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Abstract

A structure-preserving dual-field discretization of the 3D incompressible Navier-Stokes prob-
lem is derived, which conserves mass, kinetic energy, and helicity on a periodic domain. In
this approach, a conservative mixed variational formulation is introduced. It is based on two
systems of equations with dual representations of velocity, vorticity, and pressure. Then, a
staggered temporal discretization is constructed in order to integrate the evolution equations
and to decouple the two systems. That way, the convective terms are linearzed, resulting in
two discrete, algebraic systems. Furthermore, a spatial Galerkin Finite Element discretization
is introduced, that follows a mimetic approach: The finite dimensional spaces form a discrete de
Rham complex, which is essential to enable the conservation properties of the scheme. Conser-
vation of mass, kinetic energy, and helicity at the discrete level is proven in the inviscid limit.
The proposed method is expanded to a much more realistic, non-periodic Dirichlet problem, by
adapting the finite-dimensional function spaces. It is proven, that mass and kinetic energy are
still conserved. Numerical tests supporting the method in both the periodic and non-periodic
setting are provided.
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Chapter 1

The incompressible Navier-Stokes
equations

Incompressible flows can be modelled as a continuum described by the well-known Navier-Stokes
equations. General, closed-form, analytic solutions for these partial differential equations have
not been found so far. In fact, even the existence proof of smooth solutions seems to be out
of reach currently. This motivates the construction of numerical methods that are 1) efficient
to solve and 2) preserve relevant physical and mathematical structures in the discrete setting.
One possible method that preserves mass, kinetic energy, and helicity of the flow-field will be
discussed in this thesis.

First, consider the incompressible Navier-Stokes equations in rotational form

∂u

∂t
+ ω × u+

1

Re
∇× ω +∇p = f

ω = ∇× u,

∇ · u = 0

(1.1)

defined on a simply connected domain Ω ⊂ Rd and time interval (0, t) with the unknown velocity
field u : Ω × (0, t) → Rd, the unknown total pressure p : Ω × (0, t) → R, the vorticity ω, and
given data f : Ω × (0, t) → Rd. Re denotes the Reynolds number, a dimensionless coefficient,
which is introduced in section 1.3. In this thesis, d := 3 is assumed, if not otherwise specified.
Possible choices for boundary and initial conditions necessary for posing a meaningful problem
will be discussed later.

The symbol p, denoting the unknown total pressure, includes the so-called Bernoulli pressure,
as discussed in section 1.4.

The first equation is called momentum equation, the second one is the definition of the fluid
vorticity and the third equation is the divergence-free condition. The latter enforces incompress-
ibility of the fluid. A derivation is given in the following sections, based on chapters 8.6 and 8.7
of [Bar18].

1.1 Derivation of the divergence-free condition

In continuum mechanics, the continuity equation reads

d

dt Ω
ϕ+

∂Ω
F (ϕ) =

Ω
b. (1.2)
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CHAPTER 1. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Here, F is a general flux function and b is function representing all sources and sinks of the
quantity ϕ. Applying the divergence theorem, defining F := uϕ (”mass flux density”) and
observing that the equation has to hold for any volume Ω, one gets

dϕ

dt
+∇ · (uϕ) = b.

For the continuity of mass, one chooses ϕ = ρ, i.e. the mass density:

dρ

dt
+ ρ∇ · u+ u · ∇ρ = b.

In case of incompressible flows ( =⇒ Dρ
Dt := dρ

dt +u · ∇ρ = 0) and with no mass in-/outflow, one
obtains

∇ · u = 0. (1.3)

Here, Dρ
Dt is the total/material derivative of the quantity ρ along its movement trajectory.

1.2 Derivation of the momentum equation

Now one can apply the continuity equation to the momentum, i.e. choosing ϕ = uρ to get

∂

∂t
(uρ) +∇ · (ρu⊗ u) = b,

where one can use basic vector and tensor algebra rules to get

∇ · (ρu⊗ u) = ∇ρ · uu+ (∇ · u)ρu+ (∇u)ρu.

By comparing the dimensions of the above quantities, one realizes, that b is in fact a force per
unit volume. Reformulation gives

u
∂ρ

∂t
+∇ · (ρu) + ρ

∂u

∂t
+ u · ∇u = b.

Using the mass continuity equation from before one obtains

ρ
∂u

∂t
+ u · ∇u ≡ ρ

Du

Dt
= b. (1.4)

The term u · ∇u is also called convective term and is part of the material derivative of the
velocity field. Now on to the right hand side: as derived in chapter 8.5 of [Bar18], in the right
hand side of the momentum equation (also known as ”equation of motion”) of a continuum
there appears the divergence of a tensor quantity called the Cauchy stress tensor. Its matrix
representation in cartesian coordinates is

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 .

The term b is the sum of the divergence of this tensor and an external force term f , i.e.

b = ∇ · σ + f .

Moreover, from the diagonal part of the stress tensor, one can extract the static pressure pstat

σ = −pstatI+ τ .
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CHAPTER 1. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

The pressure is actually the mean value of the trace of σ: pstat =
1
d i σii. This decomposition

results in

ρ
∂u

∂t
+ u · ∇u = −∇pstat +∇ · τ + f . (1.5)

To actually compute solutions for u and the new, explicitly visible unknown pstat, one has to
specify more properties of τ (sometimes called ”deviator stress tensor”).
If τ is proportional to the deformation rate/velocity difference per unit length of the u-field,
the flow is called ”Newtonian”. In 2D and for one component this yields

τij = µ
dui
dxj

.

The proportionality constant µ is called dynamic viscosity. In 3D one gets

τ = µ∇u,

from which in the literature usually only the symmetric part (∇u+ (∇u)⊺) is considered, as the
antisymmetric part only describes a rotation of the flow, and not a deformation. This results in
the incompressible Navier-Stokes momentum equation for Newtonian fluids:

ρ
∂u

∂t
+ u · ∇u = −∇pstat + µ∆u+ f . (1.6)

The term ∆u is also called dissipative or diffusive term, as it results in energy dissipation. It
also shows up in the heat equation.

1.3 Nondimensional formulation

A reference length, velocity, time and pressure (in capital letters) is introduced

r̃ =
r

L
, and

1

L
∇̃ = ∇,

ũ =
u

U
,

t̃ =
t

L/U
,

p̃stat =
pstat
ρU2

,

one can substitute everything into the equation above and obtain

∂ũ

∂t̃
+ ũ · ∇̃ũ = −∇p̃stat +

µ

ρUL
∇̃2ũ+ f . (1.7)

The coefficient preceding f has been incorporated into f . Furthermore, in this thesis the tilde
symbols will be ignored from now on. That means, the rest of this document will treat the
Navier-Stokes equations in its non-dimensional form.

Now the Reynolds number is defined

Re =
ρUL

µ
, (1.8)

which is the single characteristic parameter of this equation. In the literature, Re is often
introduced as the the ratio between inertial and viscous forces. A more straight-forward inter-
pretation: it is the ratio of the dynamic pressure and the shear stress:

Re ≡ ρUL

µ
=

ρU2

µU
L

= 2
pdyn
τshear

.
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CHAPTER 1. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

This argument should illustrate the meaning of the phrase ”ratio of pressure and stress” without
going into too much details.
Flows with high Reynolds numbers show turbulent behaviour, low Reynolds numbers charac-
terise creeping, laminar flows. The incompressible Navier-Stokes problem for Netwonian fluids
then becomes 

∂u

∂t
+ u · ∇u = −∇pstat +

1

Re
∆u+ f ,

∇ · u = 0.
(1.9)

1.4 Rotational formulation and the Bernoulli pressure

The Laplacian of a vector field is defined as

∆u = ∇(∇ · u)−∇× (∇× u)

and the velocity is divergence-free. Further, it holds that

u · ∇u =
1

2
∇(u · u) + (∇× u)× u.

This results in 

∂u

∂t
+ ω × u+

1

2
∇(u · u) + 1

Re
∇× ω +∇pstat = f ,

ω = ∇× u,

∇ · u = 0.

(1.10)

Here ω denotes the vorticity of the fluid. The term 1
2(u · u) is (the dimensionless) Bernoulli

pressure, also called dynamical pressure. Including physical constants, the Bernoulli pressure
would be 1

2ρ(u · u).
Now, the total pressure of a fluid is the sum of the static and dynamic pressure

ptot = pstat +
1

2
(u · u). (1.11)

To simplify the momentum equation one can now treat this total pressure as an unknown of the
problem. The momentum equation changes to

∂u

∂t
+ ω × u+

1

Re
∇× ω +∇ptot = f .

After computing a solution, one can easily recover the static pressure from u and ptot, using the
relation (1.11).
From here, this thesis will use the symbol p for the total pressure

p := ptot.

The resulting system of equations is now:

∂u

∂t
+ ω × u+

1

Re
∇× ω +∇p = f ,

ω = ∇× u,

∇ · u = 0,

(1.12)

which is exactly equivalent to the system (1.1) proposed in the introduction. To summarize: it
is given an initial value for u0 and ω0 as well as the forcing function f (also called data). The
unknowns are the velocity field u, vorticity field ω, and total pressure p.
To yield a meaningful problem, boundary conditions have to be prescribed.
Additionally, for Re → ∞ (inviscid limit), the equations are also called Euler-equations.
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CHAPTER 1. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

1.5 Conservation properties of the Navier-Stokes equations

As ∇ · u = 0, mass (or rather: volume) is preserved. In the inviscid limit (Re → ∞), the above
equations also conserve kinetic energy and helicity, assuming f = 0.

Without loss of generality, f ̸= 0 can be assumed, if there exists a scalar-valued function ψ such
that ∇ψ = f . In other words, if f is a ”conservative” vector field, with scalar potential ψ. This
works, as ψ can then be included in the total pressure (the forcing term is being interpreted as
an extra pressure term) and later be subtracted again. See the previous subsection about the
Bernoulli pressure as a comparison.

The kinetic energy is defined by

K :=
1

2 Ω
u · u, (1.13)

and the helicity is given as

H :=
Ω
u · ω. (1.14)

Now one can check the time rate of change for the kinetic energy

dK
dt

=
Ω

∂u

∂t
· u.

We start with the inviscid limit case (Re → ∞). Now the time derivative of u can be expressed
using the momentum equation from (1.12):

∂u

∂t
= −ω × u−∇p.

Inserting that into the expression for the time derivative of K results in

=⇒ dK
dt

= −
Ω
(ω × u) · u−

Ω
∇p · u = −

Ω
(ω × u) · u+

Ω
p∇ · u = 0.

In the last step, integration by parts and the divergence-free condition are applied, with the
assumption, that the boundary integral vanishes. If this would not be the case, energy would
not be conserved. One way to enforce this is by choosing suitable boundary conditions, which
will be discussed in the following chapter. In the viscous case, the dissipation rate is

dK
dt

= − 1

Re Ω
(∇× ω) · u = − 1

Re Ω
ω · (∇× u) ≡ − 2

Re
E .

The integral over ω ·ω is positive which is why K is strictly decreasing. Here, E is the enstrophy,
which will be analized at the end of this section.
Next, one can check the helicity conservation:

dH
dt

=
Ω

∂u

∂t
· ω +

Ω
u · ∂ω

∂t
.

The curl of the momentum equation is

∇× ∂u

∂t
+∇× (ω × u) +

1

Re
∇× (∇× ω) +∇× (∇p) = ∇× f .

Interchanging the differential operators to get ω = ∇ × u and again assuming vanishing dissi-
pative term and right hand side f yields

∂ω

∂t
+∇× (ω × u) = 0.
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CHAPTER 1. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

The last term is 0 as the curl of the gradient vanishes. This can now be plugged into the time
rate of change of H shown before:

dH
dt

= −
Ω
(ω × u) · ω −

Ω
u · ∇ × (ω × u)−

Ω
∇p · ω

= −
Ω
(ω × u) · ω +

Ω
ω · (ω × u) +

Ω
p · ∇ · ∇ × u = 0.

In the first line, integration by parts was applied to the second and third term. Boundary
integrals vanish as before and vanishing divergence of the curl was utilized for the third term in
the second line. The dissipation rate in the viscous case is

dH
dt

= − 2

Re Ω
ω · (∇× ω).

Now we can not argue anymore, that H is strictly decreasing over time, as we did with K.
As a remark, also the enstrophy of the velocity field given by

E :=
1

2 Ω
ω · ω

is conserved by (1.12). Indeed, with Re → 0 and taking the curl of the momentum equation one
gets

dE
dt

=
Ω

dω

dt
ω = −

Ω
∇× (ω × u) · ω = −1

2 Ω
(u · ∇ω) · ω − 1

2 Ω
∇ · (uω) · ω.

Here the identity

∇× (a× b) =
1

2
(a · ∇b+∇ · (ab))

was applied. Integration by parts on the last term, or backwards integration by parts on the
second to last term and utilizing vanishing boundary integrals shows that the last two integrals
are in fact equal, yielding

dE
dt

= 0.

1.6 Literature overview and outline of the thesis

When reading the previous section, the reader might get the idea that conservation of physical
quantities is an accidental property of the temporal evolution of the fluid system. This is only
a very shallow interpretation. The research on structure-preserving methods has found a much
deeper explanation: conservation properties of differential equations are an expression of their
geometric structure.

Differential equations that can be formulated as a Hamiltonian system of differential equations,
can be be analysed based on Noether’s theorem. It states a relationship between geometric
symmetries of a system and its conservation properties, see chapter 5.6 in [Bar18]. Temporal
translation symmetry (”a different choice of time interval results in an equivalent problem”) of a
Hamiltonian system results in energy conservation. Spatial translation symmetry (”translating
the spatial domain results in an equivalent problem”) results in momentum conservation.
In the inviscid case, the rotational form of the incompressible Navier-Stokes equations (1.12) can
be written as a Hamiltonian system, see [Olv82], implying conservation of energy. Conservation
of helicity is less straight forward to show based on the Hamiltonian formulation of the system,
see [YR22].
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CHAPTER 1. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

In fact, the construction of helicity conserving schemes is an active research area, e.g. see [Cap18]
and [Val19]. There are two main reasons that motivate the current efforts of the scientific
community to work on schemes that preserve both energy and helicity.

