6.66% 802.5 28.690 -6.68% 99
Linear Regression 9766.358 -6.26% 162.100 -6.14% 385.5 29.150 -6.14% 134
MLP 9599.087 -6.68% 159.226 -6.06% 569.4 29.196 -6.04% 146

Steady Myopic 10378.903 0.00% 171.450 0.00% 867.5 31.460 0.00% 82
Exponential 9633.436 -6.94% 159.578 -6.64% 629.0 29.225 -6.62% 76
Linear Regression 9772.233 -5.61% 161.868 -5.32% 305.5 29.895 -5.34% 112
MLP 9802.089 -4.79% 162.408 -4.82% 675.5 29.394 -4.83% 156

40 Falling Myopic 12632.717 0.00% 209.611 0.00% 508.5 29.530 0.00% 149
Exponential 11713.483 -7.83% 194.497 -7.90% 247.0 27.420 -7.88% 193
Linear Regression 11970.428 -6.76% 198.876 -6.56% 241.5 27.465 -6.57% 295
MLP 12031.577 -6.41% 199.944 -6.38% 414.8 27.629 -6.36% 425

Rising Myopic 12837.467 0.00% 212.832 0.00% 969.5 30.170 0.00% 195
Exponential 12005.597 -6.65% 199.567 -6.58% 494.5 27.675 -6.57% 234
Linear Regression 12238.508 -6.36% 203.612 -6.21% 408.5 28.025 -6.20% 311
MLP 12042.505 -6.57% 199.835 -6.22% 615.2 27.862 -6.21% 332

Steady Myopic 12635.717 0.00% 209.439 0.00% 883.0 29.335 0.00% 178
Exponential 11715.214 -8.04% 194.479 -8.16% 540.5 27.000 -8.16% 170
Linear Regression 11798.203 -6.49% 196.503 -6.46% 407.0 27.560 -6.48% 259
MLP 11836.576 -7.42% 196.776 -7.45% 535.3 27.341 -7.46% 309

7.6 Conclusions and Future Work

We considered a same-day delivery problem in which dynamically arriving orders have to
be delivered within a short time while minimizing travel times, labor costs, and tardiness.
We focused on incorporating stochastic knowledge into the objective function of the
point-in-time optimization runs, realized by an ALNS, by discounting route durations in
dependence on diverse features. The most important features are the number of orders
that can be expected up to the latest time the route would need to be started, and the
route’s mean delivery duration, but several other factors were also considered and partly
showed significant benefits.
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Figure 7.3: Solution quality f(⟨R, τ, q⟩) over average loads and different load patterns. The sampling approach is
not included in the load pattern graphic due to missing data for average loads greater than 20.

Overall, our experiments clearly indicated that this approach is able to alleviate to a
substantial degree the weaknesses of a myopic optimization, in particular in higher load
situations. Of the three route duration discounting models, the exponential function
performs the best, reducing the travel time as well as the total objective by ≈6.1% on
average over all instance classes. The more flexible neural net, in contrast, performed
significantly weaker. We conjectured that the reason for this at the first glance surprising
observation is the bias we have in the training data. The simpler exponential function
seems to be more robust concerning candidate routes with properties that do not appear
so frequently in the routes determined by the ALNS when generating training data.
Moreover, the independent consideration of the routes is another source of potential
errors. In our experiments, the exponential discounting even outperformed the sampling
approach regarding solution quality in most cases and cuts down on runtime by several
orders of magnitude.

Further work should consider alternative ways of generating training data to possibly
reduce the bias. For example, intermediate solutions of the ALNS may occasionally
also be used for data generation. Bootstrapping ϕ̂ from previous non-myopic runs could
improve the accuracy of the parameter and lead to further improvement. Moreover, the
variability of this mean order duration over the day due to varying load and traffic should
be considered. Also, further tests with real-world inspired spatial order distributions (e.g.,
clustered instances) and load patterns and time-limited optimization could be helpful to
evaluate practical aspects of the discounting models.
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CHAPTER 8
Towards Learning Value Functions

for Same-Day Delivery Problems

In the previous chapter, we have shown how the same-hour delivery short-horizon routing
can be substantially improved utilizing surrogate-based optimization for cases when
sufficient drivers are available—the zero-tardiness regime. In contrast, we focus in this
final chapter on the tardiness regime, i.e., where tardiness is unavoidable since we have
insufficient driver capacities. As stated multiple times, a well-known approach from
the literature to increase performance compared to myopic optimization is by sampling
and optimizing scenarios in the short horizon and deriving a consensus solution from
the resulting plans. Its drawback is the computational effort required, which may not
make it suitable for near real-time decision making. To overcome this, we replace this
online sampling with an offline training of a short-horizon value function using a neural
network, which is then used in the online point-in-time optimization, combining the
current reward plus the estimated future value of a solution candidate. This is similar to
the surrogate-based approach from before, with the crucial difference that this time we
cannot delay the routes’ starting times further, without introducing additional tardiness
in almost all cases. The ALNS is now primarily guided by tardiness and only as a
secondary objective by the travel durations. In a first preliminary computational study
on a single-vehicle instance class, we show that the value function approach leads to
comparable performance as the sampling approach, while greatly reducing the online
decision time.

This work has been presented at the EUROCAST 2022 metaheuristics workshop and
accepted for publication in its proceedings:

Nikolaus Frohner and Günther R Raidl. Learning value functions for same-day
delivery problems. In Computer Aided Systems Theory – EUROCAST 2022, LNCS.
Springer, 2022. accepted
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8. Towards Learning Value Functions for Same-Day Delivery Problems

8.1 Introduction
In recent years, same-day delivery problems [162] have gained much attention due to the
exploding demand for the fast delivery of goods sparked by the COVID-19 pandemic.
They are dynamic vehicle routing problem variants with stochastic customers and have
the goal to satisfy customer demand subject to short deadlines efficiently. The orders
are mostly unknown in advance and are dealt with upon their availability, hence the
route plans change frequently throughout the day, as opposed to static problem variants.
Stochastic information is available as spatiotemporal distribution of those orders, often
based on prediction models derived from historical data.

In this work, we consider a problem variant where orders arrive in a delivery area
throughout the day and are due within one or two hours upon arrival. As opposed to
some other variants in the literature [150, 162], every order has to be served and cannot
be rejected or delegated to a third party. This is compensated by allowing deadline
violations—tardiness—and imposing a penalty upon them. The goal of our problem
variant is to minimize a given expected tardiness-dependent penalty function, which is a
parameter of the problem. We, therefore, call it the Same-Day Delivery Problem with
Tardiness Penalty (SDDPTP), an SDDP with soft deadlines as studied by Ulmer [147]. It
is a modified variant of [55] as presented in Chapter 5, focusing on the tardiness aspect,
which we formulate as route-based Markov decision process in Section 8.2.

For many different dynamic and stochastic vehicle routing problems [126] a decrease in
costs/increase in service level is observed when properly including information about
future orders over using solely myopic optimization. A general method to deal with those
is based on sampling multiple scenarios consisting of real and sampled orders, solving
them, and deriving a consensus solution from the different scenario solutions [11, 162]. A
drawback of this online method is the high computational demand and resulting runtime
at each decision epoch.

