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Kurzfassung

Alternative Telomerverlängerung (ALT) ist ein Mechanismus in Krebszellen, der Telo-
merverkürzung unterbindet, die bei der Teilung normaler Zellen stattfinden würde. Bei
Neuroblastomen, einer Krebserkrankung bei Kindern und Jugendlichen, ist ein positiver
ALT Status prognostisch für einen ungünstigen Verlauf. Mit Hilfe der Telomer PNA
(telPNA) Fluoreszenz-in-situ-Hybridisierung werden Telomere in Mikroskopiebildern als
helle punktförmige Signale dargestellt. Längere Telomere weisen dabei hellere und größere
Punkte (ultrahelle Punkte) in den telPNA Bildern auf. Klinisch wird der ALT Status
derzeit vor allem expertenbasiert und mit Faustregeln visuell über die ultrahellen Punkte
in den Bildern bestimmt. Es existieren bisher keine bildbasierten Ansätze, die den ALT
Status anhand automatisierter und eindeutiger Regeln mit hoher Konfidenz und auch für
ALT-positive Zellen, die keine ultrahellen Punkte aufweisen, bestimmen.

Unter der Verwendung von Mikroskopiebildern der St. Anna Kinderkrebsforschung (Wien)
werden in dieser Masterarbeit verschiedene Klassifikationsmodelle zweier Ansätze zur
Vorhersage des ALT Status verglichen. Im ersten Ansatz diskutiert die Arbeit die manuelle
Erzeugung von Prädiktoren, um sie in Klassifikationsmodellen zu verwenden. Die Arbeit
führt dafür mit dem sogenannten Wassersteindistanzmodell auch ein neues Modell ein,
das auf Wasserstein-Metriken zwischen Prädiktorverteilungen beruht. Im zweiten Ansatz
werden Deep Learning Methoden verwendet, in denen die Bilder direkt genutzt werden,
um Prädiktoren automatisch zu finden und die Zellen zu klassifizieren.

Die Masterarbeit behandelt zwei zentrale Fragen. Die erste Frage klärt, welches Modell
der zwei Ansätze den ALT Status von Zellen am Besten voraussagt. Die zweite Frage
erörtert, welche bildbasierten Prädiktoren am Ehesten geeignet sind, den ALT Status von
Zellen zu bestimmen. In dieser Arbeit beantworten wir die Fragen, indem wir zeigen, dass
das Wassersteindistanzmodell die mit Abstand genauesten Ergebnisse bei der Vorhersage
des ALT Status liefert. Mit Ausnahme des Wassersteindistanzmodells übertreffen Deep
Learning Methoden Ansätze der manuellen Prädiktorerzeugung. Zudem weist die Mas-
terarbeit nach, dass Prädiktoren, die auf der Größe von Telomerpunkten, auf visuellen
telPNA Clustern und der Schiefe und Wölbung der telPNA Intensitäten basieren, sehr gut
für die Vorhersage des ALT Status von Zellen geeignet sind. Auch wenn weitere Forschung
notwendig ist, um unsere Erkenntnisse für zusätzliche Zellinien und Gewebeschnitte
zu bestätigen, zeigen die Resultate, dass Computer-gestützte Diagnoseverfahren zur
Unterstützung von Experten bei ALT-Klassifizierungen möglich sind.
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Abstract

Alternative lengthening of telomeres (ALT) is a mechanism in cancer cells that stops
telomere shortening, which would accompany proliferation of normal cells. Diagnosing
whether the cell’s chromosomes are ALT+ or not (i.e. ALT−) is a key determinant for
a poor outcome in childhood neuroblastoma tumors. Using telomere PNA (telPNA)
fluorescence in-situ-hybridisation, telomeres can be visualised as spots in microscopy
images. Longer telomeres exhibit brighter and more pronounced (so-called ultra-bright)
spots. Currently, clinical staff determines the ALT status of cells in telPNA images based
on expert judgement or rules-of-thumb on visible ultra-bright spots. To date, there are
no image-derived, clear-cut objective or automated rules for determining the ALT status
with high confidence, especially for ALT+ cells that do not show ultra-bright spots.

Using microscopy imaging of the Children’s Cancer Research Institute (Vienna, Austria),
in this master’s thesis different classification models for the prediction of the cells’ ALT
status are designed and evaluated following two streamlines: (1) image feature-based
classification approaches (2) image-based classification approaches. In the first approach,
the master’s thesis discusses feature generation that shall serve as explanatory variables
for classification models (such as logistic regressions) to predict the ALT status. To that
end, the master’s thesis also first introduces a so-called Wasserstein distance model to
classify the ALT status using Wasserstein distances between distributions of explanatory
variables. In the second approach, the master’s thesis uses deep learning to classify cells
using microscopy images as direct inputs.

This master’s thesis addresses two main research questions: first, we are interested which
model of the two approaches predicts the ALT status of cells best. Second, we want to
find image-derived features of both approaches that are best suited for determining the
ALT status. We answer theses questions by showing that the Wasserstein distance model
provides by far the best results when predicting the ALT status of cells. Apart from
the Wasserstein distance model, image-based classification approaches outperform image
feature-based approaches. Furthermore, we find that features that build on spot sizes,
the presence of clusters as well as the skewness and kurtosis of telPNA intensities are
best suited for predicting the ALT status. While further research is necessary to foster
our findings on additional cell lines and tissues, the results show that computer-aided
diagnostics of ALT is feasible and may support experts when predicting the ALT status.
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CHAPTER 1
Introduction

This chapter introduces the topic of this master’s thesis by providing in Section 1.1 a
short overview of the medical background and discussing in Section 1.2 the aim of this
thesis. In Section 1.4 we treat related work and highlight the contributions of this thesis.
In Section 1.6, we summarise the results. Last, in Section 1.7, we give an overview of
how this thesis is structured.

1.1 Problem Statement
A human cell consists of a cell membrane, cytoplasm and multiple separate parts (so
called organelles) such as the cell nucleus. Within the nucleus, the genetic material in
humans is organised in 46 chromosomes and telomere are the chromosome ends. The
genetic code determines which proteins to produce that build many of the structures in a
cell. The so-called alternative lengthening of telomeres (ALT) is a mechanism in cancer
cells that stops telomere shortening (telomere maintenance mechanism), which would
accompany proliferation of normal cells [BEDP+97]. Diagnosing whether tumor cells use
the ALT pathway (ALT+) or not (ALT−) is a key determinant for a poor outcome in
childhood neuroblastoma tumors [PPG+15, MWT+21], even though ALT+ cells usually
grow slowly compared to other tumor cells [HSNH+21]. More specifically, prognostically
favorable low-risk neuroblastoma tumors lack telomere maintenance mechanisms, whereas
prognostically unfavorable intermediate-risk and high-risk tumors feature telomere main-
tenance mechanisms (partly in combination with specific genetic mutations) [ACH+18].
Neuroblastoma is a tumor of the sympathetic nervous system, which represents the most
common solid pediatric tumor outside the cranium and the most frequently diagnosed
cancer in infants [MWT+21, HGH+96, Mar10]. Around 50% of neuroblastoma patients
have a dismal outcome despite intensive treatment [ACH+18, RSW+19].

By using telomere peptide nucleic acid (telPNA) Fluorescence In-Situ Hybridisation
(FISH), one can visualise the chromosomes’ telomeres in microscopy images. Telomeres
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1. Introduction

Figure 1.1: DAPI channel (left) and telPNA channel (right) of an ALT+ cell line (SK-N-
MM). The microscopy images are part of the dilution series P11, see Section 2.3.1. We
note pronounced ultra-bright spots in the telPNA channel but also that not all ALT+
nuclei feature these spots.

Figure 1.2: DAPI channel (left) and telPNA channel (right) of an ALT−cell line (SK-N-
SH). The microscopy images are part of the dilution series P9WH, see Section 2.3.1. The
telomere spots are considerably less pronounced than for the ALT+ cells of Figure 1.1.

show up as bright spots of intra-nuclear telomere foci in the red telPNA channel of the
microscopy images, while nuclei are visible in the blue DAPI channel, see Figures 1.1 and
1.2. Longer telomeres will lead to brighter and more pronounced spots in the telPNA
channel (so-called ultra-bright spots). However, not all ALT+ cells usually show such
ultra-bright spots in the telPNA channel of microscopy images. Currently, clinical staff
determines the ALT status of cells in microscopy images based on expert judgement.
Although the literature proposes certain rules-of-thumb to determine the ALT status
of cells manually in microscopy images [HSH+11], there are no clear-cut objective or
automated rules yet for determining the ALT status with high confidence.

The tumor biology group at the Children’s Cancer Research Institute (CCRI) in Vienna
(Austria) prepared four neuroblastoma cell cultures of different cell lines, two with ALT+
and two with ALT− status [Pau21]. Here, cell lines refer to cells that originate from
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1.2. Research Questions of this Master’s Thesis

one cell via cell divisions and cell cultures are cultivated cell lines for microscopy images.
The group prepared several dilutions series among these cell cultures to provide samples
with eight different ratios of ALT+ and ALT− cells. The ALT+ ratios cover 100%, 75%,
50%, 25%, 10%, 5%, 1% and 0%. For each of these samples, microscopy image series
of the diluted ALT+ and ALT− cell cultures via FISH exist. To that end, the group
cytospinned the cell cultures to microscopy carrier glasses before generating the FISH
microscopy images. Furthermore, the group implemented deep neural networks (based on
Cellpose [SWMP21], Mask-R-CNN [HGDG17] and U-Net ResNet [EVC+19]) to identify
and segment individual nuclei and their corresponding telomere spots in each pair of
the DAPI and telPNA images [KFB+21]. Chapter 2 provides further information on
neuroblastoma, ALT and fluorescence microscopy.

1.2 Research Questions of this Master’s Thesis
Using the microscopy images of the CCRI tumor biology group, a principal aim of the
master’s thesis is to identify suitable automatic classification approaches that predict the
ALT status of neuroblastoma cells. There are two kinds of classification problems we are
interested in: first, predicting the ALT status of an individual cell (ALT classification
on nucleus level), and, second, predicting the above-mentioned ALT+ ratio of a given
dilution series (ALT classification on series level). Models that solve the first classification
problem can also be used for the second classification problem.

In this master’s thesis we aim at answering two main research questions. The first question
is about finding an optimal method out of a selection of models to predict the ALT status
on nucleus or series level. This selection includes on the one hand models of the so-called
feature generation approach (FGA), which requires manual feature generation to provide
explanatory variables for classification models such as random forests, support vector
machines, (penalised) logistic regressions and extreme gradient boosting to predict the
ALT status on nucleus level. We also introduce a so-called Wasserstein distance model
that predicts the ALT+ rate on series level by using Wasserstein distances between feature
distributions. On the other hand, we use models of the so-called image-based approach
(IBA), for which we use microscopy images as direct inputs to our own implementation of
a convolutional neural network (CNN, called MyNet) as well as to a fine-tuned ResNet-50
to identify the cells’ ALT status on nucleus level. Comparing these two approaches is
popular in computer-aided diagnostics to assess whether self-learned features in image-
based approaches are more predictive than hand-crafted features of feature generation
approaches [XXS+17].

The second research question addresses features and criteria for determining the ALT
status of cells. While the rules of thumb of [HSH+11] focus on whether so-called ultra-
bright spots are present in the telPNA channel, or not, the FGA and IBA intend to
provide more objective rules that determine the ALT status with higher confidence. In
particular, the FGA and IBA shall both find image-derived criteria that describe the
ALT+ status even for cells that do not show ultra-bright foci. Such criteria may also

3



1. Introduction

help explaining why the models arrived at specific predictions and may also foster the
users’ confidence in the models’ decisions.

1.3 Challenges
While the microscopy imaging protocol is standardised for all microscopy image series of
the CCRI, the quality of microscopy images still vary across the series. More specifically,
we can expect a higher variance in the number and position of nuclei, the appearing
size of nuclei and imaging quality across the series. This implies two main technical
challenges: first, nuclei might be inaccurately segmented due to overlapping cells. For
example, this can happen if the cytospin preparation process led to more sticky cells.
Second, image quality and fluorescence staining of the FISH might vary across the image
series. The imaging quality depends on how the nuclei are attached to the carrier glass,
as some images may show air bubbles or blurry content as artefacts. Furthermore, the
immunofluorescence staining may have led to unwanted imaging effects such as bright
stripes around the nucleus border caused by unspecific cytoplasmic staining.

Both the FGA and IBA have to address the afore-mentioned two technical challenges
to correctly answer the research questions. To that end, we implement a separate post-
processing model to detect inaccurately segmented nuclei based on geometric properties
of the segmentation masks (e.g. size, convexity). Furthermore, we use methods that aim
at generating and finding features that are stable in the sense that they are less affected
by varying image quality. For the FGA, we pick these features via a particular variable
selection algorithm that uses Wasserstein distances to identify stable features. For the
IBA, we use specific data augmentation techniques to robustify the feature extraction.

1.4 Related Work
Related to our idea of predicting the ALT status of cells, the literature knows four other
main approaches: First, one can use the above-mentioned rules of thumb of [HSH+11].
Second, instead of using microscopy images, one can use Whole Genome Sequencing to
predict the ALT status with notable success [LTH+18]. Third, one can use the so-called
C-circle assay, which is a polymerase chain reaction assay that makes use of the fact that
telomer elongation is involving circular intermediates in ALT+ cells [HCH+09, HR10].
Fourth, one can refine fluorescence microscopy imaging to suppress telomere signals
for ALT− cells [FRM+22]. Despite these four approaches in the literature, there are
no automated rules for determining the ALT status with sufficient confidence for the
fluorescence microscopy data of this master’s thesis. In particular, to the best of our
knowledge, there is also no IBA in the literature to predict the ALT status of cells.

To build the own network MyNet for the IBA, we therefore follow the literature of
classifying so-called human elliptical 2 (HEp-2) cells, a human epidermoid carcinoma
cell line, with CNNs based on indirect immunofluorescence microscopy images, which
has been a very active research topic [RWSZ20]. HEp-2 cells are relevant for identifying
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antibodies in blood serum via their fluorescence patterns. The patterns partly exhibit
bright spots which vary in shape, position and density within the cells [oAp]. For that
reason, we build our own network based on a variation of LeNet-5, that has proven to be
well suitable for HEp-2 classification [GWZZ16, RNM17, RNM20].

1.5 Contributions
By leveraging insights from the literature on ALT and HEp-2 classification, I contribute
the following five insights with this master’s thesis: first, I introduce in this thesis
Wasserstein distance models in the context of image classification and also provide
algorithms to select suitable variables for the models. Second, I propose a novel CNN
approach, called MyNet, to classify the ALT status on nucleus level. Third, I introduce
special data augmentation techniques to mimic certain fluorescent staining patterns.
Fourth, I contribute a new algorithm to select FGA features with Wasserstein distances
that are stable in the sense that they behave similarly on related data sources of potentially
different image quality. Fifth, I provide a list of features that predict the ALT status in
the FGA best.

1.6 Results
The master’s thesis shows that the Wasserstein distance model predicts the ALT+ ratio
on series level by far the best. Furthermore, we find that the IBA and, most notably,
ResNet-50 [HZRS16] outperforms the FGA models on nucleus level (i.e. random forests,
support vector machines, penalised logistic regression, gradient boosting). The most
predictive features for ALT classification refer to clusters as well as the skewness and
kurtosis of the intensity distribution in the telPNA channel, or consider spot sizes.
Furthermore, MyNet appears to extract image properties that are similar to these FGA
features.

1.7 Thesis Outline
The thesis is structured as follows: in Chapter 2, we give further details on the medical
background of neuroblastoma, ALT, fluorescence microscopy and provide information on
the available deep neural networks of the CCRI to segment nuclei and spots in microscopy
images. We also introduce the available data of this master’s thesis and discuss statistics
and potential technical challenges when working with this data. In Chapters 3 and 4,
we give detailed information about state of the art approaches of FGA and IBA models
for microscopy image classification, respectively. Furthermore, we provide data scientific
background about how we split the available data into training and testing samples for
the FGA and IBA. Chapter 5 outlines the state of the art for ALT classification and
classifying fluorescence patterns. Afterwards, Chapter 6 describes our methodology that
we want to apply based on the state of the art. In particular, we introduce the Wasserstein
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1. Introduction

distance model and algorithms to build it via variable selection. After having introduced
the samples and FGA and IBA models that we use for this thesis, Chapter 6 also includes
a dedicated section that formulates our two research questions at large. In Chapters 7
and 8 we provide thorough reasoning on how we setup further methodological details of
the samples and models of the FGA and IBA, respectively. In Chapter 9, we present the
results of this master’s thesis and answer our research questions. Last, in Chapter 10, we
summarise our findings in view of the two research questions. Furthermore, we reflect on
how the models may support experts in diagnosing the ALT status for clinical reports
and we discuss potential areas of research for future work.

6



CHAPTER 2
Medical Background and Data

This master’s thesis uses microscopy images of neuroblastoma cell lines. Neuroblastoma
is a common pediatric tumor and its ALT status is an important risk factor. This
chapter provides background information on neuroblastoma and the telomere maintenance
mechanism ALT (Section 2.1 and 2.2). Furthermore, it discusses microscopy imaging
techniques and gives details about the microscopy image series that we use in this master’s
thesis (Section 2.3).

2.1 Neuroblastoma

Mutations are changes in deoxyribonucleic acid (DNA) sequences of a cell. They can
happen due to various reasons such as copying errors during cell division or exposure to
ionizing electromagnetic radiation. Usually, mutations in normal cells are restored or
lead to programmed cell death (apoptosis). However, cell mutations may also result in
tumors, which are abnormally and excessively growing tissues. Tumors can be benign or
malignant and in the latter case they are referred to as cancer [Bun08].

This master’s thesis uses microscopy images of neuroblastoma tumor cells. Neuroblastoma
is a tumor of the sympathetic nervous system, which represents the most common solid
pediatric tumor outside the cranium and the most frequently diagnosed cancer in infants
[MWT+21, HGH+96, Mar10]. Around 50% of neuroblastoma patients have a dismal
outcome despite intensive treatment [ACH+18, RSW+19]. Tumor stage, age at diagnosis,
histology, and an amplified MYCN gene, which is important for cell growth, are important
factors for unfavorable tumor outcome [PPG+15]. The so-called ALT pathway prevents
telomeres from shortening upon cell divisions and represents another important risk
factor for neuroblastoma tumors [PPG+15].
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2. Medical Background and Data

2.2 Alternative Lengthening of Telomeres - ALT
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes, which
consist of the repetitive DNA sequence TTAGGG. Telomeres usually undergo progressive
shortening during cell division, see Figure 2.1. If they are falling short a critical length,
the cell undergoes senescence or apoptosis, which prevents further cellular proliferation
[DRCF+03]. For that reason, telomere shortening accompanies the cellular aging process
and inhibits unlimited growth.

There are two known mechanisms that allow certain cancer cells to circumvent telomere
shortening and to proliferate unlimitedly: first, they can activate telomerase, or, second,
they employ a telomere maintenance mechanism known as ALT. This second mechanism
works by replicating telomeric DNA using homologous recombination of DNA [BEG+95,
BEDP+97]. More than 85% of all human tumors use the first mechanism, while only a
lower number of tumors use ALT [OD12]. Most notably, 59% of neuroblastoma employ
the ALT maintenance mechanism in a study on neuroblastoma of multiple stages and
risk groups including both relapses and cases at diagnosis [PPG+15]. While determining
the prognosis of patients with ALT positive (ALT+) tumors depends in general on
the tumor entity, ALT has proven to be a key determinant for a poor outcome in
neuroblastoma [PPG+15, MWT+21]. More specifically, low-risk neuroblastoma tumors
lack telomere maintenance mechanisms, whereas intermediate-risk and high-risk tumors
feature telomere maintenance mechanisms (partly in combination with specific genetic
mutations) [ACH+18].

In routine, telPNA FISH in combination with fluorescence microscopy is used to diagnose
the ALT status of tumors. telPNA FISH fluorescence microscopy allows assessing the
telomere length of individual chromosomes [PBH+03]. To that end, FISH employs DNA
oligonucleotide probes conjugated to a fluorescence dye which bind to specific nucleic
acid sequences to assess whether these DNA sequences on chromosomes are present or
not. As the fluorescence signal detected is considered proportional to the length of the
telomere, bigger telPNA spots will indicate longer telomere. Here, it is worth noting that
up to 92 telomeres are identifiable in a healthy human cell. This is because the number
of telomeres corresponds to the number of chromosomes in a cell and would therefore
equate to 92 = 46 · 2, as there are 22 chromosomes and one sex chromosome with each
two ends.

In telPNA FISH microscopy images of ALT+ tumors, the distribution of telomere lengths
within the nucleus and between tumor cell populations is highly heterogeneous [BEG+95].
One also assesses the ALT status by detecting cells that present ultra-bright intra-nuclear
telomere foci or spots. This characteristic pattern correlates with an ALT+ status and
[HSH+11] proposes a rule-of-thumb that considers tumors containing more than 1% of
such cells as ALT+ (see also Section 5.2). Still, when such ultra-bright spots are absent,
diagnosing the ALT status remains challenging as the proposed criteria are not applicable.

While the principles of [HSH+11] are useful indications when ultra-bright telomere spots
are present, they are also not clear-cut and objective automated rules to determine
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Figure 2.1: Shortening telomeres after cell division.a

aImage taken unchanged from Wikimedia Commons https://commons.wikimedia.org/wiki/
File:Hayflick_Limit_%281%29.svg. Accessed: 2023-01-24.

the ALT status with high confidence. When ultra-bright telomeric spots are absent,
experts still describe the telPNA FISH staining pattern of ALT+ cells to feature a more
heterogeneous telomeric length distribution as compared to ALT− cells. Furthermore,
ALT+ cells show more variation in the telPNA signal distance within cells.

2.3 Microscopy Images and Data

In this section and the following subsection we discuss microscopy imaging techniques and
the data used in this master’s thesis. For the microscopy imaging techniques, we outline
fluorescence microscopy. Furthermore, we discuss the recording setup and definitions
dilution series that we use in this thesis.
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2. Medical Background and Data

2.3.1 Microscopy Image Data of this Master’s Thesis
Microscopy provides major insights into cells by visualising their cellular and sub-cellular
structures. Automated microscopes allow for generating images and quantitative results
for thousands of cells in a relatively short period of time. Such an automated analytical
workflow makes it possible to detect even small cellular variations and alterations and, at
the same time, to give statistical evidence by analysing a high number of cells [HM04].

The CCRI uses immunofluorescence stainings in microscopy images to visualise cellular
and subcellular structures at the same time via multiplex-immunofluorescence staining
techniques (see Section 2.2). Apart from tissue segments or sections or slices, the CCRI
also uses cell lines grown on or cytospinned to microscopy carrier glass slides. Here,
cytospins refer to specialised centrifuges that can attach cells to microscopy carrier slides.

For this master’s thesis, we use microscopy images that were prepared at the CCRI in
a bachelor thesis’ project [Pau21]. These images are based on four neuroblastoma cell
lines that were selected due to their ALT status (two ALT+, two ALT− cell lines) and
specific molecular markers that help distinguishing cells in fluorescence microscopy. The
two ALT+ cell lines are labeled CHLA90 and SK-N-MM, while the two ALT− cell lines
are named SK-N-SH and CLB-MA. For [Pau21], the group at CCRI prepared several
serial dilutions among these four cell lines to provide samples with eight different ratios
of ALT+ and ALT− cells:

1. 100% to 0% (only ALT+)

2. 75% to 25% (medium-high ALT+)

3. 50% to 50% (equal ALT+ and ALT−)

4. 25% to 75% (medium-low ALT+)

5. 10% to 90% (low ALT+)

6. 5% to 95% (very low ALT+)

7. 1% to 99% (rare ALT+)

8. 0% to 100% (no ALT+, only ALT−)

For each sample, the cell lines were cultivated and afterwards cytospinned to microscopy
carrier glass slides to generate immunofluorescence images. Each dilution is based on at
most one ALT+ cell line and at most one ALT− cell line and received a specific coding
name (such as “ALT-C.P6”), to which we will refer throughout this thesis as a dilution
series. Table 2.1 states all dilution series that we consider in this thesis and denotes
their coding name, the ALT+ and ALT− cell lines as well as the corresponding ratios of
ALT+ and ALT− cells. To simplify the following discussion, we denote dilution series of
100% ALT+ cells and of 100% ALT− cells as pure dilution series and refer to all other
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dilution series name ALT+ cell line ALT− cell line %ALT+ %ALT−
ALT-C.P3∼A SK-N-MM - 100 0
ALT-C.P4∼A - SK-N-SH 0 100

ALT-C.P6 CHLA90 - 100 0
ALT-C.P7 - CLB-MA 0 100
ALT-C.P8 SK-N-MM - 100 0

ALT-C.P9WH - SK-N-SH 0 100
ALT-C.P10 CHLA90 - 100 0
ALT-C.P11 SK-N-MM - 100 0
ALT-C.P12 - SK-N-SH 0 100
ALT-C.P13 - CLB-MA 0 100
ALT-C.PM1 SK-N-MM SK-N-SH 1 99
ALT-C.PM3 SK-N-MM SK-N-SH 10 90
ALT-C.PM4 SK-N-MM SK-N-SH 50 50
ALT-C.PM5 SK-N-MM SK-N-SH 75 25
ALT-C.PM9 CHLA90 CLB-MA 50 50
ALT-C.PM12 CHLA90 CLB-MA 25 75
ALT-C.PM14 CHLA90 CLB-MA 5 95
ALT-C.PM15 CHLA90 CLB-MA 1 99
ALT-C.PM22 SK-N-MM SK-N-SH 1 99
ALT-C.PM23 SK-N-MM SK-N-SH 5 95
ALT-C.PM24 SK-N-MM SK-N-SH 25 75

Table 2.1: Dilution series of [Pau21] considered in this master’s thesis. The horizontal
line in the middle of the table separates pure dilution series (above) from actual dilution
series (below).

dilution series as actual dilution series. We can tell pure from actual dilution series by
their coding name, since the coding name of actual dilution series include the letter “M”
(m for mixture, such as “ALT-C.PM9”). In the following, we sometimes avoid the prefix
“ALT-C.” and only refer to the unique alphanumeric suffix of the coding name (such as
“P6” or “PM9”) to alleviate notation.