1. Simulating and investigating the joint cascade of energy and helicity.
Papers like [CCE02] describe how in three-dimensional turbulence, energy and helicity are
jointly cascaded into ”small scales”. The mechanism, which allows for the joint cascade, is
shown to be facilitated by advection and vortex stretching. In [A A18], a comprehensive
overview of these transfer mechanisms and cascades in turbulent flows is given. These
papers also show why the preservation of helicity plays a crucial role in the generation and
evolution of turbulence.

2. Higher numerical accuracy.
The connection between energy and helicity cascades suggests that energy- and helicity-
conserving schemes can contribute to even higher accuracy in simulations, see [Cap15].
This article describes the time-reversibility properties of various solvers for the incompress-
ible Navier-Stokes problem. Next to time-stepping accuracy, the conservation of energy is
also important to avoid numerical instability. The findings suggest that achieving accu-
rate time-reversibility could serve as a benchmark for Navier-Stokes solvers. Similarly, in
[MW08], the authors describe how energy-conserving discretizations are important for ac-
curate simulations of turbulent flows. To avoid high computational costs of the well-known
skew-symmetric splitting approach, a time-advancement strategy that retains conservation
properties is developed using a certain type of Runge-Kutta schemes with different forms
of the convective term at each stage.

The goal of this thesis is to derive and analyse a numerical scheme for the incompressible
Navier-Stokes problem that conserves mass, kinetic energy, and helicity. It was first proposed
on a periodic computational domain in [YR22]. The scheme is a Galerkin Finite Element method
that is based on a variational formulation discussed in chapter 2. A temporal discretization is
introduced in section 3.1 followed by a derivation of finite dimensional function spaces necessary
for the spatial discretization in section 3.4.1. Numerical experiments on the periodic domain are
being conducted in chapter 4.
As an extension from the method proposed in [YR22], we propose a novel Dirichlet scheme, that
is applied to a much more realistic problem with essential boundary conditions. It allows the
definition of essential boundary conditions on the velocity and vorticity field, and avoids the
restrictive assumption of periodic domains. The associated continuous variational formulation
is introduced in section 2.4. The discretization of that formulation is discussed in section 3.6
and results from numerical experiments are presented in sections 4.4 and 4.5.
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Chapter 2

Continuous variational formulation

The goal of this chapter is to derive the continuous variational formulation of (1.12), based on
[YR22]. This is necessary for the discretization procedure of the following chapter, while still
preserving the conservation of mass, kinetic energy and helicity. First we introduce some vari-
ational theory, then we derive the formulation on a periodic domain. A non-periodic Dirichlet
scenario will be discussed in section 2.4.

This chapter is based on the lecture notes [Fau22], [Hip22], as well as [Sch18]. A more in depth
look into Finite Element theory can be found in [E A04], [Mon03], and [V G12].

2.1 Introduction

To generalize mathematical objects (like derivatives) to many variables, multi index notation
can be used.

Definition 1 (Multi index notation for differential operators). A vector (α1, ..., αd) ∈ Nd
0 is

called a multi index and |α| := αi. The classic differential operator Dα for functions in
C∞(Ω) is written as

Dα =
∂

∂x1

α1

...
∂

∂xd

αd

.

Similar, as in the introduction of this thesis, Ω ⊂ Rd, where d = 3, if not noted otherwise.

Definition 2 (Smooth functions with compact support). The space C∞
0 (Ω) is defined as

C∞
0 (Ω) := {u ∈ C∞(Ω) : supp(u) ⊂ Ω} . (2.1)

The support of a function is the set defined as supp(u) := {x ∈ Ω : u(x) ̸= 0}.

If Ω is a bounded domain it holds: u|∂Ω = 0 ⇐⇒ supp(u) ⊂ Ω.

Definition 3 (Weak derivative). Let u be a locally integrable function, i.e. u ∈ L1(K) for all
compact K ⊂ Ω. The function g is called weak derivative of u order α, if g is locally integrable,
and satisfies

Ω
g · v = (−1)|α|

Ω
u ·Dαv ∀v ∈ C∞

0 (Ω). (2.2)

With the notion of weak differentiability, the definition of so-called Sobolev function spaces are
possible.

Definition 4 (The space H1). The space H1(Ω) is the space of all square-integrable functions
u, whose weak first derivative Du is also square integrable, i.e.

H1(Ω) := u ∈ L2(Ω) : Du ∈ L2(Ω) . (2.3)

13
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It is a normed space with the canonical norm

∥u∥2H1(Ω) := ∥u∥2L2(Ω) + ∥Du∥2L2(Ω) . (2.4)

Moreover, H1(Ω), is a Hilbert space with the inner product:

(u, v)H1(Ω) := (u, v)L2(Ω) + (Du,Dv)L2(Ω) =
Ω
uv +DuDv (2.5)

Because functions in H1(Ω) are only known to have finite H1(Ω)-norms, pointwise definition of
boundary values is not possible. The trace operator enables boundary value definitions on this
space.

Theorem 5 (Trace operator). There exists a continuous trace operator

tr : H1(Ω) → L2(∂Ω)

such that there holds
u ∈ C1(Ω) =⇒ tr(u) = u|∂Ω.

Proof. See Thm. 44 and 45 in [Sch18] for the proof.

The next theorem is highly important for the constructions of finite elements that consist of
subdomains of Ω. The unknown solution will be interpolated on each element, and certain
global continuity requirements have to be fulfilled also on the subdomain interfaces.

Theorem 6 (Subdomain interface condition for H1(Ω)). Let u ∈ L2(Ω) and Ω = Ω1 ∪Ω2 ∪F12

s.t.

• ui := u|Ωi ∈ H1(Ωi), and gi := ∇ui is its weak gradient,

• traces on common interfaces of subdomains coincide: trF12 u1 = trF12 u2.

Then, u belongs to H1(Ω), i.e. globally for the whole domain Ω.

Proof. It suffices to show, that the weak gradient of u is in L2. The idea is as follows: use
the definition of the weak derivative/gradient, see definition (3). Apply Green’s first integral
formula on the subdomains Ωi and use the fact that the outer normal vectors on common faces
are oriented opposite to each other. The calculation steps can be found in the proof of Thm. 46
in [Sch18].

2.1.1 The space H(curl,Ω)

To derive a variational formulation of (1.12) including its curl and div operators, the notion of
weak curl and divergence have to be introduced. The space of functions with a square-integrable
weak curl is introduced first.

Definition 7 (Weak curl). Let u ∈ L2(Ω). The function g ∈ L2(Ω) is called the weak curl of
u, if

Ω
g · v =

Ω
u · curlv ∀v ∈ [C∞

0 (Ω)]d . (2.6)

In the following ”curlu” denotes either the strong or the weak curl of u, depending on the
context.

Definition 8 (The space H(curl,Ω)).

H(curl,Ω) := u ∈ L2(Ω)
d
: curlu ∈ L2(Ω)

d
.

14
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It turns out, like for the Sobolev space H1(Ω), there is a trace operator, that allows to formulate
boundary values in this function space.
The following two theorems can be found in section 3.2.1 of [Mon03], or as Thm. 2.11 in [V
G12].

Theorem 9 (Trace theorem on H(curl,Ω)). There exists a tangential trace operator

trt : H(curl,Ω) → L2(∂Ω)

such that there holds

u ∈ H(curl,Ω) ∩ [C∞(Ω)]d =⇒ trt u = n× u|∂Ω.

Theorem 10 (Tangential trace continuity on H(curl,Ω)). Let Ω = Ω1 ∪ Ω2. Assume that
u|Ωi

∈ H(curl,Ωi), and the tangential traces are continuous across the interfaces γ12 = Ω1∩Ω2.
Then, u ∈ H(curl,Ω).

2.1.2 The space H(div,Ω)

Similar as in the previous section, we now introduce the notion of the weak divergence, and a
proper function space for functions with square-integrable (weak) divergence.

Definition 11 (Weak divergence). Let u ∈ L2(Ω). The function g ∈ L2(Ω) is called weak
divergence of u, if

Ω
g · v =

Ω
u div v ∀v ∈ [C∞

0 (Ω)]d . (2.7)

In the following ”divu” denotes either the strong or the weak divergence of u, depending on
the context.

Definition 12 (The space H(div,Ω)).

H(div,Ω) := u ∈ L2(Ω)
d
: divu ∈ L2(Ω)

d
.

In order to formulate boundary conditions on this space, the following trace operator is intro-
duced.

Theorem 13 (Trace theorem on H(div,Ω)). There exists a normal-trace operator

trn : H(div,Ω) → L2(∂Ω)

such that there holds
u ∈ H(div,Ω) ∩ C∞(Ω) =⇒ trn u = u · n.

Proof. The proof can be found after Thm. 105 in [Sch18].

Theorem 14 (Normal trace continuity on H(div,Ω)). Let Ω = Ω1 ∪ Ω2. Assume that u|Ωi
∈

H(div,Ωi), and the normal traces are continuous across the interfaces γ12 = Ω1 ∩ Ω2. Then,
u ∈ H(div,Ω).

Proof. The idea of the proof is similar as in the case of the H1(Ω)-trace operator. It has to be
shown, that the weak divergence is square-integrable for u to be element of H(div,Ω) globally.
Again, this can be done using Green’s integral identities.
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2.1.3 Integration by parts

The variational formulation of the original problem is derived by multiplying the equations by
appropriate test functions and integrating by parts.

For sufficiently smooth (continuously or weakly differentiable) functions u,v, there holds inte-
gration by parts:

Ω
u∇ · v =

∂Ω
uv · n−

Ω
∇u · v. (2.8)

A similar property can be found for the curl operator:

Lemma 15 (Integration by parts for the curl operator). For sufficiently smooth functions u,v
and the curl operator, there holds integration by parts

Ω
(∇× u) · v =

Ω
u · (∇× v)−

∂Ω
(v × u) · n. (2.9)

Proof. We start with the following vector identity in R3

∇ · (v × u) = u · (∇× v)− v · (∇× u).

Integrating the above expression over the domain yields

Ω
(∇× u) · v =

Ω
u · (∇× v)−

Ω
∇ · (v × u).

Now one can apply Gauss’ divergence theorem to the last term and get the above statement.

2.2 Derivation of the continuous variational formulation

Finally, we can use the framework described in the previous sections to derive the variational
formulation in the continuous setting. Again, at first we assume that Ω is a bounded, periodic
domain in R3, meaning that instead of fixing values or gradient values of each unknown function
(also called trial functions) at the boundary, it is assumed that each trial function has the same
values at one end of the domain as at the ”opposite” end.

The name variational formulation comes from the equivalence of these problems to the mini-
mization of functionals studied by calculus of variations. Generally speaking, the variational
formulation of a problem formulated as a set of partial differential equations is found by mul-
tiplying the orignal equations (strong form) with test functions, and integrating them over the
computational domain. Integration by parts is being applied to shift differential operators to
the test functions in order to reduce regularity requirements of the unknown function and to
avoid the continuity requirement on f . The linearform Ω f · ũ is now well defined for f ∈ L2,
as one can easily see using Cauchy-Schwarz:

Ω
f · ũ ≤

Ω
f2

Ω
ũ2. (2.10)

Integrating the momentum equation from (1.12), multiplying with a test function ũ and per-
forming integration by parts on the Reynolds term gives

Ω

∂u

∂t
· ũ+

Ω
(ω × u) · ũ+

1

Re Ω
(∇× ω) · ũ+

Ω
∇p · ũ = (2.11)

Ω

∂u

∂t
· ũ+

Ω
(ω × u) · ũ+

1

Re Ω
ω · (∇× ũ)− 1

Re ∂Ω
(ũ× ω) · n

+
Ω
∇p · ũ =

Ω
f · ũ ∀ũ. (2.12)
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The new boundary integral vanishes, due to the assumption of a periodic domain: the unit
normal vector n and the unknown ω cancel out. The result is:

Ω

∂u

∂t
· ũ+

Ω
(ω × u) · ũ+

1

Re Ω
ω · (∇× ũ) +

Ω
∇p · ũ =

Ω
f · ũ ∀ũ (2.13)

The same procedure will be done with the vorticity constraint from (1.12):

Ω
(∇× u) · ω̃ −

Ω
ω · ω̃ = 0 ∀ω̃ (2.14)

and with the divergence-free condition (again: the boundary integral vanishes):

Ω
u · ∇p̃ = 0 ∀p̃. (2.15)

The scheme that will be introduced is a dual-field scheme, which solves for the velocity, vorticity
and pressure twice. This allows the weak form to conserve the quantities discussed in section
1.5. The unknowns are:

u velocity in H(curl,Ω)
ω vorticity in H(curl,Ω)
v velocity in H(div,Ω)
ζ vorticity in H(div,Ω)
p pressure in H1(Ω)
q pressure in L2(Ω)

The test functions are introduced in the following.

ũ, ω̃ test functions in H(curl,Ω)

ṽ, ζ̃ test functions in H(div,Ω)
p̃ test function in H1(Ω)
q̃ test function in L2(Ω)

In addition to deriving equations (2.13), (2.14), and (2.15) a second time, with a different choice
of function spaces and different terms being integrated by parts, the vorticities in the second
term of the momentum equations will be exchanged to result in a coupled system.

2.2.1 Continuous variational formulation

The following formulation was first proposed by [YR22]. To achieve a more compact notation,
the integrals are being denoted as inner products/bilinear forms (scalar functions with two
arguments, that is linear in both):

Ω
u · v =: ⟨u,v⟩ ,

and for boundary integrals round parentheses with subscript ∂Ω:

∂Ω
u · v =: (u,v)∂Ω .

Consider now the following dual-field mixed weak formulation for the rotational form of the
incompressible Navier-Stokes equations on a periodic domain:

given f ∈ L2(Ω)
3
,

seek (u, ζ, p) ∈ H(curl,Ω)×H(div,Ω)×H1(Ω)
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and (v,ω, q) ∈ H(div,Ω)×H(curl,Ω)× L2(Ω)
such that they satisfy the primal system

∂u

∂t
, ũ + ⟨ω × u, ũ⟩+ 1

Re
⟨ζ,∇× ũ⟩+ ⟨∇p, ũ⟩ = ⟨f , ũ⟩ ∀ũ ∈ H(curl,Ω) (2.16)

∇× u, ζ̃ − ζ, ζ̃ = 0 ∀ζ̃ ∈ H(div,Ω) (2.17)

⟨u,∇p̃⟩ = 0 ∀p̃ ∈ H1(Ω) (2.18)

as well as the dual system

∂v

∂t
, ṽ + ⟨ζ × v, ṽ⟩+ 1

Re
⟨∇ × ω, ṽ⟩ − ⟨q,∇ · ṽ⟩ = ⟨f , ṽ⟩ ∀ṽ ∈ H(div,Ω) (2.19)

⟨v,∇× ω̃⟩ − ⟨ω, ω̃⟩ = 0 ∀ω̃ ∈ H(curl,Ω) (2.20)

⟨∇ · v, q̃⟩ = 0 ∀q̃ ∈ L2(Ω) (2.21)

Interpretation:

• The scheme is dual-field, as there are two momentum equations with two constraints
each. Velocity, vorticity, and pressure are solved twice. Following the derivation from the
previous section backwards shows that both velocities, vorticities, and pressures solve the
Navier-Stokes equations.

