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About IETS Task XVIII Subtask 2 
In IETS Task XVIII Digitalization, Artificial Intelligence and Related Technologies for Energy Efficiency and 

GHG Emissions Reduction in Industry we are working on identifying technologies that can be applied in 

industry to increase the energy efficiency and ultimately reduce the emission of greenhouse gases. 

Subtask 2 of IETS Task XVIII focuses on Methods and Applications of Digital Twins (DT) to promote the 

application of DTs in industry, in order to improve energy efficiency and reduce GHG emissions. Subtask 2 

has the following sub-objectives: 

 Overview of methods and applications of DTs and their requirements for different industry 

sectors 

 Analysis of the potential benefits of these methods, focusing on the impact on energy efficiency 

and GHG emissions reduction 

 Creation of an international, interdisciplinary network of research and industry 

Digital Twins have the potential to improve industrial energy systems considerably. Not surprisingly, there 

has been quite a hype around digital twins during the last years. Though, successful implementations of 

digital twins in industry are rare and the actual return-on-investment is hard to estimate. For this reason, 

many companies are still hesitant to employ digital twins. As different definitions of DT exist and potential 

applications are often indistinct, a uniform description and definition for them is required. 

Within Subtask 2, an overview of this extensive topic is presented in the form of a Glossary. A literature 

review was conducted and findings from previous work were collected to clarify the terms and 

definitions around the topic digital twin. 
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Glossary 
The aim of this report is to provide much needed definitions and a glossary of terms for this emerging field 

that can be used as basis for future publications and work. A glossary is provided below, which also reflect 

the structure of this report. 

 

Table 1 - Glossary 

Term Description 

Digital Twin A Digital Twin is a virtual representation that matches the physical attributes of 
a "real world" entity*, through measured values and domain knowledge and 
features automated bidirectional communication with that entity. 

*Physical Entity A physical entity is an abstraction of a “thing” persisting in the real world, which 
has to be mirrored or twinned in the virtual world. 

 Josifovska et al. (2019). 

Digital Model A Digital Model is a digital representation of an existing or planned physical 
object that does not use any form of automated data exchange between the 
physical entity and the digital entity.  

Kritzinger et al. (2018) 

Digital Shadow Based on the definition of a Digital Model, if there further exists an automated 
one-way data flow between the state of an existing physical entity and a digital 
entity, one might refer to such a combination as Digital Shadow.  

(Kritzinger et al. (2018)) 

Cyber-Physical 
System 

Cyber-Physical Systems are autonomous and cooperative elements and sub-
systems across all levels of production, able to communicate with each other in 
situation-dependent ways. 

Monostori (2014) 

Cyber-Physical 
Production 
System 

When Cyber-Physical Systems are connected to perform smart manufacturing, 
we have a Cyber-Physical Production System.  

Rojas & Rauch (2019) 

Industry 4.0 Industry 4.0 represents the technological evolution from embedded systems to 
cyber-physical systems. In Industry 4.0, embedded systems, semantic machine-
to-machine communication, Internet-of-Things and Cyber-Physical System 
technologies are integrating the virtual space with the physical world. In 
addition, a new generation of industrial systems, such as smart factories, is 
emerging to deal with the complexity of production in cyber-physical 
environment. 

GTAI (2014) 
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Energy 4.0 In analogy to Industry 4.0, Energy 4.0 stands for the transition to energy systems 
of the fourth generation, sometimes also referred to as smart energy systems. 
These energy systems will be based on renewable, volatile energy carriers, a high 
amount of flexibilization, and interconnection between different industry sectors 
and feature extensive application of digital technologies. 

Lund et al. (2017); Robison et al. (2015) 

Key 
Performance 
Indicators 

In general, the interaction of digital twins and key performance indicators can be 
understood in two ways: 

• The digital twin receives key performance indicators regarding the 
performance of the process as input information from physical entity and 
bases operation on these KPIs (can be e.g., aggregated / calculated data 
from processes). 