For faster decision making, the computational effort is moved to an offline learning phase,
where helpful functions are trained to guide the online optimization. In a previous work
by Bracher et al. [23] upon which we build, the scenario sampling is only used in an offline
phase to train a faster surrogate function to be used in the point-in-time optimization
estimating the future mean travel time of routes that can still be delayed. We propose
a similar approach in Section 8.4, with the main difference of estimating the tardiness
penalty that will accrue in the short horizon when a specific route is started by a driver.

Section 8.5 contains our computational study, where we describe the generation of the
SDDPTP instances, how we derive the training and test data for the training and
evaluation of our machine learning model, and subsequent performance evaluation on
unseen full-day test instances. We restrict ourselves to the single vehicle case with a
constant load pattern and compare our value function approach with myopic optimization
and state-of-the-art scenario sampling. We observe a new promising routing strategy
emerging that prefers shorter routes and early depot returns. It leads to substantially
reduced tardiness on both training and unseen test data when compared with myopic
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optimization and comes close to the computationally much more expensive scenario
sampling approach.

8.2 Problem Formalization
In this section, we describe the SDDPTP in detail and model it as a Markov decision
process following the route-based modeling of [147], Ulmer et al. [150] and Voccia et
al. [162], where we make suitable adaptions for our problem variant.

We are given vehicles u ∈ U , |U | = m with the respective drivers’ shift start times qstart
u

and respective end times qend
u . Customers are identified as points in a service area A,

within which also the depot D is located. The gross travel time between two orders
C1, C2 (or one order C1 and the depot D) is denoted as d(C1, C2). The stop times at the
customer are denoted as ζc, the loading time at the depot when starting a route as ζd,
the manipulation time when returning to the depot ζr. All those times are assumed to
be constant and included in the travel time function d.

Orders arrive at times tarr(Ci) within a planning horizon [0, H ] and become immediately
available for loading. The deadlines are either one hour or two hours after arrival following
a binomial process, given the probability of a one-hour order p1, and for two-hour orders,
p2 = 1−p1. No orders are known in advance, all orders have to be delivered by performing
multiple unalterable tours, where starting a trip after the assigned driver’s shift end time
qend

u is not allowed, but finishing is. If after the final return of the last vehicle, there are
still orders left, the solution is not feasible. All tours start and end at the depot.

The decision epochs k ∈ {0, . . . , K} are triggered by either the vehicles’ returns to the
depot at times t(k) or when they are ready again after having decided to wait in the depot.
The process consists of pre-decision states Sk, post-decision states Sx

k , and transitions
from the latter to the earlier. By definition of our decision epochs, we know that at least
one vehicle is in the depot. The set of known orders ready for delivery is denoted by Ck.
Each order is included in exactly one driver’s feasible tour, which is of the form:

θu,k = (D, Cyu(1), . . . , Cyu(lu,1), D, Cyu(lu,1+1), . . . , Cyu(lu,2), D, . . . , D), (8.1)

with possible multiple returns to the depot. The assignments of the orders to vehicles are
denoted by yu(o) where o is the position in the planned feasible tour and the lu,j is the
number of orders of the j-th route, its length. The drivers’ return times to the depot are
denoted by ρ = (ρu)u∈U . The pre-decision state is hence a tuple Sk = (t(k), θk, ρ, Ck),
where θk only contains the orders from k − 1.

Each pre-decision state contains all relevant information to determine further routing
plans and induces a set of possible decisions x ∈ X (Sk). A decision deals with planning
feasible routes for remaining orders Ck and deciding, whether to start the first one of
the planned routes now or wait for a time ∆ in the depot, where the drivers could take
a short break. Let τ(θk) be the raw tardiness related to the planned routes, which is
used in the tardiness penalty function supplied as a parameter to the problem. For
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8. Towards Learning Value Functions for Same-Day Delivery Problems

each order, Ci, ai(θk) denotes the completion of the delivery (assumed to occur after
half the stop time) when the plans θk would be executed as-is starting from the current
time t(k) or from the earliest depot return time ρu > t(k). This incurs a raw tardiness
τi(θk) = max(0, ai(θk)−tdue

i ) per order. We consider the linear tardiness penalty function
ξlinear = ∑

i∈θk
τi(θk), where with slight abuse of notation i ∈ θk denote the orders by

their indices in the route plan.

We set the (in our case to be minimized) reward R(Sk, x) to the difference in overall
tardiness penalty between the plans, i.e., the increase of tardiness in the plan:

R(Sk, x) =
∑
i∈θx

k

ξi(θk) −
∑
i∈θk

ξi(θx
k). (8.2)

The post-decision state is then Sx
k = (t(k), θx

k , ρ, C̃k), where ρ are the drivers’ return times
at the depot and C̃k the remaining—planned, but not yet started to be served—customers.
Two principal actions per vehicle in the depot are possible: In case we decide to start
a driver’s first route with customers C1

u,k, they are excluded from C̃k = Ck \ C1
u,k, while

ρu is set to t(k) + d̄(θ1
u,k), with d̄(θ1

u,k) being the duration of the first route in driver u’s
plan. If we decide to let the vehicle wait in the depot, then ρu is set to t(k) + ∆. Note
the action space explosion, since we have to select from the set of ordered subsets of all
the remaining customers and assign them to the drivers.

From post-decision to pre-decision state a stochastic transition is performed, in terms of
realized orders Cr(k + 1) becoming available between t(k) and t(k + 1). This updates the
set of remaining orders from the previous post-decision state C(k + 1) = C̃(k) ∪ Cr(k + 1).
Furthermore, the return times ρ and the route plans θx

k are carried over excluding the
started routes. The initial state S0 is:

(min
u∈U

qstart
u , ((D, D)1, . . . , (D, D)m), qstart, C0), (8.3)

where we have an empty route for each vehicle and the orders C0 that have already
arrived before the first vehicle has started its shift. The final state SK is either at qend

u of
the last vehicle or at the last depot return of a vehicle after that, without a route plan
and the customers left (ideally none), assuming that there is always one driver shift end
after H.

The goal is to find an optimal policy π∗ ∈ Π so that the expected reward starting from
the initial state is minimized:

π∗ = arg min
π∈Π

E
[

K∑
k=0

R(Sk, Xπ
k (Sk))|S0

]
, (8.4)

where Xπ
k (Sk) is the decision rule, selecting a decision when in state Sk according to

policy π. The related Bellman equation for the values of states under an optimal policy
is given by

V (Sk) = min
x∈X (Sk)

{R(Sk, x) + V (Sx
k )}. (8.5)
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Table 8.1: First two epochs with myopic strategy on example instance.

t(k) Sk Sx
k R(Sk, x)

3600 ((D, D), {1, 2, 3, 4}) ((D, 1, 3, 2, 4, D), (7607), {}) -6.12
7607 ((D, D), {5, . . . , 14}) ((D, 6, 13, 5, 11, 8, 10, 7, 14, 12, 9, D), (15829), {}) -207.77

Table 8.2: First two epochs with sampling strategy on example instance.

t(k) Sk Sx
k R(Sk, x)

3600 ((D, D), {1, 2, 3, 4}) ((D, 1, 4, 3, D, 2, D), (6058), {}) -6.12
6058 ((D, 2, D), {2, 5, . . . , 12}) ((D, 6, 5, 2, 11, 8, 10, 7, 9, 12, D), (13205), {}) -47.18

With the state and action space explosion, there is no hope to solve this equation in
practice exactly by backward induction known from exact dynamic programming and we
have to make use of approximate/heuristic methods.