• It is now visible how ω ∈ H(curl,Ω) and ζ ∈ H(div,Ω) are coupling the two momentum
equations. E.g. ω is the vorticity corresponding to the dual velocity v (enforced by
constraint (2.20)), but it still appears in the primal momentum equation (2.16).

• Equation (2.17) would allow to replace each ζ with ∇× u. That way, the number of un-
knowns would be reduced to five. We will still keep working with the larger, ”symmetric”-
looking formulation, which is mathematically equivalent.

• It is not clear, whether the second term of the momentum equations is square-integrable.
It is not possible to just apply Cauchy-Schwarz like in (2.10). It turns out, the finite
dimensional representation of these terms is integrable, see section 3.4.1.

• The pressure is only defined up to a constant. This could be solved by adding constraints
to the system, e.g. using a Lagrange multiplier formulation. A possible choice for such
a constraint would be to require that the integral over the pressure vanishes: Ω p = 0.
Another option was chosen for the numeric tests in chapter 4. There, a MINRES solver
computing the minimum residual solution was utilized.

2.3 Conservation on periodic domains

The function spaces that were introduced in section 2 and then have been used in equations
(2.16) to (2.21) form an exact sequence: the so called de Rham sequence. These spaces and
differential operators have a very peculiar structure.

2.3.1 de Rham complex

It holds that

H1(Ω)
∇−→ H(curl,Ω)

curl−→ H(div,Ω)
div−→ L2(Ω). (2.22)

The notation A
⊙−→ B means that the operator ⊙ maps elements from space A to space B. For

simply-connected domains, the de Rham sequence shown above has the following properties:
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• Gradients of H1(Ω)-functions are element of H(curl,Ω), as the curl of any gradient is 0
and therefore square-integrable and therefore also element of H(curl,Ω).

• Curls of H(curl,Ω) functions are element of H(div,Ω) as the divergence of any curl is 0
and therefore also square-integrable and hence an element of H(div,Ω).

• By definition the divergence of an H(div,Ω) function is square integrable, which is the last
property of the de Rham squence.

A simply connected domain has the property that any path between two endpoints is completely
inside of the domain and can be transformed into any other path on the domain by a continuous
mapping while preserving the endpoints.
The observations above can be summarized quite elegantly into a very short phrase: The kernel
of the right differential operator is exactly the range of the left one. Because of this reason, the
de Rham sequence is a so called ”exact sequence”.

This property means, for example:

range(∇) = ker(curl)

with

range(∇) := {u ∈ H(curl,Ω) : u = ∇p, p ∈ H1(Ω)},
ker(curl) := {u ∈ H(curl,Ω) : curlu = 0}.

Moreover, this fundamental property of the function spaces used for the weak problem proposed
before, allows to prove the conservation properties from section 1.5 also for this weak formulation.

We now assume the inviscid limit case (Re → ∞) and f = 0 to observe conservation.

2.3.2 Mass

Mass conservation holds in the weak sense for u and strongly for v due to the two constraints
of the weak formulation of the scheme, see (2.18) and (2.21).

2.3.3 Energy

The kinetic energies are

K1 :=
1

2
⟨u,u⟩ (2.23)

K2 :=
1

2
⟨v,v⟩ (2.24)

and their time-rate of change:

dK1

dt
=

∂u

∂t
,u ,

dK2

dt
=

∂v

∂t
,v . (2.25)

Consider the momentum equation (2.16) and replace ũ := u

∂u

∂t
,u + ⟨ω × u,u⟩+ ⟨∇p,u⟩ = 0. (2.26)

The second term vanishes due to orthogonality of the cross product and the third term because
of (2.18). Therefore

dK1

dt
= 0. (2.27)
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and similarly for K2. It is also possible to predict the time-rate of change (dissipation rate) for a
finite Reynolds number, which is equal to the viscous/dissipative term. Defining the enstrophies

Eζ := 1

2
⟨ζ, ζ⟩ , (2.28)

Eω :=
1

2
⟨ω,ω⟩ , (2.29)

one obtains

dK1

dt
=

∂u

∂t
,u = − 1

Re
⟨ζ,∇× u⟩ = − 1

Re
⟨ζ, ζ⟩ = − 2

Re
Eζ ≤ 0,

and similar, using (2.20)

dK2

dt
=

∂v

∂t
,v = − 1

Re
⟨∇ × ω,v⟩ = − 1

Re
⟨ω,ω⟩ = − 2

Re
Eω ≤ 0.

This is aligned with the results from section 1.5.

2.3.4 Helicity

The fluid helicities are given as the following integrals:

H1 := ⟨u,ω⟩ , (2.30)

H2 := ⟨v, ζ⟩ , (2.31)

where u,ω ∈ H(curl,Ω) and v, ζ ∈ H(div,Ω). The goal is to show

dH1

dt
=

∂u

∂t
,ω + u,

∂ω

∂t
= 0 (2.32)

and similar for H2. Now we use equation (2.16) and set ũ := ω ∈ H(curl,Ω), which gives

∂u

∂t
,ω + ⟨ω × u,ω⟩+ ⟨ω,∇p⟩ = 0. (2.33)

The second term vanishes because the two arguments of the bilinear form are orthogonal due to
the cross product. Equation (2.20) provides:

−⟨v,∇× ω̃⟩+ ⟨ω, ω̃⟩ = 0 ∀ω̃ ∈ H(curl,Ω). (2.34)

As p ∈ H1(Ω) =⇒ ∇p ∈ H(curl,Ω) due to the de Rham sequence (2.22) the choice ω̃ := ∇p is
valid. This yields:

−⟨v,∇×∇p⟩+ ⟨ω,∇p⟩ = 0

and because of ∇×∇(·) ≡ 0 this gives

⟨ω,∇p⟩ = 0.

This is the third term of equation (2.33) and

∂u

∂t
,ω = 0 (2.35)

follows immediately. Now consider the second term of (2.32). To show that this term is zero,
we start by taking the time derivative of (2.34), which is

− ∂v

∂t
,∇× ω̃ +

∂ω

∂t
, ω̃ − v,∇× ∂ω

∂t
+ ω,

∂ω̃

∂t
= 0 ∀ω̃ ∈ H(curl,Ω), (2.36)
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due to the product rule. But as this expression holds for all ω̃ ∈ H(curl,Ω), the third and forth
term vanish because of (2.20). This gives

− ∂v

∂t
,∇× ω̃ +

∂ω

∂t
, ω̃ = 0 ∀ω̃ ∈ H(curl,Ω). (2.37)

Also ω̃ ∈ H(curl,Ω) =⇒ ∇ × ω̃ ∈ H(div,Ω) due to (2.22) allowing to take (2.19) with
ṽ := ∇× ω̃:

∂v

∂t
,∇× ω̃ + ⟨ζ × v,∇× ω̃⟩ − ⟨q,∇ · ∇ × ω̃⟩ = 0 ∀ω̃ ∈ H(curl,Ω). (2.38)

Combining (2.37) and (2.38) yields

∂ω

∂t
, ω̃ + ⟨ζ × v,∇× ω̃⟩ − ⟨q,∇ · ∇ × ω̃⟩ = 0 ∀ω̃ ∈ H(curl,Ω). (2.39)

Choosing ω̃ := u ∈ H(curl,Ω) results in

∂ω

∂t
,u + ⟨ζ × v,∇× u⟩ − ⟨q,∇ · ∇ × u⟩ = 0. (2.40)

The variational formulation enforces ζ = ∇× u pointwise (see (2.17)) so replace that in (2.40).
Hence, the second term vanishes due to orthogonality and the third term as ∇ · ∇ × (·) ≡ 0.
This is nice, because now it is clear why (2.32) is fulfilled.

To analyze H2, consider the dual vorticity constraint (2.20) with ω̃ := u

⟨v,∇× u⟩ − ⟨ω,u⟩ = 0. (2.41)

And finally, we get
H2 = ⟨v, ζ⟩ = ⟨v,∇× u⟩ = ⟨u,ω⟩ = H1. (2.42)

Similar as for the energy, the dissipation rate can be found by considering a finite Reynolds
number and following the exact same steps as for the inviscid case. This gives

dH1

dt
=

dH2

dt
= − 2

Re
⟨ζ,∇× ω⟩ .

Again this is aligned with the results from section 1.5.

2.4 The Dirichlet problem

In the following, the scheme is adapted to allow for Dirichlet boundary conditions. This is done
by changing the trial and test spaces of the dual equations (2.19) and (2.20). We use the spaces
H0(div,Ω) and H0(curl,Ω) that only contain functions with a zero normal/tangential trace on
the boundary ∂Ω:

Definition 16 (The space H0(curl,Ω)).

H0(curl,Ω) := {u ∈ H(curl,Ω) : u× n|∂Ω = 0}

Definition 17 (The space H0(div,Ω)).

H0(div,Ω) := {u ∈ H(div,Ω) : u · n|∂Ω = 0}
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Further, as now the periodic setting is not active anymore, the boundary integrals in (2.16) and
(2.17) do not necessarily vanish anymore. The other 2 equations remain the same.

Given f ∈ L2(Ω)
3
,

seek (u, ζ, p) ∈ H(curl,Ω)×H(div,Ω)×H1(Ω)
and (v,ω, q) ∈ H0(div,Ω)×H0(curl,Ω)× L2(Ω)
such that they satisfy

∂u

∂t
, ũ + ⟨ω × u, ũ⟩

+
1

Re
⟨ζ,∇× ũ⟩+ ⟨∇p, ũ⟩ = ⟨f , ũ⟩+ 1

Re
((ζ × n), ũ)∂Ω ∀ũ ∈ H(curl,Ω) (2.43)

∇× u, ζ̃ − ζ, ζ̃ = 0 ∀ζ̃ ∈ H(div,Ω) (2.44)

⟨u,∇p̃⟩ = (u · n, p̃)∂Ω ∀p̃ ∈ H1(Ω) (2.45)

and further

∂v

∂t
, ṽ + ⟨ζ × v, ṽ⟩+ 1

Re
⟨∇ × ω, ṽ⟩ − ⟨q,∇ · ṽ⟩ = ⟨f , ṽ⟩ ∀ṽ ∈ H0(div,Ω) (2.46)

⟨v,∇× ω̃⟩ − ⟨ω, ω̃⟩ = 0 ∀ω̃ ∈ H0(curl,Ω) (2.47)

⟨∇ · v, q̃⟩ = 0 ∀q̃ ∈ L2(Ω) (2.48)

Interpretation:

• Because the dual test functions ṽ and ω̃ are in the spaces H0(div,Ω) and H0(curl,Ω), the
boundary integrals on the dual system vanish.

• If the boundary data g on the velocity fields and h on the vorticity fields does not vanish
in all components, the problem stated above should rather seek for v ∈ Hg(div,Ω) and
ω ∈ Hh(curl,Ω). Technically these spaces are affine spaces, and do not fulfil the vector
space properties anymore. This issue can be handled with the ”offset function trick”
described in [Hip22]. We stick to the notation with 0, also for non-homogeneous boundary
data.

• The boundary integrals on equation (2.43) and (2.45) contain given information to the
problem and are therefore part of the right hand side. If the boundary data is time-
dependent, the boundary integrals have to be updated in each time step using the newest
available values of ζ, and u.

2.5 Conservation in the corrected spaces

2.5.1 Mass

Mass conservation holds in the weak sense for u, in case of vanishing normal-component of u on
the boundary. Otherwise, the weak divergence of the primal velocity is equal to the boundary
contribution.
The divergence-free condition holds strongly/point-wise for v due to the constraint (2.48).

2.5.2 Energy

The kinetic energies are
K1 := ⟨u,u⟩ , K2 := ⟨v,v⟩ , (2.49)
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and their time-rate of change:

dK1

dt
= 2

∂u

∂t
,u ,

dK2

dt
= 2

∂v

∂t
,v . (2.50)

If one now takes equation (2.43) with the choice

ũ := u ∈ H(curl,Ω)

one gets

∂u

∂t
,u + ⟨ω × u,u⟩+ 1

Re
⟨ζ,∇× u⟩+ ⟨∇p,u⟩ = 1

Re
((ζ × n),u)∂Ω. (2.51)

The second term is zero due to orthogonality, and the fourth term is equal to the boundary
contribution of (2.45):

∂u

∂t
,u = − 1

Re
⟨ζ,∇× u⟩ − (u · n, p̃)∂Ω +

1

Re
((ζ × n),u)∂Ω. (2.52)

In case of zero normal component of u and zero tangential component ζ, the time-rate of change
of energy is equal to the dissipative term. Similarly, for v one gets

∂v

∂t
,v = − 1

Re
⟨∇ × ω,v⟩ . (2.53)

Both this and the dissipation of K1 are proportional to E , see (2.44) and (2.47).

2.5.3 Helicity

In general, helicity is not conserved for the Dirichlet problem, like it was for the periodic case (see
2.3.4). To show this, it is important to remember, that only on the dual variables v ∈ H0(div,Ω)
and ω ∈ H0(curl,Ω) essential boundary values are enforced. The primal velocity and vorticity
do not have essential boundary values.

Again, it is required that
dH1

dt
=

∂u

∂t
,ω + u,

∂ω

∂t
= 0. (2.54)

Starting with the first term: take (2.43) in the inviscid limit without forcing and set ω =: ũ ∈
H(curl,Ω) which is allowed, as H0(curl,Ω) ⊂ H(curl,Ω)

∂u

∂t
,ω + ⟨ω × u,ω⟩+ ⟨ω,∇p⟩ = 0. (2.55)

The second term vanishes due to orthogonality. The next step utilizes the corrected constraint
from equation (2.47), which reads as

⟨v,∇× ω̃⟩ − ⟨ω, ω̃⟩ = 0 ∀ω̃ ∈ H0(curl,Ω).