2.3.2 Recording Setup of the Microscopy Image Data

All samples of the dilution series were scanned with fixed exposure times and autofocus
using an AxioImager-Z2 microscopy from Carl Zeiss equipped with a Plan-Apochromat
lens with 63x magnification [Pau21]. For each sample, we have two channels of the
immunofluorescence images available: first, a (blue) so-called DAPI channel (0.00373s
exposure time) and, second, a (red) telPNA FISH staining channel (0.16s exposure time).
While the blue DAPI channel allows us to identify the cell nuclei, the telomeres show
up as bright spots of intra-nuclear telomere spots in the red telPNA channel of the
microscopy images as described in Section 2.2. Section 6.2 gives further details on how
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to automatically identify nuclei and spots in the images.

Theoretically, for each channel there is a separate digitised microscopy image available.
However, due to memory reasons, these channel images are split into much smaller
100-1,500 pairs of blue and red channel images (image patches or “fields of view”) which
sequentially cover the original channel images. The 100-1,500 pairs of blue and red
channel image patches capture each dozens of nuclei and telomere spots. Figures 1.2 and
1.1 in Section 1.1 show one field of view of the channels for two different dilution series.

An appliance of MetaSystems Hard & Software GmbH allowed for automatically scanning
the microscopy images. The appliance consisted of a Metafer CoolCube4m camera and a
scanning system called MetaCyte (program version 4.3.120). The corresponding software
of MetaSystems consistently processed the images when digitising them [Pau21]. For that
reason, we can assume that the imaging conditions are identical for all dilution series.
Still, the image signals for different dilution series of the same cell lines and dilution
ratios may differ because of technical reasons when preparing the carrier slides. For
example, the immunofluorescence staining could attach differently across the dilution
series. Section 6.3 below discusses the varying imaging quality in detail.

2.4 Summary
In this chapter, we have discussed the medical background for neuroblastoma and ALT.
We provided information on risk drivers of neuroblastoma and diagnostics for ALT, based
on microscopy images. We learned that information of the telPNA channel is important
for classifying the ALT status. Furthermore, we introduced the microscopy image data
for this master’s thesis by giving details on the series names, cell lines and recording
setup.
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CHAPTER 3
State of the Art: Machine

Learning for Microscopy Images

Classifying microscopy images such as the nuclear images of Section 2.3 is a so-called
image classification problem. More specifically, we are in the setup of supervised learning
in which we have images with labelled targets (such as the ALT status) available to train
and validate potential classification models.

Broadly speaking there are two main approaches to solve image classification problems:
the feature generation approach (FGA) and the image-based approach (IBA). In the
FGA, one first (manually) generates features for each image that one wants to classify
and then trains classification models based on these features and labelled targets of
each image. We refer to this approach also as machine learning for microscopy images.
Conversely, so-called deep learning models of the IBA generate features automatically on
their own during training by taking the image as direct input.

In this chapter, we start off in Section 3.1 by summarising the main notation of this chapter
that we will also use throughout this thesis. Afterwards, Section 3.2 provides details on
the data scientific setup of training, testing and validation samples for model development.
Section 3.3 discusses the state of the art for generating features of microscopy images
via radiomics. Finally, in Section 3.4, we discuss the state of the art for the FGA when
classifying microscopy images based on previously extracted features.

3.1 Denotation
In this thesis, we denote an microscopy image by I and a collection of images as (Ik)K

k=1
with corresponding labels (gk)K

k=1 ⊆ G. We refer to I as the set of all microscopy images.
We define by T , V, Ttest training, validation and testing samples as discussed in Section
3.2. For each image Ik, we denote the corresponding feature vector by xk ∈ Rp and p ∈ N
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3. State of the Art: Machine Learning for Microscopy Images

refers to the feature dimension. In models that use feature weights, we denote these
weights by β = (βi)i.

3.2 State of the Art Setup to Train, Validate and Test
Models

We assume that we are given microscopy images (Ik)k ⊆ I with corresponding labels
(gk)K

k=1 ⊆ G. In image classification problems, we want to find a model M : I → G that
makes a good prediction ĝk of the target gk, i.e. M(Ik) = ĝk. Note that this problem is a
so-called supervised learning problem, where we know the labels of each image to find a
model M . By contrast, in so-called unsupervised learning problems, we only know the
input data (Ik)k ⊆ I but no corresponding label. In unsupervised learning, we want to
group observations based on the available input data to identify structures and clusters
[HTF09]. For the rest of this thesis, we will focus on supervised learning methods to
classify microscopy images.

Classification models depend on model parameters (e.g. intercepts/ biases, weights,
hyperparameters) and we find the best parameters by training models. Conditional on
the model setup, training models amounts to optimising a certain objective function
that measures how well the model fits the available data. Still, we are usually not overly
interested in a perfect fit of our model on data that we use for training. Instead, we
generally aim at training models that perform well on previously unseen new data.

We find such a model by trading off low parameter biases against low parameter variances,
which is also known as the bias-variance tradeoff in statistics and machine learning
[HTF09]. In this context, biases refer to errors from a wrong model setup and can lead to
models that are unable to catch the relations between inputs and targets. This behaviour
is also known as underfitting. Variances refer to errors caused by small changes of the
data and are related to how sensitive models react to these changes. High variances
potentially indicate modelling of noise in the data, which is also known as overfitting
[HTF09].

To ascertain underfitting or overfitting behaviour, one usually splits the available data
into the following two to three disjoint samples

1. Training sample T : one uses observations of the training sample to select inputs
and train model parameters by optimising the objective functions of the models.

2. Testing sample Ttest: After training the models, one assesses the model performance
on the testing sample to simulate how well the models perform on previously unseen
data.

3. Validation sample V: During training, one may use the validation sample to
iteratively check up on any over- or underfitting behaviour.
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Instead of using a specific validation sample, one can also apply so-called cross-validation
(CV) on T to estimate out-of-sample errors and to identify over- or underfitting behaviour
[Sto74]. To that end, one first splits the training data T into equally sized disjoint subsets
(so-called folds). Afterwards, one uses all but one fold as a (sub-)training sample and
the remaining fold as a validation sample. For each fold, one generates a different pair
of (sub-)training and validation samples and averaging the behaviour (e.g. errors or
performance metrics as discussed in Section 4.4.1) on all such validation samples serves
as a surrogate for out-of-sample behaviour. Commonly, one uses 5 or 10 folds or so-called
leave one out cross validation (LOOCV) [HTF09]. In LOOCV, each fold consists of only
one observation. Therefore, LOOCCV is computationally most demanding but provides
the smallest bias at the expense of greater variance than 5- or 10 fold CV [JWHT13].

In the following two sections, we provide more information on state of the art methods
of the FGA in greater detail. We start off in Section 3.3 by discussing state of the
art methods to generate features based on microscopy images. Section 3.4 provides an
overview of state of the art models that classify images based on previously extracted
features.

3.3 Radiomics Feature Generation
For FGA classification models, one first has to manually generate features for each
(possibly preprocessed) image Ik ∈ I. One can consider feature generation as a function
F : I → Rp that maps each image to a corresponding p-dimensional real-valued feature
vector F (Ik) = xk ∈ Rp. Each vector dimension xk,l, l = 1, . . . , p refers to a separate
feature function Fl(Ik) = xk,l.

Radiomics is state of the art when generating features for x-ray images, magnetic
resonance imaging, positron-emission tomography images and computed tomography
scans [KGB+12]. Contrary to treating images as pictures for sole visual interpretation,
radiomics aims at converting images into advanced quantitative imaging features of first-,
second- and higher-order statistics to support decisions [GKH16, KGB+12]. As opposed
to semantic and rather qualitative features that a radiologist may use to characterise
medical imaging, radiomics extracts features computer-driven using potentially higher
order image properties and data-characterisation algorithms [GKH16]. Radiomics features
have proven to be successful when classifying tumors. For example, radiomics features
may identify tumor phenotypes that fail to be perceived by the naked eye [YLP+17].

Radiomics features are so-called agnostic features, which are mathematically extracted
quantitative descriptors of the image [GKH16]. First-order statistics describe the distri-
bution of values of individual voxels without considering spatial relationships [GKH16].
These features are generally based on properties of histograms and reduce an image to
single values for e.g. mean, median, maximum, minimum of the image’s intensities, as
well as the skewness and kurtosis of the intensity values [GKH16]. Second-order features
are described as “texture” features, as they statistically convey interrelationships between
voxels with similar or dissimilar contrast [GKH16]. Higher-order features employ filter
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grids on the image to extract repetitive or non-repetitive patterns [GKH16]. They use the
gray level intensities of the image to determine pairs of co-occuring gray level intensities
(in gray level co-occurrence matrices GLCM), run lengths of gray level intensities (in
gray level run length matrices GLCM) as well as zones of gray level intensities (in gray
level size zone matrices GLSZM). Pyradiomics is a python library to generate radiomics
features for medical imaging [vGFP+17]. In the following, we list exemplary higher-order
pyradiomics features:

• cluster prominence: cluster prominence measures how asymmetric the GLCM is.
Higher values indicate higher asymmetry about the mean while lower values suggest
lower asymmetry [vGFP+17].

• run length non-uniformity: using the GLRLM, run length non-uniformity quantifies
the similarity of run lengths throughout a nucleus. Lower values indicate more
homogeneous run lengths in the nucleus [vGFP+17].

• gray level non-uniformity: based on the GLRLM, gray level non-uniformity captures
the similarity of gray-level intensity values in the nucleus. Lower values indicate a
greater similarity in intensity values of the nucleus.

3.4 State of the Art FGA Models
For FGA classification models, we assume that we have features xk ∈ Rp for each
microscopy image Ik ∈ I, k = 1, . . . , K given. Hence, xk is a vector with entries
(xk,1, . . . , xk,p). To alleviate notation, we set the first coordinate xk,1 = 1 to simplify the
discussion and to implicitly reflect intercepts (also known as biases) in the state of the
art machine learning models that we discuss in the following subsections separately. Note
that training the FGA models involves optimising certain error or loss functions. Sections
4.4.1 and 4.4.2 provide general information on loss functions and numerical optimisation
via gradient descent.

3.4.1 Logistic Regression
A logistic regression model is a so-called generalised linear model. Given feature vectors
xk ∈ Rp with corresponding binary labels (gk)K

k=1 ⊆ G for each image Ik ∈ I, we want to
find linear weights β ∈ Rp such that

gk ≈ 1
1 + exp (−βT xk) .


1 + exp(−βT xk)

−1
is the so-called expit link function that provides a probability

estimate for binary labels of G. We find β = (β1, . . . , βp) by maximising the (logarithmic)
likelihood function
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l(β) =
K�

k=1


gkβT xk − log


1 + exp(βT xk


, (3.1)

see Chapter 4.4. of [HTF09] and Chapter 4.3.2. of [Bis06] for details. To avoid overfitting,
we can maximise a penalised version of (3.1)

max
β

�
K�

k=1


gkxT

k β − log

1 + exp(xT

k β


− λφ(β)
�

, (3.2)

where φ(β) = ∥(β2, . . . , βp)∥1 = �p
i=2 |βi| or φ(β) = ∥(β2, . . . , βp)∥2

2 = �p
i=2(βi)2 are

common choices for the penalty function φ. In this case, we are talking about lasso and
ridge logistic regression, respectively. Note that the intercept/ bias β1 does not enter
the penalty function. In an elastic net logistic regression, we combine the L1 and L2

penalties of the lasso and ridge logistic regression by maximising

max
β

�
K�

k=1


gkxT

k β − log

1 + exp(xT

k β


− λ1∥(β2, . . . , βp)∥1 − λ2∥(β2, . . . , βp)∥2
2

�
.

(3.3)

In the penalised logistic regression of (3.2) and (3.3), λ, λ1, λ2 are hyperparameters that
steer the impact of the penalty terms and that we find via hyperparameter tuning and
cross-validation. Generally, increasing λ will decrease the variance of the parameter
estimates and lead to so-called stiffer models. Sections 4.4.4. and 18.4. of [HTF09]
provide further details on penalised logistic regressions and hyperparameter tuning. Note
that it is possible to setup logistic regression models for multi-class labels of G, too, see
[HTF09] for details. While (penalised) logistic regression models are relatively simple,
they are easily explainable. Furthermore, they have shown to provide decent results when
classifying microscopy images of different domains [VCX18, DMC15, ZLH+19].

3.4.2 Support Vector Machines
In support vector machines, we aim at separating the groups of binary labels gk ∈ G =
{−1, 1}, k = 1, . . . , K with a linear hyperplane of maximum margin [HTF09]. In Rp−1,
we can define a linear hyperplane by a p-dimensional vector β = (β1, . . . , βp) ∈ Rp and
the equation

xT (β2, . . . , βp) + β1 = 0, x ∈ Rp−1.

Given feature vectors xk ∈ Rp for each image Ik ∈ I and setting xk,1 = 1 by convention,
we note that hyperplanes are given by xT

k β = 0. One can show that finding a separating
linear hyperplane in our setting is tantamount to solving the following constrained convex
optimisation problem:
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Figure 3.1: Support vector classifiers if linear separation is possible (left) or not (right).
Support vectors are observations at the margin border as well as observations xk with
positive slack variable ξk. Image was modified from Figure 12.1 of [HTF09].

min
β


∥β∥2

2 + C∥ξ∥1


(3.4)

s.t.

�
gkxT

k β ≥ 1 − ξk for k = 1, . . . , K
ξk ≥ 0 for k = 1, . . . , K

1/∥β∥2 defines the margin width of the hyperplane and the condition gkxT
k β ≥ 1 ensures

that the groups of G are indeed linearly separate [HTF09]. ξk are so-called slack variables
that are necessary if a linear separation is not possible. C > 0 is a tuning cost parameter
that influences the width of the margin and the number of support vectors, i.e. observations
xk with ξk > 0 or xk that are on the margin border of the separating hyperplane
[HTF09, JWHT13]. Decreasing C will lead to bigger margins and usually to stiffer models
with smoother decision boundaries that are less prone to overfitting [HTF09, JWHT13].
Figure 3.1 provides an overview of support vectors and hyperplanes if the groups gk ∈ G
are separable or not.

We solve (3.4) via its dual optimisation problem and the corresponding Lagrangian
[HTF09]. The Lagrangian depends on inner products xT

k xl, k, l = 1, . . . , K and is simpler
to optimise, see also Sections 4.4.1 and 4.4.2 for general information on loss functions and
numerical optimisation via gradient descent algorithms. Via the so-called kernel-trick,
support vector machines can be easily defined and solved for more complex non-linear
decision boundaries [HTF09]. For that purpose, one transforms the input vectors xk via
functions ϕ : Rp → RP , where usually P ≥ p. Even after transformation, the structure of
the convex optimisation problem is unchanged and we can again solve it by optimising
the corresponding Lagrangian. In this case, the inputs xk only enter the Lagrangian via
inner products K(xk, xl) = ϕ(xk)T ϕ(xl), which we refer to as kernel functions. Popular
kernel functions are for example radial basis kernel functions K(xk, xl) = exp

∥xk−xl∥2
2σ2


[HTF09]. Chapters 4 and 12.2 of [HTF09] as well as Chapter 6 of [Bis06] provide further
details and information on support vector machines. Support vector machines have proven
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to be competitive when classifying microscopy images [AKTO15, WSC+19]. While our
outline of support vector machines is based on binary labels G = {−1, 1}, note that it is
also possible to define support vector machines for multi-class problems [AKTO15].

3.4.3 Random Forests

Random forests are ensemble models that aim at creating a large collection of lowly
correlated decision trees and use the average decision of these trees as prediction [Bre01].
To ensure low correlation among the trees, random forests build the individual decision
trees on different bootstrap samples and split the trees at each node by considering a
random selection of the available predictors. To find the best split among this selection,
random forests may use different criteria, such as minimising so-called Gini impurity
[Bre01], see also Section 4.4.1 for general information on loss functions. Random Forest
have proven to successfully classify microscopy images of different domains [MSS+13,
KVRKB+15]. As each tree can be grown individually and independently from the others,
training random forest can be easily parallelised [KVRKB+15].

Random forests depend an many hyperparameters that influence the setup and shape of
the individual decision trees [Bre01, HTF09]. The most important hyperparameters of
sklearn’s implementation of random forest are the following [PVG+11]:

• n_estimators: defines the number of individual decision tress in the random
forest.

• max_depth: defines the maximum depth of each individual decision tree.

• min_samples_split: defines the minimum number of observations that are
necessary to split a node.

• min_samples_leaf: defines the minimum number of observations that have to
be in a leaf node (terminal node).

• max_samples: defines the size of the boostrap sample to build the decision tree.

• max_features: defines the number of randomly selected features when splitting
a node.

To avoid overfitting, one can choose n_estimators and min_samples_leaf large (i.e.
commonly greater than or equal to 500 and 5, respectively), as well as max_features
and max_samples small (i.e. commonly equal to the square root of the number of
features and less than 50% of all samples, respectively)[HTF09, PVG+11]. [Bre01] and
Chapter 15 in [HTF09] provide further details and information on random forests.
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3.4.4 Gradient Boosting
In gradient boosting, one finds a sequence of simple decision trees that aim at stepwise
improving classification results. More specifically, at step l the previously found trees
classify observations xk via Fl(xk). By using a loss function L and considering the residual
prediction errors �K

k=1 L(Fl(xk), gk), we build another boosting tree Tl to correct these
errors (boosting step). We then set Fl+1 = Fl + ηTl as classification model of step l + 1
and repeat the procedure. Here, 0 < η ≤ 1 refers to the learning rate of the boosting
approach.

As opposed to Random forest, gradient boosting are not easy to parallelise as each tree
depends on the previously found trees. Still, they have shown to succeed in classifying
microscopy images [VCX18, RSIK18].

There are various parameters to influence gradient boosting and avoid overfitting. XG-
Boost is the most prevelant framework that implements gradient boosting trees [CG16].
The most important hyperparameters of XGBoost are the following:

• eta: learning rate of the boosting procedure.

• n_estimators: controls the number of boosting trees.

• gamma: defines minimum loss reduction required to further split a node.

• max_depth: defines the maximum depth of each individual boosting tree.

• min_child_weight: defines a minimum threshold for the second derivative of
the loss function L in each node. One does not split trees further if the nodes fall
below this threshold. This ensures that the model stops splitting trees once a node
features a certain degree of purity.

• subsample: defines the size of a bootstrap sample to build the boosting tree.
Each boosting step considers another bootstrap sample.

• reg_lambda: defines an L2 regularisation parameter similar to ridge logistic
regression, see above. Each boosting tree Tl gives a prediction (score) Tl(xk) = wk,l.
Overly large values of wk,l indicate a skittish behaviour of the boosting model which
we can dampen by adding ∥(wk,l)k∥2 to the loss function L. reg_lambda controls
the impact of ∥(wk,l)k∥2 in the loss function.

• colsample_bytree: defines the share of randomly selected features that are used
to construct a boosting tree. In each boosting step, we newly select the features.

To avoid overfitting, we can choose eta small (e.g. commonly smaller than 0.3 which
usually requires setting n_estimators large, e.g. greater than 500), gamma large
(e.g. commonly greater than 0), max_depth small (e.g. commonly smaller than 6),
min_child_weight large (e.g. commonly greater than 1), subsample small (e.g.
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smaller than 1), reg_lambda large (e.g. greater than 1) and colsample_bytree
small (e.g. smaller than 1) [CG16]. Chapter 10 of [HTF09] provides further details on
gradient boosting trees.

3.5 Summary
In this chapter, we outlined state of the art methods of machine learning for microscopy
images. We discussed models of the FGA to classify images, i.e. models that predict
classes based on previously generated features of the images.

The state of the art data scientific setup for training models and generating reliable
out-of-sample performance metrics requires splitting data into disjoint training, validation
and testing samples. Cross-validation may replace dedicated validation samples if deemed
computationally feasible.

Radiomics features aim at converting microscopy images into advanced quantitative
imaging features of first-, second- and higher-order statistics. We have learned that
radiomics features have proven successful in classifying microscopy images of tumors.

The state of the art FGA models that we discussed in this chapter comprise (penalised)
logistic regression, support vector machines, random forests and gradient boosting.
Logistic regressions are relatively easy to understand extensions of linear regressions
for binary classification problems. Their penalised versions include penalty terms to
account for overfitting. Support vector machines classify observations based on decision
hyperplanes. These hyperplanes allow for more intricate than linear decisions when
applying high-dimensional kernel functions (such as radial basis functions). Random
forests are ensemble models for creating a large collection of lowly correlated decision
trees and use the average decision of these trees as prediction. Conversely, gradient
boosting trees are correlated and aim at stepwise improving classification results by
building boosting trees that correct residual prediction errors. We have learned that all
of the afore-mentioned four FGA models have given decent results in various domains of
classifying microscopy images.
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CHAPTER 4
State of the Art: Deep Learning

for Microscopy Images

The image-based classification approach refers to so-called deep learning approaches or
neural networks that consist of many stacked layers. Each layer is itself a comparatively
simple linear or non-linear transformation that takes the previous layer as input and
outputs to the next layer. We can conceive inputs and intermediate layer outputs as
neurons of a directed acyclical graph. State of the art IBA classification models include
so-called convolutional neural networks and residual networks [XXS+17, HZRS16].

After setting the notation in Section 4.1, the following Sections 4.2 and 4.3 discuss
convolutional neural networks and residual networks for image classification. Section 4.4
gives further details on how to train such networks.

4.1 Denotation
In addition to the notation introduced in Section 3.1, we denote (high-dimensional)
learnable parameters of neural networks as θθθ, which we split into multiplicative parameters
θθθw and additive parameters θθθb. We denote the loss function by L, its regularised version
as Lreg and batches of the training data as Bi (see Sections 4.4.1 - 4.4.3). We refer to
λ > 0 as hyperparameter that controls the impact of the penalty term in Lreg.

4.2 Convolutional Neural Networks
Convolutional neural networks (CNNs) for image classification are deep learning networks
that take images Ik as direct inputs and pass them through multiple feed forward layers.
CNNs have proven to excellently perform when classifying images in various domains
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Figure 4.1: A simplified layout of a typical CNN. Activation functions are applied after
each convolution.a

aImage taken from Wikimedia Commons https://commons.wikimedia.org/wiki/File:
Typical_cnn.png. Accessed: 2023-01-24.

[KSH12], medical image analysis [CGGS13, LST+16] including histopathology images
[SRT+16, XXS+17].

Besides special layers (such as dropout and batch-normalisation layers) that we discuss
in Section 4.4.3, there are usually four different kinds of layers/ functions in a CNN:

1. convolutional layers,

2. activation functions,

3. subsampling or pooling layers,

4. linear layers.

All layers serve different purposes: broadly speaking, stacking convolutional layers, pooling
layers and activation functions aims at extracting features and properties from an input
image that are relevant for classification. In modern CNN architectures, linear forward
connected layers are classification backends that take these features in the final layer as
inputs and use them to classify the input image. Before the final layer, modern CNNs
usually reiterate layer blocks where each block consists of convolutional layers, activation
functions and a pooling layer, see Figure 4.1. The followings Sections 4.2.1-4.2.4 discuss
each layer type in more detail.

4.2.1 Convolutions
Convolutional layers are shift invariant feature extractors that employ (possibly multiple)
so-called convolutions. Convolutions take a multidimensional array I as input and use
another multidimensional array of parameters K (called kernel) to extract features by
generating an output array O via

24

https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://commons.wikimedia.org/wiki/File:Typical_cnn.png


4.2. Convolutional Neural Networks

Figure 4.2: A convolutional kernel of size 2 acts on an input array of size 2 × 3 to create
an output array of size 1 × 2. Image was modified from Figure 9.1 of [GBC16].

Oi.j =
�
m

�
n

Im,nKi−m,j−n.