8.3 Example Instance†

We consider an example instance with ω = 4 hourly orders to arrive following a Poisson
distribution for time frame H of eight hours, starting from relative time 0 to 8 · 3600
seconds, with one-hour order frequency of 0.4, two-hour order frequency of 0.6. The
depot is central and the order positions follow a uniform distribution on the unit disc,
where drivers move at a constant pace of 15 minutes per unit. One driver is available,
with a shift starting at 1h, i.e., t(k) = 3600, and ending at 15h, so that there is enough
time to deliver the orders.

The objective is to minimize the expected linear tardiness. In Table 8.1, we see the
pre-decision states, the post-decision states, and the collected rewards (difference in
summed tardiness in minutes from the previous route plan) for the first two epochs using
a baseline myopic approach which minimizes the tardiness of the currently available
orders as the primary objective and the travel time as secondary. The routes are always
started immediately without waiting (except when there are no orders available), which
we call earliest strategy.

This is compared with a sampling approach in Table 8.2, optimizing scenario plans at
each epoch looking two hours ahead and selecting a consensus solution among them
that occurs with a highest frequency, after having removed all sampled orders—the
consensus algorithm as proposed by Voccia et al. [162]. The planned routes are also
started immediately.

We observe that the myopic approach never delays an order (the minimizing of the travel
time always seeks to combine orders in one route, if this does not lead to extra tardiness),
while the sampling strategy leaves in the first epoch the non-urgent order 2 behind, which
benefits the route performance (about three minutes travel time per order less) and
return time in a clever way and leads to reduced tardiness in the second epoch since we
return earlier to the depot and fewer orders are available by then. To modify the myopic
behavior of greedily taking all orders with substantially less online computational effort
is our goal.
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8. Towards Learning Value Functions for Same-Day Delivery Problems

8.4 Short-Horizon Value Function Approximation
Due to the infamous “curse of dimensionality” [119], the Bellman equation needs to be
solved approximately using forward passes and approximating the state’s value function,
which represents the expected sum of rewards following a given policy:

V̂ (Sk) = min
x∈X (Sk)

{R(Sk, x) + V̂ (Sx
k )} (8.6)

Ulmer et al. [150] employ an approximate value iteration scheme with state space
aggregation, where the states are mapped to a different, coarse-grained state space
representation. Approximate values V̂ are stored in a lookup table and updated, which is
randomly initialized for all the proxy states and then used to solve (8.6) when playing out
a randomly sampled episode in a training phase. For each encountered state, the return
is collected and then used to gradually update the values in the lookup table. When
this is repeated sufficiently often and the state space aggregation captures the real space
sufficiently well, the converged V̂ should act as an approximation for V . Van Heeswijk
et al. [158] propose to learn a linear value function approximation offline to estimate
post-decision state values for a delivery dispatching problem combining the approximation
of route distances used in an integer linear program to tackle action-space explosion.
Joe and Lau [89] employ a reinforcement learning approach, using temporal difference
learning with a neural network instead for the value function approximation to train the
V̂ offline.

We take a surrogate function approach and follow up on previous work from Bracher et
al. [23] training a value function using supervised learning. We do not seek to estimate
the V̂ until the end of the day but instead restrict ourselves to the value accumulated in
the near future denoted as V̂ (Sx

k )|t(k)+δ, where δ is the duration of the corresponding
short horizon. This is similar to Ghiani et al. [67], who select at t(k) a courier dispatching
decision from a restricted set by estimating their short-horizon value through an online
sampling procedure. As with scenario sampling approaches, the main assumption is that
decisions have the most impact on the near feature, which is deemed sufficient to consider
for a substantial improvement of routing strategies.

To generate the training data, we run simulations of full-day instances following our
Markov decision process. At every epoch, different decisions are sampled from the decision
space and evaluated by sampling and solving a set of scenarios within [t(k), t(k) + δ]
and calculating the average tardiness. These are solved as offline problems with perfect
knowledge in the short horizon and therefore in general resulting in an underestimation
of the costs of any policy. We use them as labels to train a surrogate model Ṽ (Sx

k ; w) ≈
V̂ (Sx

k )|t(k)+δ +∑
i∈θk+1 ξi(θk+1) with parameters w, where the second term is the tardiness

of the remaining orders, which are part of the offline problem. Features are derived
from the post-decision state and the instance, like the number of expected orders until
t(k) + δ or the tardiness in the remaining orders’ route plan. In this offline phase, the
actual decision selected is with probability ϵ the best-ranked decision or one at random
(ϵ-greedy exploration).
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8.5. Computational Study

Since shorter routes lead to more available shift time in the short horizon for the offline
problem, we expect that their costs are even more underestimated when compared with
longer routes. To mitigate this, we multiply the surrogate model with a correction function
Γ(Sx

k , wΓ). It is not trained by supervised learning but tuned on the full-day training
instances in a second phase. As also done by Joe and Lau [89] using simulated annealing,
a new online strategy is created by heuristically searching with ALNS at each epoch for
the decision x ∈ X (Sk) that minimizes R(Sk, x)+Γ(Sx

k ; wΓ)·Ṽ (Sx
k ; w)−∑

i∈θk+1 ξi(θk+1),
where we need to subtract once the known tardiness of the remaining orders since they
are both considered in R and Ṽ .

8.5 Computational Study
We implemented the Markov decision process simulator and an adaptive large neigh-
borhood search (ALNS) routing heuristic in Python 3.9. The details of the latter are
described in more detail in [55]. For the neural network training, we used Tensorflow
Keras 2.8.1 All training and test runs were performed on a machine with 2×Intel Xeon
Gold 6126 with 12 cores each and 2×Nvidia Tesla P100-PCIE-16GB GPUs.

We consider an instance class with ω = 4 hourly orders to arrive following a Poisson
distribution for a time frame of eight hours, starting from relative time 0 to 8 · 3600
seconds, with one-hour order frequency of p = 0.6, two-hour order frequency of 0.4. The
depot is central and the orders’ positions follow a uniform distribution on the unit disc,
where drivers move at a constant pace of 15 minutes per unit on Euclidean geometry.
Constant times are ζd = 3 mins, ζc = 3 mins, and ζr = 2 mins. We restrict ourselves to
one driver with shift starting at relative time 1h, i.e., t(k) = 3600, and ending at 15h, so
that there is enough time to deliver the orders.

The instances are designed in a way that tardiness is unavoidable in almost all routes,
the eponymous tardiness regime. Hence, starting routes early seems more attractive
than delaying, since we are most of the time behind schedule. Therefore, we fix the
route starting strategy to earliest, i.e., if a route is assigned to a driver, it is immediately
started, otherwise (e.g., when no orders are available or another driver serves the orders)
the driver waits for a defined time of ∆ = 5 mins.

We estimate the performance of decisions x by the sum of the current reward R(Sx
k ) and

its value in the short horizon V̂ (Sx
k )|t(k)+ρ at t(k) + ρ, ρ = 2 h. Given the recursive nature

of the problem, the value is estimated by sampling 30 scenarios until t(k) + ρ and solving
the corresponding offline problems, minimizing tardiness as primary and travel time as
secondary objective using the ALNS with 100 iterations—see Section 8.4 for more details.