However, setting ω̃ := ∇p is not possible, because ∇p /∈ H0(curl,Ω). One would have to choose
p in a way, such that ∇p ∈ H0(curl,Ω). This would be the case for p ∈ H1

0(Ω).

If one continues the steps from the helicity conservation proof for the periodic problem in section
2.3.4, one will find the following requirements to be necessary:

• restricting the testfunction ũ such that ∇× ũ ∈ H0(div,Ω),
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• restricting u the same way,

• enforcing u ∈ H0(curl,Ω) (which would imply the previous condition)

• and both ζ̃ as well as ζ have to be element of ∈ H0(div,Ω).

These requirements on the test and trial functions would be satisfied by an adapted de Rham
complex with essential boundary conditions (see Remark 3.17 in [Zag06]). It is given as

H1
0(Ω)

∇−→ H0(curl,Ω)
curl−→ H0(div,Ω)

div−→ L2
0(Ω). (2.56)

Whether this choice of boundary conditions, namely to have essential boundary conditions on
all trial functions, is also valid implementation-wise and leads to a numerically stable algorithm
is still to be investigated.
The formulation introduced in section 2.4 does in general not conserve helicity.

24



Chapter 3

Discrete variational formulation

This chapter, especially sections 3.3 and 3.4, is again based on the lecture notes [Fau22], [Hip22],
as well as [Sch18].

Having discussed the continuous formulation of the scheme in the previous chapter, it is now
time to discretize it and transform it into linear algebra format so that a computer can solve it.
The goal of the discretization is to preserve the conservation of mass, kinetic energy and helicity
similarly as the continuous formulation.

First, the time discretization is discussed, then appropriate finite dimensional subspaces of the
previously discussed function spaces are being constructed so that the unknowns/trial functions
can be interpolated using the respective basis functions of these subspaces. Finally, the notion
of finite elements is discussed. It would also be possible to do a spatial discretization first. As
this chapter is again based on [YR22], we stick to the described method of discretization.

3.1 Temporal semi-discretization

For the temporal discretization of the evolution equation (2.16), integer time steps are used, and
for (2.18), half-integer time steps are being used. That way, each equation can use the solution
values of the other equation from half a time step before. The time sequences are restricted to
constant time intervals. Function evaluations at time step tk will be denoted with a superscript

fk := f(tk)

and the uniform time step length is

∆t := tk − tk−1 = tk+
1
2 − tk−

1
2 .

The integrator applied to a first order ODE of the form

df(t)

dt
= h(f(t), t)

yields
fk − fk−1

∆t
= h fk− 1

2 , tk−1 +
∆t

2
.

Furthermore, the midpoint rule is used, which states

fk− 1
2 :=

fk + fk−1

2
. (3.1)
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Applying these definitions to equations (2.19), (2.20) and (2.21) yields the following time-discrete
problem:

given ωk−1,vk−1,fk− 1
2 , ζk−

1
2 ∈ H(curl,Ω)×H(div,Ω)× L2(Ω)

d ×H(div,Ω)

seek ωk,vk, qk−
1
2 ∈ H(curl,Ω)×H(div,Ω)× L2(Ω)

such that they satisfy

vk − vk−1

∆t
, ṽ + ζk−

1
2 × vk + vk−1

2
, ṽ

+
1

Re
∇× ωk + ωk−1

2
, ṽ − qk−

1
2 ,∇ · ṽ = fk− 1

2 , ṽ ∀ṽ ∈ H(div,Ω) (3.2)

vk,∇× ω̃ − ωk, ω̃ = 0 ∀ω̃ ∈ H(curl,Ω) (3.3)

∇ · vk, q̃ = 0 ∀q̃ ∈ L2(Ω) (3.4)

Moreover one makes use of the above definitions to discretize equations (2.16) to (2.18). The
time-discrete problem is

given uk− 1
2 , ζk−

1
2 ,fk,ωk ∈ H(curl,Ω)×H(div,Ω)× L2(Ω)

d ×H(curl,Ω)

seek pk,uk+ 1
2 , ζk+

1
2 ∈ H1(Ω)×H(curl,Ω)×H(div,Ω)

such that they satisfy

uk+ 1
2 − uk− 1

2

∆t
, ũ + ωk × uk+ 1

2 + uk− 1
2

2
, ũ

+
1

Re

ζk+
1
2 + ζk−

1
2

2
,∇× ũ − ∇pk, ũ = fk, ũ ∀ũ ∈ H(curl,Ω) (3.5)

∇× uk+ 1
2 , ζ̃ − ζk+

1
2 , ζ̃ = 0 ∀ζ̃ ∈ H(div,Ω) (3.6)

uk+ 1
2 ,∇p̃ = 0 ∀p̃ ∈ H1(Ω) (3.7)

These two sets of three equations each are being solved alternately. For that, the value ζk−
1
2 in

equation (3.2) is computed in equations (3.5) to (3.7). Further, the value ωk in equation (3.4)
is computed in equations (3.2) to (3.4).

To start the iteration, i.e. to find u
1
2 , ζ

1
2 , an initialization step is necessary. A possibility is to

apply an explicit Euler method to equation (2.16).

3.1.1 Explicit Euler method for the first half time step

To find u
1
2 , ζ

1
2 , the only available values are the initial values of the velocities and vorticities

(not the pressures!): u0, ζ0,v0,ω0.

The explicit Euler method applied to an ODE of the form

df(t)

dt
= h(f(t), t)

yields
fk − fk−1

∆t
= h(fk−1, tk−1),
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which is an explicit integration method: the new time step is solely dependent on old, previously
computed values.
The Euler method applied to the Navier-Stokes problem reads as follows:

given u0,f0,ω0 ∈ H(curl,Ω)× L2(Ω)
d ×H(curl,Ω)

seek p0,u
1
2 , ζ

1
2 ∈ H1(Ω)×H(curl,Ω)×H(div,Ω)

such that they satisfy

u
1
2 − u0

1
2∆t

, ũ + ω0 × u0, ũ

+
1

Re
ζ

1
2 ,∇× ũ − ∇p0, ũ = f0, ũ ∀ũ ∈ H(curl,Ω) (3.8)

∇× u
1
2 , ζ̃ − ζ

1
2 , ζ̃ = 0 ∀ζ̃ ∈ H(div,Ω) (3.9)

∇ · u 1
2 , p̃ = 0 ∀p̃ ∈ L2(Ω) (3.10)

To make sense of the time stepping algorithm and to understand which values are available at
which time step, consider the following table.

time step solved at k required at k previously computed

k = 0 - - u0, ζ0,v0,ω0

k = 1
2 u

1
2 , ζ

1
2 u0,ω0 u0, ζ0,ω0,v0

k = 1 v1,ω1 v0,ω0, ζ
1
2 u

1
2 , ζ

1
2 ,ω0,v0

k = 3
2 u

3
2 , ζ

3
2 u

1
2 , ζ

1
2 ,ω1 u

1
2 , ζ

1
2 ,ω1,v1

. . . . . . . . . . . .

Its easy to see how the two systems are coupled by their vorticities and how the systems are
solved alternately.

3.2 Conservation in the semi-discrete setting

3.2.1 Mass

The conservation of the divergence-free property of v ∈ H(div,Ω) is still fulfilled pointwise/strongly
due to condition (3.4). In contrast to that, the corresponding condition for u ∈ H(curl,Ω) is
again only satisfied weakly through integration by parts.

3.2.2 Energy

For this, f = 0 (or nonzero, but conservative, see the comment on that in section 1.5) and
Re = ∞ is assumed. The goal is to show that

Kk+ 1
2

1 =
1

2
uk+ 1

2 ,uk+ 1
2 , (3.11)

Kk
2 =

1

2
vk,vk (3.12)

are conserved, i.e:
Kk

1 = Kk−1
1 , Kk

2 = Kk−1
2 .
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In other words:
uk+ 1

2 ,uk+ 1
2 − uk− 1

2 ,uk− 1
2 = 0.

Adding and subtracting a term to rearrange the expression yields

uk+ 1
2 ,uk+ 1

2 − uk− 1
2 ,uk− 1

2 + uk+ 1
2 ,uk− 1

2 − uk− 1
2 ,uk+ 1

2 = 0,

applying linearity of the bilinear forms results in

uk+ 1
2 ,uk+ 1

2 + uk− 1
2 − uk− 1

2 ,uk+ 1
2 + uk− 1

2 = 0

and applying linearity again gives

uk+ 1
2 − uk− 1

2 ,uk+ 1
2 + uk− 1

2 = 0.

After adding constants to match the expression with the momentum equations (3.5) and (3.2)
one obtains

uk+ 1
2 − uk− 1

2

∆t
,
uk+ 1

2 + uk− 1
2

2
= 0, (3.13)

vk − vk−1

∆t
,
vk + vk−1

2
= 0. (3.14)

If these expressions vanish, (3.11) and (3.12) are fulfilled. As mentioned, these terms appear in
the momentum equations (3.5) and (3.2). Taking the first momentum equation and choosing

ũ :=
uk+ 1

2 + uk− 1
2

2

yields

uk+ 1
2 − uk− 1

2

∆t
,
uk+ 1

2 + uk− 1
2

2
+ ωk × uk+ 1

2 + uk− 1
2

2
,
uk+ 1

2 + uk− 1
2

2

− ∇pk,
uk+ 1

2 + uk− 1
2

2
= 0. (3.15)

Again like in the continuous setting, the second term vanishes due to orthogonality properties
of the general cross product and the third term vanishes because

∇pk,
uk+ 1

2 + uk− 1
2

2
=

1

2
∇pk,uk+ 1

2 +
1

2
∇pk,uk− 1

2 .

both of which are zero due to equation (3.7). The exact same procedure can be followed for the
conservation of K2. The dissipation rate for a finite Reynolds number can also be predicted,
which gives

uk+ 1
2 − uk− 1

2

∆t
,
uk+ 1

2 + uk− 1
2

2
= − 1

Re

ζk+
1
2 + ζk−

1
2

2
,
ζk+

1
2 + ζk−

1
2

2
=− 2

Re
Ek
ζ , (3.16)

vk − vk−1

∆t
,
vk + vk−1

2
= − 1

Re

ωk + ωk−1

2
,
ωk + ωk−1

2
=− 2

Re
Ek+ 1

2
ω . (3.17)

As Ei ≤ 0, energy is being dissipated also in the discrete setting.
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3.2.3 Helicity

Again, first Re → ∞ and zero forcing term is assumed. We take (3.5), choose the test function
ũ := ω, and apply the same process as in the continuous setting, see section 2.3.4. This yields

uk+ 1
2 − uk− 1

2

∆t
,ωk = 0. (3.18)

This is the discrete equivalent of the first term of (2.32). For the equivalent of the second term
of said equation one gets

ωk − ωk−1

∆t
,uk− 1

2 = 0. (3.19)

Equation (3.18) can be rewritten as

uk+ 1
2 − uk− 1

2

∆t
,ωk =

uk+ 1
2

∆t
,ωk − uk− 1

2

∆t
,ωk = 0, (3.20)

and similar calculations hold for (3.19). Consequentially, one concludes

uk+ 1
2 ,ωk = uk− 1

2 ,ωk = uk− 1
2 ,ωk−1 . (3.21)

As (3.18) holds for all k, it also implies that

uk− 1
2 − uk− 3

2

∆t
,ωk−1 = 0, (3.22)

and
uk+ 1

2 ,ωk = uk− 1
2 ,ωk = uk− 1

2 ,ωk−1 = uk− 3
2 ,ωk−1 (3.23)

follows immediately. Now this implies that

uk+ 1
2 ,ωk + uk− 1

2 ,ωk = 2 uk− 1
2 ,ωk

Define the primal velocity at integer time steps uk by the midpoint rule (3.1) and get

uk =
uk+ 1

2 + uk− 1
2

2
(3.24)

and by linearity

uk,ωk = uk− 1
2 ,ωk . (3.25)

Applying this procedure to uk−1 yields

Hk
1 ≡ uk,ωk = uk−1,ωk−1 ≡ Hk−1

1 . (3.26)

Now take (3.3) and choose ω̃ := uk, which leads to

ωk,uk = vk,∇× uk = vk,∇× uk+ 1
2 + uk− 1

2

2
= vk,

ζk+
1
2 + ζk−

1
2

2
(3.27)

as ζ = ∇× u pointwise. Finally by (3.1), there holds

vk,
ζk+

1
2 + ζk−

1
2

2
= vk, ζk . (3.28)
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(3.26) and the previous two equations imply

Hk
2 ≡ vk, ζk = uk,ωk ≡ Hk

1 , (3.29)

which shows the conservation. Similarly as before the dissipation rate can be analyzed: For
Re < ∞, one obtains, instead of (3.18) and (3.19)

uk+ 1
2 − uk− 1

2

∆t
,ωk = − 1

Re

ζk+
1
2 + ζk−

1
2

2
,∇× ωk , (3.30)

ωk − ωk−1

∆t
,uk− 1

2 = − 1

Re
∇× ωk + ωk−1

2
, ζk−

1
2 . (3.31)

Summation of the equations, use of linearity, canceling out 1
∆t uk− 1

2 ,ωk on the left, and

application of (3.1) to ζ and ω on the right provides

1

∆t
uk+ 1

2 ,ωk − 1

∆t
uk− 1

2 ,ωk−1 = − 1

Re
ζk,∇× ωk − 1

Re
∇× ωk− 1

2 , ζk−
1
2 . (3.32)

Similarly, (3.30) also holds for the timestep k − 1, which reads as

uk− 1
2 − uk− 3

2

∆t
,ωk−1 = − 1

Re

ζk−
1
2 + ζk−

3
2

2
,∇× ωk−1 .