We set Kl,m = 0 except for a predefined number of array elements which determines the
kernel size. We can omit those predefined entries Kl,m = 0 for simplicity. The remaining
kernel parameters Kl,m are learnable and modified during training [GBC16]. Figure 4.2
displays how a kernel of size 2 × 2 acts on an input array of size 3 × 4 to create another
output array of size 2 × 3. In particular, we note that convolutional layers decrease
the resolution of the output array. To influence the resolution of the output array, one
can use so-called paddings or strides for the convolutional layers. Paddings increase the
resolution of the input array by creating a “frame” (pad) of 0-entries around the input
array. Hereby, also the resolution of the output array will increase based on the padding
width. Strides define to which input entries the kernel is applied. Figure 4.2 shows the
output O of a kernel with stride 1, while a kernel with, say, stride 2 will output only
every second entry of O, i.e. an array of size 2 × 2. Chapter 9 of [GBC16] provides further
details on convolutional layers.

A single kernel can extract local low-level features of an input array, such as edges or
ridges, see Figure 4.3. A convolutional layer may consist of multiple kernels that extract
features in separate so-called feature maps, which increase the channel dimension of the
output array. Stacking multiple convolutional layers increases the so-called receptive field
of the feature detection and allows the CNN to learn more complex high-level features
[GBC16]. One can also increase the receptive field by modifying the convolutional kernels.
For example, given a kernel, a dilated version of this kernel will increase the kernel size
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(a) input image (b) applied kernel (c) output image

Figure 4.3: Example of a 3 × 3 kernel applied to an input image to extract edges and
ridges as output.a

aImages taken unchanged from Wikimedia Commons https://commons.wikimedia.org/wiki/
File:Vd-Orig.png and https://commons.wikimedia.org/wiki/File:Vd-Rige2.png. Both
accessed: 2023-01-24.

by spatially uniformly distributing the original kernel values in the greater kernel and
filling all unallocated kernel entries with 0. The dilated kernel will operate on a greater
receptive field than the original kernel at the expense of capturing fewer details [GBC16].

4.2.2 Activation Functions
Convolutional layers linearly transform inputs into outputs. In a CNN, each output is
then run through a non-linear activation function a to only keep stronger and therefore
more relevant signals. Sigmoid/ logistic activation functions a(x) = (1+exp(−x))−1, area
hyperbolic tangent functions a(x) = arctanh(x) and so-called rectified linear units (ReLU)
are common activation functions [XXS+17]. Here, ReLU is defined by a(x) = max(x, 0),
where we apply the maximum function element-wise. ReLU activation functions are easy
to optimise with gradient-based approaches [GBC16], see Section 4.4.2.

4.2.3 Subsampling or Pooling Layers
A pooling or subsampling layer replaces the output of a layer at a given location with
a summary statistic of nearby outputs [GBC16]. Most popular pooling layers are
max pooling or average pooling layers which output the maximum or mean within a
rectangular neighborhood [XXS+17]. Pooling layers allow condensing the signals to
reduce dimensionality and only keep the most relevant information.

4.2.4 Linear Layers
As stated above, in modern CNNs the linear layer is a classification backend that uses
the previously extracted features to classify the input image Ik ∈ I. The output of a
CNN is a vector sk ∈ Rl where each vector entry s1,k, . . . , sl,k gives a class score, i.e. a
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4.3. Residual Networks - ResNets

real number that expresses how likely the input image Ik is in class i ∈ G = {c1, . . . , cl}.
In classification tasks, one assigns Ik to the class ĝk := argmaxi∈Gsi,k of the greatest
class score. One can use a softmax function

softmax(si,k) := pi,k := exp(si,k)�
j∈G exp(sj,k)

to convert class scores si,k into class probabilities pi,k, i ∈ G. The softmax function
emphasises large class scores and suppresses small scores.

4.3 Residual Networks - ResNets
As CNNs have achieved remarkable results in image classification problems [XXS+17],
a common idea to even further improve these results was to increase the model depth
and stack even more convolutional layers. However, from a certain depth onwards, one
observed performance saturation and degradation. Adding more layers increases the
training and test errors instead of decreasing them [HZRS16]. This is remarkable, because
in theory convolutional layers should be able to mimic the identity function. Hence,
deeper CNNs should perform at least as well on the training sample T as more shallow
CNNs. However, in practice, too deep CNNs fail to mimic identity functions in their
convolutional layers.

To overcome this issue, residual networks are extensions of CNNs that include so-called
skip-connections. Skip-connections represent identity functions that allow ignoring
(skipping) the output of certain convolutional layers, see Figure 4.4. Residual networks
facilitate much deeper networks and have shown to outperform plain CNNs in image
classification problems [HZRS16]. Those networks are named ResNet-N , where N refers to
the number of layers with learnable parameters (e.g. ResNet-34). Due to the high number
of parameters and deep layers, it is common to use pre-trained off-the-shelf ResNet models
and only fine tune the final classification layer depending on the specific task that one
wants to solve. In that manner, one can re-use the feature extractor of the ResNet model
and employ the features for other classification task. This method provided competitive
results in various domains of microscopy image classification [FMS+18, MSR+20].

4.4 Training CNNs and ResNets
As discussed in the previous sections, CNNs and ResNets usually consist of thousands
or even millions of learnable parameters in addition to hyperparameters such as kernel
sizes, padding and stride settings. We can conceive a CNN or ResNet as a function
M(·, θθθ) : I → G, where θθθ denotes the (high-dimensional) vector of learnable parameters.
We can separate theses parameters into weights θwθwθw (multiplicative parameters) and biases
θbθbθb (additive parameters). To train, validate and test models, we assume throughout this
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Figure 4.4: Example of a skip connection. The output F (x) of two stacked convolutional
layers is added to the input x via a skip connection. Image was modified from [HZRS16].

section that a training sample T , a validation sample V and a testing sample Ttest are
given as introduced in Section 3.2.

To train θθθ and to find the optimal parameter settings of θθθ, we first have to define a
so-called loss function L and metrics that measure how well our model fits the data. We
then iteratively update the parameters in a gradient descent algorithm by determining
the gradient ∇θθθL(M(·, θθθ)) of the loss function with respect to the learnable parameters.
Deep learning networks are prone to overfitting due to the high number of parameters
compared to the number of training samples (curse of dimensionality) and regularisation
methods are necessary to combat overfitting [GBC16].

Below, Section 4.4.1 introduces loss functions and performance metrics for binary image
classification problems. Afterwards, Section 4.4.2 discusses gradient descent algorithms
and related improved methods. Finally, Section 4.4.3 treats methods to spot and combat
overfitting when training networks.

4.4.1 Loss Functions and Metrics
Loss functions aim at measuring the performance of a network M(·, θθθ) on the training
sample T with respect to parameters θθθ. In general, choosing the loss functions depends
on the task that the network tries to solve. For classification tasks, the cross-entropy loss
function is most common [GBC16]. Other loss functions include the mean absolute error
or mean squared error function [GBC16, Bis06]. In case of unbalanced samples in which
one class exhibits more observations than others, one can also employ a weighted loss
function. In weighted loss functions, one assigns weights to each observation to influence
how much they contribute to the total loss. This way, one can weigh observations of
majority classes down to favour models that perform well also on minority classes.

To define the cross-entropy loss function for binary classifications, we assume that our
model M(·, θθθ) outputs for each input image Ik ∈ T with label gk ∈ {0, 1} a vector
pk = (pk,0, pk,1) of class probabilities, see Section 4.2.4. We encode the label gk also into
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a class probability vector uk = (uk,0, uk,1), where uk,i = 1 if i = gk and uk,i = 0 otherwise.
Note that uk,0 = 1 − uk,1, pk,0 = 1 − pk,1. We then define the cross-entropy loss of our
model M(·, θθθ) on T as

L(M(T , θθθ)) = −
�

Ik∈T
(uk,0 ln(pk,0) + uk,1 ln(pk,1)) ,

= −
�

Ik∈T
(uk,0 ln(pk,0) + (1 − uk,0) ln(1 − pk,0)) .

The cross-entropy loss measures how similar or dissimilar the true probabilities uk and
the predicted probabilities pk are and how well the model M(·, θθθ) performs for each
observation Ik ∈ T . By definition of uk and pk, we can rewrite the cross-entropy loss as

L(M(T , θθθ)) = −
�

Ik∈T
uk,gk

ln (softmax ([M(Ik, θθθ)]gk
))) ,

where [M(Ik, θθθ)]j denotes the j-th component of the 2-dimensional output vector of
M(Ik, θθθ). Chapter 6 of [GBC16] provides further details on loss functions (objective
functions).

While lower values of loss functions relate to better model performances, they are still
hard to interpret in practice. In addition, regularisation methods may amend the loss
function and make it even harder to construe losses (see Section 4.4.3). For that reason,
we usually do not assess losses on the validation sample V, but use metrics that are
easier to understand than cross-entropy losses. The most relevant metrics for a binary
classification problem are the following:

• accuracy: For each observation Ik ∈ V we can compare the true label gk with
the predicted label ĝk and infer true and false positives, as well as true and false
negatives. By denoting the sum of all true and false negatives as well as true and
false negatives over V as TP, FP, TN, FN , respectively, we define accuracy as

acc = TP + TN

K
,

where K = TP + FP + TN + FN denotes the number of observations in V. The
metric acc measures how often M(·, θ) outputs correct results.

• recall: recall measures how often the model M(·, θ) correctly classifies (by conven-
tion) the class 1 ∈ G and is defined as

rec = TP

TP + FN
.
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• precision: precision measures how often the model’s classification as 1 ∈ G is correct
and is defined as

prec = TP

TP + FP
.

• F1-score: Both recall and precision are important metrics to measure different
aspects of the model performance. The F1-score combines them into one score by
determining their harmonic mean

f1 = 2 rec · prec

rec + prec
.

When training a network, we compare training losses on T as well as a suitable performance
metric on the validation sample V . After training, we can assess the model via the relevant
performance metric on the testing sample Ttest. In Section 4.4.3, we discuss in more
detail how we can spot overfitting during training.

4.4.2 Gradient Descent

Given current parameters θθθi, we generate losses L(M(T , θθθi)) on the training sample T for
a network M . We can determine the gradient ∇θθθL(M(T , θθθi)) of L(M(T , θθθi)) with respect
to θθθ to find the directions of the greatest increase and decrease of losses L(M(T , θθθi)).
Choosing a small learning rate α > 0 as hyperparameter (e.g. α = 0.01), we can then
update θ iteratively via

θi+1 = θi − α∇θθθL(M(T , θθθi)). (4.1)

It is important to note that ∇θθθL(M(T , θθθi)) is indeed the true analytical gradient and not a
numerical (approximated) derivative. We are able to calculate the exact gradient because
the simple component functions (convolutions, pooling layers, activation functions) of
our network feature (relatively) simple gradients. Using the chain rule, the gradient
∇θθθL(M(T , θθθi)) is a sum of products of gradients of the simple component functions of our
network. As we can conceive a deep forward neural network as a directed acyclical graph,
the so-called backpropagation algorithm allows calculating the gradient ∇θθθL(M(T , θθθi))
efficiently by storing and reusing intermediate gradients in each node of the graph
[GBC16].

Calculating L(M(T , θθθi)) and its gradient ∇θθθL(M(T , θθθi)) over the whole training sample
T can be computationally demanding. As one needs many iterations to update θθθ via
(4.1), determining ∇θθθL(M(T , θθθi)) is even more serious. To alleviate the computational
complexity, we partition T randomly into disjoint batches Bi of a given batch size S, i.e.
|Bi| ≤ S and �

i Bi = T . We then update θθθ for each batch Bi separately by calculating
the loss
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L(M(Bi, θθθ)) = −
�

Ik∈Bi

1�
j=0

uk,j ln(pk,j), (4.2)

and its corresponding mini-batch gradient ∇θθθL(M(Bi, θθθ)) for each batch Bi. Decreasing
the batch size S also decreases the computational effort to update θθθ, the required GPU
memory but also the accuracy of gradient estimates. Hence, finding an adequate batch
size S is crucial. One swipe through the whole training sample T via batches is called
epoch. We shuffle training observations and newly setup batches after each epoch.

In optimisation problems, there are global and local optima, as well as so-called critical
points that feature very small gradients that are (in terms of length) close to machine
precision. Not all critical points are optima, but they let plain gradient descent algorithms
stop because of their vanishing gradient. However, mini-batch gradients are known as
noisy estimates and are able to let the gradient descent algorithm escape critical points
that are not optima [Bis06].

Plain gradient descent as implemented in (4.1) or (4.2) ignores any information from
previous iterations. This can cause oscillations and slow down the speed of convergence.
For that reason, there are two main ideas among many others to improve plain gradient
descent: first, one adapts gradient descent by so-called momentum, which incorporates
an exponential moving average of previous gradients in gradient descent. The influence of
previous gradients decays exponentially with the number of iterations and improves the
speed of convergence by dampening oscillations. An additional hyperparameter β > 0
controls the impact of previous gradients. Second, in so-called RMSprop, one adapts
parameters with higher variance less than parameters with lower variances. This also
helps dampening oscillations and improves the speed of convergence. One of the currently
most popular algorithms to improve plain gradient descent is Adam, which incorporates
both momentum as well as RMSprop. It includes hyperparameters α > 0 (learning rate)
and β1, β2 > 0, where the latter impact momentum and RMSprop, respectively. Chapter
8 in [GBC16] provides further details. While we discussed gradient descent and loss
functions in this chapter in the setup of deep learning, note that these concepts also apply
beyond. Finding optimal parameters and training e.g. machine learning models (such as
random forests, support vector machines, gradient boosting and logistic regression as
discussed in Chapter 3) may also involve optimising loss functions via numerical methods
of gradient descent.

4.4.3 Combatting Overfitting
When training a network, we record training losses on T as well as a suitable performance
metric on the validation sample V for each epoch. Due to the high number of parameters,
deep learning networks are usually prone to overfitting [GBC16]. To spot overfitting
during training, we compare the losses on T with the performance metric on V . If losses
on T keep on decreasing for each epoch or are already close to 0 while the performance
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metric on V remains high or even gets worse, this is usually a sign of overfitting because
the model is not capable of generalising well to unseen data of V.

To avoid overfitting and to train a model that copes with new data, it is best to increase
the training sample T . However, in practice, data are limited and increasing T is not
feasible. Instead, we can apply certain strategies to combat overfitting, among which the
most popular are the following five approaches:

• data augmentation: one can use images Ik ∈ T and transform them without
affecting the class label gk by using a transformation ϕ : I → I and employing
ϕ(Ik) as new training observations (fake data) [Bis06]. This method is known as
data augmentation and common transformations ϕ include random image cropping,
contrast, sharpness an intensity changes, as well as random rotations, scaling and
adding noise [Bis06]. Modern hardware allows applying these transformation online
during training such that storing transformed images is not necessary.

• regularisation: similar to ridge logistic regression, see Section 3.4, we can amend
the loss function L by introducing a term that penalises large network weights θwθwθw:

Lreg(M(T , θθθ)) = L(M(T , θθθ)) + λ

2 ∥θwθwθw∥2
2,

where λ > 0 is a hyperparameter that controls the impact of the penalty term
[Bis06]. Similarly to ridge regression, the regularised loss function prevents certain
inputs from dominating the model prediction and usually leads to a model that
resides to all inputs. Normally, we choose λ ∈ [0.0001, 0.01].

• batch normalisation: deep networks involve chained multiplications that can lead
to vanishing or exploding networks signals. For that reason, one can normalise
input images either by ensuring that the channel intensities fully cover a pre-defined
interval (say [0, 255]; known as min-max normalisation) or by subtracting from
each channel the corresponding mean and dividing by the standard deviation of the
channel on T [GBC16]. Batch normalisation layers includes the latter approach
also in the hidden layers of a network by determining the channel means and
standard deviation of the currently processed batch Bi [GBC16]. During training,
batch normalisation layers aggregate statistics on means and standard deviations
of the processed inputs that one uses after training to normalise the input neurons
[GBC16]. Batch normalisation ensures consistent inputs signals and better behaved
loss functions. As mini-batch means and standard deviations are usually more
noisy, batch normalisation layers also have a regularising effect on the network
similar to intensity changes in data augmentation.

• dropouts: dropouts are specific network layers that only amend inputs while training
the network. After training, dropout layers pass inputs unchanged as outputs.
During training, dropout layers output for each input neuron 0 with a predefined
probability p and otherwise output the unchanged input neuron. One usually

32



4.5. Summary

places dropout layers before the last linear layer to “drop” certain feature neurons.
Typically, this turns models more robust and less dependent on specific features to
classify an input image [HSK+12].

• early stopping: As discussed above, we usually identify overfitting if the validation
performance metric does not improve anymore during training. A simple but yet
effective method to prevent overfitting is to stop training whenever validation
performance has not improved anymore after a predefined number of epochs [Bis06].
One then uses the model of the last improvement as final model.

4.5 Summary
In this chapter, we outlined CNNs and ResNets as state of the art methods to classify
microscopy images via deep learning. CNNs consist of different kinds of layers, such as
convolution layers, activation functions, subsampling layers and linear layers which are
usually placed at the end of the networks to classify images. ResNets amend these layers
via skip-connections to allow for deeper and more predictive networks.

We have also learned the state of the art for training CNNs and ResNets. The cross-entropy
loss function is one of the most common loss functions for binary classification problems
and there are different kinds of metrics (such as accuracy) to monitor model performance
during training. The plain gradient descent algorithm for batches of images allows for
easily training neural networks. Momentum and RMSprop enhance this method by
increasing the speed of convergence and avoiding oscillations. There are several methods
to prevent and combat overfitting of networks, such as batch normalisation, dropouts,
early stopping, data augmentation and regularisation of the loss function.
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CHAPTER 5
State of the Art: Wasserstein

Distances and Classification of
ALT Status and Fluorescence

Patterns

This chapter discusses state of the art methods to classify the ALT Status and fluorescence
patterns of so-called HEp-2 cells. To the best of our knowledge, there are no FGA or IBA
models yet in the literature to predict the ALT status of tumor cells. Classifying HEp-2
cells based on immunofluorescence microscopy images represents a very active research
topic in the last ten years. HEp-2 cells and their corresponding fluorescence patterns are
relevant for identifying antibodies in blood serum e.g. to diagnose autoimmune diseases.
The patterns partly exhibit bright spots which vary in shape, position and density within
the cells [oAp]. For that reason, HEp-2 classification models are also promising candidates
to identify the ALT status of nuclei.

Furthermore, this chapter outlines basic concepts of the theory of Wasserstein distances,
the optimal transport problem and Wasserstein barycenters. Sections 6.6.3 and 7.2.2
below use Wasserstein distances to define a so-called Wasserstein distance model and
to select features. Wasserstein distances have become increasingly popular in machine
learning, in particular when training generative adversarial networks [ACB17].

In this chapter, we start off in Section 5.1 by summarising the main notation of this
chapter. The following Section 5.2 treats state of the art methods to classify the ALT
status of cells. Section 5.3 discusses the state of the art for classifying HEp-2 cells with
CNNs in indirect immunofluorescence microscopy images. Last, Section 5.4 discusses the
theory of Wasserstein distances.
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Fluorescence Patterns

5.1 Denotation
In this thesis, we denote measures on Rp by µ and refer to the L2 norm on Rp as ∥ · ∥2.
We consider x, xk ∈ Rp as vectors in Rp.

5.2 State of the Art for ALT Classification
[MWT+21] provides a concise overview of the state of the art methods for predicting the
ALT status. There are four main approaches: first, there exist rule-of-thumb criteria
to categorise the ALT status based on microscopy images. Second, Whole Genome
Sequencing (WGS) is used to predict the ALT status of cells. Third, one uses the
so-called C-circle assay to determine the ALT status. Fourth, one refines the fluorescence
microscopy imaging approach to suppress telomeric signals for ALT− cells. The following
four paragraphs discuss these approaches separately.

To diagnose the ALT status using telPNA FISH microscopy images, [HSH+11] proposed
certain rule-of-thumb criteria. More specifically, to categorise ALT positivity, it is
necessary to identify ultra-bright telomere spots in the microscopy images and to quantify
these cells. If more than 1% of all cells exhibit these ultra-bright spots, [HSH+11]
proposed to categorise them as ALT+. While these principles are useful indications when
ultra-bright telomere spots are present, they are not clear-cut and objective automated
rules to determine the ALT status with high confidence, in particular if no ultra-bright
telomere spots are visible.

Instead of using microscopy images, [LTH+18] employ WGS to identify the ALT status
of cells. More specifically, the authors train a random forest model on WGS tumors to
classify the ALT status with high in-sample and out-of-sample accuracy. In particular,
despite being developed on a sample of very specific classes of tumors, the random forest
classifier manages to satisfactorily predict the ALT status out-of-sample for various kinds
of tumors. Hence, different kinds of ALT+ cancer are likely to share a common genome
sequencing profile.

Another possibility for identifying the ALT status is the so-called C-circle assay, which is
a polymerase chain reaction assay that makes use of the fact that telomer elongation
is involving circular intermediates in ALT+ cells [HCH+09, HR10]. While the C-cirlce
assay is comparably easy to perform, telPNA FISH is more reliable and diagnosing faster
[MWT+21]. Another disadvantage of the C-circle assay and also WGS is that both
methods analyse cells in bulk and not on single-cell level. Hence, one cannot determine
the exact ratio of ALT+ cells and low ratios might not be detected at all.

[FRM+22] introduce a special one-step FISH microscopy imaging approach (ALT-FISH)
that aims at suppressing the telomeric signal for ALT− cells. They show that single-
stranded DNA and RNAs containing telomere sequences that are rich in the nucleotide
bases cytosine and guanine are reliable markers for the ALT status [FRM+22], which can
be quantified visually by ALT-FISH. More specifically, the ALT-FISH approach shows
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considerably more telomeric spots in ALT+ cells than in ALT− cells. Note that this
method is not applicable in our setting as we use telPNA and not ALT-FISH images.

5.3 State of the Art of HEp-2 Classification Via
Fluorescence Patterns

[RWSZ20] provides a recent and comprehensive review on deep learning approaches
to predict the HEp-2 category on cell-level as well as specimen-level, where the latter
refers to an image that captures multiple cells similar to field of view in dilution series,
see Section 2.3.2. While also deep autoencoding-classification networks have been used
recently to classify HEp-2 cells, most approaches use custom CNNs or build on employing
existing CNN architectures (such as GoogLeNet or AlexNet). When using CNNs to
classify HEp-2 cells, there are two main paradigms: on the one hand, one uses CNNs
to generate self-trained features which then serve as predictors in another classification
model (such as a SVM). On the other hand, one uses CNNs to directly classify the
input by using the self-learned features. There are four publicly available standardised
data sets of HEp-2 cells that allow comparing results across publications. The following
three paragraphs record the state of the art approaches for CNNs that are based on the
relatively simple LeNet-5 network [LBBH98].

[GWZZ16] propose a custom CNN to directly predict the HEp-2 category on cell-level.
The custom CNN shares the basic architecture of LeNet-5 but uses different filter sizes,
max-pooling instead of average-pooling layers and additional subsampling layers. The
authors investigate the impact of rotation-based data augmentation and image foreground
masks on the classification performance. They have found that augmenting data via
rotations significantly improves the prediction accuracy of the final CNN. Furthermore,
the authors state that applying image foreground masks decreases the classification
performance compared to a CNN that is trained on cell images that also includes the
background. Hence, they have found in their experiment that the background of HEp-2
cells includes information to predict HEp-2 categories with their custom CNN.

The authors of [RNM17] use the three well established CNN architectures LetNet-5,
AlexNet and GoogleNet to classify HEp-2 cells. They assess how various preprocessing
approaches (contrast stretching, histogram equalisation, pixel substraction methods) and
data augmentation (image rotation based on predefined angle steps) affect the performance.
They have found that each CNN behaves differently for the proposed preprocessing
strategy. While GoogleNet provides the highest accuracy without any preprocessing
or data augmentation steps, the other CNNs benefit from certain preprocessing steps.
For example, LeNet-5 improved most when training on augmented data with contrast
stretching and pixel subtraction.

In the follow-up paper [RNM20] of [RNM17], the authors further compare the CNN
architectures LeNet-5, AlexNet, Inception-V3, VGG-16 and ResNet-50 with similar
preprocessing and data augmentation steps. Furthermore, they assess whether training
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Inception-V3, VGG-13 and ResNet-50 from scratch or fine-tuning them gives better
results. While their previous work [RNM17] determined the test accuracy on a hold
out sample, the authors use 5-fold CV as a more robust experimental setup to estimate
the test accuracy in [RNM20]. The authors find in their experiments that training
Inception-V3, VGG-13 and ResNet-50 from scratch gave slightly better results than
training via fine-tuning. Furthermore, LeNet-5 gave decent accuracy results and the other
much deeper CNNs outperfomed LeNet-5 by at most a few accuracy percentage points.
The authors also find that LeNet-5 performs best with data augmentation and no pre-
processing steps, while the preferred approach according to [RNM17] (data augmentation
with contrast stretching and pixel subtraction) gives the second best result.