• Furthermore, key performance indicators can also be defined for the digital 
twin itself. 

Optimization Optimization is generally understood to be the search for the best possible 
solution in the sense of a certain goal in a decision-making area, whereby frame 
conditions can be taken into account. 

Floudas & Pardalos (2008) 

Digitization Digitization is the process of changing data into a digital form that can be easily 
read and processed by a computer.  

Oxford Online Dictionary (2021) 

Digitalization In the context of industrialization, digitalization describes the transition to new, 
disruptive business cases driven by evolving Information and Communication 
Technologies, the automation and flexibilization of business operation and the 
interconnection of information, things and operatives. 

 Hanschke (2018) 

Services To solve the problem of interoperability between a digital twin and different 
users / stakeholders and to enable innovative business models, the functions of 
the digital twin can be encapsulated into standardized services with user-friendly 
interfaces for easy and on-demand usage. 

Tao et al. (2019) 

Modeling 
approaches 

In the context of digital twins modeling is understood as the task of creating a 
virtual representation of some real system in order to compute certain 
properties or make predictions of the behavior. Different modeling approaches 
can be applied. Relevant characteristics of models are performance, real-time 
capability, level of detail, resolution of the entity in time or process level etc. 
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Big Data Big data is high-volume, high-velocity and high-variety information assets that 
demand cost-effective, innovative forms of information processing for enhanced 
insight and decision making.  

Gartner (2021) 

Information and 
communication 
technology 

The term “Information and Communication Technology” is generally accepted to 
mean all devices, networking components, applications and systems that 
combined allow people and organizations (i.e., businesses, nonprofit agencies, 
governments, and criminal enterprises) to interact in the digital world.  

Pratt (2021) 

Sensors A device that responds to a physical stimulus (such as heat, light, sound, 
pressure, magnetism, or a particular motion) and transmits a resulting impulse 
(as for measurement or operating a control). 

Merriam Webster (2021) 

Internet of 
Things 

The IoT is a concept, in which basically any device - mechanical or digital - is 
connected in a network with the ability to transfer data without the requirement 
of human interaction. 

Hofmann et al. (2020) 

Knowledge 
representation 

Ontologies are knowledge representations of a domain that contain explicit 
descriptions of concepts, properties, attributes or features of those concepts and 
logical restrictions on the classes and properties. They are explicit 
conceptualization of objects, concepts, and their relations that form a knowledge 
base as well as the basis of what “exists” in a “universe of discourse” for AI 
systems. 

(Hofmann et al. (2020)) 

Simulation Simulation is the prediction of a real-world process or system with given 
parameters over time. 

Optimization 
method 

Optimization is generally understood to be the search for the best possible 
solution in the sense of a certain goal in a decision-making area, whereby frame 
conditions can be taken into account. 

(Floudas & Pardalos (2008)) 

Virtual reality Virtual reality is a technology where the user can immerse into a virtual 
environment and can roam and interact with it. 

Zhou & Deng (2009) 

Augmented 
reality 

A system that supplements the real world with virtual (computer-generated) 
objects that appear to coexist in the same space as the real world. 

Azuma et al. (2001) 
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Condition 
Monitoring 

The assessment of the current condition of a physical entity by employing 
measurement data. 

Predictive 
Maintenance 

The main objective of predictive maintenance is to employ the information 
gathered from condition monitoring to predict the point of time at which 
maintenance activities are the most cost-efficient and before the physical 
entities optimal performance deteriorates. 

Sinha et al. (2010) 

Preventive 
Maintenance 

Preventive maintenance is performed periodically. It is meant to prevent the 
physical entity from sudden failure and/or deterioration in efficiency by 
inspecting, servicing and replacing critical parts of the physical entity on a 
predetermined frequency. 

Reactive 
Maintenance 

Also known as breakdown maintenance, reactive maintenance is the type of 
maintenance which is performed at a point of time at which a critical failure of a 
significant deterioration in efficiency already occurred in a certain part of the 
physical entity. 