Add this to (3.31), apply linearity, cancel out 1
∆t uk− 1

2 ,ωk− 1
2 on the left, apply (3.1) to ζ and

ω on the right yields:

1

∆t
uk− 1

2 ,ωk − 1

∆t
uk− 3

2 ,ωk−1 =− 1

Re
ζk−1,∇× ωk−1

− 1

Re
∇× ωk− 1

2 , ζk−
1
2 . (3.33)

Now the left hand sides of (3.32) and (3.33) are summed, and uk and uk−1 are inserted using
(3.1)

uk+ 1
2 + uk− 1

2 ,ωk

∆t
−

uk− 1
2 + uk− 3

2 ,ωk−1

∆t
= 2

uk,ωk − uk−1,ωk−1

∆t
. (3.34)

By definition, this expression is equal to

2
Hk

1 −Hk−1
1

∆t
=: 2D,

where D is the dissipation rate. The summed right hand sides of (3.32) and (3.33) are

− 2

Re
∇× ωk− 1

2 , ζk−
1
2 − ζk,∇× ωk + ζk−1,∇× ωk−1

Re
. (3.35)

Also in the case of finite Reynolds number (3.29) still holds, and therefore implies

Hk
1 −Hk−1

1

∆t
=

Hk
2 −Hk−1

2

∆t
≡ D, (3.36)

and because of the previous calculations, one arrives at

D = −
∇× ωk− 1

2 , ζ
k− 1

2
2

Re
−

ζk2 ,∇× ωk + ζk−1
2 ,∇× ωk−1

2Re
. (3.37)
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3.3 Spatial Finite Element discretization

The finite element method is a powerful numerical method that will be used to find solutions to
the given problem in the previous section. Its objective is to approximate the unknown functions
by interpolation on a finite number of elements, that make up the domain. In the following,
finite elements are formally defined.

Definition 18 (Ciarlet Finite Element). A finite element is a triple (T, V T ,ΨT ) with

• T being a bounded set,

• V T being an N -dimensional function space on T ,

• ΨT = {ψT
1 , ....ψ

T
N} being a set of N linearly independent functionals on V T .

The functionals (also called degrees of freedom) on the finite element space V T can be used to
construct a basis {ϕT

1 , ....ϕ
T
N} on the function space, by requiring

ψT
i (ϕ

T
j ) = δij . (3.38)

The basis functions allow the interpolation/basis expansion of the unknown function.

Definition 19 (Local interpolation operator). The local interpolation operator is defined as

IT : C(T ) → V T

u →
NT

j=1

ψT
j (u)ϕ

T
j .

(3.39)

Note that it is idempotent/it is a projection, i.e. IT (ITu) = ITu.

The domain in which the given problem will be solved is being denoted by Ω ⊂ Rd. It will be
divided into a finite number of elements. The result of dividing the domain into subdomains
(corresponding to the bounded set T in definition 18) is called a mesh or a triangulation.

Definition 20 (Mesh/Triangulation). A regular mesh T = {T1, ...TN} of a domain Ω ⊂ Rd is
a subdivision of Ω such that Ω = i Ti and that Ti ∩ Tj ̸=i is empty for non-neighbour elements
or exactly one common vertex/edge/face for neighbour elements.

To reduce computational complexity, the functionals and therefore also the basis functions will
be defined and computed on one standardised reference element and then transformed to each
element.

Definition 21 (Transformation to reference element). For the reference element T̂ and another
element T , let the transformation be such that

• T = F T (T̂ )

• u = û ◦ (F T )−1 for u ∈ V T , û ∈ V T̂ ,

• ψT (u) = ψT̂ (u ◦ F T ),

• F T is affine linear.

If such an F T exists, then the two elements (T, V T ,ΨT ) and (T̂ , V T̂ ,ΨT̂ ) are called affine equiv-
alent.
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(0,0)
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(0,0,1)
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y
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Figure 3.1: The reference triangle on the left and the reference tetrahedron on the right.

In the following, several types of finite elements for different function spaces (so far denoted
as V T ) will be defined. Aside from the function spaces, they also differ in how the function-
als/degrees of freedom are defined, and how continuity conditions on element boundaries are
formulated.

The following definitions are still to be understood locally on one (reference) element, indicated
by the symbol T .

3.3.1 H1(Ω)-conforming finite elements

The lowest order element for H1(Ω)-functions is defined on the local finite element space P 1. In
2D and 3D this space is respectively:

P 1(T ) := span xiyj : i+ j ≤ 1, and (x, y) ∈ T ⊂ R2 , (3.40)

P 1(T ) := span xiyjzk : i+ j + k ≤ 1, and (x, y, z) ∈ T ⊂ R3 . (3.41)

In the above definitions, i, j are exponents, and not indices. It holds that

P 1(T ) ⊆ H1(T ). (3.42)

For so called Lagrangian finite elements, the functionals on P 1 are defined as point evaluations
on the nodes of the element T :

ψT
i (u) := u|Ni (3.43)

with Ni denoting the ith node of element T . Now, a local basis of P 1(T ) can be constructed.

N1
N2

N3

x

y

N1

N2
N3

N4

x

y

z

Figure 3.2: Node numbering of reference elements.
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Lemma 22 (Lagrange basis functions on the reference triangle). Let T be the reference triangle.
Then, the Lagrange basis functions on P 1(T ) are

γ1 : (x, y, z) → 1− x− y, (3.44)

γ2 : (x, y, z) → x, (3.45)

γ3 : (x, y, z) → y, (3.46)

Proof. A numbering of the nodes as in figure 3.2 above is being used.
Note that γi ∈ P 1(T ) =⇒ γi = ai + bix + ciy with ai, bi, ci ∈ R. Using condition (3.38), one
can write down equations to find the basis functions.

ψT
1 (γ1) = γ1(0, 0) = a1

!
= 1,

ψT
2 (γ1) = γ1(1, 0) = a1 + b1x

!
= 0,

ψT
3 (γ1) = γ1(0, 1) = a1 + c1y

!
= 0.

which gives a1 = 1, b1 = c1 = −1. Writing down the conditions for γ2, γ3 yields all basis
functions. The space P 1(T ) has dimension 3, and the 3 basis functions are linearly independent.

Lemma 23 (Lagrange basis functions on reference tetrahedron). Let T be the reference tetra-
hedron. Then, the basis functions are

γ1 : (x, y, z) → 1− x− y − z, (3.47)

γ2 : (x, y, z) → x, (3.48)

γ3 : (x, y, z) → y, (3.49)

γ4 : (x, y, z) → z. (3.50)

Proof. Using the node numbering from figure 3.2 and utilizing condition (3.38), gives the respec-
tive basis functions. The space P 1(T ) has dimension 4, and the 4 basis functions are linearly
independent.

So far, we have only talked about objects that are defined locally on one element. For H1(Ω)
functions (on the whole domain Ω), the conforming function space is introduced in the following.

Definition 24 (Globally H1(Ω)-conforming space).

XP1(Ω) := {u ∈ H1(Ω) : u|T ∈ P 1(T ) ∀T ∈ T }

In theorem 6 we have mentioned that the continuity condition for H1(Ω) functions on sub-
domains is the fact that the traces on common interfaces coincide. For elements T1, T2 with
T1 ∩ T2 =: γ ̸= 0, this means that

trγ u|T1 = trγ u|T2 .

The global interpolation operator for H1(Ω) functions is such that its restriction to an element
coincides with the local interpolation operator (introduced in (3.39)). This means

(IP1u)|T = IT (u|T ) ∀T ∈ T .
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3.3.2 H(curl,Ω)-conforming finite elements

The lowest order H(curl,Ω)-conforming finite element is called Nédélec-element. The respective
local finite element space is given as

ND(T ) := span λi∇λj −∇λiλj : λi(Nj) = δij for λi ∈ P 1(T ) , (3.51)

which is a 3- or 6-dimensional space that includes all constant, and a subset of all affine-linear
functions. It holds that

ND(T ) ⊆ H(curl, T ). (3.52)

The degrees of freedom on each element are the functionals on the finite element space, which
are defined as the line integral of a function over the edges Ei of the element:

ψT
i (u) :=

Ei

u. (3.53)

The choice of the functional is the reason why this element is also categorized as an edge element.
It is essential to realize, that the edges of the element are oriented! When enforcing tangential
continuity at the intersections of two elements, the edge orientation of an element needs to be
aligned properly relative to its neighbour. In order to project functions onto ND(T ), one needs
to construct a basis.

E12

E23
E13

x

y

E12E23

E34

E13

E14

E24

x

y

z

Figure 3.3: Edge/tangential vector numbering of reference elements

As mentioned in section 2.1.1, functions in H(curl,Ω) fulfill tangential continuity. For a finite
dimensional space to be conforming to H(curl,Ω), this property is also required. The degrees
of freedom on the edges Ei therefore have to be aligned with neighbour elements properly.

Lemma 25 (Nédélec basis functions for the reference triangle). For the reference triangle, the
Nédélec basis functions are

τ12 : (x, y) →
1− y

x

 , τ13 : (x, y) →
 y

1− x

 , τ23 : (x, y) →
−y

x

 .

Proof. The hat functions/barycentric coordinates are mappings given as

λ1 : (x, y) → 1− x− y, (3.54)

λ2 : (x, y) → x, (3.55)

λ3 : (x, y) → y. (3.56)

The nodes are numbered like for the Lagrange elements in figure 3.2. Using the definition of the
space ND in (3.51) one can find the basis functions.
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It is also straight-forward to show condition (3.38), i.e. (ψT
i (τj) = δij).

As an example, the basis function τ12 is considered. The evaluation of the associated functional
with τ12 yields

ψT
12(τ12) =

E12

τ12ds

=
1

2
(τ12(E2) + τ12(E1)) · t12

=
1

2
(τ12(1, 0) + τ12(0, 0)) · (1, 0)⊺

=
1

2

1

1

+

1

0

 ·
1

0


= 1.

Any other functional, such as for example functional ψT
13 yields

ψT
13(τ12) =

E13

τ12ds

=
1

2
(τ12(E3) + τ12(E1)) · t13

=
1

2
(τ12(0, 1) + τ12(0, 0)) · (0, 1)⊺

=
1

2

0

0

+

1

0

 ·
0

1


= 0.

ND(T ) has dimension 3 and there are 3 linearly independent basis functions, which implies
ND(T ) = span{τi}.
Lemma 26 (Nédélec basis functions for the reference tetrahedron). The Nédélec basis functions
of the reference tetrahedron T are

τ12 : (x, y, z) →



1− y − z

x

x


 , τ13 : (x, y, z) →




y

1− x− z

y


 , τ14 : (x, y, z) →




z

z

1− x− y




τ23 : (x, y, z) →



−y

x

0


 , τ24 : (x, y, z) →



−z

0

x


 , τ34 : (x, y, z) →




0

−z

y


 .

Proof. The hat functions/barycentric coordinate functions on the reference tetrathedron are

λ1 : (x, y, z) → 1− x− y − z, (3.57)

λ2 : (x, y, z) → x, (3.58)

λ3 : (x, y, z) → y, (3.59)

λ4 : (x, y, z) → z. (3.60)

The nodes of the element are numbered like in figure 3.2. As in 2D, one uses the definition of
the space ND(T ) in (3.51) to construct the τi.
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The condition (3.38) is also fulfilled. The basis function τ12 is being considered as an example.
The evaluation of a functional with its associated basis function yields

ψT
12(τ12) =

E12

τ12ds

=
1

2
(τ12(E2) + τ12(E1)) · t12

=
1

2
(τ12(1, 0, 0) + τ12(0, 0, 0)) · (1, 0, 0)⊺

=
1

2




1

1

1


+



1

0

0



 ·



1

0

0




= 1.

The basis function evaluated by any other functional yields 0. As an example ψT
13 is considered

ψT
13(τ12) =

E13

τ12ds

=
1

2
(τ12(E3) + τ12(E1)) · t13

=
1

2
(τ12(0, 1, 0) + τ12(0, 0, 0)) · (0, 1, 0)⊺

=
1

2




0

0

0


+



1

0

0



 ·



0

1

0




= 0.

Checking all combinations of ψT
i and τj proves the statement. The space ND(T ) has dimension

6 and there are 6 linearly independent basis functions, implying ND(T ) = span{τi}.
Similar as in the previous section, we can now introduce the global function space for the whole
domain Ω.

Definition 27 (Globally H(curl,Ω)-conforming space).

XND(Ω) := {u ∈ H(curl,Ω) : u|T ∈ ND(T ) ∀T ∈ T }

In theorem 10 we have mentioned the continuity condition for H(curl,Ω) functions on sub-
domains. Again, the traces on common interfaces have to coincide. For elements T1, T2 with
T1 ∩ T2 =: γ ̸= 0, this means that

trγt u|T1 = trγt u|T2 .

The global interpolation operator for H(curl,Ω) functions is such that its restriction to an
element coincides with the local interpolation operator (introduced in (3.39)). This means

(INDu)|T = IT (u|T ) ∀T ∈ T .

3.3.3 H(div,Ω)-conforming finite elements

For the space H(div,Ω), the cheapest (lowest order) finite element is the so called Raviart
Thomas element of order 0 (RT0). The order denotes the regularity, a term that describes the
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number of continuous derivatives between elements. In this case, 0-regularity implies that the
normal component of the function values is continuous on the element intersections, but not
their derivatives.
The space RT 0(T ) is defined as the set of all constant functions plus some linear functions:

RT 0(T ) := a+ bx : a ∈ Rd, b ∈ R . (3.61)

It holds that
RT 0(T ) ⊆ H(div, T ). (3.62)

In 2D the space is 3 dimensional and has therefore 3 functionals/degrees of freedom in its dual
space. In 3D the space is 4 dimensional and has 4 functionals. They are defined as the integral
over the normal trace along the element faces (faces and edges coincide in 2D):

ψT
i (u) :=

Fi

u.

Because of definition 18 the element is well defined and one can construct the basis of RT 0(T ).

F12

F23

F13

x

y

F134

F124

F123

F234

x

y

z

Figure 3.4: Face/normal vector numbering of reference elements.

As mentioned in section 2.1.2, functions in H(div,Ω) fulfil normal continuity. For a finite
dimensional space to be conforming to H(div,Ω), this property is also required. The degrees of
freedom on the faces Fi have therefore be aligned with neighbour elements properly.
Note that on the 2D reference triangle, faces and edges are the same geometrical objects.