We create training data by sampling, evaluating, and logging decisions for each encoun-
tered epoch on 100 full-day training instances and split training and validation data by
70/30. The myopic and scenario sampling decisions are always included in the sampled
decisions, while three additional (more likely worse) decisions are created by perturbing

1https://www.tensorflow.org
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Table 8.3: Performance evaluation neural network on training and validation data with a feature ablation.

features RMSE-train RMSE-val R2-train R2-val
ω′, ξ′ 88.3 81.6 0.805 0.822
ρ′, ω′, ξ′ 32.7 32.8 0.973 0.971
d′, ρ′, ω′, ξ′ 25.4 25.8 0.983 0.982

Table 8.4: Performance evaluation of different strategies on training and test data, N = 100 each.

strategy data ξlinear [min] σξlinear [′] tdec [s] K ϕ [min] l̄ σl

myopic train 18.9 14.0 0.3 7.3 84.7 5.2 1.9
consensus train 15.3 11.3 37.7 9.6 64.2 4.0 1.3
value-function train 18.0 11.7 6.0 12.7 44.1 2.7 0.8
value-function-corr train 15.4 11.0 6.1 10.2 56.1 3.5 1.0
myopic test 19.4 16.0 0.3 7.9 83.5 5.1 2.1
consensus test 16.6 13.3 36.4 10.7 65.7 4.0 1.5
value-function test 19.0 13.4 5.7 13.3 43.7 2.6 0.8
value-function-corr test 16.6 13.1 5.3 10.6 56.2 3.4 1.1

the myopic solution by randomly moving a (not necessarily contiguous) subsequence of
orders to the second route and optimizing both routes with a local search with exchange
neighborhood. With 80% probability, the scenario sampling decision is used, with 20%
the decision is randomly sampled to diversify the state space traversal. This results
in a total of 3351 post-decision state/estimated value pairs for training and validation
together. The creation takes a couple of hours using multithreading for scenario sampling
to evaluate decisions and dominates the offline phase runtime. The training runtime of
the neural network is negligible within a minute.

We consider four different features from the post-decision state, the earliest relative arrival
time of the driver ρ′, the expected arriving orders within the sampling horizon ω′, and
the travel time d′ and the tardiness ξ′ of the known remaining (= not yet started) orders
within the route plan. As machine learning model, we use a fully connected feed-forward
neural network with two hidden layers with 32 nodes each, trained with Adam optimizer
[90] on the mean squared error, 200 epochs at most. To combat overfitting, a weight
decay of 0.01 is applied, together with early stopping (patience of 50 epochs with a
delta of 10) monitoring the validation loss. We do not observe overfitting comparing the
training and validation root mean squared error and the R2 in Table 8.3 for different
feature combinations, and finally select all four features explaining the most variance.

In Table 8.4, we compare the different tardiness penalties and statistics for the decisions
and routes of the two baseline strategies myopic and consensus with the value function
approach on training and test data, both consisting of 100 full-day simulations. Without
a correction function, we observe that the value function selects substantially shorter
routes close to three orders per route, resulting in shorter average route durations in
minutes ϕ̄, the expected bias towards shorter routes. For the training and test data, this
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leads only to a slightly reduced linear tardiness as compared to the myopic strategy and
reduced standard deviation.

As correction function Γ we propose a step function, where a factor scales up the surrogate
model Ṽ when the duration of the first route is less than a given threshold, otherwise
it is kept unchanged. We tune by selecting the best combination of thresholds from
{1800, 2700, 3600, 4500, 5400, 6300} seconds and factors from {1.1, 1.15, 1.2, 1.25, 1.3}
regarding the mean performance on the training data, resulting in 2 700 seconds threshold
and a factor of 1.3. The results are shown in Table 8.4 as strategy value-function-corr
and lead to longer routes as desired with reduced and less varying tardiness close to the
consensus method. A Wilcoxon signed rank sum test on ξlinear reveals that for training
and test data the corrected value function strategy is now significantly better with a
significance level of 1% than the myopic strategy.

Using the neural network, the time per decision tdec is increased to about 5 seconds,
whereas the consensus approach takes over half a minute for a decision. Note that this is
a single-threaded comparison—both calculations could be sped up, the neural network
by batch evaluation of solutions and the scenario sampling by multithreading.

8.6 Conclusions and Future Work
We have formulated a same-day delivery problem with tardiness as a route-based Markov
decision process and proposed a supervised learning approach to estimate the value of
routing decisions in the short horizon using a neural network. For a first toy instance
class with a single vehicle and constant load pattern, we observed a new promising
routing strategy emerging preferring shorter routes and early depot returns. It leads to
substantially reduced tardiness on both training and unseen test data when compared
with myopic optimization and is close to the computationally much more expensive
scenario sampling approach. To evaluate its practicability for real-world scenario settings,
future research is concerned with the application on a broad set of instance classes with
multiple vehicles, varying and larger load patterns, and different delivery area geometries.
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CHAPTER 9
Conclusions and Future Work

In the two parts of this thesis, we have first focused on state space search for static
combinatorial optimization problems (COPs) using beam search and weighted A∗ search
and second on heuristic solution approaches for dynamic vehicle routing problems with
stochastic customers. The corresponding major contributions are a general, parallel beam
search framework for combinatorial optimization and a decomposition approach with
learnable components for challenging same-hour delivery problem variants, also having
shown their effectiveness in practice.

In more detail, we have proposed a novel state-space formulation for the challenging
traveling tournament problem (TTP) and compared a randomized beam search approach
guided by different heuristics with a reimplemented state-of-the-art simulated annealing
approach from the literature. The new state-space formulation in combination with the
beam search is effective in finding competitive solutions in reasonable time. Furthermore,
we have studied bounded suboptimal weighted A∗ search on the same state-space, its
behavior over different optimality guarantee levels, and how the number of expanded
nodes can be reduced with dynamic variable ordering, duplicate state detection, and
stronger heuristics.

From this, we generalized to a parallel beam search framework for COPs on many-core
CPU systems and clusters. We implemented it in the Julia language and made it open
source, together with the implementation of three concrete example problems, the TTP,
the permutation flowshop problem (PFSP), and the maximum independent set problem
(MISP), and corresponding results of computational experiments. In large beam width
runs with multiple workers on a high-performance computing (HPC) cluster, we have
found 13 new best feasible solutions on the CIRC, GALAXY, SUPER, and one NFL
instance out of 24 tested challenging benchmark instances.