Predictive 
Control 

Typically, advanced control methods involve more complex calculations than the 
conventional PID controller algorithm. Advanced control has the following 
features: 

 Process modeling and parameter identification (off-line or on-line)  

 Prediction of process behavior using process model 

 Evaluation of performance criterion; subject to process constraints  

 Optimization of performance criterion  

 Matrix calculations (multi-variable control)  

 Feedback control 

Airikka (2004) 

Forecasting Forecasting is a common statistical task in business and is about predicting the 
future as accurately as possible. 

Decision 
Making Support 

A decision support system is a computer-based application that collects, 
organizes, and analyzes business data to facilitate quality business decision-
making for management, operations and planning. A well-designed decision 
support system aids decision makers in compiling a variety of data from many 
sources: raw data, documents, personal knowledge from employees, 
management, executives and business models. Decision support system analysis 
helps companies to identify and solve problems and make decisions.  

Techopedia (2021) 

Flexibility Flexibility is the capacity to adapt. 

Golden & Powell (2000) 
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Abbreviations 
AI   Artificial Intelligence 

DT   Digital Twin 

CPPS   Cyber-Physical Production Systems 

CPS   Cyber-Physical Systems 

E4.0   Energy 4.0 

GHG   Greenhouse gas 

ICT   Information and Communication Technology 

IT   Information Technology 

I4.0   Industry 4.0 

KPI   Key Performance Indicator 

LCOE   Levelized Cost of Energy  

LCOH   Levelized Cost of Heat   
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1. Introduction 
Digitalization has become an integral part of daily life. Similarly, in Industry, digitization can provide a 

number of benefits, such as higher productivity, lower costs and flexibility of industrial processes, thus 

improving efficiency and saving energy. Furthermore, digitalization can support the integration of 

renewable sources and sustainable production; specifically for energy intensive industries. This can further 

reduce greenhouse gas emissions (GHG) in industry. However, digitalization poses several challenges, 

including data management and data security issues. The availability and quality of big data, which is 

dependent on available sensors, acts as a critical element and enabler for a successful implementation.  

As part of a project of the International Energy Agency (technology program "Industrial Energy Technologies 

and Systems" - IEA IETS Task XVIII), an international consortium is addressing the issues associated with 

digitization along the value and development chain in industry. In particular, the project is dedicated to 

digitization, artificial intelligence (AI) and related technologies for increasing energy efficiency and the 

reduction of GHGs in industry.  

The overall objective of this work is to increase the knowledge, development and application of 

digitalization, AI and related technologies to improve the economic and environmental performance of 

energy and GHG intensive industries. In addition, it aims to create the necessary foundation and framework 

conditions for improving the digital twins (DTs) implementation in industry. To address this, the methods 

and applications of digital twins, challenges and solutions in connection with digitization, as well as 

roadmaps for the implementation of digitization measures in energy-intensive industry, are examined.  

The project specifically addresses these challenges by bringing together experts and initiating joint research 

and work. The international project is led by Mouloud Amazouz, CanmetENERGY, Natural Resources 

Canada, who is coordinating an 11-country consortium including Austria, Canada, Denmark, Finland, France, 

Germany, Portugal, Netherlands, Italy, Sweden and Switzerland. The Austrian consortium is led by the 

Institute for Energy Systems and Thermodynamics at the Vienna University of Technology, in partnership 

with AEE INTEC, the Austrian Institute of Technology and the Montanuniversität Leoben. Background 

Within IEA IETS Task XVIII Subtask I Whitepaper on “Digitalization in Industry”1 (Hofmann et al. (2020)) was 

elaborated by the Austrian participants covering the following issues: 

 A brief overview of energy consumption and GHG emissions in Austria, focusing on digitalization 

applications for industry and related projects in Austria 

 An overview of technologies, including the Digital Twin (DT), and applications  

 Explicit definitions  

 Barriers, gaps, needs and future potentials 

The definitions and terms were addressed in Subtask 1 of Task XVIII. The document can be accessed here: 

[Whitepaper_TaskXVIII_Subtask1]. Although several definitions for DT applications have been covered, 

there remains a lack of detail regarding the background of DTs. (Hofmann et al. ) (2020) provide several 

useful definitions  that can be built on to analyze digitalization methods and applications. This report thus 

focuses on a more detailed review of possible existing definitions and their analysis in the context of DTs. 