Lemma 28 (RT 0(T ) basis functions for the reference triangle). The RT 0(T ) basis functions
are given as

σ1 : (x, y) →
 −x

1− y

 , σ2 : (x, y) →
−x

−y

 , σ3 : (x, y) →
x− 1

y

 . (3.63)

Proof. One has ψT
i (σj) = δij (condition (3.38)) as well as σi =

ai

bi

+ci

x

y

 with ai, bi, ci ∈ R,

which leads to
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ψT
1 (σ1) =

F12

σ1 · n1ds =
1

0

a1

b1

+ c1

t

0

 ·
 0

−1

 dt
!
= 1,

ψT
2 (σ1) =

F23

σ1 · n2ds =
1

0

a1

b1

+ c1

 t

1− t

 · 1√
2

1

1

 dt
!
= 0,

ψT
3 (σ1) =

F13

σ1 · n3ds =
1

0

a1

b1

+ c1

0

t

 ·
−1

0

 dt
!
= 0.

The numbering of the faces (=edges in 2D) can be seen in figure 3.4.
The same 3 equations can be written down for σ2 and σ3. With these 9 equations, one finds the
9 unknown coefficients. This gives 3 linearly independent functions, which implies span(σi) =
RT 0(T ).

Lemma 29 (RT 0(T ) basis functions for the reference tetrahedron). The RT 0(T ) basis functions
are given as

σ1 : (x, y, z) →



2x

2y

2z


 , σ2 : (x, y, z) →



2− 2x

−2y

−2z


 , (3.64)

σ3 : (x, y, z) →




2x

2y − 2

2z


 , σ4 : (x, y, z) →




−2x

−2y

2− 2z


 . (3.65)

Proof. From condition (3.38) as well as σi =



ai

bi

ci


+ di



x

y

z


, one gets

ψT
1 (σ1) =

F123

σ1 · n1dA =
1

0

s−1

0




a1

b1

c1


+ d1



t

s

0



 ·




0

0

−1


 dtds

!
= 1

ψT
2 (σ1) =

F124

σ1 · n2dA =
1

0

s−1

0




a2

b2

c2


+ d2



t

0

s



 ·




0

−1

0


 dtds

!
= 0

etc.

For each σi one has 4 equations for 4 unknown coefficients, which provides the 4 linearly inde-
pendent functions, which implies span(σi) = RT 0(T ).

Similar as in the previous section, we can now introduce the global function space for the whole
domain Ω.
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Definition 30 (Globally H(div,Ω)-conforming space).

XRT0(Ω) := {u ∈ H(div,Ω) : u|T ∈ RT 0(T ) ∀T ∈ T }

In theorem 14 we have mentioned the continuity condition for H(div,Ω) functions on sub-
domains. Again, the traces on common interfaces have to coincide. For elements T1, T2 with
T1 ∩ T2 =: γ ̸= 0, this means that

trγn u|T1 = trγn u|T2 .

The global interpolation operator forH(div,Ω) functions is such that its restriction to an element
coincides with the local interpolation operator (introduced in (3.39)). This means

(IRT0u)|T = IT (u|T ) ∀T ∈ T .

3.3.4 L2(Ω)-conforming finite elements

In the space L2(Ω), piecewise-constant finite elements are used. The local finite element space
P 0 is the space of all constant polynomials.
It holds that

P 0(T ) ⊂ L2(T ). (3.66)

The functionals on P 0(T ) are
ψT
i (u) := u(rc), (3.67)

where rc denotes the center of mass of T . On the 2D reference triangle rc =
1
3 ,

1
3 , on the 3D

reference tetrahedron rc =
1
4 ,

1
4 ,

1
4 .

As the functionals on this space are point evaluations, they are again called Lagrange-elements.

rc

x

y

rc

x

y

z

Figure 3.5: Sketch of degrees of freedom.

The basis functions χi in this space are constant functions. In L2(Ω) there is no continuity
requirement on the element boundaries.

Definition 31 (Global L2(Ω)-conforming space). We denote the global function space as XP0(Ω)
and the corresponding global interpolation operator as IP0.

3.4 Assembly of the global system

Based on the discussion in the previous sections, the weak formulation (2.16) to (2.21) can now
be projected/interpolated into the global finite dimensional functions spaces setting.
The unknown functions u, ζ,v,ω, p and q are represented in these spaces by the means of the
global interpolation operators IP1, IND, IRT0, and IP0.
These operators interpolate the functions using the basis functions γ, τ , σ, and χ introduced
in the last sections. However, these basis functions were defined locally on one element and we
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need global basis functions. By identifying (i.e. removing ”duplicate”) functionals that coincide
on element interfaces and requiring (3.38) globally, for example

ψND
i (τj) = δij

one obtains global functionals, and a global function basis. We use the same symbol for a global
basis function that we have used for the local ones, i.e.

γ ∈ XP1(Ω), τ ∈ XND(Ω), σ ∈ XRT (Ω), χ ∈ XP0(Ω).

However, the index now runs over all global functionals/degrees of freedom. We denote the
number of global functionals of the function space XY with NY .
As an example consider

INDu =

NND

i=1

ψND
i (u)τi =

NND

i=1

τi
E
u

=:ui

=

NND

i=1

uiτi ∈ XND(Ω), (3.68)

with ψND
i being the global functionals on XND. Similarly for the other trial functions, there

holds:

IRT0ζ =

NRT

i=1

ζiσi ∈ XRT0(Ω), (3.69)

IP1p =

NP1

i=1

piγi ∈ XP1(Ω), (3.70)

IRT0v =

NRT

i=1

viσi ∈ XRT0(Ω), (3.71)

INDω =

NND

i=1

ωiτi ∈ XND(Ω), (3.72)

IP0q =

NP0

i=1

piχi ∈ XP0(Ω). (3.73)

Instead of testing with the infinite-dimensional test functions from the continuous setting
ũ, ζ̃, ṽ, ω̃, p̃ and q̃, the Galerkin method suggests to use the basis functions of the respective
discrete function spaces XP1(Ω), XND(Ω), XRT (Ω), and XP0(Ω). The expansions (3.69) - (3.73)
can be plugged into the continuous variational formulation (2.16) to (2.21). Again, taking u as
an example, consider equation (2.16):

∂

∂t

N

i=1

uiτi, τj + ω ×
N

i=1

uiτi , τj +
1

Re

N

i=1

ζiσi,∇× τj

+ ∇
N

i=1

piγi , τj = ⟨fi, τj⟩ ∀τj ∈ XND(Ω). (3.74)

Remarks:

• The time discretization introduced in (3.2)-(3.7) has not been applied, to make the equa-
tions simpler and to demonstrate the spatial discretization.

• The coefficients ui, ζi, pi (and qi) are the unknowns, and therefore defined at the ”new”
timestep. They are real numbers.
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• The basis functions τi,σi, γi (and χi for X
P0(Ω)) do not change in time.

• The function ω is borrowed from the second momentum equation, and is therefore from
the last time step. It is a known function in XND(Ω).

As a last step, the unknown coefficients ui, ζi, pi can be factored out from the bilinearforms.
Together with the time discretization (3.5) the momentum equation becomes:

1

∆t

NND

i=1

τi, τj u
k+ 1

2
i − u

k− 1
2

i +
1

2
ωk ×

NND

i=1

τi , τj u
k+ 1

2
i + u

k− 1
2

i

+
1

2Re

NRT

i=1

σi,∇× τj ζ
k+ 1

2
i + ζ

k− 1
2

i −
NP1

i=1

∇γi, τj pki = fk, τj ∀τj ∈ XND(Ω).

The old time steps can be moved to the right, and the whole equation can be written in matrix-
vector products.

3.4.1 Fully discrete system

In the following, the symbol u⃗ denotes vectors in linear algebra formulation of the assembled
system of equations. There, each component ui is the expansion coefficient of the discrete
variable from (3.68). The matrices induced by the inner products are given as

Mij = ⟨τj , τi⟩
Nij = ⟨σj ,σi⟩
Cij = ⟨∇ × τj ,σi⟩
Dij = ⟨∇ · σj , χi⟩
Gij = ⟨∇γj , τi⟩

R
k− 1

2
ij = ζk−

1
2 × σj ,σi

Rk
ij = ωk × τj , τi

f
k− 1

2
i = fk− 1

2 ,σi

fki = fk, τi

Notice the index ordering: each matrix is defined in a ”transposed” way. This way, the matrix-
vector product formulation works out. This procedure leads to two fully discrete, linear systems.
The problem becomes:

given ω⃗k−1, v⃗k−1, fk−
1
2 , ζ⃗k−

1
2 ∈ XND(Ω)×XRT (Ω)×XP0(Ω)×XRT (Ω)

seek ω⃗k, v⃗k, q⃗k−
1
2 ∈ XND(Ω)×XRT (Ω)×XP0(Ω)

such that they satisfy

N
v⃗k − v⃗k−1

∆t
+Rk− 1

2
v⃗k + v⃗k−1

2
+

1

Re
C
ω⃗k + ω⃗k−1

2
−D⊺p⃗k−

1
2 = fk−

1
2

C⊺v⃗k −Mω⃗k = 0

Dv⃗k = 0

and further, given u⃗k−
1
2 , ζ⃗k−

1
2 , fk, ω⃗k ∈ XND(Ω)×XRT (Ω)×XP0(Ω)×XND(Ω)
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seek pk, u⃗k+
1
2 , ζ⃗k+

1
2 ∈ XP1(Ω)×XND(Ω)×XRT (Ω)

such that they satisfy

M

u⃗k+
1
2 − u⃗k−

1
2

∆t
+Rk u⃗

k+ 1
2 + u⃗k−

1
2

2
+

1

Re
C⊺ ζ⃗

k+ 1
2 + ζ⃗k−

1
2

2
+ Gp⃗k = fk

C
k+ 1

2
1 −Nζ⃗k+

1
2 = 0

G⊺u⃗k+
1
2 = 0

The matrices and vectors from above can be written in two large blockmatrix systems:


1
∆t N+ 1

2R
k− 1

2
1

2ReC −D⊺

C⊺ −M 0

D 0 0




v⃗k

ω⃗k

q⃗k−
1
2

 =


1
∆t N− 1

2R
k− 1

2 v⃗k−1 − 1
2ReCω⃗

k−1 + fk−
1
2

0

0




1
∆tM+ 1

2R
k 1

2ReC
⊺ G

C −N 0

G⊺ 0 0




u⃗k+
1
2

ζ⃗k+
1
2

p⃗k

 =


1
∆tM− 1

2R
k u⃗k−

1
2 − 1

2ReC
⊺ζ⃗k−

1
2 + fk

0

0

 .

Interpretation:

• The fact, that the coupling of the two fields by the two vorticities ω and ζ is removed,
leads to a much faster computation time. In each time step only one of the two systems
is solved.

• Aside from linearizing the convective terms, another benefit of the dual representation of
each unknown is that the difference between the two solutions can be used as an error
indicator.

• In the continuous setting, the nonlinear convective terms where not well-defined, see section
2.2.1. The discrete representation of these convective terms, Rk, and Rk+ 1

2 , are now
well-defined. This is because in the discrete setting, the functions ω, ζ,σ, and τ are
interpolations of the respective continuous functions.

3.4.2 Euler step in the discrete setting

As mentioned in section 3.1.1, the first time step of the primal variables has to be done by using
an explicit integration scheme, such as the Euler method. The proposed Euler step from before
can also be converted into the fully discrete linear algebra language.

2
∆tM+R0 1

ReC
⊺ G

C −N 0

G⊺ 0 0



u⃗

1
2

ζ⃗
1
2

p⃗0

 =


2
∆tMu⃗0 + f0

0

0


The submatrices are the same as defined before.
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3.5 Conservation in the fully discrete setting

3.5.1 Discrete de Rham complex

Equation 2.22, the de Rham complex, is essential for the following conservation proofs. To
construct structure-preserving discretizations, these properties have to be transported into the
discrete setting. The sections 3.3.1 - 3.3.4 have introduced spaces that fulfil a discrete de Rham
complex. It holds that

H1(Ω)
∇−→ H(curl,Ω)

curl−→ H(div,Ω)
div−→ L2(Ω)

↓IP1 ↓IND ↓IRT0 ↓IP0

XP1(Ω)
∇−→ XND(Ω)

curl−→ XRT0(Ω)
div−→ XP0(Ω)

(3.75)

The diagram commutes. Again, e.g.:

range(∇) = ker(curl),

which now also works for the ”lower” line of the de Rham complex that contains the discrete
spaces.

3.5.2 Transfer of conservation properties

As also discussed in [YR22], the choice of the finite-dimensional subspaces (Finite Element
spaces) which form a discrete de Rham sequence, allows the transfer of the conservation prop-
erties into the fully discrete setting.
Based on the continuity requirements of the trace operators introduced in the beginning of
chapter 2 (theorems 6, 10, and 14), the conditions for element interfaces in the global finite
dimensional spaces were discussed (see sections 3.3.1 to 3.3.3). Therefore, the basis functions
used to interpolate the trial functions have a certain type of continuity on these interfaces. As
the lower line of the de Rham complex (the ”discrete de Rham complex”) in (3.75) also holds,
all proofs carried out in section 3.2 can be carried out equally in the finite dimensional function
spaces, and therefore in the fully discrete setting.

3.6 The semi-discrete Dirichlet problem

Similar as in section 3.1, a temporal semi-discretization is derived from (2.43) to (2.48). The
ordering of equations is now flipped to represent the ordering in which the unknowns are being
computed.

Given ωk−1,vk−1,fk− 1
2 , ζk−

1
2 ∈ H0(curl,Ω)×H0(div,Ω)× L2(Ω)

d ×H(div,Ω)

seek ωk,vk, qk−
1
2 ∈ H0(curl,Ω)×H0(div,Ω)× L2(Ω)

such that they satisfy

vk − vk−1

∆t
, ṽ + ζk−

1
2 × vk + vk−1

2
, ṽ

1

Re
∇× ωk + ωk−1

2
, ṽ − qk−

1
2 ,∇ · ṽ = fk− 1

2 , ṽ ∀ṽ ∈ H0(div,Ω) (3.76)

vk,∇× ω̃ − ωk, ω̃ = 0 ∀ω̃ ∈ H0(curl,Ω) (3.77)

∇ · vk, q̃ = 0 ∀q̃ ∈ L2(Ω) (3.78)
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And for the second system (equations (2.43) to (2.45)) we get the following problem:

given uk− 1
2 , ζk−

1
2 ,fk,ωk ∈ H(curl,Ω)×H(div,Ω)× L2(Ω)

d ×H(curl,Ω)

seek pk,uk+ 1
2 , ζk+

1
2 ∈ H1(Ω)×H(curl,Ω)×H(div,Ω)

such that

uk+ 1
2 − uk− 1

2

∆t
, ũ

+ ωk × uk+ 1
2 + uk− 1

2

2
, ũ

+
1

Re

ζk+
1
2 + ζk−

1
2

2
,∇× ũ − ∇pk, ũ = fk, ũ

+
1

Re
(ζk × n), ũ

∂Ω
∀ũ ∈ H(curl,Ω) (3.79)

∇× uk+ 1
2 , ζ̃ − ζk+

1
2 , ζ̃ = 0 ∀ζ̃ ∈ H(div,Ω) (3.80)

uk+ 1
2 ,∇p̃ = uk · n, p̃

∂Ω
∀p̃ ∈ H1(Ω) (3.81)

Interpretation

• As before, these two sets of three equations each are being solved alternately.