5.4 Wasserstein Distances
This section introduces Wasserstein distances and Wasserstein barycenters. We employ
the theory of Wasserstein distances when defining so-called Wasserstein distance models
in Section 6.6.3 and when selecting features in Section 7.2.2. To simplify the following
discussion, we only consider Wasserstein distances of arbitrary probability measures µ on
(Rp, ∥ · ∥2), i.e. in particular with finite ∥ · ∥2 norm

�
Rp ∥z∥2

2dµ(z) < ∞. The Wasserstein
distance between such probability measures µ1, µ2 is defined as

W2(µ1, µ2) :=


inf
γ∈Γ(µ1,µ2)

�
R2p

∥x1 − x2∥2
2 dγ(x1, x2)

1/2

,

where Γ(µ1, µ2) denotes the set of all measures γ on R2p with marginals µ1 and µ2 on
the first and second component, i.e. γ(A × Rp) = µ1(A) and γ(Rp × A) = µ2(A) for
all measurable sets A ⊆ Rp [Kle13]. It can be shown that the Wasserstein distance
W2 gives the minimum cost of transporting masses between measures µ1 and µ2 and
solves the so-called optimal transport problem, where costs c are given in our setup by
c(x1, x2) = ∥x1 − x2∥2

2 [Vil09]. Hence, intuitively, W2 gives the costs of moving a pile of
sand given by the density of a probability measure µ1 to holes in the ground given by
the density of a probability measure µ2 (and vice versa) [Mon81, Kan42]. W2 therefore
measures how far the two measures µ1 and µ2 are away from each other. Chapter 6 of
[Vil09] provides more details and background information on Wasserstein distances and
the connection to optimal transport.

Other popular methods to measure differences between two probability measures include
the Kullback-Leibler divergence and the Jensen-Shannon distance. Contrary to the
Kullback-Leibler divergence, the Wasserstein distance is a metric and in particular
symmetric. It has shown to provide more intuitive results than the Kullback-Leibler
divergence, see also Figure 5.1 for illustration. Compared to the Jensen-Shannon distance,
the Wasserstein distance has proven to compare favorably especially if the support sets
of µ1, µ2 are disjoint [FCG+21, KPMR18]. Due to numerical advances in calculating
the Wasserstein distance [Cut13], Wasserstein distances have become a very popular
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Figure 5.1: This figure illustrates that the Kullback-Leibler divergence does not always
provide reasonable results compared to the Wasserstein distance. It makes sense to argue
that µ1 (left, red) is farther away from µ2 (center, green) then from µ̃2 (right, blue)
because the modes of µ1 and µ̃2 are closer than the modes of µ1 and µ2. Indeed, the
Wasserstein distance W2 between µ1 and µ2 is greater than between µ1 and µ̃2. However,
the Kullback-Leibler divergence between µ1 and µ2 is the same as between µ1 and µ̃2.

method in machine learning, most notably when training generative adversarial networks
[ACB17].

We used the L2 norm to define Wasserstein distances. Note that Wasserstein distances
are also known as earth mover distances when using the L1 norm.

5.4.1 Wasserstein Barycenters
Another favourable property of Wasserstein distances is that they allow for determining
so-called barycenters for a set of measures {µi}. A barycenter is itself a probability
measure µbary that minimises the sum of its Wasserstein distances to each element in
{µi} [CD14]. One can therefore think of µbary as an average mixture of all measures in
{µi}. Hence, µbary will also capture the analytical properties of the measures in {µi},
see Figure 5.2 for illustration.

5.5 Summary
In this chapter, we discussed state of the art methods to classify the ALT status and
fluorescence patterns of HEp-2 cells. We have learned that there are no FGA and IBA
models in the literature yet to classify the ALT status of cells based on telPNA channel
images. Instead, one currently classifies the ALT status based on rules-of-thumb, whole
genome sequencing, C-circle assay or refined fluorescence microscopy imaging (ALT-
FISH). For HEp-2 cell classification, there are various state of the art IBA models in the
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Figure 5.2: Two standardised normal distributions µ1 = N(−5, 1), µ2 = N(5, 1) with
mean −5 (left, red) and 5 (right, green) and their barycenter µbary (blue, dashed line).
The barycenter itself is again normally distributed with center 0 and standard deviation
of 1. Hence, µbary captures the analytic properties of µ1, µ2 and is an average mixture of
them.

literature, including LeNet-5, Alexnet, ResNet-50 and GoogleNet. While LeNet-5 did not
excel, we have learned that it still provided decent results when predicting the HEp-2 cell
patterns. We also introduced Wasserstein distances and Wasserstein barycenters. We
will use this theory when selecting variables in Section 7.2.2 and defining Wasserstein
distance models in Section 6.6.3.
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CHAPTER 6
Methodology

Estimating the ALT status based on two channel nuclear images introduced in Section
2.3 is a supervised classification problem with labelled targets (such as the ALT status).
Chapters 3 and 4 delineate several state of the art methods to solve microscopy image
classification using models of the FGA and IBA, respectively.

In this chapter, we outline which methodology we apply for the FGA and IBA of this
thesis. Setting the methodology requires a precise definition of the data sets that we use
to train, validate and test our models. Furthermore, we specify which methods we apply
to extract features for the FGA and to classify images based on these features. Similarly,
our methodology stipulates which IBA models we use and which methods we consider
for training the neural networks and making these more robust.

We start off in Section 6.2 by discussing how we identify nuclei and spots in the DAPI
and telPNA channels that we introduced in Section 2.3. Determining the nuclei and spots
in the images is crucial for the FGA, but also the IBA depends on input images that are
correctly cropped to identified nuclei. Afterwards, we highlight summary statistics and
potential technical challenges of our data in Section 6.3. This information shall underscore
how and why we decided on the methodology to address the technical challenges. Section
6.4 sets the general notation to define the two classification problems that we are interested
in: ALT classification on nucleus level as well as on series level.

After the necessary introductory information of Sections 6.2-6.4, we are in a position
to start outlining our methodology: Section 6.5 starts by providing details on our
methodology to train, test and validate samples for the IBA and FGA based on the state
of the art methods of Section 3.2. In Section 6.6, we discuss the methodology for the
FGA and the chosen approaches for this thesis in detail. Likewise, in Section 6.7, we
provide further details on how we apply the state of the art approaches of Section 4 in
this master’s thesis. In the last section, we formulate the two main research questions
that we want to answer in this master’s thesis.
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Note that this chapter describes the general outline of our methodology. The preliminary
experiments summarised in Chapters 7 and 8 give information on how and why we setup
further methodological details of our samples (e.g. based on inclusion and exclusion
criteria) and FGA and IBA models (e.g. tuning hyperparameters).

6.1 Denotation
In addition to the notation introduced in the previous sections, we denote the ALT+ share
of a dilution series by ρ ∈ AS and denote by AS = 0., 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1 the
set of ALT+ shares.

6.2 Nucleus and Spot Segmentation
For both the FGA as well as IBA we have to identify nuclei in the fields of view of the
dilution series. We need this information to correctly determine manual features per
nucleus for the FGA and to properly crop the microscopy image as an input for the
IBA, see Section 6.4. For the FGA, we also have to detect the telomere spots in the
telPNA channel to generate additional manual features for each corresponding nucleus
(e.g. standard deviation of spot distances within a nucleus, see Section 6.6.1).

The tumor biology group at the CCRI implemented deep neural networks (based on
Cellpose [SWMP21], Mask-R-CNN [HGDG17] and U-Net [EVC+19]) to segment individ-
ual nuclei and their corresponding telomere spots in each pair of the DAPI and telPNA
channel images [KFB+21]. The authors of [KFB+21] systematically compared their
performance on complex fluorescence nuclear images of various types and of different
imaging conditions (signal-to-noise ratio, sharpness, presence of damaged nuclei). Fur-
thermore, they analysed how data augmentation and artificial data improves the accuracy
in terms of specific performance measures (e.g. F1 score, precision, recall, see Section
4.4.1). Amongst others, [KFB+21] found that the neural network of Cellpose copes best
with identifying nuclei in previously unseen imaging conditions. Furthermore, the authors
found that U-Net, ResNet and Mask-R-CNN benefit most from artificial images.

We take these already implemented networks for granted and apply them for the purposes
of this master’s thesis to segment nuclei and spots. More specifically, we use the Cellpose-
based network described in [KFB+21] to segment nuclei and a U-Net to identify telomere
spots. Figure 6.1 shows the nucleus and spot segmentation masks for one nucleus of the
series P12.

6.3 Motivation: Statistics on the Microscopy Image Data
and Technical Challenges

In Table 6.1, basic statistics of the dilution series of Section 2.3.1 are summarised. We
note that pure dilution series exhibit on average a smaller number of cells in each field
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(a) DAPI (b) telPNA

(c) nucleus mask (d) spot mask

Figure 6.1: DAPI and telPNA channels as well as nucleus and spot masks of one nucleus
of the ALT− series P12.

of view than actual dilution series. In the microscopy images, the nuclei in the pure
dilution series also appear bigger than in the actual dilution series. To understand the
latter observation, we note that we determine the nucleus sizes in Table 6.1 based on the
nucleus segmentation masks of the DAPI channel via the neural networks of [KFB+21]
(see Section 6.2). As cells in the actual dilution series are more numerous, they tend to
overlap and occlude one another more easily. As a result, the masks segment occluded
cells partially, which in turn underestimates the corresponding nucleus sizes.

While the microscopy imaging protocol is standardised for all microscopy image series
(see Section 2.3.2), the statistics in Table 6.1 indicate that the microscopy images still
vary across the series. More specifically, we can still expect a higher variance in the
number and position of nuclei, the appearing size of nuclei and imaging quality across
the series. This implies the following two technical challenges:

1. Inaccurate nucleus segmentation. The number of nuclei and their position varies, as
they depend on how the prepared cell lines are applied on the carrier slides of the
microscope. Nuclei appear smaller if several nuclei overlap, which is more likely in
series with a high number of nuclei or in series where the cytospin preparation process
led to more sticky cells. Similarly, if several nuclei are cramped together, it is hard to
differentiate them for nucleus segmentation with the neural networks of [KFB+21].
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dilution series name mean cell count mean nucleus size
ALT-C.P3∼A 34,1 10.138,3
ALT-C.P4∼A 28,9 10.650,3

ALT-C.P6 54,7 8.622,1
ALT-C.P7 35,5 7.549,6
ALT-C.P8 73,0 8.273,7

ALT-C.P9WH 87,9 6.584,7
ALT-C.P10 92,9 7.945,4
ALT-C.P11 88,1 7.815,3
ALT-C.P12 87,0 6.336,2
ALT-C.P13 93,2 6.526,2
ALT-C.PM1 182,0 4.277,4
ALT-C.PM3 202,5 5.886,7
ALT-C.PM4 212,2 5.541,3
ALT-C.PM5 199,7 5.950,6
ALT-C.PM9 44,0 6.085,8
ALT-C.PM12 134,9 5.622,8
ALT-C.PM14 109,1 5.757,5
ALT-C.PM15 120,6 6.161,1
ALT-C.PM16 133,3 6.022,2
ALT-C.PM17 36,6 5.852,0
ALT-C.PM22 190,5 5.375,4
ALT-C.PM23 196,4 5.247,9
ALT-C.PM24 182,9 5.780,8

Table 6.1: Sample statistics for dilution series considered in this master’s thesis. The
horizontal line in the middle of the table separates pure dilution series (above) from
actual dilution series (below). Mean cell count refers to the average number of cells in a
field of view of the dilution series. The colour gradient varies between green (small mean
cell count) and red (greater mean cell count). Mean nucleus size gives the average size
of a cell’s nucleus in a field of view via a mesh surface measure [vGFP+17]. The colour
gradient varies from green (greater mean nucleus size) over yellow (average mean nucleus
size) to red (smaller mean nucleus size).

Hence, occluded or cramped nuclei lead to inaccurate nucleus segmentation. Based
on Table 6.1, we see that this problem is specific for actual dilution series and not
that relevant for pure dilution series. Furthermore, one has to note that generating
fields of view of the DAPI and telPNA channel images leads to cropped nuclei at
the border of the field of view. Inevitably, the segmentation masks of these nuclei
will also be cropped and therefore be inaccurate.

2. Varying image quality and fluorescence staining. The imaging quality depends
on how the nuclei are attached to the carrier glass, as some images show air
bubbles or blurry content. Similarly, images at the edge of the carrier glass can
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Figure 6.2: Cropped view of telPNA channels for dilution series PM22 (left) and P9WH
(right). The nuclei in PM22 show bright stripes around the nucleus border due to
cytoplasmic staining described in Challenge 2. The nuclei in P9WH do not feature these
stripes.

be overexposed. Furthermore, the immunofluorescence staining may have led to
unwanted imaging effects such as bright stripes around the nucleus border caused
by unspecific cytoplasmic staining, see Figure 6.2. Experts of the CCRI assessed
that the dilution series P12, PM1, PM14, PM15, PM17, PM22, PM24 particularly
show staining issues in the nuclear background.

Our methodology for both the FGA and IBA that we introduce in Sections 6.6, 6.7
have to address the afore-mentioned two technical challenges. Challenge 1. is a specific
problem for the actual dilution series that we address in Section 7.3 via a post-processing
model of the nucleus segmentation. This model aims at detecting inaccurately segmented
nuclei based on geometric properties of the segmentation masks (e.g. size, convexity). As
discussed in Section 7.3, we will exclude these nuclei from our analyses.

Challenge 2. impacts both the FGA and IBA in two ways: first, Challenge 2. may itself
impede nucleus segmentation in the DAPI channel as well as spot segmentation in the
telPNA channel due to blurry or overexposed content. We address inaccurate nucleus and
spot segmentation via the post-processing model of the nucleus segmentation mentioned
above as well as by imposing a minimum number of visible spots per nucleus to consider
nuclei in our analyses (see Section 7.2.1). Second, Challenge 2. may unduly influence the
extracted features of the FGA and IBA. To that end, we aim at generating features that
are stable in the sense that they are less affected by varying image quality. Sections 6.6,
6.7, 7.2.2 and 8.3 will provide further details.
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6.4 Methodology for Image Classification of ALT
Microscopy Images

After applying the nucleus segmentation algorithm of Section 6.2, we can conceive our
collection of image data in Section 2.3.1 as images (Ik)k ⊆ I, where I includes the
multi-channel fields of view cropped to each individual nucleus. Therefore, every image
Ik refers to one nucleus. Each channel image is a two-dimensional array of pixel values
between 0 (black) and 255 (white) and Ik can therefore be seen as a three-dimensional
array. There are four potential channels to consider: the telPNA channel, the DAPI
channel, the nucleus segmentation masks and the spot segementation masks, see Figure
6.1. In this master’s thesis, we want to solve two kinds of ALT classification problems:
first, ALT classification on nucleus level and, second, ALT classification on series level.
The following two sections provide further details.

6.4.1 ALT Classification on Nucleus Level
In ALT classification on nucleus level, we assume that all images (Ik)K

k=1 have correspond-
ing targets (gk)K

k=1 ⊆ G available and we want to find a model M : I → G that makes
a good prediction ĝk of the target gk, i.e. M(Ik) = ĝk. This is a binary classification
problem with G = {ALT+, ALT−}. Obviously, knowing the ALT status gk for an image
Ik of a nucleus requires Ik to originate from a pure dilution series (e.g. P10), see Table
2.1. For an actual dilution series (e.g. PM12), we don’t know the ALT status for each
individual nucleus, but we only know the overall share of ALT+ nuclei in the dilution
series (25%, see Table 2.1). Hence, we can only use images (Ik)k of pure dilution series
to train models that classify the ALT status of a nucleus, see Section 3.2. Still, we can
employ already trained ALT classification models on nucleus level to predict the share of
ALT+ nuclei in an actual dilution series. The following section provides further details.

6.4.2 ALT Classification on Series Level
For ALT classification on series level, we have a sequence (Ik)K

k=1 of images and we want
to find a model M : Π∞

k=1I → G that predicts the share π ∈ G of ALT+ cells among the
sequence (Ik)K

k=1. Thus, if we assume that we have labels gk of all images Ik available
and set gk = 0 for ALT− cells and gk = 1 for ALT+ cells, we want to predict the ALT+
share π = 1

K

�K
k=1 gk. In practice, the sequence (Ik)K

k=1 originates from the same dilution
series (e.g. PM.15), for which we do not necessarily have nucleus labels (gk)K

k=1 available
but we know the actual ALT+ share (e.g. π = 1%, see Table 2.1). This is a multi-class
classification problem with π ∈ G = {0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1}, i.e. π refers to
the corresponding ALT+ class of the dilution series.

To find the ALT+ share of a sequence (Ik)K
k=1, we can use two approaches: first, we can

re-use already-built ALT classification models on nucleus level or, second, we build new
models that incorporate the feature information of all nuclei in (Ik)K

k=1 as direct inputs.
For the first approach, we simply classify nuclei of (Ik)K

k=1 separately to predict ALT
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status (ĝk)K
k=1 and then use π̂ = 1

K

�K
k=1 ĝk to predict the ALT+ share. For the second

approach, we will use only FGA models in this thesis, but not IBA models. Section 6.6.3
discusses the second approach in more detail.

6.5 Methodology to Train, Validate and Test Models
Following the state of the art setup to generate samples for training, validating and
testing models in Section 3.2, we split the data I of the dilution series in this master’s
thesis into the following two to three disjoint samples

1. Training sample T : we use observations of the training sample to select inputs and
train model parameters by optimising the objective functions of the models.

2. Testing sample Ttest: After training the models, we can assess the model performance
on the testing sample to simulate how well the models perform on previously unseen
data.

3. Validation sample V: During training, we may use the validation sample to itera-
tively check up on any over- or underfitting behaviour.

In the IBA, we use all three samples T , Ttest, V to develop our models. In the FGA, we
mainly use T and Ttest. However, in some cases, we also employ cross-validation and
split T into various training and validation folds.

As discussed in Section 6.4.1, the samples T , Ttest, V for ALT classification on nucleus
level have to consist of pure dilution series, as we have to know the ALT status gk ∈
G = {ALT+, ALT−} of each nuclear image Ik. For ALT classification on series level,
we are in principle free to use both pure as well as actual dilution series for training
and testing. However, to compare all models of ALT classification on nucleus and
series level in the same data scientific setup, we choose models for ALT classification on
series level that allow for training on pure dilution series only. Hence, in any case, all
nuclear images Ik in the training, testing and validation samples T , Ttest, V have labels
gk ∈ G = {ALT+, ALT−}. For these samples, we use nuclei of the pure dilution series
P3∼A, P6, P8, P9WH, P10, P11, P12, P13. As discussed below in more detail, we will
not consider the ALT− nuclei of the pure dilution series P4∼A and P7 in T , Ttest, V.

We also have to ensure that the samples T , Ttest, V are consistent for all models, irrespec-
tive of whether they belong to the FGA, IBA or aim at solving ALT classification on
nucleus or series level. As we only use V in the IBA and employ CV on T for the FGA,
we implement the following approach:

• We split I into disjoint sets T for training and Ttest for testing, i.e. I = T ∪ Ttest,
T ∩ Ttest = ∅.

• We use the whole sample T for training models of the FGA.
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• We split T according to an 80%:20% split into disjoint samples TIBA and V that
we use for training and validating models of the IBA. Hence, I = T ∪ Ttest =
TIBA ∪ V ∪ Ttest.

We use the same testing sample Ttest for all approaches. Furthermore, we ensure that the
cross-validation split of T in the FGA (5-fold CV) corresponds to the split of T into TIBA

and V in the IBA (80%:20% split). Note that the FGA uses less channels than the IBA,
see Sections 6.6.1 and 6.7. Hence, I for FGA includes lower-dimensional arrays than I
for IBA. Still, to simplify matters, we do not reflect these differences in our notation.

As stated above, the training, testing and validation samples of the FGA and IBA may
only contain nuclei of pure dilution series, for which we have nucleus labels gk ∈ G =
{ALT+, ALT−} available. To assess how well the already trained models predict the
ALT+ ratio on actual dilution series, we denote by 
D = {DP M1, DP M3, . . . , DP M24} the
family of sets DP M ·, which contain nuclei of actual dilution series, see Table 2.1 for the PM
encoding. For each DP M ·, we know the actual ALT+ ratio ρP M · ∈ {0.01, 0.05, . . . , 0.75}.
Furthermore, we also consider in D = {DP 4∼A, DP 7} ∪ 
D the family of actual dilution
series as well as the pure dilution series P4∼A and P7, see Table 2.1. This is because we
want to use the ALT− nuclei of the pure dilution series P4∼A and P7 in D to test the
model performance on ALT− cells by determining false positive rates. We exclude P4∼A
and P7 from T , TIBA, Ttest, V, as these dilution series feature poorer image qualities
according to experts of the CCRI.

Note that we will detail our setup of T , TIBA, Ttest, V in Chapter 7 based on our findings
of preliminary experiments. There, we will set more specific inclusion and exclusion
criteria for the samples.

6.6 Methodology for FGA
In this section, we will treat the FGA in greater detail. We start off in Section 6.6.1
by discussing the features that we generate for the FGA to classify the ALT status
as well as for the post-segmentation model to correct for wrongly segmented nuclei in
actual dilution series, see Section 6.3. Section 6.6.2 provides an overview of relevant ALT
classification models on nucleus level, while Section 6.6.3 presents the proposed so-called
Wasserstein distance models that we will use for ALT classification on series level.

6.6.1 Feature Generation for ALT Classification and Postsegmentation
Processing

As discussed in Section 3.3, the FGA requires to manually generate features xk ∈ Rp for
each image Ik as inputs of the FGA models. If necessary, we can normalise or standardise
the brightness intensity curves of each image Ik before we extract features xk ∈ Rp.
Section 7.2.3 discusses this topic in more detail for our setting of ALT classification.
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It is important to note that in the FGA we only consider the telPNA channel as well
as the nucleus and spot segmentation masks of Ik to generate features. This is because
there is no biological reasoning why the DAPI channel explains the ALT status. Hence,
for the FGA, we only use the DAPI channel to generate the nucleus masks and to identify
nuclei.

To determine features for each image Ik, we use two approaches: first, we define features
based on biological reasoning. Second, we use features of the pyradiomics library
[vGFP+17] as discussed in Section 3.3. In total, this gives us 87 features that we can use
for FGA modelling. The following paragraphs discuss each approach separately.

Manually Defined Features

Based on biological reasoning, we identified 17 feature functions to potentially explain
the ALT status for a nucleus, see Section 3.3 for the definition of a feature function. The
following three classes group these features:

• telPNA signal intensity of spots: by restricting the telPNA channel to spots of a
nucleus identified by the spot and nucleus segmentation masks, we can determine
a distribution of signal intensities. For this distribution, we calculate separate
features based on summary statistics such as the mean or maximum spot intensity
as well as quantiles of the spot intensities. Furthermore, we determine the intensity
of the largest spot of a nucleus. This group comprises 5 features.

• telPNA signal intensity of the whole nucleus: by restricting the telPNA channel to
the relevant nucleus, we can determine summary statistics of the signal intensities,
such as the mean, maximum, standard deviation or certain quantiles. This group
comprises 7 features.

• analytical and geometric properties of spots: by considering the spot segmentation
mask, we can determine analytical and geometric properties of the identified spots
in each nucleus, such as the average spot size, the standard deviation of their size,
number of spots per nucleus, or the size of the brightest spot. This group comprises
5 features.

As spot sizes and the signal intensity of the telPNA channel are important determinants
for the ALT status, see Chapter 2, the above-mentioned features are able to biologically
explain the ALT status.

Pyradiomics Features

As discussed in Section 3.3, pyradiomics is a python library to generate radiomics features
for medical imaging [vGFP+17]. In pyradiomics, we consider first-order features as well
as higher-order features based on gray level matrices. In total, we extract 70 pyradiomics
features from the telPNA channel, see Table 6.2. First-order features consider properties
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of the telPNA signal intensity distribution such as kurtosis or skewness. Higher-order
features use the gray level intensities of the telPNA channel to determine pairs of co-
occuring gray level intensities (in gray level co-occurrence matrices GLCM), run lengths
of gray level intensities (in gray level run length matrices GLCM) as well as zones of gray
level intensities (in gray level size zone matrices GLSZM).

Geometric Features for Post-Segmentation Processing

In addition to the afore-mentioned features for ALT classification, we also generate features
that we use in a post-segmentation model to correct for wrongly segmented nuclei in
actual dilution series, see Section 6.3. These 16 features capture shape properties of the
nuclei (e.g. size, convexity, elongation, roundness) that we generate using the pyradiomics
package. Furthermore, leveraging on nucleus segmentation masks, we construct features
that provide for each nucleus the average and smallest distance to other nuclei and a
binary indication whether the nucleus is at the border of a field of view or touches other
nuclei. More specifically, we slightly enlarge each segmentation mask by binarily dilating
it 6 times and then intersect the dilated mask with the original segmentation masks of
all other nuclei to identify touching nuclei. To that end, we use the binary_dilation
method of scipy [VGO+20]. Slightly enlarging segmentation masks is necessary, as all
segmentation masks are disjoint.

Methodology to Select Robust Features

For the FGA, we extract 87 manually defined and pyradiomics features from the telPNA
channel as discussed above. To address Challenge 2. of Section 6.3 (varying imaging
quality), we first have to assess whether the extracted features of nuclei are valid and
reliable. In particular, we have to ensure that they are not based on image artifacts. For
that reason, we will assess whether the extracted features are robust and stable across
pure and actual dilution series. We will use Wasserstein barycenters as discussed in
Section 6.6.3 to determine how robust and stable features are. Section 7.2.2 provides the
full algorithm that we have developed to select robust variables. We outline our method
in Section 7.2.2 as it depends on and is better motivated by previous findings of our
preliminary experiments in Chapter 7.