While the weighted A∗ search showed promising results, solving TTP instances with 12
teams to optimality or with an optimality gap of less than 1% remains an open challenge.
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We believe a fruitful continuation could be a batch (weighted) A∗ search [2], where the
evaluation of many open search nodes is performed on a GPU farm. Strengthening of
the bound, e.g., combining a computationally efficient variant of the minimum number of
trips lower bound and the proposed JCVRPH bound with additional feasibility checks to
detect dead-ends as early as possible is likely necessary since the memory demand remains
a major issue. This is addressed by iterative deepening A∗ from Uthus et al. [155] which
exchanges the memory demand by accepting many more fast node (re-)expansions and
distributing the work on multiple nodes by subtree splitting. Another interesting method
could be bidirectional search [141] with which the schedule is constructed simultaneously
from the front and the back.
The speedup for the parallel beam search framework is quite large on shared-memory
systems in particular with uniform memory access with a dependency on the concrete
problem and instance size. A natural further direction would be to compare and combine
it with more sophisticated distributed memory approaches, where every worker has its
own part of the search tree and communication is performed to select layer-wise the
most promising ones and to perform rebalancing of workload if it becomes necessary. For
best-first search, parallelization is more challenging since we do not have this layer-wise
traversal for which the distribution of work is quite natural. A similar framework for
(weighted) A∗ search would also be an interesting continuation.
To study approaches to challenging dynamic and stochastic optimization problems, we
have introduced a same-hour delivery problem originating from an online supermarket
in Vienna, which promises to deliver goods within one or two hours. It is a challenging
multifaceted decision-making problem, where the core task is to dispatch drivers on
planned delivery routes while minimizing and balancing tardiness to keep customer
satisfaction high. As a secondary goal, the delivery costs of the company shall be
minimized mainly in terms of fuel and labor time. Driver shifts are planned in advance
but also dynamically for a given day since shift endings are somewhat flexible and can
be extended by overtime.
We decoupled different complex aspects and tackled them on their own, e.g., the route
planning, the waiting strategies, and the overtime handling. For the routing, we employ an
adaptive large neighborhood search (ALNS) guided by a lexicographic objective function
with first customer satisfaction and second delivery costs. A dual-horizon technique is
used, where at every decision point a simplified subproblem is solved to estimate desired
overtimes for each driver for incorporation into the objective function of the ALNS.
Another decoupled decision concerns the route starting times, i.e., whether we should
delay a route and let a driver wait further, in the hope that an improvement becomes
possible due to newly arriving orders, or start it immediately, avoiding driver idle time.
In a simple yet effective heuristic approach, we start inefficient routes later and efficient
routes earlier.
The efficiency of a route is represented by the mean order delivery time, also called
route or driver performance. What we can expect to achieve depends both on the load
(number of available orders) and the current traffic situation—more load, in general,
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allows for more efficient routes since the mean distance between orders in the delivery
region becomes smaller and obviously less congestion is also beneficial. We train different
machine learning models by supervised learning using simulated and real data, achieving
an effective predictor for medium to high-load situations, while the low-load situation
with only a few drivers remains, as expected, more difficult to predict due to higher
variance. This model is used for shift planning and route starting strategies, but itself
depends on the prediction of the load and traffic, which we do not consider in our work.
An extension of the model would be to consider the varying geographical distribution of
the orders throughout the day, over which we averaged so far, to increase its accuracy.
Furthermore, the planning does not consider variance in the traffic and time-dependency
of the travel times so far, i.e., at any given point in time they are assumed to be static.
The different strategies and approaches were tested on real-world inspired artificial
instances with constant travel times. We showed that the dual-horizon approach and the
waiting time strategy together with the ALNS allow balancing performance along the
dimensions of tardiness and costs. Still, the routing in the short horizon can be improved,
since the ALNS only considers geographical but not temporal aspects and happily mixes
urgent with non-urgent orders, which we addressed in the two last chapters of the main
body of this thesis.
To anticipate premature depot returns and with it shorter and more flexible routes,
the well-known scenario sampling approach with consensus function can be used. Its
drawback is the computational demand since we have to sample and solve a number
of scenarios for statistical validity, counteracting the required near real-time decisions
throughout a delivery day. We propose an offline learning approach, where the scenario
sampling is used in simulations to transfer its approximate behavior into a machine
learning model based surrogate function. This function is then incorporated into the
objective function of the ALNS. It then implicitly respects stochastic information instead
of performing myopic optimization by only considering the current reward and costs,
while still being sufficiently fast in the evaluation. We have shown that the routing
performance can be substantially increased in the zero-tardiness regime on real-world
inspired artificial instances. As a basis for further work, we achieved promising results
for the tardiness regime, substantially reducing late deliveries in a single vehicle setting.
We believe the presented surrogate function based approaches, related to the cost function
approximation method [120, 109, 151], together with recent advances in machine learning
methods, can be suitably adapted for other fast-paced online decision making problems
with stochastic information and a high degree of dynamism, in particular in the domain
of dynamic and stochastic vehicle routing, dynamic scheduling, and shift planning
problems. Further research is necessary to identify the concrete properties such kinds
of problems have to share for said approaches to be effective. Since we assumed the
stochastic information to be perfect in the sense that it correctly captures the probability
distributions and also reduced uncertainties of the plan execution, sensitivity analyses,
robustness considerations, and model and simulation refinements are deemed important
continuations to further improve real-world performance.
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APPENDIX A
TTP New Best Solutions

Over the course of our experiments with beam search, we have found several new
best feasible solutions. They were found with parallel beam search runs and large
beam widths between 20 and 100 million and a final polishing local search. We have
reported them to the RobinX repository.1 Additionally, we present them in Table A.1,
representing the schedule as a sequence of games played round by round. To save space,
the games are shown in base32 encoding with flat indices for the enumeration of pairs
((t1, t2))t1 ̸=t2,t1=1,...,n,t2=1...,n, where t2 is the home team.

1https://www.sportscheduling.ugent.be/RobinX/travelRepo.php
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Table A.1: New best feasible solutions for instances found with parallel beam search over the course of our experiments.

inst solution u l ∆ [%]
CIRC12 C S 2H 1H 3C 44 3F 13 R 2I 2B 42 12 3G Q 2J 2A 43 1 3H 1C 1S 29 31 2 M 1R 1I 3B 32 3 L 1Q 1J 3A 33 2E O 3T 1K 39 2C 23 2F 14 3U 2U 3O A K 2G 26 2T 3V B I 10 2S 1L 1T 34 J 11 17 1M 1U N 35 19 1N 3K 2K 8 3R

36 18 3J 28 7 F 3S 3I 20 2V 9 D 15 21 2D 30 1D 24 P 1V 2M 3P 2P 1E 25 16 2O 3D 5 2Q 1F 1A 40 2N 6 G 2R 1B 38 41 4 H T 37 22 3N 1O E U 27 3M 3E 3Q 1P V 1G 3L 2L
400 388 3.1

CIRC14 1 45 1D 5E 4L 3G 56 2 44 1F 4K 3R 5G 54 43 S 1E 3Q 5F 4M 55 R N 3P 20 2C 2M 38 2S M 17 3C 1V 2D 2O 3 O 3B 21 2B 2N 37 5 3A 4I 1B 53 4A 5J 4 F 4J 52 49 3T 5I 22 4H T 51 3S 5H 4B C 19 1N 2E 2P 35 3U D 1M 1A
2A 2Q 36 3I 1L G 4V 48 2R 34 3J 5A I 10 50 47 4N 3H 4T H V 46 2L 4O 42 6 23 U 1I 33 41 5K 7 P 24 1H 1T 3F 5L 8 Q 11 1G 1U 2K 4R 4G 4U 13 25 1S 32 4F 3M 2T 12 2I 26 4E 4S 18 3N 2U 2J 3E 4D 5M B J 3O 1K 3D
28 57 A K 5C 1J 1Q 29 4P 9 L 16 5D 1R 27 4Q 2F 5B 15 2V 1P 3K 4C 39 2G 14 1C 30 40 59 E 2H 1O 31 3L 3V 58