• The value ζk−
1
2 in equation (3.76) is computed in equations (3.79) to (3.81).

• The value ωk in equation (3.78) is computed in equations (3.76) to (3.78).

• In order to find u
1
2 , ζ

1
2 , an explicit Euler method is applied to equation (2.43).

• The values ζk and uk are computed using boundary data.

3.7 Conservation properties

We continue with the discussion of the conservation properties of the temporally discretized
Dirichlet scheme.

3.7.1 Mass

The conservation of the divergence-free property of v ∈ H(div,Ω) is still fulfilled pointwise
(or strongly), due to condition (3.76). In contrast to that, the corresponding condition for
u ∈ H(curl,Ω) is only satisfied weakly and only up to the boundary contribution from (3.81).

3.7.2 Energy

Again, f = 0. Like derived in section 3.2 the goal is to show

uk+ 1
2 − uk− 1

2

∆t
,
uk+ 1

2 + uk− 1
2

2
= 0, (3.82)

vk − vk−1

∆t
,
vk + vk−1

2
= 0. (3.83)
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For that, consider equation (3.79) and choose

ũ :=
uk+ 1

2 + uk− 1
2

2
,

which results in a rather lengthy expression:

uk+ 1
2 − uk− 1

2

∆t
,
uk+ 1

2 + uk− 1
2

2
+ ωk × uk+ 1

2 + uk− 1
2

2
,
uk+ 1

2 + uk− 1
2

2

+
1

Re

ζk+
1
2 + ζk−

1
2

2
,∇× uk+ 1

2 + uk− 1
2

2
− ∇pk,

uk+ 1
2 + uk− 1

2

2

= fk,
uk+ 1

2 + uk− 1
2

2
+

1

Re
(ζk × n),

uk+ 1
2 + uk− 1

2

2
∂Ω

.

The second term vanishes due to orthogonality. The forth term is equal to:

∇pk,
uk+ 1

2 + uk− 1
2

2
=
1

2
∇pk,uk+ 1

2 +
1

2
∇pk,uk− 1

2

=
1

2
uk− 1

2 · n, p̃
∂Ω

+
1

2
uk− 3

2 · n, p̃
∂Ω

,

see (3.81). The fifth term is zero as f = 0 and the last term remains. Therefore:

uk+ 1
2 − uk− 1

2

∆t
,
uk+ 1

2 + uk− 1
2

2
= − 1

Re

ζk+
1
2 + ζk−

1
2

2
,∇× uk+ 1

2 + uk− 1
2

2

− 1

2
uk− 1

2 · n, p̃
∂Ω

− 1

2
uk− 3

2 · n, p̃
∂Ω

+
1

Re
(ζk × n),

uk+ 1
2 + uk− 1

2

2
∂Ω

. (3.84)

In case of zero-normal velocity u on the boundary and zero-tangential vorticity ζ on the bound-
ary, the dissipation rate is again proportional to the inverse of the Reynolds number and the
enstrophy E . Therefore, the energy is either conserved or dissipated, as E > 0.
In case of the dual velocity v, the result can be obtained similarly, except without the boundary
integrals. One obtains

vk − vk−1

∆t
,
vk + vk−1

2
= − 1

Re
∇× ωk + ωk−1

2
,
vk + vk−1

2
. (3.85)

When applying constraints (3.77) and (3.80), one sees that these dissipation rates is in fact
proportional to E , as defined in end of section 1.5.

3.7.3 Helicity

As discussed in section 2.5.3, in general helicity is not conserved.

3.8 The fully discrete Dirichlet problem

In addition to the matrices introduced at the beginning of section 3.4.1, two more terms have
to be included in the discrete system: the boundary terms from equations (3.79), and (3.81).
These new terms read as:

rki =
1

Re
ζk × n, τi

∂Ω
,

gk
i = uk · n, γi

∂Ω
.
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As mentioned at the end of section 2.4, these terms get added to the right hand side and result
in the following problem:

given ω⃗k−1, v⃗k−1, fk−
1
2 , ζ⃗k−

1
2 ∈ XND(Ω)×XRT (Ω)×XP0(Ω)×XRT (Ω)

seek ω⃗k, v⃗k, q⃗k−
1
2 ∈ XND(Ω)×XRT (Ω)×XP0(Ω)

such that they satisfy:

N
v⃗k − v⃗k−1

∆t
+Rk− 1

2
v⃗k + v⃗k−1

2
+

1

Re
C
ω⃗k + ω⃗k−1

2
−D⊺p⃗k−

1
2 = fk−

1
2

C⊺v⃗k −Mω⃗k = 0

Dv⃗k = 0

and further, given u⃗k−
1
2 , ζ⃗k−

1
2 , fk, ω⃗k, rk,gk ∈ XND(Ω) × XRT (Ω) × XP0(Ω) × XND(Ω) ×

XP0(Ω)×XP0(Ω)

seek pk, u⃗k+
1
2 , ζ⃗k+

1
2 ∈ XP1(Ω)×XND(Ω)×XRT (Ω)

such that they satisfy:

M

u⃗k+
1
2 − u⃗k−

1
2

∆t
+Rk u⃗

k+ 1
2 + u⃗k−

1
2

2
+

1

Re
C⊺ ζ⃗

k+ 1
2 + ζ⃗k−

1
2

2
+ Gp⃗k = fk + rk

C
k+ 1

2
1 −Nζ⃗k+

1
2 = 0

G⊺u⃗k+
1
2 = gk

As in the periodic case, we reformulate the above equations into a large matrix system:


1
∆t N+ 1

2R
k− 1

2
1

2ReC −D⊺

C⊺ −M 0

D 0 0




v⃗k

ω⃗k

q⃗k−
1
2

 =


1
∆t N− 1

2R
k− 1

2 v⃗k−1 − 1
2ReCω⃗

k−1 + fk−
1
2

0

0

 ,


1
∆tM+ 1

2R
k 1

2ReC
⊺ G

C −N 0

G⊺ 0 0




u⃗k+
1
2

ζ⃗k+
1
2

p⃗k

 =


1
∆tM− 1

2R
k u⃗k−

1
2 − 1

2ReC
⊺ζ⃗k−

1
2 + fk + rk

0

gk

 ,

and present the adapted Euler step
2
∆tM+R0 1

ReC
⊺ G

C −N 0

G⊺ 0 0



u⃗

1
2

ζ⃗
1
2

p⃗0

 =


2
∆tMu⃗0 + f0 + r0

0

g0

 ,

which computes u⃗
1
2 and ζ⃗

1
2 from the initial data.

3.9 Conservation properties

As mentioned in section 3.5, the discrete de Rham complex (3.75) plays an essential role in
transferring conservation properties from the continuous level into the finite dimensional function
spaces. Section 3.7 showed, that mass and energy are conserved by the adapted scheme for the
Dirichlet problem, while helicity is not in general. Based on a similar reasoning as laid out in
section 3.5, these two quantities are also conserved in the discrete setting.
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Numerical experiments

Both the periodic as well as the Dirichlet scheme is implemented in the C++ software library MFEM.
More information can be found following this link: https://mfem.org. The implementation of
both schemes is available under this link: https://github.com/markusrenoldner/MEHCscheme.

As mentioned in the introduction of chapter 1, a general solution to the Navier-Stokes equations
is not available. To test numerical methods that compute approximate solutions, one is faced
with the challenge of determining whether a method produces a ”good” approximation to this
unknown solutions. Typically, convergence tests are employed that compute whether a certain
error of the approximation gets smaller by refining the mesh size. However, one cannot just
compare the numerical approximation to the exact solution, as the latter is not available. One
popular approach is the idea of manufactured/forced solutions.

4.1 Manufactured solutions

We consider a generic differential equation problem, with an unknown solution u, a differential
operator L and a right hand side f , with

L(u) = f.

If an arbitrary solution u∗ is set in advance, then plugging this into L results in the right hand
side f∗:

f∗ := L(u∗).

u∗ has to have enough regularity. Moreover, it must fulfil the boundary conditions, the vorticity
contraint, and divergence-free condition. Ideally, it should also be representable by elementary
functions or a programming routine. The problem to find u which solves

L(u) = f∗

with the very particular chosen right hand side, has the known solution

u = u∗.

Now the scheme can be tested by setting a manufactured solution u∗, finding the corresponding
right hand side f∗, setting the correct initial value u∗|t=0 and boundary values u∗|∂Ω, and then
checking, if the scheme finds this solution.
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4.2 Convergence tests on periodic domains

For the convergence tests of the scheme, the so called Taylor-Green vortex solution (see a
projection onto the xy-plane in figure 4.1) is being used:

u∗ : (x, y, z, t) →




cos(πx) sin(πy)e−2tν

− sin(πx) cos(πy)e−2tν

0


 . (4.1)

Here ν = 1
Re = µ

ρ , compare with (1.8). The vorticity is just ω∗ := ∇ × u∗. This solution is
particularly handy, as the right hand side

f∗ :=
∂

∂t
u∗ + ω∗ × u∗ +

1

Re
∇× ω∗

is curl-free: ∇× f∗ = 0. This means, it is conservative (∃ψ with ∇ψ = f∗) and can be treated
as an extended pressure, see section 1.5. That means, it can be set to 0 in the simulation run,
which is practical implementation wise.

For Re → ∞, the Taylor-Green vortex solution becomes stationary:

u∗ : (x, y, z, t) →




cos(πx) sin(πy)

− sin(πx) cos(πy)

0


 . (4.2)

The velocity field u∗ is visualized in figure 4.1.
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Figure 4.1: The Taylor-Green vortex solution.

The simulation domain is
Ω := [−1, 1[3

with a periodic boundary. The objective is to show:

∥u− u∗∥2 h→0−−−→ 0, (4.3)

∥v − v∗∥2 h→0−−−→ 0, (4.4)

∥u− v∥2 h→0−−−→ 0. (4.5)
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In figure 4.2, we can see the experimental convergence results.
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(b) Re → ∞
Figure 4.2: Convergence test of the scheme on a periodic domain, based on the Taylor-Green vortex
solution with ∆t = 0.05.

We clearly observe the expected convergence behaviour for all three characteristic errors. More
test results can be found in [YR22].
The error ∥u − v∥2 is bounded by the sum the of the individual errors of the velocity fields.
This can be shown by the triangle inequality:

∥u− v∥2 = ∥u− v + u∗ − u∗∥2 ≤ ∥u− u∗∥2 + ∥v − u∗∥2. (4.6)

Indeed, figure 4.2 shows that this property is fulfilled.

4.3 Conservation tests on periodic domains

As mentioned, the second important property of the scheme, next to convergence, is the conser-
vation of mass, kinetic energy and helicity. As mentioned before (in sections 1.5, 2.3, 3.2, and
3.5), it is supposed that f := 0 and Re → ∞.

For the conservation test, the solution, from [YR22], is used:

u∗ : (x, y, z, t) →



cos(2πz)

sin(2πz)

sin(2πx)


 , (4.7)

and again ω∗ := ∇× u∗ and ∇× f = 0. The velocity field is visualized in figure 4.3.
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Figure 4.3: Left: xz-plane, right: xy-plane.

In this case, u∗ is not a manufactured solution, but rather an initial condition. f is set to 0
and the flow field is free to evolve according to the equations. The analytical solution is unknown.

As described in section 3.2, it is expected to get

Dv⃗k = 0, (4.8)

G⊺u⃗k+
1
2 = 0, (4.9)

Kk+ 1
2

1 −Kk− 1
2

1 = 0, (4.10)

Kk+ 1
2

2 −Kk− 1
2

2 = 0, (4.11)

Hk+ 1
2

1 −Hk− 1
2

1 = 0, (4.12)

Hk+ 1
2

2 −Hk− 1
2

2 = 0 (4.13)

for all k. The matrices in the first two lines represent the divergence operators. In figures 4.4,
4.5, and 4.6, we can see the experimental conservation results.
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Figure 4.4: Mass conservation properties of periodic problem with ∆t = 0.05.
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Figure 4.5: Energy conservation properties of periodic problem with ∆t = 0.05.

0 2 4 6 8 10

t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

H
i

1e 11

H1

H2

(a) Re = 100

0 2 4 6 8 10

t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
H
i

1e 11

H1

H2

(b) Re → ∞
Figure 4.6: Helicity conservation properties of periodic problem with ∆t = 0.05.

We can observe, that the data lines are at the order of 10−11 to 10−12, except for some initial
spikes. This means all three quantities are numerically conserved by the simulation.

4.4 Convergence tests for the Dirichlet problem

In the following, the implementation of the Dirichlet problem is numerically tested.

4.4.1 Simple test case

Again, the technique of manufactured solutions was employed, see section 4.1 for an introduction.
Consider

u∗ : (x, y, z) →



sin(y)

sin(z)

0


 . (4.14)
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From this, one gets

ω∗ : (x, y, z) →



− cos(z)

0

− cos y


 , (4.15)

and an appropriate function

f∗ := u∗ × ω∗ +
1

Re
∇× ω∗

enforcing the solutions above. Here, the simulation domain is the cube

Ω := [0, 1]3

with a periodic boundary (see section 2.2). The time step size is scaled proportionally with the
mesh size.
In the following, we see the experimental results. The simulation is run for different Reynolds
numbers to investigate the code behaviour in viscous and inviscid scenarios. Furthermore, not
only do we compute the L2-error of both velocity fields with respect to the analytical solution
u∗, but also the error between the two velocity fields, given as

∥u− v∥2.

The goal is again to observe error convergence in the L2-norm induced by the refinement of the
element size h.

∥u− u∗∥2 h→0−−−→ 0 (4.16)

∥v − v∗∥2 h→0−−−→ 0 (4.17)

∥u− v∥2 h→0−−−→ 0. (4.18)
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(b) Re → ∞
Figure 4.7: Dirichlet problem with initial time step ∆t = 0.01 and simple test case.