                                                             

1 https://www.energieforschung.at/assets/project/downloads/White-Paper-Digitalization-in-Industry.pdf or 
White-Paper-Digitalization-in-Industry.pdf (tuwien.ac.at)  

https://sic.tuwien.ac.at/fileadmin/t/sic/Dokumente/White-Paper-Digitalization-in-Industry.pdf
https://www.energieforschung.at/assets/project/downloads/White-Paper-Digitalization-in-Industry.pdf
https://sic.tuwien.ac.at/fileadmin/t/sic/Dokumente/White-Paper-Digitalization-in-Industry.pdf


 

 

13.06.2022 DIGITAL TWINS - Terms and Definitions Page 12 of 37 

Task XVIII  Subtask 2 – Methods and Applications of Digital Twins 

1.1 Framework  

The work presented in this document is part of the IEA IETS Task XVIII Subtask 2.  

The scope of the work in this Task is to analyze, describe and show potential applications of DTs in (energy-

intensive) industrial energy supply systems to contribute to environmental protection measures, 

particularly the reduction of GHG emissions. 

However, the European Commission does not only address the reduction of GHG emissions within the 

regulatory framework of its climate goals, it also emphasizes the importance of reducing primary energy 

consumption, which corresponds to increasing energy efficiency, as well as increasing the share of 

renewable energies. Within this Task, methods and the application potential of DTs contribution to climate 

protection measures are addressed for industrial energy supply systems. 

 

Figure 1 – Within IEA IETS Task XVIII Subtask 2, methods and the application potential of DTs contribution to climate protection 
measures are addressed for industrial energy supply systems. 

 

However, this subtask does not seek to evaluate the DTs of industrial production facilities itself. 

Nevertheless, the work in this subtask requires the analysis of interfaces from the production process with 

industrial energy supply and its impact / relevance for DTs. Examples for such interfaces, considered in this 

subtask are:  

 Sensors (are essential for data collection as basis for DT formulations) 

 Prediction of load / demand profiles (are essential for a certain set of DT applications especially in 

the context of e.g. decision support) 

 Application of controllers (are essential to build the connection from the DT to the physical entity 

again) 

 Analysis of flexibility  

DTs to exploit the potential of reaching 
(environmental) goals for industrial 

energy supply systems

Environmental 
goals

Industrial 
energy supply 

systems
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Different questions and application cases of the DT will be defined in further activities of this Task. For these 

applications / use cases, the objects and transferred data shall be defined, as outlined in Figure 2 below. 

Additional information required, includes the following: 

 Inputs and forecasts 

 Requirements for the generation units and the operation (temperatures, observation of wear and 

tear, etc.)  

 Control structure 

 

Figure 2 – Visualization of a DT according to Jones et al.  (2020) 

 

1.2 System Definition and Boundaries 

1.2.1 Multi Energy Systems 

In this IEA IETS Task XVIII we assess DTs in different contexts or systems, with a combination of different 

primary energy sources, final energy carriers, and energy vectors. These systems are further defined as 

multi energy systems.  

1.2.2 Interfaces 

Different types of interfaces become relevant when it comes to DTs. The business unit “Automation and 

Digitalization” at the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), 

describes the relevance/role of standardized interfaces for DTs as follows: 
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In general, several interfaces have to be clearly defined when it comes to DT implementation and 

application to ensure usability and successful usage. Examples are machine-machine interfaces, human-

machine interfaces, and interfaces between single components.  