616 588 4.8

CIRC16 V I 2V 2I 4V 4J 6U 6I 64 J 1D 2U 2J 4U 4I 6V F 10 1H 2H 40 50 5H 6H E 3B 74 1I 26 3V 5U 5I D 73 3C 1J 25 3U 5V 5J 72 S 6L 3D 24 4D 34 60 4N R 16 6M 4C 2Q 35 6B 2C Q 15 4B 6N 36 6C 55 4 2D 14 1S 5D 44 6D 54 5
5M 1V 1Q 5C 3J 46 7B 6 1U 5N 1R 5B 3I 45 7C 5L H 20 30 3H 4H 6F 71 1 1C 1K 2G 4T 41 5K 6G 56 2S 1A 1M 76 4S 3M 6R 2R 57 1B 1L 4R 77 3L 6S 1T K 2T 75 3K 5T 4K 6T 3 M 66 2B 2L 5R 43 4L 2 L 67 2A 2M 5S 42
4M 1E 65 12 2K 31 5E 52 7G A 1F 13 3E 32 5F 63 70 B U 11 3T 3F 4E 6E 62 C T 3R 2F 29 78 4F 5G G 2E 3S 28 33 6Q 53 7D 3A 4O 1G 27 5Q 6P 4G 7F 9 N 19 4Q 5P 6O 6A 3O 8 O 18 5O 5A 69 39 3N 7 P 17 59 68 2N 38
47 3P 49 58 1N 23 2P 37 7E 6J 3Q 4A 1P 22 2O 79 51 48 6K 4P 1O 21 3G 7A 61

898 846 6.1

CIRC18 1K 14 2A 97 40 4I 67 7S 90 13 1L 29 98 42 4K 53 8D 8V 2M N 1M 96 41 4J 55 8U 8E 7 P 70 7I 5F 35 3N 54 6R 9 O 7H 5E 72 36 3L 64 6S 8 7G 1B 71 2J 5G 3M 63 6T 92 3P 1C 21 2H 85 4F 65 8T 3O 12 1D 1V 2I 32 86 52
8R 1 3Q 20 84 33 3E 5K 8S 9E 2 11 6G 7J 34 3D 4H 78 9D 3 10 18 6H 7K 3V 77 9C 6B I 19 4T 2E 6I 7L 76 6A 91 5B 4R 1A 24 2G 2R 44 69 8F 37 5C 4S 23 2F 4E 45 7A 9H 5 38 5D 22 4D 43 8Q 79 9G 4 M 39 4C 8O 89 6N
7Q 9F 6 L 1J 2P 87 8P 6M 7P 68 5S K 1I 2L 3C 51 88 5N 7R 6U 2N 1H 1S 2K 3U 6L 5O 6C 25 6V 2O 1U 6J 4G 7O 5P 9I B 81 8J 1T 2Q 50 6K 7N 7E A J 8K 60 4V 3I 7M 4L 8G F 8I 1E 5V 4U 3T 3J 4M 5R 6D 26 1F 3R 61
3K 4N 9B 5Q G 6E 1G 1P 3S 2U 9A 5L 7C 7F Q 6F 1R 3B 30 99 8A 7D 49 R 16 1Q 31 8N 56 8B 7V E U 4B 28 8M 62 5I 5A 8C D 4A 5U 1O 8L 5H 48 58 6Q C 5T 94 3A 2D 73 47 5J 7T 4Q 93 15 2C 2V 74 46 6O 7U 80 V 27
95 2T 3H 75 59 5M 8H S 82 1N 2S 3G 4P 57 6P H T 17 83 2B 3F 4O 66 7B

1268 1188 6.7

CIRC20 7O 18 5F 9L 8G 94 50 6F 7G BS 1 5E 9K 8F 3B 4V 95 6G AF 8A 2D 5D 9J 8E 3A 3P 96 6H AG 89 E L 25 2V 39 3Q 4L 6R AH B6 F 2E 1B 26 3R 4M 6Q BK 7K B5 G 4Q 1A 27 35 4K BJ 6S 7L B4 4P 7P 19 5G 93 65 9O BL
7M 8R C U 4R 7R 92 5H 9N 66 8T AL B T 7Q 91 2J 9M 3U 5K 8S BR D S 1S 2K 3E 40 4F 6T BQ B8 17 1R 2L 3D 3V 4G 59 7F BP B7 A4 9I 1P 62 6M 3C 7B 4E 5A 9C 9H A5 1O 6L 63 7A 5I 8I 5B 86 8 12 6K 2G 64 8H 5J
B3 87 AM A 13 2F 22 3O BH 8J B2 9A 88 9 14 32 24 3N 4H BI B1 9B 9V 6I 31 1N 23 4T BG 4J 5T 7H A0 5V 6J 1M 4S 34 AT 4I 5U 8N AJ 5C 60 1L 1V 2S 4U AU 74 84 AI J R 61 20 2T AS 3T 81 7I 9D H Q 1K 21 2U BF
3S 9Q 83 7J I P 1I 49 BE 3G 9P 5L 70 8O 8U 47 1J BD 2I 3H 51 AE 6V 9T 3J 8V 48 1T 3F 7D AD 6C 6U B9 AN 8C 90 1U 7S 45 7C AC 5M 6E 3 16 8D 4A 7T 44 53 7E 6D A1 8B 15 1F 29 2M 4B 7U 57 72 BM K 1G 28 2O
38 4C 56 73 BN AK 6 AO 1E 2A 2P 36 5N 98 71 BO 7 N 77 AQ 37 43 97 6B 8M A3 5 M AP A8 42 7V 52 8K 99 7N 75 O A6 2B 2N 41 4O 80 5R 8L 46 BB 1C A7 2Q 6N 54 5Q 82 A2 BA 3K 1H 33 2R 4N 55 5S 6A 8Q 4 V 1D
3M 3I 58 B0 69 85 9E 30 10 3L 2C 79 AB AV 68 9S 8P 2 11 78 AR A9 6O 4D 5O 9R 9G 1Q 76 BC 2H AA 6P 67 5P 9U 9F

1724 1600 7.7

SUP12 1O 1E T 26 42 3D 6 3R Q 1R 3B 32 3 O 3U 1T 2N 31 3F G 1F 17 2M 33 23 D 3I 1H 2O 3C 7 J R 1C 38 3L 4 35 3S 1B 1V 29 1 2R 18 27 3V 3O 1D 24 2G 37 2U 3P C 11 1G 2J 3A 3N B E V 1I 21 2L 8 H 10 1A 1S 41 2 1P 2S
2I 2B 44 3Q 2F 36 15 3K 2V 2P 13 3H 1J 39 2D N I 16 1M 2A 3E 9 F P 22 2C 30 2E 3G S 3T 2T 20 34 2Q 1Q 2H 3J 40 5 L 14 1K 2K 43 A K 25 19 1N 1U 12 M U 1L 28 3M

458810 453860 1.1
SUP14 4T 1M 15 2I 29 34 4F 3M 23 T 47 32 3J 5M 5A 44 10 3C 26 36 41 5 F 1E 1U 3F 5J 4R 2 I 1K 1R 2O 55 4P B L 17 1H 51 3R 2L 43 4U U 2V 2C 2R 3U 2S S 46 5E 27 3K 40 39 Q 1N 4J 2A 49 37 C N 1A 1P 4M 5H 3H 4G K

2H 1C 1S 42 57 4 3N 12 1I 2K 35 59 D G 24 3Q 2M 54 4D 7 J 5C 1J 1V 3E 4C 18 M 11 1Q 5F 4O 4E 2F 2T 14 1O 4L 5I 56 A 3A 4I 3P 30 2E 53 1 45 50 3D 28 3S 5L 8 O 2U 1G 20 2B 5G 1L P V 5D 2N 33 4Q E 4V 1D 1T 31
3I 4S 3 4H 3O 2J 52 4A 3L R 2G 25 21 3G 3V 58 22 H 16 1F 2P 3T 5K 6 19 13 4K 2D 38 4B 9 5B 3B 1B 48 2Q 4N