The initial time step is ∆t = 0.01, and gets scaled by the factor 0.5 in each h-refinement step.
The result is visualized in figure 4.7. We observe second order algebraic convergence for u
and first order convergence for v. This results in first order convergence of ∥u − v∥2. The
reason for this unexpected second order convergence is to be investigated. Numeric values of
the convergence errors are available in table 4.1.
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Re h ∥u− u∗∥2 ∥v − u∗∥2 ∥u− v∥2 upper bound

1 1 0.006628570114628 0.398148612608578 0.391586895520635 0.404777183

1 0.5 0.008307301320286 0.200180356636513 0.200330545008355 0.208487658

1 0.25 0.002232597196012 0.098044051690552 0.097923625209320 0.100276649

1 0.125 0.000565064956576 0.048978316388722 0.048970197989106 0.049543381

1 0.0625 0.000141930771266 0.024484870179413 0.024483872950107 0.024626801

∞ 1 0.006728776980671 0.398149435237438 0.391490754428929 0.404878212

∞ 0.5 0.008328292452058 0.196610489356292 0.196043593196481 0.204938782

∞ 0.25 0.002228741730293 0.098025217955023 0.097960519049936 0.10025396

∞ 0.125 0.000564117238773 0.048978316312136 0.048970411113299 0.049542434

∞ 0.0625 0.000141779654244 0.024484870147842 0.024483891923531 0.02462665

Table 4.1: Dirichlet convergence results for the simple test case and first order polynomials.

In the last column of table 4.1, the sum of the two errors is presented, providing an upper bound
for ∥u− v∥2, as mentioned in (4.6):

∥u− v∥2 ≤ ∥u− u∗∥2 + ∥v − u∗∥2. (4.19)

This property is fulfilled by the simulation.
Next, we repeat the same convergence analysis with second order polynomials. The Finite Ele-
ment spaces introduced in sections 3.3 were based on the lowest order basis functions available.
By increasing the number of degrees of freedom (i.e. functionals) on each element, higher order
polynomials can be used for the interpolation. This results in a faster convergence.
The initial time step size is ∆t = 0.0001, and gets scaled by a factor of 0.5 in each h-refinement
step.
The result is visualized in figure 4.8. We observe second order algebraic convergence for v, and
third order for u. Again, the convergence order of u is higher by one degree, which has to
be investigated further. We observe second order convergence of ∥u − v∥2, according to our
expectations.
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Figure 4.8: Dirichlet problem with ∆t = 0.0001 and simple test case, polynomial order 2.
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We present the numeric values of this simulation run in table 4.2. The sum of the individual
errors of the velocity field again serves as an upper bound for ∥u− v∥2.

Re h ∥u− u∗∥2 ∥v − u∗∥2 ∥u− v∥2 upper bound

1 1 0.008005403333848 0.006346807240612 0.011249816066726 0.014352211

1 0.5 0.000980947844309 0.003334822183735 0.003519246033795 0.00431577

1 0.25 0.000122066370995 0.000905247685748 0.000915893255160 0.001027314

1 0.125 0.000015240892530 0.000230483767606 0.000231115426870 0.000245725

∞ 1 0.008005592985507 0.006276244779475 0.011152394282438 0.014281838

∞ 0.5 0.000981129525541 0.003334828940359 0.003519546289255 0.004315958

∞ 0.25 0.000122103523918 0.000905248069786 0.000915993904077 0.001027352

∞ 0.125 0.000015246664203 0.000230483791941 0.000231144460241 0.00024573

Table 4.2: Dirichlet convergence results for the simple test case and second order polynomials.

4.4.2 Static Taylor-Green vortex

In order to test a more complex solution, we consider the static Taylor-Green vortex. The
velocity field is defined as

u∗ : (x, y, z, t) →




cos(x) sin(y)

− sin(x) cos(y)

0


 ,

and the vorticity field reads as

ω∗ : (x, y, z, t) →




0

0

−2 cosx cos y


 .

The corresponding forcing term producing this solution is

f∗ := u∗ × ω∗ +
1

Re
∇× ω∗.

Similar as before, we study convergence of the three characteristic errors. The initial time step
size of the simulation is ∆t = 0.01, which is scaled by a factor of 0.5 in each mesh refinement
step. The computation is being executed in the viscous case with Re = 1 and in the inviscid
limit case. First, we run the simulation with first order polynomials.
In the following, the convergence results are presented.
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Figure 4.9: Dirichlet problem with ∆t = 0.01 and static Taylor-Green vortex.

In figure 4.9, we can see the errors plotted over the refinement parameter. We observe first order
convergence for all errors, as indicated by the trend lines.
The numerical values of the simulation run are available in table 4.3. Again, ∥u−v∥2 is bounded
by the individual errors, as described in (4.19).

Re h ∥u− u∗∥2 ∥v − u∗∥2 ∥u− v∥2 upper bound

1 1 0.014979725687275 0.382122725318314 0.384954954889798 0.397102451

1 0.5 0.016040911244075 0.193013919771353 0.195847673579863 0.209054831

1 0.25 0.008065063706084 0.094100652643297 0.094331702420279 0.102165716

1 0.125 0.004041467773636 0.046998305809297 0.047165292758361 0.051039774

1 0.0625 0.002022055367185 0.023494669357557 0.023580711948304 0.025516725

∞ 1 0.017579390530157 0.382126799975606 0.391555964937185 0.399706191

∞ 0.5 0.015673010784122 0.188703214355522 0.190070277071841 0.204376225

∞ 0.25 0.008019208940548 0.094067644530848 0.094489481391918 0.102086853

∞ 0.125 0.004035764006117 0.046998387034079 0.047181212736714 0.051034151

∞ 0.0625 0.002021373099056 0.023494679275140 0.023582727794630 0.025516052

Table 4.3: Dirichlet convergence results for the static Taylor-Green case and first order polynomials.

Next, we perform the simulation with the static Taylor-Green vortex with second order polyno-
mials. The initial time step size is ∆t = 0.0001 and the time step refinement is being performed
according to the previous experiments. The results are visualized in 4.10.
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Figure 4.10: Dirichlet problem with ∆t = 0.0001 and static Taylor-Green vortex, polynomial order 2.

This is now the first convergence test in which the error ∥u−v∥2 is not visually overlaid by one
of the individual errors. The reason is that both ∥u∥2 and ∥v∥2 have values of similar decimal
order. These values are presented in table 4.4.

Re h ∥u− u∗∥2 ∥v − u∗∥2 ∥u− v∥2 upper bound

1 1 0.016507721126609 0.006262822381964 0.018491314018883 0.022770544

1 0.5 0.003700770041315 0.003201201955722 0.004921792598675 0.006901972

1 0.25 0.000898723281834 0.000868691502419 0.001251439211959 0.001767415

1 0.125 0.000223024467376 0.000221164274436 0.000314153121369 0.000444189

∞ 1 0.016508067364217 0.006120429946462 0.018308206754946 0.022628497

∞ 0.5 0.003700867911462 0.003201215212636 0.004922216910205 0.006902083

∞ 0.25 0.000898733185419 0.000868692268736 0.001251581188609 0.001767425

∞ 0.125 0.000223025209084 0.000221164322487 0.000314192392966 0.00044419

Table 4.4: Dirichlet convergence results for the static Taylor-Green case and second order polynomials.

In figures 4.11, and 4.12, we have visualized the exact solution of the Taylor-Green vortex, as
well as the solution computed by the scheme.
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(a) Exact solution (b) Simulated solution u ∈ H(curl,Ω)

Figure 4.11: Comparison of the exact and simulated solution for the Taylor-Green vortex convergence
test, after 3 refinement steps.

(a) Exact solution (b) Simulated solution u ∈ H(curl,Ω)

Figure 4.12: Comparison of the exact and simulated solution for the Taylor-Green vortex convergence
test, after 4 refinement steps.

4.4.3 Dynamic, decaying Taylor-Green vortex

An example of a known time-dependent solution of the Navier-Stokes equations is the decaying
Taylor-Green vortex with the velocity field

u∗ : (t, x, y, z) →




cos(x) sin(y)e−2t/Re

− sin(x) cos(y)e−2t/Re

0


 ,
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and the vorticity field

ω∗ : (x, y, z, t) →




0

0

−2 cosx cos y exp−2t/Re


 .

The corresponding forcing term producing this solution is

f∗ := u∗ × ω∗ +
1

Re
∇× ω∗.

Similar as before, we study error convergence. The initial time step size is again ∆t = 0.01
scaled as before. The computation is being executed in the viscous case with Re = 1 and in the
inviscid limit case. We use first order polynomials.
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(b) Re → ∞
Figure 4.13: Dirichlet problem with ∆t = 0.01 and dynamic Taylor-Green vortex.

We have first order convergence for both velocity fields, see 4.13. The numeric values are
presented in table 4.5.

Re h ∥u− u∗∥2 ∥v − u∗∥2 ∥u− v∥2 upper bound

1 1 0.0175546909023 0.3819411198245 0.3913326371271 0.399495811

1 0.5 0.0153630713535 0.1886407945622 0.1900001043699 0.204003866

1 0.25 0.0080052172660 0.0940440506757 0.0944640528941 0.102049268

1 0.125 0.0040342338953 0.0469879726482 0.0471700743576 0.051022207

1 0.0625 0.0020209065236 0.0234897568201 0.0235772653149 0.025510663

∞ 1 0.0175793905301 0.3820175156878 0.3914493130797 0.399596906

∞ 0.5 0.0153649109698 0.1886789843780 0.1900427041839 0.204043895

∞ 0.25 0.0080069029913 0.0940630152283 0.0944847837769 0.102069918

∞ 0.125 0.0040351191423 0.0469974108627 0.0471801892679 0.05103253

∞ 0.0625 0.0020212628147 0.0234944577745 0.0235824674407 0.025515721

Table 4.5: Dirichlet convergence results for the dynamic Taylor-Green case and first order polynomials.
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4.5 Conservation tests for the Dirichlet problem

In this section, the conservation properties derived in sections 3.7 and 3.9 are analyzed nu-
merically. An initial condition for the velocity and vorticity fields is utilized, together with
appropriate boundary data. As mentioned in the conservation proofs on the continuous and
discrete level, conservation of energy only holds in cases of vanishing boundary integrals. Intu-
itively speaking: we do not want transport of energy across the domain boundaries, therefore we
set the (normal component of the) velocity to zero. For this, we construct a non-trivial initial
velocity field. The requirements are:

• Vanishing boundary conditions

• Enough regularity

• Vorticity contraint fulfilled

• Divergence-free condition fulfilled

• Representability by elementary functions or programming routine

We start with a simple divergence-free vortex:

u0 : (x, y, z) →




y

−x

0


 .

To enforce vanishing boundary conditions with enough regularity, the velocity is multiplied by
a bump-function that vanishes at a certain radius around the origin. It is given as

b : (x, y, z) → cos4(K(x2 + y2 + z2)).

The radius where b vanishes is

RK =
1

2

2π

K
.

K has to be chosen such that u0 vanishes within Ω. The resulting velocity initial condition is

u0 : (x, y, z) →




cos4(K(x2 + y2 + z2)) ·


 y

−x

0


 if x2 + y2 + z2 < R2

K

0 else.

(4.20)

The initial vorticity is given as

ω0 : (x, y, z) → ∇× u0 if x2 + y2 + z2 < R2
K

0 else,

which fulfils the vorticity constraint. f is set to 0 and the evolution of the flow is being observed.
The analytical solution is not available.
We now want to investigate the conservation properties of the implementation. We expect a
divergence-free velocity field and a conservation of kinetic energy. As the primal divergence-free
condition now contains a boundary integral, see section 3.8, we now expect

Dv⃗k = 0, (4.21)

G⊺u⃗k+
1
2 − gk−

1
2 = 0, (4.22)
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and for the kinetic energies (in the inviscid limit case)

Kk+ 1
2

1 −Kk− 1
2

1 = 0, (4.23)

Kk+ 1
2

2 −Kk− 1
2

2 = 0. (4.24)

The simulation is run with a time step size of ∆t = 0.05. The results are presented in figures
4.14 and 4.15. Both the viscous case and in the inviscid limit case, i.e. with Re → ∞ are being
analyzed.
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Figure 4.14: Mass-conservation properties of Dirichlet problem with ∆t = 0.05.

As mentioned before, in the viscous case, energy is being dissipated. In the figure 4.15, this is
corrected by the predicted dissipation rate, see (3.84).
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Figure 4.15: Energy-conservation properties of Dirichlet problem with ∆t = 0.05.

As visible both the divergence-free condition and the kinetic energy conservation are being
reproduced by the simulation.

4.5.1 Helicity conservation

It turns out, the previous conservation test, with the initial velocity (4.20) also conserves helicity
in both the viscous and the inviscid limit case. The result is presented in figure 4.16.
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Figure 4.16: Helicity-conservation properties of Dirichlet problem with ∆t = 0.05.

One hypothesis for the reason for this behaviour is that by choosing u0 like described above,
see (4.20), the boundary values of the velocity and vorticity vanish. Therefore, we might have
implicitly chosen functions that are elements of the function spaces which form a de Rham
complex with essential boundary conditions, see 2.56.
This behaviour is to be investigated more thoroughly in the future.
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Conclusion

In this thesis, a structure-preserving dual-field scheme for the incompressible Navier-Stokes prob-
lem from [YR22] was extended to a much more realistic, non-periodic problem with Dirichlet
boundary conditions. The convergence and conservation results of the original scheme for pe-
riodic domains were reproduced. Furthermore, numerical experiments for the convergence and
conservation properties of the new method for non-periodic domains were presented.
The results not only show the expected convergence behaviour, but also point out several other
benefits of the proposed method. Firstly, the linearization of the convective term by the means of
a staggered time integrator results in two smaller system matrices instead of one large matrix.
This speeds up computation time significantly. Secondly, the scheme computes two velocity
fields, that can be used for error estimation. More work is required to check, if the available
local difference between the two solutions can be exploited for techniques like adaptive mesh
refinement.
Conservation of mass, kinetic energy, and helicity is successfully transferred into the fully dis-
crete formulation of the problem for periodic domains. For non-periodic domains and Dirichlet
boundary data, helicity is not conserved in the general case.
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