6.6.2 FGA Classification Models on Nucleus Level

For FGA classification models on nucleus level, we assume that we have features xk ∈ Rp

for each image Ik ∈ I, k = 1, . . . , K of a nucleus according to Section 6.6.1 given. We
will also refer to FGA classification models on nucleus level as nuclear FGA models.

For ALT classification on nucleus level, we want to predict the ALT status for the
nucleus that is depicted in the image Ik. The corresponding targets are binary labels
gk ∈ G = {ALT+, ALT−}. Thus, as discussed in Section 6.4.1, the training sample T
has to consist of pure dilution series.
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A corresponding nuclear FGA model M : Rp → G operates on the feature space xk ∈ Rp

of images Ik to classify the ALT status. In this thesis, we want to use logistic regressions,
support vector machines, random forests and gradient boosting, which we discussed in
Chapter 3. We train these classification models on previously selected robust features
as outlined in Sections 3.4, 6.6.1 as well as Section 7.2.2 below and tune the relevant
hyperparameters (see Section 7.2.4). We use accuracy as the main performance measure
that we want to maximise with our models, see Section 4.4.1 for details.

6.6.3 FGA Classification Models on Series Level
For FGA classification models on series level, we again assume that we have features
xk ∈ Rp for each image Ik ∈ I of a nucleus. Given a sequence (Ik)K

k=1 of nuclear images,
we want to predict the share of ALT+ cells among the sequence (Ik)K

k=1, i.e. 1
K

�K
k=1 gk.

As discussed in Section 3.2, we assume that all images Ik ∈ T originate from pure dilution
series with available targets gk ∈ {ALT+, ALT−}. Still, after training the classification
model on series level, the sequence (Ik)K

k=1 originates from the same actual dilution series
(e.g. PM.15), for which we have the actual ALT+ share available (e.g. 1%, see Table 2.1).

As discussed in Section 6.4.1, there are two approaches to find the ALT+ share of a
given sequence (Ik)K

k=1: first, we can re-use nuclear FGA models or, second, we build
new models that incorporate the feature information of all nuclei as direct inputs. In
this section, we want to focus on the second approach by using a so-called Wasserstein
distance model that employs Wasserstein distances as discussed in Section 5.4. We will
also refer to this model as serial FGA model.

Wasserstein Distance Models

To use Wasserstein distances for ALT classification on series level, we have developed a
tailor-made approach as part of this master’s thesis. The following paragraphs discuss
this new method thoroughly and the next subsection provides further details on the
variable selection.

For Wasserstein distance models, we assume that we have q-many feature functions
F1, . . . , Fq given and generate for each image Ik of a nucleus corresponding features
x1, . . . , xq. Based on this q-dimensional feature vector (x1, . . . , xq) of each image Ik,
we can therefore determine a q-dimensional joint distribution µ over all images (Ik)k.
Furthermore, as T consists of only pure dilution series, see Section 3.2, we can split the
images (Ik)k of our training data T into ALT+ and ALT− nuclei. Hence, we can generate
separate q-dimensional probability measures µ+ and µ− of the features for ALT+ and
ALT− nuclei, respectively.

Assuming that our training data T is representative of the whole population I, we
can use µ+ and µ− to construct the q-dimensional feature distribution of all dilu-
tion series via convex combinations of µ+ and µ−. More specifically, under the afore-
mentioned assumptions, an actual dilution series with a given ALT+ share of π ∈ AS =
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{0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1} has to exhibit a q-dimensional feature distribution of

µπ = πµ+ + (1 − π)µ−.

If we are confronted with a dilution series of nucleus images (Ĩk)k and unknown ALT+
share ρ, we can generate the q-dimensional feature distribution µρ of (Ĩk)k and determine
the minimal Wasserstein distance between µρ and µπ for π ∈ AS

ρ̂ = arg min
π∈AS

W2(µρ, µπ). (6.1)

Hence, ratio ρ̂ of minimal Wasserstein distance is our Wasserstein distance model estimate
for the ALT+ share in the dilution series (Ĩk)k. Figure 6.3 illustrates the Wasserstein
distance model for hypothetical 1-dimenstional feature distributions.

To summarise, a Wasserstein distance model is based on q-many feature functions
F1, . . . , Fq and corresponding q-dimensional joint distributions µ+ and µ− of these
features for ALT+ and ALT− nuclei in the training sample T . During “training”, we
generate convex combinations µπ of µ+ and µ− with π ∈ AS. Wasserstein distance
models predict via (6.1) by minimising Wasserstein distances to µπ. They are therefore
so-called “lazy learners” similar to K-nearest neighbour models [JWHT13]. Indeed,
conceptually, one can think of Wasserstein distance models as 1-nearest neighbour models
when considering µπ with π ∈ AS as neighbours and measuring distances with W2.

Variable Selection for Wasserstein Distance Models

It still remains finding the right feature functions F1, . . . , Fq for our Wasserstein distance
model. As the data necessary to sample the distributions µ+, µ− grows exponentially
with q, we will select only two feature functions F1, F2. Higher-dimensional distributions
may become intractable based on the available amount of data (curse of dimensionality).
To find the best feature functions F1, F2, we use 5-fold CV in the following way:

1. Choose two feature functions F1, F2.

2. On T , select four training folds and one test fold based on 5-fold CV.

a) On the training folds, determine the 2-dimensional feature distributions
µtrain

+ , µtrain− of ALT+ and ALT− nuclei, respectively. Setting a finer ALT+
share grid ASfine = {0.01, 0.02, . . . , 0.99, 1}, define

Mtrain =
�

µtrain
π = πµtrain

+ + (1 − π)µtrain
− |π ∈ ASfine

�
.

b) On the test fold, determine the 2-dimensional feature distributions µtest
+ , µtest−

of ALT+ and ALT− nuclei, respectively. We then set

Mtest =
�

µtest
π = πµtest

+ + (1 − π)µtest
− |π ∈ AS

�
.
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(a) µ+ and µ− of ALT+ and ALT−nuclei and µρ of unknown ALT+ share ρ.

(b) Convex combinations µπ = πµ+ + (1 − π)µ− of µ+, µ− and µρ.

Figure 6.3: Subfigure 6.3a shows hypothetical 1-dimensional feature distributions µ+
(purple, right) and µ− (red, left) of ALT+ and ALT−nuclei as well as the corresponding
1-dimensional feature distribution µρ (black, dotted) of unknown ALT+ share ρ. In
Subfigure 6.3b, we see all convex combinations µπ of µ+ and µ− with π ∈ AS. The cyan
dashed line of ALT+ ratio 0.25 denotes the convex combination µ0.25 with smallest W2
distance to µρ. Hence, ρ̂ = 0.25 is the Wasserstein distance model estimate for the ALT+
share ρ of µρ. 53
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c) Determine for each µtest
π ∈ Mtest, π ∈ AS, the distribution µtrain

π̂ ∈ Mtrain, π̂ ∈
ASfine with smallest W2 distance to µtest

π and calculate the accuracy a =
1

∥AS∥
�

π∈AS ✶π=π̂. π̂ is therefore the grid ratio of ASfine for which µtrain
π̂

provides the smallest distance to µtest
π .

3. Repeat Step 1. for the other four possible permutations of training and test folds
on T . We therefore find accuracy estimates a1, . . . , a5 for each of the five test folds.
Determine the average accuracy ā = 1

5
�5

i ai and its standard deviation sa.

4. If we repeat Steps 1.-3. for all possible choices of feature functions F1, F2, we find
corresponding mean accuracy values and standard deviations āF1,F2 , sF1,F2 . We can
determine the pair of feature functions F max

1 , F max
2 with maximum average accuracy

āmax = āF max
1 ,F max

2
and corresponding standard deviation smax = sF max

1 ,F max
2

. We
note that all other pairs F1, F2 with

āmax − smax ≤ āF1,F2 ≤ āmax (6.2)

show very similar accuracy values, as their mean accuracy values lie within one
standard deviation of the maximum average accuracy. To find a pair of features
F1, F2 that provide high accuracy values on all folds, we therefore select the pair of
features F1, F2 which satisfies (6.2) and exhibits the smallest standard deviation
sF1,F2 among all pairs for which (6.2) holds.

In this thesis, we apply above’s algorithm to select features for the Wasserstein distance
model. We select these features among the previously identified robust features according
to Section 6.6.1.

6.7 Methodology for IBA
In the IBA, we train CNNs and residual networks on samples TIBA, V, Ttest for binary
ALT classification on nucleus level, see Section 6.5 for the sample definitions. We then
re-use the trained IBA models for ALT classification on series level following the idea of
Section 6.4.2.

In the following, we discuss how we use and amend state of the art methods introduced
in Chapter 4 to classify the ALT status in the IBA as part of this master’s thesis. While
to the best of our knowledge there is no active research on classifying the ALT status via
deep learning, choosing an appropriate CNN architecture for the IBA is crucial. In this
master’s thesis, we will focus on CNN architectures that have proven to be successful in
classifying HEp-2 cell patterns.

Due to the following two reasons we consider that CNN architectures are promising
candidates for classifying the ALT status if they also manage to predict the HEp-2
cell patterns well: first, certain HEp-2 cell patterns exhibit bright spots of varying
sizes comparable to ultra-bright spots in the telPNA channel images of ALT+ nuclei.
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To distinguish between the corresponding HEp-2 classes, the CNN architecture has to
take into account the density, size, brightness and position of spots, which is similar to
distinguishing between ALT+ and ALT− nuclei. Second, immunofluorescence microscopy
images of HEp-2 cells also require attaching cells to a carrier glass similar to the images
of this master’s thesis described in Section 2.3. In particular, the position of a cell on the
carrier glass to other cells is irrelevant (as opposed to, say, tissue sections).
For the IBA, we therefore use LeNet-5 [LBBH98] as a starting point for developing a
custom CNN, because LeNet-5 has proven to give satisfactory results when predicting
HEp-2 cell patterns [GWZZ16, RNM17, RNM20]. The following five amendments of
LeNet-5 are necessary to find a custom CNN for the IBA: first, the target of the CNN has
to be binary to match ALT classification on nucleus level, see Section 6.4.1. Second, as the
input images are larger than in LeNet-5, which aimed at recognising handwritten letters,
we have to amend the kernel sizes in the convolutional layers by following the approach
of [GWZZ16]. Similarly, in line with the input image sizes, we also consider increasing
the sequence of convolutional and pooling layers based on the approach of [GWZZ16].
Third, we exchange average-pooling layers in LeNet-5 by max-pooling layers, which have
typically become more popular in microscopy image analysis [XXS+17]. Fourth, modern
CNNs and ResNets usually stack two convolutional layers before applying pooling layers
[HZRS16]. For that reason, we also implement double convolutional layers in our custom
CNN. Fifth, we will use ReLU activation functions instead of arctanh that is used in
LeNet-5.
Note that for our custom CNN we use single-channel telPNA images of nuclei. This is
because the telPNA channel is known to biologically explain the ALT status, see Section
6.6.1. We scale all nuclear images to ensure that Ik ∈ I are of pixel size 224 × 224.
Figure 6.4 provides an overview of our custom CNN. For easier reference, we denote in
the following discussion our own custom CNN by MyNet.
To address the challenge of varying imaging quality, we consider preprocessing nuclear
images (min-max normalisation) and apply image augmentation techniques. More
specifically, we consider the following data augmentation techniques:

• Random blurring: blurs a nuclear image with a probability of 20% or other-
wise leaves it unchanged. Implemented using RandomAdjustSharpness in
torch.transforms.

• Random sharpness: sharpens a nuclear image with a probability of 20% or oth-
erwise leaves it unchanged. Implemented using RandomAdjustSharpness in
torch.transforms.

• Random halo effect: lightens up borders of a nucleus image with probability of 20%
or otherwise leaves it unchanged. This data augmentation technique shall account
for varying fluorescence staining as described in Challenge 2. of Section 6.3 and
Figure 6.2. We implemented this method manually using nuclear segmentation
masks.
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first order GLRLM
Energy GrayLevelNonUniformity

TotalEnergy GrayLevelNonUniformityNormalized
10Percentile GrayLevelVariance
90Percentile HighGrayLevelRunEmphasis

Entropy LongRunEmphasis
InterquartileRange LongRunHighGrayLevelEmphasis

Kurtosis LongRunLowGrayLevelEmphasis
MeanAbsoluteDeviation LowGrayLevelRunEmphasis

Median RunLengthNonUniformity
Minimum RunLengthNonUniformityNormalized

Range ShortRunEmphasis
RobustMeanAbsoluteDeviation ShortRunHighGrayLevelEmphasis

RootMeanSquared ShortRunLowGrayLevelEmphasis
Skewness RunEntropy

Uniformity RunPercentage
RunVariance

GLCM GLSZM
Autocorrelation GrayLevelNonUniformity

ClusterProminence GrayLevelNonUniformityNormalized
ClusterShade GrayLevelVariance

ClusterTendency HighGrayLevelZoneEmphasis
Contrast LargeAreaEmphasis

Correlation LargeAreaHighGrayLevelEmphasis
DifferenceAverage LargeAreaLowGrayLevelEmphasis
DifferenceEntropy LowGrayLevelZoneEmphasis
DifferenceVariance SizeZoneNonUniformity

Id SizeZoneNonUniformityNormalized
Idm SmallAreaEmphasis
Idmn SmallAreaHighGrayLevelEmphasis
Idn SmallAreaLowGrayLevelEmphasis

Imc1 ZoneEntropy
Imc2 ZonePercentage

InverseVariance ZoneVariance
JointAverage
JointEnergy
JointEntropy

MCC
MaximumProbability

SumEntropy
SumSquares

Table 6.2: List of 70 pyradiomics features extracted from the telPNA channel and grouped
according to their first-order or higher-order feature type. See Section 3.3 and [vGFP+17]
for a definition of each feature.
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input 
telPNA channel

224x224

convolution
in: 1, out: 32

size: 7, pad: 3, stride: 2

max pooling
size: 2, stride: 2

max pooling
size: 2, stride: 2

ReLU

convolution
in: 32, out: 64

size: 3, pad: 1, stride: 1

ReLU

ReLU

max pooling
size: 2, stride: 2

convolution
in: 64, out: 128

size: 3, pad: 1, stride: 1

ReLU

ReLU

max pooling
size: 2, stride: 2

convolution
in: 128, out: 256

size: 3, pad: 1, stride: 1

ReLU

ReLU

average pooling
size: 7, stride: 1

convolution
in: 256, out: 512

size: 3, pad: 1, stride: 1

ReLU
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convolution
in: 512, out: 512

size: 3, pad: 1, stride: 1

Figure 6.4: Custom CNN that we use in this thesis for ALT classification on nucleus level. Each box corresponds to one layer
and denotes the number of input and output channels, as well as kernel, padding and stride sizes (if applicable). The networks
starts by aggressively reducing the array dimension by a first convolutional kernel of size 7, stride 2 and a max pooling layer
of size 2, stride 2. In return, the first convolutional layer extracts 32 feature maps. Afterwards, the CNN iterates blocks of
double convolutional layers and max pooling layers that each decrease the array dimension by two and increase the number of
feature maps by 2. Before applying the last average pooling layer, the array dimension decreases to 7 × 7. In the final layer,
each feature map provides one of the 512 features. Note that the network does not show dropout or batch normalisation
layers.
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We refrain from using other classical image augmentation techniques such as random
cropping and rotations, as the nuclear images are already the result of aleatoric cropping
and rotations. This is because nuclei are randomly attached to the carrier glass of the
microscope and are cropped according to field of views, see Section 2.3.2.

We use batch normalisation, dropouts and the regularised version AdamW of the Adam op-
timiser to make our custom CNN more robust. We use accuracy as the main performance
measure that we want to maximise with MyNet, see Section 4.4.1 for details.

In addition to MyNet, we use a pretrained ResNet-50 for which we will finetune the
classification backend on TIBA. Due to the computational complexity of training ResNets,
we have decided to use a pretrained ResNet-50 instead of training it from scratch. We use
the same preprocessing steps and data augmentation techniques as discussed above for
the custom CNN. Since ResNets are trained on three-channel RGB images, we have to
choose the input channels of Ik appropriately to apply our pretrained ResNet. In addition
to the “red” telPNA channel, we will therefore also include the nuclear segmentation
mask and DAPI as “green” and “blue” channels, respectively. Of course, increasing the
number of input channels comes at the cost of limited biological explainability. We hazard
these consequences to compare our custom CNN with another much deeper network.
For easier reference, we will drop the suffix of ResNet-50 and only refer to ResNet in
the following discussion of this master’s thesis. Again, we use accuracy as the main
performance measure that we want to maximise with ResNet, see Section 4.4.1 for details.

6.8 Master’s Thesis Research Question
After having initially set up the involved samples in Section 3.2 and the selected methods
in Sections 6.6 and 6.7, we are in a position to formulate the two main research questions
that we want to answer in this master’s thesis.

RQ1 Which model of the FGA and IBA introduced in Sections 6.6 and 6.7 predicts the
ALT status of cells best?

RQ2 What are objective image-derived criteria to describe the ALT status of cells?

For the first research question RQ1, we determine good prediction quality on samples
that we have not used when training the models. Therefore, we focus on how well the
FGA and IBA models solve the problem of predicting the ALT+ status and ALT+ ratio
on the training sample Ttest and on the dilution series of D. This problem includes both
ALT classification on nucleus and series level, respectively. On the one hand, we use
the accuracy metric introduced in Section 4.4.1 to determine the prediction quality on
Ttest. While we can readily determine accuracy scores for nuclear FGA and IBA models
based on their individual predictions of ALT classification on nucleus level, Section 9.2
gives further details on how we calculate a surrogate accuracy score for the Wasserstein
distance model. On the other hand, we determine absolute differences between actual and
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predicted ALT+ ratios and ALT+ classes to assess the prediction quality on the dilution
series of D. For example, if a model predicts an ALT+ rate of 25% for an actual ratio of
75%, the absolute difference in terms of ALT+ ratios is 50% and in terms of ALT+ classes
it is 2 (i.e. two ALT+ classes off), see also Section 6.4.2. We note that our approach
of answering research question RQ1 equally involves models for ALT classification on
nucleus and series level. Related to question RQ1, we also want to find measures of
determining how confident the models are when predicting ALT status and ALT+ rates,
see the next section 6.8.1.

The second research question RQ2 is particularly important since the currently available
rules of thumb of [HSH+11] for predicting the ALT+ status focus on whether so-called
ultra-bright spots are available in the telPNA channel, or not, see Section 5.2. The FGA
and IBA models aim at providing more objective rules that determine the ALT status
with higher confidence using image-derived criteria that describe the ALT+ status even
for cells that do not show ultra-bright foci. This will also help explaining why the models
arrived at specific predictions and foster the users’ confidence in the models’ decisions.
To answer RQ2, we focus on feature importance scores of nuclear FGA models, selected
variables for the Wasserstein distance model and look at examples of feature maps for
our own CNN MyNet. Sections 9.3 and 9.4 provide further details.

To avoid confusions, note that the following Chapters 7 and 8 include additional, more
technical research questions that corroborate how we setup the FGA and IBA models of
Sections 6.6 and 6.7. These questions are not to be mixed with RQ1 and RQ2 that are
the main research questions which we answer in Chapter 9 of this master’s thesis.

6.8.1 Prediction Confidence
When considering prediction results, we are also interested in the models’ confidence
when predicting the ALT status on nucleus or series level. Determining the prediction
confidence for all FGA and IBA models relates to research question RQ1, as it allows us
to judge the prediction quality. In this section, we want to discuss how to determine the
prediction confidence for all FGA and IBA models.

We start with nuclear FGA models and IBA models, which all provide probability
estimates for assigning the ALT status of a given nucleus. More specifically, logistic
regressions and IBA models directly provide these estimates via expit link function and
softmax function, see Sections 3.4 and 4.2.4. For support vector machines, one can
estimate class probabilities in sklearn by using so-called Platt scaling [Pla99], which
is partly based itself on logistic regressions [PVG+11]. For random forests, we can use
the class assignments of each individual decision tree to estimate class probabilities
[PVG+11]. Last, in gradient boosting, we can use the weighted sum of predictions in the
individual boosting to find a probability estimate similar to the expit link function of
logistic regressions, see Chapter 10 of [HTF09] for details.

Using the probability estimates for each of the afore-mentioned models, we can assess
how confident the models are when assigning the ALT status of a nucleus. To that end,
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we use the following bands for a probability estimate p of a given nucleus:

1. p ∈ [0%, 20%]: sure ALT− assignment.

2. p ∈ (20%, 80%): unsure assignment.

3. p ∈ [80%, 100%]: sure ALT+ assignment.

For the Wasserstein distance model, we cannot use probabilities to assess the model’s
confidence when predicting the ALT+ class of a given dilution series. Instead, we consider
the feature distribution µρ of the dilution series and the Wasserstein distance W2(µρ, µπ1)
to the closest class π1 as well as the Wasserstein distance W2(µρ, µπ2) to the second
closest class π2. We can then determine the ratio

0 ≤ γ = 1 − W2(µρ, µπ1)
W2(µρ, µπ2) ≤ 1,

to which we refer as confidence ratio. If W2(µρ, µπ1) and W2(µρ, µπ2) are very close, we
are less confident that π1 is the correct class. In this case, γ is close to 0. Hence, we
can use the following heuristic to assess how confident the Wasserstein distance model is
when predicting the ALT+ class:

1. γ ≤ 0.2: unsure assignment.

2. γ > 0.2 : sure assignment.

6.9 Summary
In this chapter, we outline our chosen methodology for ALT classification. We discussed
statistics on the microscopy data of this master’s thesis to motivate certain methodological
decision to address two associated technical challenges. The first technical challenge is
about inaccurate nucleus segmentation in actual dilution series due to cramped nuclei
in the images. The second technical challenge concerns varying image quality and
fluorescence staining, which requires stable feature extraction both in FGA as well as
IBA models.

We specified that ALT classification involves two kinds of classification: first, on nucleus
level by predicting the ALT status for an individual cell, and, second, on series level by
determining the share of ALT+ cells among an image of multiple nuclei.

We defined the training, testing and validation samples for our FGA and IBA models,
as well as a sample of (mostly) actual dilution series D that we use to assess the model
performances on previously unseen image series. To that end, we specified which dilution
series of Section 2.3 we will use for the individual samples T , Ttest, TIBA, V, D.

For the FGA, we provided details about the features that we extract for each nucleus using
own definitions and pyradiomics. We stipulated to use penalised logistic regressions,
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support vector machines, gradient boosting and random forests as FGA classification
models on nucleus level. Afterwards, we define the Wasserstein distance model, which we
use as FGA classification model on series level.

For the IBA, we use two main models: first, our own implementation of a CNN based on
LeNet-5 (called MyNet), and, second, a pretrained ResNet-50 for which we finetune the
last linear layer to serve our purposes. We based MyNet on LeNet-5 as it has proven to
give satisfactory results when predicting HEp-2 cell patterns, which are similar to ALT
staining patterns of the telPNA channel. We also specified data augmentation techniques
and methods to combat overfitting that we want to consider when training the models in
Section 8.

There are two main research questions that we intend to answer in this thesis for the
FGA and IBA models: first, which of the FGA and IBA models predicts the ALT status
best, and, second, which image-derived criteria describe the ALT status of cells. The
first research question also involves estimates on how confident the models are when
predicting the ALT status. Depending on the FGA and IBA model, we use the models’
probabilities or second closest predictions to assess this confidence.
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CHAPTER 7
Preliminary Experiments for the

FGA and Segmentation
Post-Processing Model

In this chapter, we address the technical research questions that corroborate how we
set up the final FGA models based on the methodology introduced in Section 6.5 to
discuss our answers to RQ1, RQ2 (see Section 6.8) presented in Chapter 9. On the one
hand, these technical questions address criteria to include or exclude observations from
the training, testing and validation samples T , TIBA, Ttest, V as well as D. On the other
hand, we analyse how we shall optimally setup the FGA models with respect to selected
features or chosen hyperparameters.

In Section 7.1, we start off by preliminarily defining the training, testing and validation
samples for this chapter based on our setting of Section 6.5. Note that any insights from
our posed technical research questions may immediately influence and change the setup
of these samples. We will indicate these changes whenever necessary. In Section 7.2, we
pose research questions to define FGA models. In Section 7.3, we define a post-processing
model for the nucleus segmentation of Section 6.2 in line with our observations in Section
6.3.

7.1 Preliminary Sample Setup
To build our training, testing and validation samples T , TIBA, Ttest, V based on our
setting of Section 6.5, we use nuclei of the pure dilution series P3∼A, P6, P8, P9WH,
P10, P11, P12, P13 series, for which we have nucleus labels gk ∈ G = {ALT+, ALT−}
available. We use the ALT− nuclei of the pure dilution series P4∼A and P7 in the
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family of out-of-sample dilution series D to test the model performance on ALT− cells
by determining false positive rates.

To setup T , TIBA, Ttest, V, we use the following rules:

1. Balanced targets. While the pure dilution series P3∼A, P6, P8, P9WH, P10,
P11, P12, P13 include different amounts of ALT+ and ALT− cells originating
from different cell lines SK-N-MM, CHLA90, SK-N-SH, CLB-MA, we ensure that
I = T ∪ Ttest represents nuclei of all cell lines equally. In particular, I consists of
50% of ALT+ and ALT− cells.