567891 557354 1.9

GAL12 N 2F 16 38 2A 3P 2E O 1C 27 3K 3C C 2G 1B 2T 22 3A 3 D 1L 21 2V 41 7 K 1F 3T 2U 3L 3Q 1E R 2H 2B 3N 2P 13 11 3J 39 29 4 1P 10 26 30 3E 6 M 1Q 2S 1J 3D 8 L 3S 1G 20 2K 1D G 3H 17 2L 43 3F 3R V 19 2I 28 5
3G 2R 15 2D 3B B 2Q Q 37 1U 2C A I S 1R 1N 31 1O E U 1M 40 2M 1 25 18 1H 42 3O 23 35 T 3I 3U 1V 34 24 P 1S 3M 33 12 F 36 1T 2O 32 9 J 14 1I 3V 2N 2 H 1A 1K 2J 44

7135 7034 1.4
GAL14 E 10 1B 3R 38 55 4D 2S 23 U 1F 53 40 5K 22 2T 12 1D 51 3V 5L 1 1N 4J 5F 2L 3H 4E 1L G V 2R 4N 3K 4C 43 K 3B 2I 3Q 52 4S 6 Q 1A 30 2B 3U 58 4 19 5C 2C 3S 33 57 8 4H 16 1O 48 32 5J 4G 44 13 3C 1R 2K 5M 3 I 45

21 2P 3G 41 7 O 4V 1G 26 2O 3L D N 15 1J 1Q 29 34 18 5B 14 1S 27 37 4P 5A 3N 2U 46 1P 2M 4R 3M 3A 4I 50 2J 2E 4A B J 3O 25 3D 54 4F A S 1I 1T 28 3F 59 5 M 2H 1H 20 36 5I R P 1C 5E 2N 35 4O 4T F 3P 4K 31
5G 4B 39 4U 24 1E 47 4M 42 2 1M 1K 2D 49 3T 3J C 2G 17 2V 1V 2A 3I 9 L 11 5D 1U 4L 2Q 2F H T 3E 5H 56 4Q

10840 10255 5.7

GAL16 3 J 15 2H 5T 4K 5G 71 7 N 1B 1N 2G 5R 4M 6U D L 1D 1O 5P 2J 4F 6T 3A 3Q 66 1I 25 38 51 7E 3P 65 3C 4Q 2A 5B 36 7B 64 3B 3R 59 28 4S 33 7G 8 S 12 5O 2Q 6P 5D 4H 4 U 14 1Q 2L 5S 6R 4I 6 49 16 1S 6N 2M 3J 61
1T 73 1G 30 3K 41 52 6H 72 I 1V 3F 5C 44 6D 54 5 M 74 2U 5A 46 50 6G 1E 2D 18 4C 31 5E 63 70 2C 1F 19 76 37 6Q 4G 5V 1 2E 6M 24 78 3I 6E 60 2 R 4B 4R 77 3V 3N 6F 48 T 58 20 3U 4T 3L 6I 56 O 13 1K 29 39 4V
6V F 57 11 23 2P 34 6C 5U A 10 3D 68 2K 35 7A 62 B 1U 6L 67 2N 4E 40 7C 6J H 1P 2V 4D 4U 45 7D G 4A 1R 21 3G 47 53 5H V 5M 1M 3E 2O 32 55 5J E P 5N 2F 2B 6A 3H 5F C Q 2T 3S 26 69 79 6S 2R K 1C 75 27 6B
42 4J 4N 2S 1A 1H 2I 43 4L 7F 5L 4O 17 1L 22 6O 3M 5K 9 6K 4P 1J 3T 5Q 3O 5I

14583 13702 6.4

GAL18 I 94 1Q 2A 30 52 5P 6S 7S 92 J 20 84 2V 50 7M 6L 6B 2 93 7I 4U 35 86 75 64 5M 37 14 71 3S 85 4K 8Q 5O 6C 13 38 1U 29 48 4L 5K 6R 8V 2M U 39 1T 7J 40 4N 6O 91 4 O 2O 22 7L 9A 54 6N 7D 6 K 1I 96 7K 87 76 53 67
5 6V 1A 83 2G 98 5I 59 69 8H 4A 1J 5E 2I 3T 3I 65 8D 49 1L 8J 2D 34 3K 42 5N 6T 1K L 4B 32 3F 41 6A 8T 7V F N 1M 72 2S 7N 55 5L 9I A M 16 3R 74 4H 9D 8C 7U B 26 18 6G 73 8O 4M 89 9C 25 4R 17 3A 6K 4P 66
8U 8E 4Q S 27 21 2T 3D 5R 6P 90 5S 10 4S 24 2Q 3J 47 5J 7R 1 5U 1V 2J 2R 3V 9B 5Q 7B 80 5T 15 2E 6I 3U 4O 77 9G 3 81 19 2F 8M 6J 4I 57 7E 7 Q 1F 8K 6H 3C 4J 7P 8G D 8I 5D 1R 3B 2U 46 7Q 9E 5B 6E 1B 23 60
36 3E 44 7T 6D 5C 1G 1O 2L 62 51 8P 7C 3O 12 6F 4T 8L 33 4F 8A 79 9 V 3Q 95 4D 31 8N 78 8B 8 T 1C 2P 2K 3L 99 7O 68 G 7G 1H 1S 2C 5G 3N 63 7A 6U 3P 1D 1N 4E 5H 5A 6Q 8F H 2N 70 1P 5F 45 88 6M 8S E P 82
28 97 3H 43 56 8R C 11 7H 4C 2B 61 3G 58 9F 7F R 1E 5V 2H 4V 3M 4G 9H

20205 19051 6.1

GAL20 2 3K 20 2R 8G 55 AD 69 7M A3 H M 1M 2M 38 44 50 99 84 8T 9 Q 1P 4S 2N 3G 3U 98 89 8Q 1Q 10 1E 34 4C 5S BK 6T B5 A0 5V 76 1S 2I A9 4D 8K 73 9U BP 75 60 9J 26 4A 5H 4V 6V B6 AM 1 77 62 3N 93 7V 8J 5U B2
AK 17 V 7R 8F 35 6P 59 5R B1 9G 46 15 61 25 2H 8H 51 6U 9D BR C 11 48 2B 4T 3C 9N BJ 6F 70 I BB 1L 27 9L 36 3T 7D 68 AH E AO 1H 33 5G 3S AB 9P 7N 86 AN 8C 1G A7 2V 3O 95 5K 83 7K 8B 16 AP 91 2S 6N 5I
4M 54 82 BA 13 8D 2A 6M 3B 65 4E 5A 9B D 47 BC 22 63 3H 6O 56 9T AJ 7 1R 1J BE 3D 3R 67 AF 7J A2 3 9I 1D 2K AS 40 5Q AE 7G 8A 8U N 19 4U 43 8I 5M 7F 87 B9 30 P 90 8E 7S 4H 5B 5L 72 B7 K 32 1V A8 4N 58
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APPENDIX B
Same-Hour Delivery

B.1 Real-World Inspired Artificial Instances Generation
Artificial test instances have been created as we are not allowed to publish data from the
real application. These instances are designed to reflect the most important relationships
found in the application. We seek to model the delivery area of a single depot and
simulate the varying demand occurring over a day by artificially created instances. Such
an instance is primarily characterized by its number of orders n and its number of vehicles
m. As a simplified area, we take the unit disk centered in the Euclidean plane where the
depot is located at (0, 0). Orders may occur within 16 opening hours from 9am to 1am
represented by HO = [9, 25] and either have a promised maximum delivery duration of
one hour or two hours. Our planning horizon, therefore, extends to H = [9, 27].
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Figure B.1: Left: Load function ωBD with base load of ten orders arriving per hour and trapezoidal peak
(tA = 17, tB = 19, tC = 21, tD = 23) with additional 40 orders per hour. Right: Realization of a corresponding
inhomogeneous Poisson process displaying the accumulated number of orders over time.