1.3 Method and Organization of this report 

This report was developed along the following lines. Firstly, a literature review was performed to provide a 

comprehensive knowledge base and background information for Chapter 2. This Chapter gives an overview 

of derived definitions that can be used in the form of a glossary in the future. This glossary is summarized 

in the beginning of this document and is the main output of this report. Please refer to Table 1 - Glossary. 

Furthermore, the results the literature review and the basis for this report were presented in a Task Meeting 

at the international level in October 2021. This was followed by a survey for the Annex members and 

interested partners. The relevant findings from this survey regarding definitions and understanding for DTs 

can be seen in the document “EXISTING DIGITAL TWIN SOLUTIONS – Report on questionnaire”. 

  

Models from different phases of the life cycle should interact. Due to the well-known 

heterogeneity of interfaces, this is a big challenge today. Standardized syntax (protocols) and 

semantics (information models) provide a remedy. Industrie 4.0 components interact with each 

other via submodels contained in their administration shells (Asset Administration Shells). 

 Fraunhofer IOSB (2021)  
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2. Relevant Terms and Definitions – Literature review 
The following chapter is organized as follows. Section 2.1 outlines the general terms relevant to DTs. The 

most relevant technologies and methods regarding DT applications are discussed in Section 2.2, followed 

by Section 2.3, which outlines how DT can be applied and and its value creation potential. 

2.1 General Terms 

2.1.1 Digital Twin 

A definition of the term DT was already presented in IEA IETS Task XVIII Subtask 1. However, compared to 

that, the present document gives a much more detailed view. This is because, firstly, the DT is of great 

importance in IEA IETS Task XVIII Subtask 2 and, secondly, the exact definition of DT is still vigorously 

debated in today’s scientific literature. 

IEA IETS Task XVIII Subtask 1 Definition in Whitepaper (Hofmann et al. (2020)) 

A Digital Twin is a virtual representation that matches the physical attributes of a "real world" 
factory, production line, product, or component in real-time, through the use of sensors, 
cameras, and other data collection techniques. In other words, DT is a live model that is used 
to drive business outcomes, and can be implemented by manufacturing companies for 
multiple purposes: 

 DT of an entire facility  

 DT of a production line process within a facility 

 DT of a specific asset within a production line 

Richter (2019) 

As part of IEA IETS Task XVIII Subtask 1, the definition presented in this whitepaper already gives a very 

detailed view of the DT. However, in addition to many similar definitions, partially contradictory aspects 

can also be found in the published definitions in literature, some of the most notable of which are outlined 

below.  

Further Definitions 

While some state that the first definition of the DT concept was made as early as 2002 in the context of 

product lifecycle management (Kritzinger et al. (2018)); Grieves (2014), the first actual definition of the DT 

was given by NASA in 2012 as: 

…an integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or system that 
uses the best available physical models, sensor updates, etc., to mirror the life of its 
corresponding twin. 

Glaessgen & Stargel (2012) 

This early definition, which is until today widely recognized in the field of DT research (Kritzinger et al. 

(2018)), has given rise to many more , for example Boschert & Rosen (2016) refer to the DT from a 

“simulation viewpoint” as: 

a description of a component, product or system by a set of well aligned executable models 
with the following characteristics: 
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 The DT is the linked collection of the relevant digital artefacts including engineering 
data, operation data and behavior descriptions via several simulation models. 

 The DT evolves along with the real system along the whole life cycle and integrates the 
currently available knowledge about it. 

 The DT is not only used to describe the behavior but also to derive solutions relevant for 
the real system. 

(Boschert & Rosen (2016)) 

These characteristics very much align with a definition given by Negri et al.  (2017) and reported, amongst 

others by Cimino et al.  (2019) and (Kritzinger et al. ) (2018): 

The DT consists of a virtual representation of a production system that is able to run on 
different simulation disciplines that is characterized by the synchronization between the 
virtual and real system, thanks to sensed data and connected smart devices, mathematical 
models and real time data elaboration. 

(Negri et al. (2017)) 

(Negri et al. ) (2017) even went so far as to present a table of 16 separate definitions of the DT in literature. 