2. Minimum number of spots per nucleus. Using the nucleus and spot segmentation
masks of Section 6.2, we can count the number of telomere spots per nucleus. As
discussed in Section 7.2.1, certain FGA features require at least two telomere spots
per nucleus. For that reason, we include only nuclei that feature this minimum
number of spots. Section 7.2.1 discusses in more detail, which minimum number of
telomere spots is optimal.

3. Reduced sample size. The pure dilution series P3∼A, P6, P8, P9WH, P10, P11,
P12, P13 contain more than 100,000 nuclei. To limit computational efforts, we
reduce the training sample size to 20,000 nuclei. The following Sections 7.2.1 -7.2.6
indicate reduced training sample sizes if necessary.

4. Split on field of view level. We split I via an 80% and 20% ratio into T and Ttest.
More specifically, we split the observations by ensuring that all nuclei of a field
of view either pertain to T or Ttest, see Section 2.3.2 for details on fields of view.
Again, we ensure that T , Ttest consist each of 50% ALT+ cells. For the IBA, we
further split T into TIBA and V according to an 80% and 20% ratio. Again, we
split nuclei on field of view level.

5. Scaling FGA features: For FGA models of ALT classification on nucleus and series
level, we scale the features on T by centering the mean and scaling the standard
deviation to approximately 1. We use robust statistical estimates of the mean and
standard deviation according to sklearn’s RobustScaler class [PVG+11]. We
use the scaler that we estimated on T to also scale the features on Ttest.

To assess how well the already trained models predict the ALT+ ratio on actual dilution
series, we also consider in D = {DP 4∼A, DP 7, DP M1, DP M3, . . . , DP M24} the family of
actual dilution series as well as the pure dilution series P4∼A and P7, see Table 2.1. For
each dilution series in D we know the ALT+ ratio ρ ∈ {0, 0.01, 0.05, . . . , 0.75}. For the
FGA models, we use the scaler that we estimated on T to also scale the features of all
dilution series in D. Furthermore, similarly to T , we only include nuclei with a specific
minimum number of telomere spots and reduce the number of nuclei of each dilution
series in D to 4,000.
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7.2 Feature Generation Approach
The methodology of Section 6.5 outlines our setup for FGA models and the relevant
samples. In this section, we discuss all research questions that we pose to specify the
setup the FGA models as well as the samples in detail.

7.2.1 Number of Telomere Spots and its Influence on the FGA Model
Performance

Every human cell contains 46 chromosomes and therefore 92 telomeres. Due to mutations,
tumor cells may contain less or more than 92 telomeres. In the telPNA channel, we
should therefore identify up to around 92 telomere spots for both ALT+ and ALT− cells.
In practice, we will usually see less spots due to occlusions or noise. One can argue that
the number of identifiable spots per nucleus corresponds to the quality of the microscopy
image. Lower number of spots might indicate more noisy images of poorer quality.

We want to analyse whether an imposed minimum number of telomere spots per nucleus
affects the prediction quality of the nuclear FGA models. If so, we can impose this
minimum number of telomere spots in the definition of the training, testing and validation
samples T , TIBA, Ttest, V. Hence, we pose the following research question:

Does a minimum number of telomere spots per nucleus influence the
performance of nuclear FGA models?

To answer the above research question, we fix a set of required minimum spot numbers
nspots ∈ {2, . . . , 15} and check how the FGA model types of logistic regression, random
forest, support vector machine, gradient boosting predict the ALT status for cells that
have at least nspots spots. We choose nspots > 1 as some FGA features require at least
two spots per nucleus (e.g. distances between spots in a nucleus, see Section 6.6.1). More
specifically, for each nspots, we will use the following experimental setup:

1. We generate T as described in Section 7.1 but we only include nuclei that feature
at least nspots-many spots. For that purpose, we do not additionally reduce the
sample size of T . We then split T into four training folds and one validation fold
according to 5-fold CV. There are five possibilities to combine the folds into four
training folds and one validation fold.

2. We train the FGA models with sklearn’s standard parameters (without hyper-
parameter tuning) on the training folds of Step 1. For each FGA model type of
Section 3.4, there are five differently trained models because of the five different
training and validation fold splits.

3. We evaluate the trained FGA models of Step 2 on the corresponding validation
folds to determine the out-of-sample accuracy, see Section 4.4.1. For each FGA
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Figure 7.1: Plot of mean accuracy scores and number of observations in T with respect to
the required minimum number of telomere spots nspots ∈ {2, . . . , 15} per nucleus. The left
axis shows the mean accuracy scores for random forest (RandomForestClassifier, blue),
logistic regression (LogisticRegression, yellow), gradient boosting (XGBClassifier, green)
and support vector machine (SVC, SVM, red, which refers to the sklearn.svm.SVC
classifier of [PVG+11]). The right axis depicts the number of nuclei in T that satisfy the
required minimum number of telomere spots. For each model type, the plot also shows
an error bar attached to the maximum mean accuracy score. The width of the error bar
is given by the standard deviation of the corresponding mean accuracy score. The error
bars set the score levels of one standard deviation below the maximum scores. Coloured
horizontal dashed lines display this level for easier reference.

model type, we therefore get five accuracy scores. We determine the mean accuracy
and its standard deviation for each FGA model type.

Following the above setup, we get mean accuracy values and corresponding standard
deviations for each nspots and each model type of Section 3.4. Figure 7.1 shows the results.
We see that accuracy values do not differ much for all models and nspots ∈ {2, . . . , 15},
while increasing nspots of course considerably decreases the sample size. More specifically,
the training sample size decreases from around 126.000 to 4.550 nuclei when increasing
nspots from 2 to 15. We also note that the accuracy values for nspots = 2 are always
within one standard deviation of the highest accuracy values for each model setup.

Hence, we conclude that a minimum number of telomere spots per nucleus does not
considerably influence the model performance of ALT classification models on nucleus
level. In the remaining part of our analyses of this master’s thesis, we will therefore use
the smallest possible nspots = 2 as minimum number of spots that each nucleus has to
feature to be included in T , Ttest as well as TIBA, V for consistency’s sake.
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7.2.2 Robust Feature Selection
If we use the classifiers from the previous Section 7.2.1, Figure 7.1 states that we can
expect an out-of-sample accuracy score of 90%-93% on Ttest. It is important to note that
this accuracy score is already quite high although we have not yet tuned hyperparameters.
However, if we apply the same models for ALT classification on series level and aim at
predicting the ALT+ ratio ρ in the dilution series of D as discussed at the beginning of
Section 6.6.3, we notice a precipitous decline of the model performances. For all dilution
series of D, the models’ predictions of ALT+ rates ρ̂ are far off from the actual ratios ρ,
see Figure 7.2.

We observe this behaviour for the classifiers of Section 7.2.1, as some features behave
quite differently on the actual dilution series of D. Given a certain feature function Fl,
we would expect that an actual dilution series with very low ALT+ share (say 1% or 5%)
should show a feature distribution that is quite similar to ALT− nuclei in T . However,
for some features, we observe quite the opposite: actual dilution series in D with very
low ALT+ share have distributions that are completely off compared to ALT− nuclei
in T , see Figure 7.3. We call these features unstable and we are aiming at including
only features in our models that are stable or robust in the sense that their distribution
on actual dilution series with low ALT+ share is very similar to the distribution of
ALT− nuclei. We may observe this unstable behaviour due to different image quality and
fluorescence staining/ cytoplasmic background as discussed in Section 6.3. We therefore
pose the following research question:

Which features are stable/robust enough to include them in the FGA model
development?

To answer this question in accordance with Section 6.6.1, we first fix a sub-family
Dsub = {DP M14, DP M15, DP M22, DP M23} of actual dilution series with very low ALT+
share of 1% or 5%, see also Table 2.1. Note that this sub-family includes actual dilution
series that partly feature stronger cytoplasmic background that might lead to unstable
features, see Section 6.3. Furthermore, we define by T+ = {DP 3∼A, DP 6, DP 8, DP 10, DP 11}
and by T− = {DP 9W H , DP 12, DP 13} the dilution series of T of ALT+ and ALT− nuclei,
respectively. We setup the training sample T and the actual dilution series as discussed in
Section 7.1 using a required minimum number of two spots per nucleus and 20,000 training
observations. Given a feature function Fl, we can then use the following algorithm to
find robust features

1. Determine the distributions µFl
P 3∼A, . . . µFl

P 11 of Fl for all dilution series in T+ sepa-
rately. Similarly, find the distributions µFl

P 9W H , . . . µFl
P 13, µFl

P M14, . . . µFl
P M23 of Fl for

all dilution series in T− and in Dsub separately.

2. Find the common mean m+ and common standard deviation σ+of µFl
P 3∼A, . . . µFl

P 11.
Center the distributions according to m+ and scale them by 1/σ+ to have all
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Figure 7.2: Differences of predicted ALT+ rate and true ALT+ ratio of dilution series in
D. The figure shows the differences for all classifiers from Section 7.2.1 with different
colours, line styles and markers. The dotted lines on top and at the bottom show the
worst possible differences for each dilution series. The shaded background corresponds to
the true ALT+ ratio, which is also indicated on top of the figure. At the bottom of the
figure, we find the cell lines of each dilution series in two separate rows with the following
encoding: the top row (+) records the ALT+ cell lines SK-N-MM (SM) or CHLA90 (CH).
In the bottom row (-), we find the ALT− cell lines SK-N-SH (SH) or CLB-MA (CL).
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(a) unstable feature

(b) stable feature

Figure 7.3: The above figures show the (scaled and centered) distributions of two features
that measure the maximum intensity of a nucleus in the telPNA channel (above) and the
average spot size of a nucleus in the telPNA channel (below), respectively. The figures
illustrate the distributions for all ALT− dilution series in T− as well as in dilution series
of very low ALT+ share in Dsub. The dashed black line shows the Wasserstein barycenter
µ−

bary of the dilution series in T−. In the above figure, we see that the distributions on
the actual dilution series PM22 and PM23 are far from the barycenter and therefore lead
to greater Wasserstein distances dP M22, dP M23. In the figure below, we note only very
small differences among all distributions.
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distributions on the same scale. Determine the Wasserstein barycenter µ+
bary of the

centered and scaled distributions, see Section 6.6.3. Find the Wasserstein distances
W2 between µ+

bary and each centered and scaled distribution. Denote these distances
by dFl

P 3∼A, . . . , dFl
P 11. To calculate Wasserstein distances and barycenters, we use

the python optimal transport (POT) package [FCG+21].

3. Find the common mean m− and common standard deviation σ− of µFl
P 9W H , . . . µFl

P 13,
µFl

P M14, . . . µFl
P M23. Center the distributions according to m− and scale them by

1/σ− to have all distributions on the same scale. Determine the Wasserstein
barycenter µ−

bary of the centered and scaled distributions of the pure dilution series
µFl

P 9W H , µFl
P 12, µFl

P 13. Find the Wasserstein distances W2 between µ−
bary and each

centered and scaled distribution of µFl
P 9W H , . . . µFl

P 13, µFl
P M14, . . . µFl

P M23. Denote
these distances by dFl

P 9W H , . . . , dFl
P M23.

For stable features of corresponding feature functions Fl, we would expect small dis-
tances dFl

P 9W H , . . . , dFl
P M23 for dilution series in T−, Dsub, as well as small distances

dFl
P 3∼A, . . . , dFl

P 11 for dilution series in T+. To the best of our knowledge, there is no
statistical reasoning for determining a threshold below which we consider Wasserstein
distances small enough. Instead, by visually inspecting the centered and scaled distribu-
tions of above’s algorithm, we have decided to use 0.0185 as threshold and consider all
Wasserstein distances d ≤ 0.0185 as small, and all other Wasserstein distances d > 0.018
as too big. We therefore consider a feature robust, if both of the following two conditions
hold:

1. The feature exhibits Wasserstein distances dFl ≤ 0.0185 for all dilution series in
T−, T+ and Dsub and

2. M−+M+ ≤ 0.03, where M− = max(dFl
P 9W H , . . . , dFl

P M23) and M+ = max(dFl
P 3∼A, . . . ,

dFl
P 11). This condition ensures that a feature does not exhibit Wasserstein distances

that are below but close to the threshold 0.0185 both on T−, D as well as T+.

Based on these two conditions, we find the following 14 stable features of the telPNA
channel, see also Section 6.6.1 for details on the definition:

• mean spot size.

• cluster prominence.

• cluster shade: measures skewness and uniformity of the GLCM. Higher cluster
shade values imply greater asymmetry about the mean [vGFP+17].

• gray level non-uniformity.
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• run length non-uniformity.

• large area high gray level emphasis: based on the GLSZM, this feature measures
the proportion in the image of the joint distribution of larger size zones with higher
gray-level values [vGFP+17].

• size zone non uniformity: based on the GLSZM, this features measures the vari-
ability of size zones in the image, with a lower value indicating more homogeneity
in size zones [vGFP+17].

• kurtosis.

• skewness.

• standard deviation of spot size.

• size brightest spot.

• size largest spot.

• number of spots.

• standard deviation of spot distances: for each nucleus, we can determine the telomere
spots and find the distances between all spots. We then use the standard deviation
of these differences.

Note that these 14 features are stable but are not necessarily important for determining
the ALT status. In Section 9.3, we will discuss the corresponding feature importances
and their biological interpretation for each FGA model.

7.2.3 Image Normalisation for Feature Selection
As discussed in Section 6.6.1, image preprocessing is a common option before extracting
features of a microscopy image [RNM17] . For example, one often normalises the image
intensity levels to ensure that all images are on the same common scale. To that end,
one can min-max normalise a field of view F by linearly scaling the pixel intensities to a
common minimum, say 0, and a common maximum, say 255 via

pnorm = p − min(F )
max(F ) − min(F ) · 255,

where p denotes the unnormalised intensity of a given pixel and min(F ), max(F ) refer to
the minimum and maximum intensity levels of nuclei in F before normalisation. One
can argue that properly preprocessed images are better suited for feature extraction and
therefore provide more accurate classification models. Based on the 14 robust features
selected in Section 7.2.2, we therefore pose the following research question:
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Ik normalised Rand. Forest Log. Regression XGB SVC
no 0.880 ± 0.009 0.856 ± 0.007 0.877 ± 0.006 0.864 ± 0.008
yes 0.880 ± 0.008 0.856 ± 0.006 0.876 ± 0.009 0.865 ± 0.007

Table 7.1: Mean accuracy scores and corresponding standard deviations for nuclear FGA
models using normalised or unnormalised robust features.

Does image normalisation improve the performance of nuclear FGA models?

To answer this question, we setup the training and testing samples T , Ttest as discussed
in Section 7.1 using a required minimum number of two spots per nucleus and 20,000
training observations. We then extract the 14 features of Section 7.2.2 once based on
normalised images and once using unnormalised (original) images. Separately for features
based on normalised and unnormalised images, we use 5-fold cross validation on T to train
5 different models for each model type of random forest, logistic regression, support vector
machine and gradient boosting, similarly to the setup of Section 7.2.1. We then evaluate
the models on the corresponding validation fold and determine mean accuracy scores and
corresponding standard deviations as discussed in Section 7.2.1. Table 7.1 summarises the
results for each model type using features of normalised and unnormalised images. For
each model type, we find that accuracy scores are almost identical for features based on
normalised or unnormalised images. Hence, we conclude that image normalisation does
not improve the performance of nuclear FGA models. We will therefore not normalise
images when extracting robust features for FGA models.

7.2.4 Hyperparameter Tuning
As discussed in Sections 3.4 and 6.6, nuclear FGA models depend on several hyperpa-
rameters. Choosing hyperparameters is crucial for optimal model performance on Ttest

as well as on D and for finding models that generalise well on previously unseen data.
We therefore pose the following research question:

Which hyperparameters are necessary for nuclear FGA models to perform
well and to be capable of generalising on previously unseen data?

To answer above’s question, we again use 5-fold CV on T as defined in Section 7.1 using
a required minimum number of two spots per nucleus, 20,000 training observations and
robust features based on unnormalised images. To illustrate our approach, we fix a
certain FGA model with tunable hyperparmeters (h1, . . . , hl), e.g. h1 = λ, h2 = "l1","l2"
for penalised logistic regression indicating whether we use an L1 or L2 penalty, see Section
3.4. We then define a finite grid H of possible values for (h1, . . . , hl) (e.g. H = {(h1, h2)} =
{0.01, 0.1, 1} × {"l1","l2"}). For a given hyperparameter setup H = (h1, . . . , hl) ∈ H, we
then conduct the following steps1:

1Note that we use the same 5-fold CV splits for each hyperparmeter setup H ∈ H and FGA model.
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1. We split the training sample T into training and validation folds as described in
Section 7.2.1 and train the FGA model on the training folds using hyperparmeters
H.

2. We then determine the accuracy of the FGA model on the validation fold.

3. We repeat the two steps above for each possible permutation of training and valida-
tion folds. We therefore find 5 accuracy scores for each setup H of hyperparameters
of H for which we can determine the mean accuracy aH and the corresponding
standard deviation sH .

4. For each FGA model, we can therefore determine the hyperparameter setup Hmax

with maximum average accuracy āmax = āHmax and corresponding standard devia-
tion smax = sHmax . Similarly to Section 6.6.3, we note that all other hyperparameter
setups H with

āmax − smax ≤ āH ≤ āmax (7.1)

show very similar accuracy values, as their mean accuracy values lie within one
standard deviation of the maximum average accuracy. To find hyperparameters
that give models that generalise well on previously unseen data, we choose a
hyperparameter setup H which satisfies (7.1) and gives the stiffest model setup
among all H for which (7.1) holds. Section 3.4 discusses for each model type
separately how hyperparameters may provide stiff models. If there are multiple
hyperparameters that provide stiff models, we optimise them consecutively in the
order of the description of Section 3.4. If there are still multiple feasible stiff model
setups, we choose the one with the highest mean accuracy.

The last step of above’s algorithm is important to ensure that the models generalise well
on previously unseen data. Stiff models usually provide smoother decision boundaries
with lower variance at the expense of higher biases. Sections 3.2 and 3.4 provide further
details. Using the above algorithm, Table 7.2 denotes the chosen grid values of H and
the optimal hyperparameters for all nuclear FGA models. In the following analyses of
this master’s thesis, we will use these optimal hyperparameters.

7.2.5 Sound Coefficients of Logistic Regression Model
The penalised logistic regression model as introduced in Section 3.4 is a comparably simple
and yet easy to understand model. As we standardised the input features, the coefficients
of the logistic regression model directly indicate how important the corresponding features
are for the model. Contrary to support vector machines, gradient boosting and random
forests, correlated features may unduly influence the coefficients of the logistic regression
[HTF09]. For that reason, we are using penalised logistic regression with L1 penalty
to reduce the influence of highly correlated features, see Section 7.2.4. Lasso logistic
regression usually dampens the impact of highly correlated inputs to avoid exploding
coefficients, which are a common symptom of high correlations among the covariates. In
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FGA Model Type Parameter Grid Values Optimal Values

Logistic Regression C 2[−3,−2,...,3] 0.125
penalty l1, l2 l1

Random Forest

max_depth 2, 5, 8 8
max_features 0.5, sqrt sqrt
max_samples 0.1, 0.5 0.1
min_samples_leaf 2, 5, 10 10
min_samples_split 5, 10 5
n_estimators 100, 500, 1,000 1,000

SVC
C 2[−4,−3.5,...,0] 0.0625
kernel rbf, poly rbf
gamma scale, auto auto

XGB

colsample_bytree 0.5, 0.8 0.8
eta 0.05, 0.2, 0.3 0.05
gamma 0, 1 1
max_depth 1, 3, 5 1
min_child_weight 1, 3, 5 3
n_estimators 100, 500, 2,000 2,000
subsample 0.5, 0.8 0.5
reg_lambda 1, 1.5, 2 1

Table 7.2: Optimal hyperparameters and chosen grid values of H of nuclear FGA models.
See Section 3.4 and [PVG+11] for details on the grid values. Note that the hyperparameter
C > 0 of the logistic regression corresponds to the inverse weight 1/λ > 0 of the penalty
term λ in Section 3.4. Furthermore, note that the hyperparameter gamma of SVC
corresponds to a scaling parameter of radial basis functions.

this section, we discuss whether the regression coefficients of lasso logistic regression are
indeed reasonable by answering the following question:

Are the signs of the coefficients of the logistic regression model in line with
biological reasoning?

We consider the logistic regression model based on the hyperparameters and training/
testing samples T , Ttest as described in Section 7.2.4 and the robust features of Section
7.2.2. Table 7.3 gives the coefficients of the resulting lasso logistic regression model and
also provides the sign that we expect based on biological reasoning.

While we see that the L1 successfully prevents coefficients from exploding, we find that
the coefficients of the six features gray level non-uniformity, standard deviation of spot
size, cluster prominence, average spot size, size zone non-uniformity and kurtosis show
the wrong sign. This can be due to correlated features in the same group (e.g. cluster
prominence and cluster shade of the feature group GLCM), where one feature (e.g. cluster
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Feature Name Feature Group Exp. Sign β βre-est
skewness pyrad. 1st order + 2.40 2.40
run length non-uniformity pyrad. GLRLM + 1.51 −0.01
gray level non-uniformity pyrad. GLRLM + −1.32 excluded
size largest spot man. defined + 0.74 0.21
spotcount man. defined 0.51 0.55
cluster shade pyrad. GLCM + 0.35 0.33
σ of spot size own definition + −0.34 excluded
cluster prominence pyrad. GLCM + −0.16 excluded
average spotsize man. defined + −0.12 excluded
large area high gray lev. emph. pyrad. GLSZM + 0.12 0.10
σ of spot distances man. defined 0.07 excluded
size zone non-uniformity pyrad. GLSZM + −0.04 excluded
kurtosis pyrad. 1st order + −0.03 excluded
size brightest spot man. defined + 0.02 excluded

Table 7.3: β coefficients of the lasso logistic regression model according to the hyperpa-
rameters of Section 7.2.4. The table shows the feature group according to Section 6.6.1,
the expected sign according to biological reasoning, the β coefficients of the lasso logistic
regression model using all 14 features and the βre-est coefficients of the re-estimated lasso
logistic regression model using the six features with correct sign and sufficiently large
coefficient. The following arguments underpin the expected coefficient signs: for ALT+
nuclei, we expect greater 1st order features due to heavy tailed brightness curves, bigger
cluster and non-uniformity features (GLCM, GLRLM, GLSZM), and greater values for
spot size and spot brightness, since ALT+ cells usually exhibit bigger and brighter spots
as well as more heterogeneous telPNA images, see Section 2.2. For spotcount and standard
deviation of spot distances, we cannot infer a biologically sound coefficient sign.

shade) shows the correct sign but the other feature (e.g. cluster prominence) not. Figure
7.4 shows the pairwise Pearson correlations among all 14 features.

Moreover, we find that the coefficients of the two features standard deviation of spot
distances, size brightest spot are already negligibly small. As a result, we note that
the coefficients of the afore-mentioned variables are not reasonable or indicate that the
features are irrelevant. To find a logistic regression model with biologically plausible
coefficient signs, we re-estimate the model with the same hyperparameters and excluding
all afore-mentioned eight variables. By excluding these variables, we still keep at least
one feature per feature group according to Table 7.3 in the model. Table 7.3 shows
the new βre-est coefficients in the outmost right column. We note that most of the
remaining six features have kept a similar coefficient estimate β. Only the coefficients of
run length non-uniformity and size largest spot have changed considerably. run length
non-uniformity has become unimportant in the re-estimated model by showing a very
small coefficient (of wrong sign), while the weight of size largest spot is much lower than
before. We can attribute these changes again to correlations among the 14 features, see
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Figure 7.4: Pairwise Pearson correlation coefficients of the 14 robust features on T . We
note high correlations among features that are related to size (mean spot size, standard
deviation of spot size, size brightest spot, size largest spot), clusters (cluster prominence,
cluster shade), uniformity (gray level non-uniformity, run length non-uniformity, size
zone non-uniformity) and distribution shape (kurtosis, skewness).
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Figure 7.4. For example, β of size largest spot is offset by the coefficients of the highly
correlated features size brightest spot, average spot size, standard deviation spot size.
βre-est of size largest spot and the re-estimated model reverts this offset. In summary, we
conclude that the reduced set of six features provides sound coefficients in the logistic
regression model.

7.2.6 Variable Selection for Wasserstein Distance Models
As discussed in Section 6.6.3, we have to select a pair of features or corresponding feature
functions F1, F2 to define a Wasserstein distance model of ALT classification on series
level. We want to find a pair of feature functions that gives the best results by providing
both high and reliable accuracy scores on Ttest and previously unseen data. The variable
selection algorithm proposed in Section 6.6.3 aims at finding such a pair of variables. In
this section, we want to apply the algorithm and thereby answer the following research
question:

Which pair of features provides the best results of the Wasserstein distance
models?

To answer above’s question, we again use T , Ttest as defined in Section 7.1 using a required
minimum number of two spots per nucleus, 20,000 training observations and robust
features based on unnormalised images. To calculate Wasserstein distances, we use the
python optimal transport POT package [FCG+21]. According to the algorithm of Section
6.6.3, the pair of the features cluster prominence and standard deviation of spot size gives
the best results by providing both high and reliable accuracy scores on the validation
folds of T , see Section 6.6.1 for a definition of the features. We will therefore use this
pair of features for the Wasserstein distance model of ALT classification on series level.