Euclidean distances between orders and the depot are converted to travel times via the
constant pace of 20 minutes per unit distance. Furthermore, stop times of three minutes
to/from an order, a general manipulation of two minutes when going to the warehouse,
and a loading time of 20 seconds when leaving the warehouse are added to the travel
times. The picking time trel

v − tavl
v for each order v ∈ V is assumed to be three minutes.
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B. Same-Hour Delivery
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Figure B.2: Left: Mean average minutes per order with standard deviations over ten instances for each load value
λ ∈ {0.5, 1.0, . . . , 20.0} with a fitted curve following an inverse proportional power law. Right: Average orders per
hour 1/tO derived from the fitted curve.

We assume the orders to occur spatially uniformly at random on the disk following
an arriving load distribution ω : HO → R+

0 where one-hour orders are assumed to be
slightly more likely than two-hour orders with a probability of 60%. The load function is
composed of a base load LB which is constant throughout the day and a peak load LP to
which we ascend and from which we descend linearly using a trapezoid with parameters
tA, tB, tC, tD. See Fig. B.1 for an example together with a realization of a corresponding
inhomogeneous Poisson process. We define two different reasonable load patterns, one for
business days PBD, where the peak starts at 5 pm and one for weekends/holidays PWE,
where the peak is more smeared over the day since the load begins to increase already
earlier the day:

PBD = (LB = 10, LP = 40, 17, 19, 21, 23) (B.1)
PWE = (LB = 10, LP = 50, 11, 17, 20, 22) (B.2)

For PBD we are in the order of 300 orders per day and for PWE around 500 orders.

The second part of the input besides order-related information concerns the drivers’ shifts.
How many drivers we need in a given hour depends on the expected driver performance:
The number of delivered orders per hour or stated differently the expected labor time
needed by a driver to deliver a single order, as simplification ignoring waiting time at the
depot. To estimate this, we employ a bootstrapping mechanism since this performance
depends on our route construction and optimization and departure time strategy itself.
For different but constant loads we solve the dynamic problem for an “infinite” time
horizon (to get rid of burn-in effects) given an “infinite” number of vehicles (to not
run into late deliveries due to capacity limitations). We conjecture that the probability
density function of the number of delivered orders per hour converges to a steady state
distribution, from which we can take the mean. For low loads, we expect the performance
of the drivers to be worse, since the average distance between orders is larger. If more
orders are available, chances seem higher to create better routes with less time needed
per order.

We verified this empirically by creating ten instances over an order time horizon of 20
hours for different constant loads to be solved as a DYN problem using ALNS with 60
seconds for route optimization at each arriving order. We let the load vary from 0.5 to
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B.1. Real-World Inspired Artificial Instances Generation
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Figure B.3: Discretized business day (left)/weekend (right) load curve (blue) and corresponding lagged accumulated
load (orange) giving rise to one random greedy shift planning realization (over-)satisfying expected load (green).

20.0 orders per hour in steps of 0.5. For each dynamic problem instance, this yields many
routes and with each a certain duration and a number of orders served. This allows us
to calculate the average time per order tO for each of the ten instances over all different
loads. As expected, lower loads yield worse performance than higher loads. Given this
measurement, we make a parameterized ansatz for the relation between the load and the
average minutes per order:

tO(λ; A1, α + 1) = A1λ−α1 + 6 min (B.3)

The six minutes correspond to the stop time per order which does not vanish even if
the travel time goes to zero. Fitting this model to our measurements yields parameters
A1 = 19.3 and α1 = 0.17. Figure B.2 visualizes the measured time per order with its
standard deviation and the fitted curve on the left side. An alternative and sometimes
more convenient representation of this performance is given by the average orders per
hour 1/tO, which we plotted for a larger range of λ ∈ [0, 50] in Fig. B.2 on the right.

Finally, we need to create shifts that allow the expected demand to be satisfied in time.
For this, we discretize the load curve into slots of hours and take for each the hourly
mean, corresponding to the expected number of orders arriving in this hour ω̂(t). Due to
the different order types (60% with one hour maximum delivery duration vs. 40% with
two hours), the arriving load lags and distributes over the current and the subsequent
hours, yielding an accumulated load Λ(t) for each hour. We assume an even split of
the load for the one-hour orders over two hours and for the two-hour orders over three
hours. For example, when the hour t has an expected load of 30 arriving orders, 13
orders will be assigned to the hours t and t + 1 (60%/2 + 40%/3), and four orders to
hour t + 2 (40%/3). At the beginning of each hour, the necessary number of shifts is
added staggered over the hour to satisfy the accumulated load together with the already
existing shifts in this hour. To estimate the performance of the drivers, the average
number of orders a driver can serve in this hour depending on the accumulated load is
taken into account. Optionally, we close the oldest shifts that are at least four hours long,
when we over-fulfill the demand. When adding a driver, the corresponding shift duration
is sampled randomly from {4, . . . , 7} hours, capping at the end of the planning horizon.
This yields a set of drivers U with shift start and end times, where the earliest shift end
time q0

u is set to half an hour before qend
u , u ∈ U , to allow for shift ending flexibility in the
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B. Same-Hour Delivery

dynamic problem. To simulate driver shortage, we optionally drop one shift at random.
Figure B.3 shows the load satisfaction on one such randomized greedy shift planning for
the business day and weekend load patterns, respectively.

To summarize, to come up with meaningful artificial instances, orders are created
uniformly randomly on a Euclidean disk, modeling the delivery area in a simplified
way. Orders occur over the planning horizon following either a business day off-peak
vs. peak load pattern or a more smeared weekend load pattern to be sampled from an
inhomogeneous Poisson process. We measured the dependence of the average orders per
hour a driver could perform depending on the accumulated load in that hour and derived
an inverse power law function by curve fitting. This enables us to perform a greedy shift
planning where we check and if necessary open shifts staggered at every hour to satisfy
the accumulated load derived from the expected load patterns. This is done for each
hour of the extended planning horizon H , where the durations of newly opened shifts are
sampled randomly from {4, . . . , 7} hours. Optionally, we close shifts early when there
are more than enough drivers and as a second, cascaded option, drop a random shift in a
final perturbation step.

B.2 Additional Results
In Figure B.4, the detailed boxplots for the different solving strategies over the three
objective dimensions and six instances classes are shown.
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Figure B.4: Comparison of the root mean square error of the tardiness in minutes, the travel time duration, and
the excess labor time of different solution strategies (without offline solution) on six different instances classes with
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decreases the tardiness at the cost of carefully introducing additional travel time (regarding which τ -latest is best)
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