In a recent review paper (Jones et al. ) (2020) summarize a list of key concepts surrounding the DT: 

DT A complete virtual description of a physical product that is accurate to 
both micro and macro level. 

DT Prototype The virtual description of a prototype product, containing all the 
information required to create the physical twin. 

DT Instance A specific instance of a physical product that remains linked to an 
individual product throughout that products life. 

DT Aggregate The combination of all the DT Instances. 

DT Environment A multiple domain physics application space for operating on DTs. These 
operations include performance prediction, and information 
interrogation. 

(Jones et al. (2020)) 

Browsing through this literature, one can find that there are some common elements or wording in all of 

these definitions: 

 The DT features (or is in itself) a virtual representation of a real-world asset. 

 This virtual representation is coupled with its physical counterpart (uni- or bi-directional) and, 

 it is based on measured values. 

Notwithstanding the above, some aspects are still used inconsistently, for example: 

 (Bi-)directional communication (See the distinction of Digital Shadow and Digital Model below) 

 Real-time capability (and if so: What is real-time?) 

 Information representation vs. AI/model based computations as virtual representation 
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IEA IETS Task XVIII Subtask 2 

To facilitate greater clarity for future work, we propose the following definition of the DT, as it should be 

understood throughout Subtask 2: 

A Digital Twin is a virtual representation that matches the physical attributes of a "real world" 
entity*, through measured values and domain knowledge and features automated 
bidirectional communication with that entity. 

 

* (Josifovska et al. ) (2019) noted that throughout DT definitions, the DT is often seen es either the digital / 

virtual representation of a physical object Wagner et al. (2018) or a physical entity and further raised the 

very justified question as to what the difference between the two terms  is. They state that a physical entity 

is an abstraction of a “thing” persisting in the real world, which has to be mirrored or twinned in the virtual 

world (Josifovska et al. (2019)).  

This is also the general view of the definition here presented DT definition for IEA IETS Task XVIII Subtask 

2. As such, the physical entity of a considered DT could be a single process unit or even part of that unit, 

but also a whole energy system including boundary conditions (e.g. external energy supply systems/grids). 

It should be noted however, that this viewpoint should not be seen as a rejection of differing definitions, 

rather, the authors note that other definitions might also be valid in specific domains and application 

scenarios. 

2.1.2 Categorization: Digital Model / Shadow / Twin 

In a recent categorical literature review, (Kritzinger et al. (2018)) introduced a categorization into Digital 

Model, Digital Shadow and the Digital Twin. According to their work, these three terms are often used 

synonymously in DT literature. However, the given definitions differ in the level of data integration between 

the physical and digital entity (Kritzinger et al. (2018)) and are sometimes even contradictory Stecken et al. 

(2019). Definitions for the DT have been stated above.  

(Kritzinger et al. (2018)) thus defined the Digital Model as follows. 

A Digital Model is a digital representation of an existing or planned physical object that does 
not use any form of automated data exchange between the physical entity and the digital 
entity.  

(Kritzinger et al. 2018) 

 

Digital data of existing physical systems might still be in use for the development of a Digital Model, but all 

data exchange is done manually. According to the definition, a change in state of the physical entity has no 

direct effect on the digital object and vice versa. 
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For clarification on the different types of digital models, please refer to Section 2.2.1. 

Based on the definition of a Digital Model, if there further exists an automated one-way data 
flow between the state of an existing physical entity and a digital entity, one might refer to 
such a combination as Digital Shadow.  

(Kritzinger et al. 2018) 

 

Thus, according to the definition, a change in state of the physical entity leads to a change of state in the 

digital entity, but not vice versa. This definition is already widely recognized in literature Julian Franzen et 

al. (2019); Santolamazza et al. (2020); Sepasgozar (2021). The Digital Shadow is also often seen as part or 

core component of a DT Ladj et al. (2021). 