7.3 Segmentation Post-Processing Model
As discussed in Section 6.3, occluded or cramped nuclei in the microscopy images may lead
to inaccurate nucleus segmentation. Furthermore, generating fields of view of the telPNA
channel images leads to cropped nuclei at the border. Inevitably, the segmentation masks
of these nuclei will also be cropped and therefore be inaccurate. Inaccurate segmentation
masks lead to wrongly extracted nuclei and therefore adversely affect classification of
FGA and IBA models.

We want to address inaccurate (i.e. too big or too small) nucleus segmentation via a
post-processing model of the segmentation. As mentioned in Section 6.3, we aim at
applying this model to all images of dilution series in D. The model shall incorporate
geometric properties of nuclei (such as elongation, convexity, roundness) and information
on bordering nuclei to predict whether the segmentation mask of a nucleus is wrong. If
so, we will exclude the nucleus from images of D. Finding such a model is tantamount to
answering the following research question:
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Dilution Series Field of View ID Number of Nuclei
ALT-C.PM3 Img-000126 250
ALT-C.PM4 Img-000353 265
ALT-C.PM22 Img-000849 216
ALT-C.PM23 Img-001155 346
ALT-C.PM12 Img-001037 168
ALT-C.PM14 Img-000969 101
ALT-C.P10 Img-000985 146
ALT-C.P11 Img-000875 87

ALT-C.P9WH Img-000216 113
ALT-C.P12 Img-001116 129

Table 7.4: Data used to train and test the post-segmentation model. The data consists
of nuclei in the quoted fields of view.

How can we exclude wrongly segmented nuclei from D with high precision?

As mentioned in Section 4.4.1, we aim at high precision instead of high accuracy because
we do not want to unduly influence the ALT+ ratio by excluding nuclei that are actually
correctly segmented. To simplify matters, we will build a logistic regression model to
answer above’s research question. To that end, we need geometric features of nuclei
that we have introduced in Section 6.6.1. Furthermore, we need labelled data of nuclei
that are correctly or wrongly segmented. We obtain this data from experts of the CCRI
that manually labelled fields of view of pure and actual dilution series. We have to
include actual dilution series in the data, as they are specifically affected by occluded and
cramped nuclei according to Section 6.3. Table 7.4 gives an overview of the considered
data.

We split the data into a trainings sample T post and a testing sample T post
test according to an

80%-20% split. We train the logistic regression model by first tuning its hyperparameters
C > 0 and the penalty function via cross validation on T post similarly to Section 7.2.4.
However, contrary to Section 7.2.4, we do not aim at maximising the mean accuracy
score across the validation folds but we use the precision score as our target function to
optimise the hyperparameters.

As a result, we optimally build the logistic regression model with an L2 penalty function
and λ = 8 (i.e. C = 0.125). After training on T post with these hyperparameters, the
post-processing model provides out-of-sample accuracy and precision scores on T post

test of
around 90% and 71%, respectively. From now onwards, we will apply it to every dilution
series of D and only include nuclei if the post-processing model predicts that they are
correctly segmented. Depending on the dilution series of D, this will exclude 2-30% of all
nuclei.
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7.4 Summary
In this chapter, we discussed six research questions to setup further methodological details
of the FGA models as well as T , Ttest, TIBA, V : we have learned that a minimum number
of two spots for each nucleus is best to setup T , Ttest, TIBA, V. Moreover, we identified
14 stable features for the FGA models using Wasserstein distances. Furthermore, we
established that normalising features does not improve the performance of nuclear FGA
models and found optimal hyperparameters for the nuclear FGA models. For the logistic
regression model, we further reduced the number of predictors to ensure sound coefficients.
Last, we selected an optimal pair of variables for the Wasserstein Distance Model.

We have also set up a segmentation post-processing model to exclude wrongly segmented
nuclei with high precision. This model is necessary to address the technical challenges
that we discussed in Section 6.3.
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CHAPTER 8
Preliminary Experiments for the

IBA

By analogy with the previous chapter, this chapter discusses specific, more technical
research questions that substantiate how we set up the IBA models based on the
methodology of Section 6.5. These preliminary experiments allow us to specify how
we train the IBA models with respect to image normalisation, hyperparameter tuning
and robustification techniques to answer our main research questions RQ1 and RQ2 in
Chapter 9. Using pytorch [PGM+19], we implement the MyNet and ResNet models
of Section 6.7 and start by summarising the sample setup in Section 8.1. Afterwards,
we discuss in Section 8.2 how we find optimal hyperparameters for the IBA models.
Finally, in Section 8.3, we outline how we can robustify the IBA models to gain better
out-of-sample performance on D.

8.1 Sample Setup
For all of our experiments of this chapter, we will use TIBA, V, Ttest based on our method-
ology of Section 6.5 and insights from the experiments of Chapter 7. More specifically,
we take T , Ttest of the experiment in Section 7.2.4 as a basis. In particular, T , Ttest only
include nuclei of pure dilution series given in Section 7.1 if they feature at least two
telomere spots. Furthermore, T includes 20,000 observations. As stated in Sections 6.5
and 7.1, we partition T into T = TIBA ∪ V according to an 80%-20% split on field-of-view
level. We ensure that TIBA and V feature the same ALT+ ratio (i.e. 50%). Whenever we
use dilution series of D, we include nuclei based on the criteria defined above and, in
addition, whether the corresponding nucleus segmentation was correct according to the
the post-segmentation processing model of Section 7.3. Finally, as discussed in Sections
6.5 and 6.7, note that we will use only the telPNA channel to train and apply MyNet,
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while we use all three channels (telPNA, nuclear segmentation mask, DAPI channel) for
ResNet.

8.2 Image Normalisation, Optimal Parameters of
regularised Adam

As discussed in Section 4.4, training CNNs and ResNets depends on multiple param-
eters, such as learning rate α, regularisation parameter λ of the regularised version
torch.optim.AdamW of Adam, and batch size S. Furthermore, we have the possibility
to min-max normalised images before inputting them into the networks. Finding optimal
hyperparameters is crucial for ensuring good model performance. Therefore, we want to
answer the following two research questions in this section:

Does image normalisation improve the performance of IBA models?
What are optimal hyperparameters α, λ, S of IBA models?

To answer above’s questions, we follow a similar approach as discussed in Section 7.2.4.
We fix a grid of hyperparameters, train the IBA models on TIBA for all hyperparameter
combinations of the grid and evaluate the models on Ttest. We do not use cross validation
due to the computational complexity of training deep learning networks. For the same
reason, the grid is much smaller than in Section 7.2.4. More specifically, we choose α
either 0.001 or 0.0001, λ either 0.01 or 0.005, S either 32 or 64 and use either normalised
or not normalised nuclear images as inputs. This grid varies among the default parameters
of torch.optim.AdamW and we use default values for all other parameter settings of
torch.optim.AdamW (such as momentum parameters). The following two paragraphs
discuss the results for both models MyNet and ResNet separately.

Table 8.1 shows the accuracy scores on Ttest of the corresponding MyNet models. We
see that the best result for normalised images is given by (α, λ, S) = (0.0001, 0.005, 64),
while for not normalised images (α, λ, S) = (0.0001, 0.01, 64) gives a slightly greater test
accuracy score. As discussed in Section 7.2.2, we note that high accuracy scores on Ttest do
not necessarily imply good results on D. For that reason, we also apply the afore-mentioned
two models on1 Dsub to see which of them gives more stable predictions, similarly to what
we have done in Section 7.2.2 to select robust features. Based on the results depicted in
Figure 8.1, we find that the unnormalised model gives better predictions on PM14 and
PM15, but shows much worse results on PM22 and PM23 than the normalised model.
Overall, the results of the normalised model are more stable. For that reason, we will
use normalisation and the hyperparameters (α, λ, S) = (0.0001, 0.005, 64) for MyNet.

Table 8.2 shows the accuracy scores on Ttest of the ResNet models based on varying
hyperparameters. We see that the best result for normalised images is given by (α, λ, S) =
(0.001, 0.005, 32), while for not normalised images (α, λ, S) = (0.001, 0.01, 32) gives an

1see Section 7.2.2 for a definition of Dsub.
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Normalisation α λ S
Epochs Until

Early Stopping
Accuracy

on Ttest

yes 0.0001 0.01 32 42 0.923
yes 0.0001 0.01 64 66 0.930
yes 0.0001 0.005 32 62 0.929
yes 0.0001 0.005 64 72 0.932
yes 0.001 0.01 32 34 0.882
yes 0.001 0.01 64 37 0.899
yes 0.001 0.005 32 39 0.908
yes 0.001 0.005 64 34 0.884
no 0.0001 0.01 32 46 0.921
no 0.0001 0.01 64 72 0.935
no 0.0001 0.005 32 45 0.931
no 0.0001 0.005 64 66 0.927
no 0.001 0.01 32 34 0.912
no 0.001 0.01 64 42 0.906
no 0.001 0.005 32 34 0.873
no 0.001 0.005 64 41 0.904

Table 8.1: Accuracy on Ttest for MyNet with different learning rate α, weight decay λ,
and batch size S, as well as based on normalised and not normalised nuclear images.
For better reference, the highest accuracy score for normalised as well as not-normalised
nuclear images is indicated in bold font. Accuracy scores are given in decimal numbers
between 0 (0%) and 1 (100%).

even greater test accuracy score. Overall, the test accuracy scores do not vary much for
the different hyperparmeter setups. We again also apply these two models on Dsub to see
which of them gives more stable predictions. Based on the results depicted in Figure 8.1,
we find that normalisation considerably improves the prediction results on Dsub. For that
reason, we will use normalisation and the hyperparameters (α, λ, S) = (0.001, 0.005, 32)
for our ResNet model.

In summary, we note that normalising nuclear images considerably improves the model
predictions of MyNet and ResNet on Dsub. As discussed in Section 7.2.3, this result is
quite contrary to our findings for FGA models, for which normalisation did not change
the prediction results based on robust features of Section 7.2.2.

8.3 Data Augmentation Techniques, Dropouts, Batch
Normalisation

In Section 4.4.3, we discuss various methods to combat overfitting of deep learning
networks. Most notably, we can apply various data augmentation techniques, apply batch
normalisation or dropouts. In this section, we assess whether and how these techniques

83



8. Preliminary Experiments for the IBA

Figure 8.1: Differences of predicted ALT+ rate and true ALT+ ratio of dilution series in
Dsub. The Figure shows the differences for MyNet using image normalisation and the
hyperparameters (α, λ, S) = (0.0001, 0.005, 64), as well as MyNet without normalisation
and (α, λ, S) = (0.0001, 0.01, 64). The shaded background corresponds to the true ALT+
ratio, which is also indicated on top of the figure. At the bottom of the figure, we find
the cell lines of each dilution series in two separate rows with the following encoding:
the top row (+) records the ALT+ cell lines SK-N-MM (SM) or CHLA90 (CH). In the
bottom row (-), we find the ALT− cell lines SK-N-SH (SH) or CLB-MA (CL).

improve the predictions of MyNet and ResNet based on the optimal hyperparameters of
Section 8.2. More specifically, we want to answer the following research question:

Do data augmentation techniques, batch normalisation and dropouts
improve the performance of the IBA models?

To answer this question, we again train the IBA models using the optimal hyperparameters
of Section 8.2 and different robustification setups to assess their performance on Ttest

and Dsub, similarly to our approach of Section 8.2. We will use the data augmentation
techniques random blurring, random sharpness and random halo effect as discussed in
Section 6.7. To further reduce high computational efforts, we will assess the effect of
batch normalisation, dropouts and data augmentation via the following five setups to
combat overfitting:

1. use only batch normalisation and early stopping.
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Normalisation α λ S
Epochs Until

Early Stopping
Accuracy

on Ttest

yes 0.0001 0.01 32 139 0.939
yes 0.0001 0.01 64 111 0.939
yes 0.0001 0.005 32 69 0.935
yes 0.0001 0.005 64 109 0.937
yes 0.001 0.01 32 63 0.934
yes 0.001 0.01 64 61 0.939
yes 0.001 0.005 32 51 0.940
yes 0.001 0.005 64 51 0.935
no 0.0001 0.01 32 89 0.937
no 0.0001 0.01 64 70 0.934
no 0.0001 0.005 32 87 0.937
no 0.0001 0.005 64 113 0.939
no 0.001 0.01 32 92 0.944
no 0.001 0.01 64 101 0.931
no 0.001 0.005 32 79 0.941
no 0.001 0.005 64 118 0.943

Table 8.2: Accuracy on Ttest for ResNet with different learning rate α, weight decay λ,
and batch size S, as well as based on normalised and not normalised nuclear images.
For better reference, the highest accuracy score for normalised as well as not-normalised
nuclear images is indicated in bold font. Accuracy scores are given in decimal numbers
between 0 (0%) and 1 (100%).

2. like 1., but also using random halo effect.

3. like 2., but also using random blurring and random sharpness.

4. like 1, but also using dropouts.

5. use all techniques combined, i.e. 2., 3. and 4. In this case, we augment data on
average for 51.2% of all nuclear images.

Note that we apply the five setups above for MyNet, but we can only apply setups 2 and
3 for ResNet. This is because we only fine-tune the last layer of ResNet and therefore
we cannot use batch normalisation and additional dropout layers. The following two
paragraphs discuss the results for MyNet and ResNet separately.

Table 8.3a shows the accuracy scores on Ttest as well as the absolute difference between
predicted ALT+ rate and actual ALT+ rate on Dsub for MyNet. Interestingly, we
again note that highest accuracy scores on Ttest do not necessarily come together with
good predictions on Dsub. Setups 3., 4. and 5. give good results on Ttest as well as for
dilution series PM14 and PM15. However, these setups fail at predicting the ALT+ rate
for dilution series PM22 and PM23. Using only the implemented halo effect as data
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Figure 8.2: Differences of predicted ALT+ rate and true ALT+ ratio of dilution series in
Dsub. The Figure shows the differences for ResNet using image normalisation and the
hyperparameters (α, λ, S) = (0.001, 0.005, 32), as well as ResNet without normalisation
and (α, λ, S) = (0.001, 0.01, 32). The shaded background corresponds to the true ALT+
ratio, which is also indicated on top of the figure. At the bottom of the figure, we find
the cell lines of each dilution series in two separate rows with the following encoding:
the top row (+) records the ALT+ cell lines SK-N-MM (SM) or CHLA90 (CH). In the
bottom row (-), we find the ALT− cell lines SK-N-SH (SH) or CLB-MA (CL).

augmentation does not provide more robust MyNet models on new data, as setup 2.
provides the worst results. Using only batch normalisation, the simple setup 1. gives
decent results on Ttest as well as accurate predictions on Dsub. We note that this setup
provides slightly worse results on Ttest than the optimal MyNet model of Section 8.2
without robustification, see Table 8.1, but it gives much better predictions on Dsub.
Hence, for the final implementation of MyNet, we use the robustification setup 1. and
the hyperparameters as discussed in Section 8.2.

Table 8.3b shows the corresponding results for ResNet. We find that setup 2. improves
prediction on Dsub compared to the optimal ResNet model of Section 8.2 without
robustification, see Table 8.1. However, using all three data augmentation techniques
of halo effect, random blurring and sharpening according to setup 3. provides the
best predictions both on Ttest and particularly on Dsub. In particular, employing the
robustification methods in setup 3. improves the results on Dsub of the optimal ResNet
model of Section 8.2. Hence, for Chapter 9, we finally implement ResNet by using the
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8.4. Summary

Setup Epochs Until
Early Stopping

Accuracy
on Ttest

Absolute Difference Between Predicted
and True ALT+ Ratio on Dsub

PM14 PM15 PM22 PM23
1. 48 0.924 0.004 0.021 0.043 0.001
2. 44 0.905 0.138 0.163 0.369 0.337
3. 50 0.926 0.036 0.074 0.186 0.101
4. 34 0.933 0.062 0.099 0.236 0.163
5. 52 0.929 0.044 0.082 0.212 0.156

(a) MyNet

Setup Epochs Until
Early Stopping

Accuracy
on Ttest

Absolute Difference Between Predicted
and True ALT+ Ratio on Dsub

PM14 PM15 PM22 PM23
2. 69 0.940 0.125 0.125 0.188 0.131
3. 82 0.941 0.078 0.084 0.134 0.076

(b) ResNet

Table 8.3: MyNet and ResNet trained using optimal hyperparameters and different
robustification setups. As discussed in Section 8.2, for MyNet and ResNet we both
use normalisation as well as the hyperparameters (α, λ, S) = (0.0001, 0.005, 64) and
(α, λ, S) = (0.001, 0.005, 32), respectively. The table highlights the accuracy score on
Ttest as well as absolute differences between predicted and actual ALT+ rates on Dsub.
For better reference, we highlight the chosen setups for the final models in bold font.

robustification setup 3. and the hyperparameters as discussed in Section 8.2.

In summary, we find that rather simple robustification techniques such as halo effect,
batch normalisation and random blurring or sharpening provide most predictive models
on Ttest as well as Dsub. While for MyNet batch normalisation was sufficient, ResNet
required all of the afore-mentioned techniques to provide decent performance.

8.4 Summary
In this chapter, we discussed three technical research questions to setup the IBA models
based on our methodology of Section 6.7. We found that image normalisation considerably
improves the model predictions of MyNet and ResNet and identified optimal hyperparame-
ters of learning rate, batch size and regularisation parameter λ of torch.optim.AdamW.
Furthermore, we established that ResNet performed best on previously unseen testing
data when training it with the data augmentation techniques halo effect, random blurring
and sharpening as well as using batch normalisation. Conversely, for MyNet, batch
normalisation was sufficient to get best results.
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CHAPTER 9
Results

FGA or IBA models have not yet been used for ALT classification in the literature.
Based on our two main research questions RQ1 and RQ2, we want to discuss in this
thesis how well our final FGA and IBA models allow for classifying the ALT status of
neuroblastoma cells. Our research questions cover two main aspects to assess the quality
of ALT classification:

1. How well do the models predict the ALT status on previously unseen data (RQ1)?
This aspect requires us to analyse the models’ performances on testing data Ttest

as well as on dilution series of D. Classifying cells on D is particularly important
as one predicts the ALT status in practice for image series that are not part of
the training data. Hence, the model results on D provide best indications how the
models will perform for practical purposes. In that respect, it is also important to
analyse how confident the models are with their predictions.

2. How do the models predict the ALT status and which cell properties are important
(RQ2)? Finding these image-derived criteria to describe the ALT status of cells is
important to explain the models’ decisions. This will help users to understand why
the models predict a given result and may also foster the users’ confidence in the
models’ decisions. As opposed to “black box” methods, we can explain why the
models arrived at a specific prediction.

Answering our two main research questions RQ1 and RQ2 allows us to evaluate whether
our FGA and IBA models may serve as candidates for new state of the art methods in
ALT classification. Certainly, as outlined in the last chapter of this thesis, we find our
results in a very controlled setting and further research is necessary to corroborate them
for image series of more diverse origin and recording situations.
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9. Results

Our findings in Chapters 7 and 8 are numerous and corroborate how we set up the
data samples and train the FGA and IBA models. The first Section 9.1 summarises
these setups for easier reference. For the first part of research question RQ1, Section 9.2
outlines the model performances on the training sample Ttest. Afterwards, Sections 9.3
and 9.4 clarify which FGA features and image properties are important when assigning
the ALT status in FGA and IBA models to answer research question RQ2. For the
second part of research question RQ1, Section 9.5 discusses in detail how the trained
models perform on the dilution series of D, which we did not use in the training samples.
Finally, Section 9.6 analyses how confident the models are when predicting the ALT
status in Section 9.5, which is also related to research question RQ1.

9.1 Final Data Preparation Steps and Pipelines
In this section, we summarise how we finally setup the samples T , TIBA, Ttest, V to train
nuclear and serial FGA models as well as the IBA models on nucleus level. Furthermore,
we state any preprocessing steps that we apply according to the results of Chapters 7
and 8 and based on our methodology of Chapter 6.

We choose the training, validation and testing samples in line with our methodology of
Section 6.5 and findings of Chapter 7. In particular, we build T , Ttest based only on nuclei
of the pure dilution series P3∼A, P6, P8, P9WH, P10, P11, P12, P13 if they feature at
least two telomere spots, see Sections 6.5, 7.1 and 7.2.1. We ensure using balanced cell
lines and targets (i.e. 50% ALT+ nuclei), resize T to 20,000 nuclei and split the data
into T and Ttest according to an 80%-20% split on field of view level, see Section 7.1. As
mentioned in Section 6.5, we then partition T into T = TIBA ∪ V according to another
80%-20% split, where we again ensure that TIBA and V feature the same ALT+ ratio
(i.e. 50%).

For the nuclear and serial FGA models, we do not normalise the nuclear images before
we extract the 14 robust features that we will use for training, see Sections 7.2.2 and
7.2.3. Afterwards, we scale features according to Section 7.1. The nuclear FGA models
use the optimal hyperparameters of Section 7.2.4 and we employ the logistic regression
model of Section 7.2.5 with a limited number of six features. We apply the Wasserstein
distance model as given in Section 7.2.6.

For the IBA models, we preprocess images by normalising the nuclear images according
to Section 8.2 before taking them as inputs of the deep learning networks of Section 6.7.
Furthermore, for training, we apply the optimal hyperparameters of MyNet and ResNet
as discussed in Section 8.2. Similarly, we use the best robustification techniques as given
in Section 8.3. As discussed in Sections 6.5, 6.7 and 8.1, we will use only the telPNA
channel to train and apply MyNet, while we use all three channels (telPNA, nuclear
segmentation mask, DAPI channel) for ResNet.

For the dilution series of D = {DP 4∼A, DP 7, DP M1, DP M3, . . . , DP M24}, we use the same
sampling and preprocessing steps as discussed above for T , Ttest, TIBA, V. In particular,
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similarly to T , we only include nuclei with a minimum number of two telomere spots and
reduce the number of nuclei of each dilution series in D to 4,000. Furthermore, we only
include nuclei if the post-processing model of Section 7.3 predicts that they are correctly
segmented. In addition, we use the scaler that we estimated on T to also scale the FGA
features of all dilution series in D. For the IBA models, we normalise the nuclear images
before using them as inputs for the networks.

9.2 Performance on Ttest

In line with research question RQ1, we want to assess how well the trained nuclear and
serial FGA models as well as the IBA models predict the ALT status of nuclei on the
training sample Ttest. In Section 6.4.1, we refer to this problem as ALT classification on
nucleus level. Note that Ttest includes nuclei of the same dilution series as the training
sample T but Ttest is disjoint of T , see Section 9.1. In line with our decision criteria
of Section 6.8, we determine accuracy scores on Ttest for all models and also assess the
accuracy on Ttest for each of the four cell lines SK-N-SH, SK-N-MM, CHLA90, CLB-MA,
separately. Accuracy scores on cell line level allow us to also infer false positive and false
negative rates. Note that research question RQ1 also includes performance on D, which
we cover in Section 9.5.

Determining the ALT status of nuclei on Ttest is ALT classification on nucleus level,
which is infeasible for the Wasserstein distance model. Still, we can apply the Wasserstein
distance model on Ttest to determine the overall ALT+ rate, which should ideally be close
to 50% according to Section 9.1. To come up with an accuracy score for the Wasserstein
distance model, we first apply the prediction algorithm of the Wasserstein distance models
in Section 6.6.3 on ASfine instead of AS. This approach allows us to predict ALT+
rates on Ttest and on cell line level on a much more granular scale (e.g. by predicting an
ALT share of 68% instead of 75% ALT+). We can then determine accuracy scores of the
Wasserstein distance model on cell line level, as the true ALT+ rate is either 0% or 100%
depending on whether the cell line is ALT+ or ALT−. By using the accuracy scores for
separate cell lines, we can easily infer the overall accuracy score on T by taking their
average. Note that this accuracy score is only a surrogate for the Wasserstein distance
model, as this model does not work on nucleus level but with feature distributions on
level of the whole sample of Ttest. Generally speaking, the more nuclei contribute to
the feature distribution, the more accurate the distribution and the predictions of the
Wasserstein distance model are. Hence, figuratively, the model will be better on Ttest

than the sum of its parts on cell line level. As a result, we note that comparing this score
with the accuracy scores of the other models has to be taken with a grain of salt, since
our assumptions favour lower score values.

Table 9.1 summarises accuracy scores on Ttest and on cell line level of Ttest for all FGA
and IBA models. Note that Ttest is balanced. Hence, to put the accuracy scores in
perspective, we see that the baseline score would be 50%. We find that ResNet and
the Wasserstein distance model gives the most accurate results on Ttest and that the
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IBA models predict in general better than the nuclear FGA models. When looking at
the results on cell line level, we find that the Wasserstein distance model gives perfect
predictions for the cell lines SK-N-MM, SK-N-SH and CLB-MA, but performs worst for
CHLA-90. In general, we note that all models struggle most with CHLA-90 compared to
the other cell lines. According to experts of the CCRI, this can be due to lower signal
intensity and sharpness among the nuclear images of CHLA-90 cells in Ttest. Furthermore,
we see that SK-N-SH seems to be harder to classify correctly as ALT− than CLB-MA.
After analysing the images of the corresponding SK-N-SH dilution series, experts of the
CCRI think that stronger cytoplasmic background in the telPNA channel may cause
these problems, particularly for dilution series P12, see also Section 6.3. Hence, in Section
9.5 below, we can already expect most models to overestimate the ALT+ rate for dilution
series that contain high ratios of SK-N-SH cells.

Looking at the predictions on cell line level, we note that FGA models exhibit a false
positive rate of up to 16%-22% and a false negative rate of up to 19%-23%. IBA models
show considerably lower false positive and false negative rates of 7%-9% and 8%-12%,
respectively. The Wasserstein distance model excels with a false positive rate of 0%, but
also shows a relatively high false negative rate of up to 28%.

Model Accuracy
on Ttest

Accuracy on Cell Line
SM SH CH CL

RandomForestClassifier 0.862 0.870 0.809 0.805 0.962
LogisticRegression 0.838 0.825 0.777 0.774 0.973

XGBClassifier 0.860 0.864 0.812 0.800 0.962
SVC 0.852 0.841 0.838 0.768 0.961

Wasserstein Distance Model 0.93* 1.00 1.00 0.72 1.00
MyNet 0.924 0.931 0.909 0.876 0.984
ResNet 0.941 0.931 0.932 0.922 0.983

Table 9.1: Accuracy scores of FGA and IBA models on Ttest as well as on level of cell
lines SK-N-MM (SM), SK-N-SH (SH), CHLA90 (CH) and CLB-MA (CL) on Ttest. The
Wasserstein distance model predicts an ALT+ share of 48% on Ttest and we find an
accuracy score of 93% under the assumptions mentioned in Section 9.2. To highlight that
comparing this score with the scores of the other models has to be taken with a grain of
salt, we mark it with an asterisk *. We also marked best results in bold font.

9.3 Feature Importance
As discussed in Section 7.2.2, there are 14 features that have proven to be stable across
specific pure and actual dilution series of Dsub and T . It yet remains analysing how well
each feature explains the ALT status of a nucleus in line with research question RQ2. In
this section, we want to discuss the feature importance scores for FGA models. We start
by determining how we can define feature importance scores for nuclear FGA models
according to Section 3.4:
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• Logistic Regression: as we have scaled the features in T , we can take the β
coefficient of the logistic regression as indicator for how important the model judges
the features. If |βi| is big, the corresponding i-th feature is important. If |βi| ≈ 0,
the relevant feature is unimportant.

• Support Vector Machine: we can use so-called permutation importance to determine
how important a feature is to classify the ALT status [Bre01]. For a specific feature,
we permute its values in T and keep the other features and the ALT status label
unchanged. We then apply the resulting data to the trained support vector machine.
For important features, we expect a significant drop of the accuracy score, while
unimportant features will merely affect it. When repeating this algorithm for all
features and multiple permutations, we can determine how important a feature is.

• Random Forest: as discussed in Section 3.4, building the decision trees of a random
forest amounts to finding optimal splits of features that minimise Gini impurity. We
use sklearn’s feature importance method that is based on the impurity decrease
of a feature averaged over all trees [PVG+11].

• Gradient Boosting: similarly to random forests, we calculate the variable importance
of each variable (that defines certain nodes) in a single gradient boosting tree by
the amount that each node split improves a performance measure (in XGBoost by
default information gain), weighted by the number of observations that the node
covers. One then averages the feature importances across all decision trees within
the gradient boosting model, see also Chapter 10.13 of [HTF09].

Using above’s methodology, we can calculate the importance of each of the 14 features in
the nuclear FGA models and rank them for each model separately. Figure 9.1 depicts
these ranks for all nuclear FGA models of Section 3.4.

To simplify the following discussion, we look at the top 4 ranks of each model. Hence,
the most important features are the following:

1. cluster shade and cluster prominence: for all nuclear FGA models, cluster shade
and cluster prominence are very important for predicting the ALT status. Indeed,
ALT+ nuclei in T show on average greater values for cluster shade and cluster
prominence than ALT− nuclei. Biologically, this is because ALT+ nuclei usually
show greater, brighter and more heterogeneous spots in the telPNA channel, see
Section 2.2. Note that cluster shade and cluster prominence are highly positive
correlated according to Figure 7.4.

2. kurtosis and skewness: for all nuclear FGA models, at least one covariate of the
highly correlated features kurtosis and skewness shows high feature importance.
ALT+ nuclei in T exhibit on average greater values for kurtosis and skewness than
ALT− nuclei, which corresponds to longer tails of the telPNA intensity distribution.
Biologically, this makes sense since we expect long tailed intensity distributions of
ALT+ nuclei due to more intense (e.g. ultra-bright) spots, see Section 2.2.
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Figure 9.1: Robust features of Section 7.2.2 ranked according to their importance in the
nuclear FGA models from 1 (high importance) to 14 (low importance). Note that the
logistic regression model uses only the six features on the left of the figure according to
Section 7.2.5. For easier reference, ranks below 4 are grayed out and feature names are
abbreviated.

3. size largest spot: for the support vector machine and logistic regression model,
the size of the largest spot of a nucleus is important to classify the ALT status.
As discussed in Section 2.2, this is in line with our expectations, as big (usually
ultra-bright) spots are more common in ALT+ cells.

4. spot count: for the logistic regression model, the number of spots is important to
classify the ALT status. Biologically, the number of spots does not relate to the ALT
status, see also Section 7.2.1. However, one can argue that the spot segmentation
model of Section 6.2 identifies more spots if they are brighter and more pronounced,
which is more likely for ALT+ cells. Hence, the logistic regression model possibly
confounds higher number of spots and brighter and more pronounced spots in the
telPNA channel, which may explain this spurious association. This observation
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corroborates that our decision in Section 7.2.1 of taking the least possible minimum
number of two required spots per nucleus was in several aspects correct. Otherwise,
we could have unwittingly biased the ALT+ ratio of dilution series in D.

In addition to the afore-mentioned important features for nuclear FGA models, we note
that we have selected cluster prominence and standard deviation of spot size as the
best (i.e. most predictive) pair of features in the Wasserstein distance model for ALT
classification on series level, see Section 7.2.6. While we discussed the biological relevance
for cluster prominence above, we note that ALT+ nuclei exhibit on average greater
standard deviations of spot sizes than ALT− nuclei. This can be attributed to bigger
ultra-bright spots and in general more heterogeneous telPNA images of ALT+ cells, see
Section 2.2.

9.4 Visualised Feature Extraction of MyNet
For deep learning models, it is usually not clear how the models came up with a certain
prediction. However, as discussed in Section 4.2, CNN use convolutions that preserve
the spatial relationship of the input image when extracting features. When applying the
CNN to a given image, we can therefore visualise the two dimensional feature maps at
each stage of the CNN as images to analyse what kind of image properties the model
extracts. It makes most sense to visualise these feature maps at activation layers to keep
only the most relevant features.

In line with research question RQ2, this section analyses the extracted features of MyNet
for an ALT+ and an ALT− cell in Ttest that MyNet correctly classified as ALT+ and
ALT−, respectively. Figure 6.4 shows the architecture of MyNet and that it consists in
total of nine activation functions. As features become more and more abstract when
passing through the network, we will only consider the feature maps at the first, third
and fifth ReLU activation layer. Furthermore, for each activation layer, we will randomly
select 25 feature maps to simplify the discussion.

For an ALT+ cell of the dilution series P11, Figure 9.2 shows the input image as well as
25 randomly selected feature maps at the first, third and fifth activation layer.

The input image shows several strongly pronounced ultra-bright telomere spots that
we can easily identify in multiple feature maps of the first activation layer (e.g. feature
map 5). The first activation layer also shows feature maps that seem to focus on the
background of the cell (e.g. feature map 3) or less bright spots at different illumination
levels (e.g. feature map 15). Feature maps at the third activation layer already incorporate
three convolutional layers and therefore include features of a greater receptive view, see
Figure 6.4. In the third activation layer, we can again identify the ultra-bright spots as
roundish contour lines in the feature maps (e.g. feature map 13) as well as less bright
and less pronounced spots (e.g. feature map 6). Again, we note feature maps that partly
incorporate background information (e.g. feature map 4). In the fifth activation layer,
the features become more abstract as expected. Still, we can easily see the signals of the
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(a) ALT+ input cell (b) feature maps at first activation layer

(c) feature maps at third activation layer (d) feature maps at fifth activation layer

Figure 9.2: Feature maps of the first, third and fifth activation layer of MyNet for an
ALT+ cell of dilution series P11 (field of view 507, nucleus 37, cell line SK-N-MM). For
each activation layer, we randomly selected 25 feature maps. Note that Figure 9.3 shows
features of the same layers.

ultra-bright telomere spots as contour lines (e.g. feature map 13), and clusters of less
pronounced telomere spots (e.g. feature map 19).

Figure 9.3 shows the input image of an ALT− cell in the dilution series P9WH and the
same 25 randomly selected feature maps of the first, third an fifth activation layer as in
Figure 9.2. While we note that the illumination scales partly differ across the images,
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(a) ALT− input cell (b) feature maps at first activation layer

(c) feature maps at third activation layer (d) feature maps at fifth activation layer

Figure 9.3: Feature maps of the first, third and fifth activation layer of MyNet for an
ALT− cell of dilution series P9WH (field of view 487, nucleus 85, cell line SK-N-SH). For
each activation layer, we randomly selected 25 feature maps. Note that Figure 9.2 shows
feature of the same layers.

we can still compare the feature maps of Figures 9.2 and 9.3. In Figure 9.3, we see
that the ALT− cell does not show many telomere spots that are well in contrast to the
background. For that reason, the feature maps at the first activation layer seem to mainly
extract features at the same brightness intensity level (e.g. feature map 5). We recognise
telomere spots in some feature maps (e.g. feature map 17). Compared to Figure 9.2, the
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features of the third and fifth activation layer in Figure 9.3 appear less coherent. We can
imagine some feature maps extracting telomere spots and contiguous telPNA clusters
(e.g. feature maps 21 and 13 of the third and fifth activation layer, respectively). We
note that the overall intensity at these activation layers is lower than in Figure 9.2.

Summarising, Figures 9.2 and 9.3 indicate that MyNet uses features that identify greater
roundish structures such as pixel clusters in the telPNA channel at varying illumination
levels. In particular, some features incorporate the size and intensity of spots that are well
in contrast to the background. When combining multiple features of spots at different
brightness intensity levels, the model is also able to capture the heterogeneity of the
telPNA channel. We can therefore see that MyNet extracts features that appear similar
to the most relevant FGA features cluster prominence and cluster shade, size of the
largest spot, kurtosis and skewness as well as standard deviation of spot size, which we
discuss in Section 9.3.

9.5 Prediction Results on D
As part of research question RQ2, we apply in this section the FGA and IBA models on
the dilution series of D to compare predicted and actual ALT+ rates. In Section 6.4.2, we
referred to this problem as ALT classification on series level. For nuclear FGA models and
IBA models, we apply the method discussed at the beginning of Section 6.6.3 to determine
the ALT+ ratio of a dilution series. While none of the dilution series in D is part of
T , Ttest, TIBA, V, note that the sub-family Dsub = {PM14, PM15, PM22, PM23} ⊆ D
is strictly speaking not completely out-of-sample. This is because we used Dsub to select
stable features of the FGA models in Section 7.2.2 and to choose hyperparameters and
robustification methods for the IBA models in Sections 8.2 and 8.3.

In line with our decision criteria of Section 6.8, Figure 9.4 shows differences between the
predicted and actual ALT+ rate for each dilution series of D and each model. Figure
9.5 illustrates the corresponding differences on the level of predicted ALT+ classes
G = {0%, 1%, 5%, . . . , 75%, 100%}.

For both figures, we split the information in two separate plots of identical scaling to
avoid cluttered illustrations. For Figure 9.4 we used the predictions of the Wasserstein
distance model on ASfine, as discussed in Section 9.2, while for Figure 9.5 we use the
predictions on AS. Moreover, to avoid misunderstandings, we emphasise that Section 8.3
already shows the results of the IBA models on Dsub. To summarise the information of
Figures 9.4 and 9.5, Table 9.2 shows the sum of absolute differences in predicted ALT+
rates and in predicted ALT+ groups across D for all models separately.

Based on Figures 9.4 and 9.5 as well as Table 9.2, we see that the Wasserstein distance
model predicts the ALT+ rates and ALT+ classes G by far the best. For all dilution
series in D, the Wasserstein distance model predicts ALT+ rates that are at most one
class off from the true ALT+ rates. We also see that the Wasserstein distance model
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Figure 9.4: Differences of predicted and true ALT+ ratio of dilution series in D for
nuclear FGA models (above) as well as IBA models and Wasserstein distance model
(below). The dotted lines on top and at the bottom show the worst possible differences
for each dilution series. The shaded background corresponds to the true ALT+ ratio,
which is also indicated on top of the figure. At the bottom of the figure, we find the cell
lines of each dilution series in two separate rows with the following encoding: the top
row (+) records the ALT+ cell lines SK-N-MM (SM) or CHLA90 (CH). In the bottom
row (-), we find the ALT− cell lines SK-N-SH (SH) or CLB-MA (CL).
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Figure 9.5: Differences of predicted and true ALT+ class of G for dilution series of D
separately for nuclear FGA models (above) and IBA models and Wasserstein distance
model (below). The gray dotted lines indicate the worst possible deviations in terms
of number of classes of G. The dotted lines on top and at the bottom show the worst
possible differences for each dilution series. The shaded background corresponds to the
true ALT+ ratio, which is also indicated on top of the figure. At the bottom of the
figure, we find the cell lines of each dilution series in two separate rows with the following
encoding: the top row (+) records the ALT+ cell lines SK-N-MM (SM) or CHLA90 (CH).
In the bottom row (-), we find the ALT− cell lines SK-N-SH (SH) or CLB-MA (CL).100



9.5. Prediction Results on D

correctly identified the ALT+ rate of 0% for the dilution series P4∼A and P7, which
confirms the false positive rate of 0% from Section 9.2.

With the exception of PM22 and PM23, the nuclear FGA models predict ALT+ rates
quite similarly. Overall the logistic regression model predicts ALT+ rates and classes
best. We also note that the nuclear FGA models provide in general worse results for
dilution series of the cell lines SK-N-SH and SK-N-MM (such as PM22 and PM23). This
is in line with our observation in Section 9.2 regarding lower accuracy scores for SK-N-SH
cells. We ascertain false positive rates of more than 5% on P4∼A and P7 and note stable
predictions of at most one ALT+ class difference for dilution series with ALT+ ratios of
more than 10%.

For the IBA models, we see that they perform better than the FGA models and that
ResNet gives slightly more stable predictions than MyNet. We also note that both
ResNet and MyNet failed in predicting the ALT+ rate of 0% in the dilution series P4∼A.
Experts of the CCRI validated that this dilution series is of worse quality as compared
to the other dilution series, since the telPNA channel is mostly out of focus with weak
signals. Still, we note that all nuclear FGA models and the Wasserstein distance model
are able to cope better with this worse image quality and predict more accurately on
P4∼A than the IBA models. Both MyNet and ResNet give stable predictions of at most
one ALT+ class difference for dilution series with ALT+ ratios greater than 1%.

Summarising, we find that the Wasserstein distance model excels in predicting the
ALT+ rates for dilution series in D, including series of worse image quality and varying
fluorescence staining (e.g. P4∼A, PM23). Furthermore, we established that IBA models
mostly give better results than the other nuclear FGA models. We believe that the
Wasserstein distance model outperforms the other approaches, as it is based on feature
distributions of all nuclei in the relevant dilution series, which appears to stabilise the
predictions.

Model
� Abs. Differences

ALT+ rates

� Abs. Differences
ALT+ classes

RandomForestClassifier 3.19 23
LogisticRegression 1.79 18

XGBClassifier 2.48 20
SVC 2.02 20

Wasserstein Distance Model 0.15 4
MyNet 1.40 15
ResNet 1.20 14

Table 9.2: Summary statistics of Figures 9.4 and 9.5 for each model. The second column
sums the absolute differences of ALT+ rates, which we see in Figure 9.4, across all
dilution series in D and for each model separately. The third column sums the absolute
differences of ALT+ classes in G, which we see in Figure 9.5, across all dilution series in
D and for each model separately. We marked the best results in bold font.
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9.6 Prediction Confidence

When considering the results of Section 9.5, we are usually interested in the models’
confidence when predicting the ALT status on nucleus or series level. This confidence
relates to research question RQ1, as it allows us to judge the prediction quality. In this
section we want to discuss the prediction confidence for all FGA and IBA models.

For the nuclear FGA models and IBA models, Figures 9.6 and 9.7 show the distribution
of sure ALT+, sure ALT− and unsure assignments across D according to the criteria of
Section 6.8.1. We generally note that the IBA models ResNet and particularly MyNet
are much more confident in their predictions than FGA models. This could be because
the image-derived features in MyNet and ResNet are more descriptive than the manual
features of the FGA models. For support vector machines, random forests and gradient
boosting, we observe lower confidence when predicting the ALT status of nuclei in dilution
series of cell lines SK-N-MM and SK-N-SH. Indeed, the models predict the ALT+ ratio
in these dilution series poorly, see Section 9.5. The logistic regression model is mostly
less sure about its predictions than the other FGA models. Still, we note that its rate
of sure ALT+ assignments corresponds quite well to the actual ALT+ ratio. This also
holds true for ResNet, which is less sure about the (overall wrongly predicted) ALT+
rate in P4∼A than MyNet.

Based on the criteria to determine prediction confidence of Wasserstein models in Section
6.8.1, we find in Figure 9.8 that the Wasserstein distance model is mostly confident when
assigning the ALT+ rate. Only for four dilution series, the model is unconfident. For
two of these dilution series, the Wasserstein distance model wrongly predicted the ALT+
rate, and the remaining two series consist of cell lines CHLA-90 and CLB-MA, for which
the model predicts the ALT+ ratio less accurately, see Section 9.2. Furthermore, with
the exception of one dilution series (PM22), we also note that the first and second closest
predicted classes π1, π2 are at most one class off from the true ALT+ class. Still, we also
see that the confidence ratios for the dilution series PM3 and PM23 are high, although
the predicted ALT+ class is in fact not correct.

The results underline that considering the models’ prediction confidence is valuable for
analysing how trustworthy the model outputs are. This holds particularly for the logistic
regression model, the Wasserstein distance model and ResNet.

9.7 Summary

In this section, we evaluated the final FGA and IBA models on the testing samples
Ttest and D to answer our main research questions RQ1 and RQ2. We evaluated the
model performances on Ttest and learned that both ResNet and the Wasserstein distance
model provided the best overall accuracy results. On cell line level, the IBA models show
low false positive and false negative rates, while the Wasserstein Distance model gave a
perfect false positive rate of 0%, but a relatively high false negative rate.
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(a) Logistic Regression

(b) Support Vector Machine

(c) Random Forest

Figure 9.6: Prediction confidence across dilution series in D. For each dilution series,
the figures display the share of sure ALT+ (bottom, red), sure ALT− (top, green) and
unsure assignments (middle, orange) according to Section 9.6. Black dashed lines refer
to the actual ALT+ rate for easier reference. See Figure 7.2 for a description of the
remaining elements.
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(a) Gradient Boosting, XGB

(b) MyNet

(c) ResNet

Figure 9.7: Prediction confidence across dilution series in D. For each dilution series,
the figures display the share of sure ALT+ (bottom, red), sure ALT− (top, green) and
unsure assignments (middle, orange) according to Section 9.6. Black dashed lines refer
to the actual ALT+ rate for easier reference. See Figure 7.2 for a description of the
remaining elements.
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Figure 9.8: Confidence ratio γ of the Wasserstein distance model for all dilution series
in D. The figure displays differences of the predicted class (dashed, blue line) and of
the second closest ALT+ class (dash-dotted, orange) as well as the confidence ratio γ
(dotted, black). The left axis refers to the number of class differences according to the
predicted class and second closest class. The right axis displays the confidence ratio
and a colour scheme according to the criteria of Section 9.6. The shaded background
corresponds to the true ALT+ ratio, which is also indicated on top of the figure. At the
bottom of the figure, we find the cell lines of each dilution series in two separate rows
with the following encoding: the top row (+) records the ALT+ cell lines SK-N-MM
(SM) or CHLA90 (CH). In the bottom row (-), we find the ALT− cell lines SK-N-SH
(SH) or CLB-MA (CL).

For the FGA models, we found that they mostly agree on the important features to
predict the ALT status. They comprise cluster shade and cluster prominence, kurtosis,
skewness, the size of the nuclei’ largest spot and the spot count. By investigating the
feature maps at activation layers, we ascertained that MyNet extracts features that
appear similar to these most relevant FGA features.

The results for predicting the ALT+ ratios on D show that the nuclear FGA models
perform considerably worse than the IBA models. Still, the Wasserstein distance model
outperforms all other models by providing most accurate predictions that are at most
one ALT+ class away from the actual ALT+ ratios.

We also analysed how confident the models are when predicting the ALT+ status on
D. We generally note that the IBA models ResNet and particularly MyNet are much
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more confident in their predictions than FGA models. For the logistic regression model,
we learned that its rate of sure ALT+ assignments corresponds quite well to the actual
ALT+ ratio. The Wasserstein distance model is mostly confident when assigning the
ALT+ rate. For half of the cases when the Wasserstein distance model wrongly predicted
the ALT+ rate, the Wasserstein distance model was in fact unconfident. The results
underline that considering the models’ prediction confidence is valuable for analysing
how trustworthy the model outputs are.
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CHAPTER 10
Summary and Conclusions

This thesis poses two main research questions RQ1 and RQ2 to asses how well our chosen
FGA and IBA models allow for classifying the ALT status of neuroblastoma cells. Our
research questions cover two main aspects to assess the quality of ALT classification:
prediction quality and confidence (RQ1), as well as main drivers of model decisions
(RQ2).

For research question RQ1 of Section 6.8, our results show that the Wasserstein distance
model provides most accurate predictions on Ttest and D. The confidence ratio γ that
we introduce in Section 9.6 is a reliable measure for determining the model’s confidence
when predicting the ALT ratio of a given dilution series. The remaining nuclear FGA and
IBA models predict the ALT status on nucleus level and provide overall worse results on
Ttest and D than the Wasserstein distance model. Among these models, ResNet, MyNet
and the logistic regression model predict the ALT status best on D. When considering
only sure ALT+ assignments according to Section 9.6, the predictions of ResNet and
the logistic regression model become more accurate. We believe that the Wasserstein
distance model outperforms the other approaches, as it is based on feature distributions
of multiple nuclei, which appears to stabilise predictions.

For research question RQ2, we have seen that FGA models mostly agree on features
that are able to predict the ALT status well. The most relevant features focus on the
presence of clusters as well as the skewness and kurtosis of the intensity distribution
in the telPNA channel, or consider spot sizes. We have found that MyNet appears to
extract image properties that are similar to these FGA features.

In summary, we recommend using the Wasserstein distance model when we are interested
in ALT classification on series level based on images of multiple nuclei. If we want to
classify the ALT status of an individual cell, we recommend using ResNet. If, in addition,
we want to explain and reconstruct how and why the model predicted the ALT status of
an individual cell, we recommend using the logistic regression model.
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The results of this thesis may in the future impact clinical diagnostics of ALT. In a
controlled setting, both the FGA and IBA models have managed to predict the ALT
status on cell line and series level with high confidence, and assessing predictions of
multiple models at once (such as the Wasserstein distance model, ResNet and the logistic
regression model) may even further foster confidence. While in any case experts have to
verify the predictions on whether a sample is ALT+ or ALT−and if the predicted ALT+
ratio is sound, models allow for fast processing thousands of cells in a sample. Hence,
they may support experts in diagnosing the ALT status for clinical reports.

There are several directions for paths of future research. It appears essential to apply and,
if necessary, also train the models on data of new cell types and also on tissue segments
to assess how stable the selected features and CNNs are. Similarly, it is worth assessing
how well the models predict the ALT status under different recording situations than the
standardised setup that we used for our data. Furthermore, for the Wasserstein distance
model, we note that Ttest and the individual dilution series of D consist each of 4,000 -
5,000 nuclei. Analysing how this number of nuclei affects the prediction quality is an
interesting question for future research. Similarly, if much more than 4,000 nuclei per
dilution series and sufficient hardware are available, it appears worth assessing three-
dimensional Wasserstein distance models, which use the distribution of three instead of
two features discussed in Section 6.6.3.
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Glossary

ALT alternative lenghtening of telomeres. 1

CCRI children’s cancer research institute. 2

CNN convolutional neural network. 3

CV cross-validation. 15

DNA deoxyribonucleic acid. 7

FGA feature generation approach. 3

FISH fluorescence in-situ hybridisation. 1

GLCM gray level co-occurance matrices. 16, 50

GLCM gray level run length matrices. 16, 50

GLSZM gray level size zone matrices. 16, 50

HEp-2 human elliptical 2. 4

IBA image based approach. 3

SVC, SVM support vector machine. 66

telPNA telomere PNA. 1

WGS whole genome sequencing. 36

XGB extreme gradient boosting. 66
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