2.1.3 Cyber-Physical System 

Similar to the very basic concept of a DT, defined by three different elements(the physical space, the virtual 

space, and the connection between them to exchange data and information) (Grieves (2014)) a comparable 

concept from the industrial domain is known as Cyber-Physical System (CPS), or sometimes more 

specifically as the Cyber-Physical Production System (CPPS). 

(Monostori (2014)) describe CPS as 

autonomous and cooperative elements and sub-systems across all levels of production, able 
to communicate with each other in situation-dependent ways. 

(Monostori (2014)) 

 

The goal of CPS is to have several elements that can acquire and process data, allowing them to self-control 

certain tasks and interact with humans Steindl et al. (2020) and achieve collaborative and real-time 

interaction between the real and digital worlds through feedback loops and the interaction between 

computational and physical processes Cheng et al. (2016). Hence, a certain kind of virtual representation of 

the production system must be available, thus enabling a characterization of a CPS by a physical entity and 

its cyber counterpart, which is also a prerequisite for the DT (Negri et al. (2017)). Therefore, some 

researchers see a DT as only the digital model inside a CPS Lu et al. (2020),this conversely implies that a DT 

is the prerequisite for a CPS (Jones et al. (2020)); (Steindl et al. (2020)). This aligns with Negri et al. (2020), 

who found that papers in the manufacturing field mention the use of the DT to simulate a CPS. Zheng et al. 

(2019) state that the DT in the broad sense belongs to the CPS but has a higher fidelity degree focusing 

more on data and models with ultra-high-fidelity simulations.  

2.1.4 Cyber-Physical Production System 

Cyber-Physical Production Systems (CPPS) also often stand as a synonym for the future factory 

environment, often also called Smart Factory Weyer et al. (2016). In such a smart factory or CPPS, all field 

devices, tool machines, production modules and product will turn into CPS allowing for autonomous 

information exchange and triggering of actions within an CPPS Lee et al. (2015).  
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One proposed definition is: 

The application of the generic concept of Cyber-Physical Systems to industrial production 
systems is known as Cyber-Physical Production Systems.  

(Perez et al. 2015)Perez et al. (2015) 

(Rojas & Rauch (2019)) put it even more plainly and stated: 

When Cyber-Physical Systems are connected to perform smart manufacturing, we have a 
Cyber-Physical Production System.  

(Rojas & Rauch (2019)) 

2.1.5 Industry 4.0 

The term Industry 4.0 (I4.0) was first introduced in an article published by the German government in 

November 2011, referring to the fourth industrial revolution Zhou et al. (2015). However, there is no widely 

accepted definition for the term Industry 4.0 (Stecken et al. (2019)). According to (GTAI (2014)), 

Industry 4.0 represents the technological evolution from embedded systems to cyber-physical 
systems. In Industry 4.0, embedded systems, semantic machine-to-machine communication, 
Internet-of-Things and Cyber-Physical System technologies are integrating the virtual space 
with the physical world. In addition, a new generation of industrial systems, such as smart 
factories, is emerging to deal with the complexity of production in cyber-physical 
environment. 

(GTAI (2014)) 

 

I4.0 can also be characterized by Manzei et al. (2016): 

 The dynamic connection of internal and external data sources and 

 the automated analysis and processing of thereby generated information 

 for demand-driven preparation or control of processes, 

 located at different points in the value chain of an industrial company, 

 to make them faster, cheaper, customer oriented, more efficient, resource-saving and flexible. 

2.1.6 Energy 4.0 

The declared goal of Energy 4.0 (E4.0) is to exploit efficiency- and flexibilization-potentials in processes to 

optimize the conversion, distribution and consumption of energy Rehtanz (2015). 

In analogy to Industry 4.0, Energy 4.0 stands for the transition to energy systems of the fourth 
generation, sometimes also referred to as smart energy systems. These energy systems will 
be based on renewable, volatile energy carriers, a high amount of flexibilization, and 
interconnection between different industry sectors and feature extensive application of 
digital technologies. 

(Lund et al. (2017)); (Robison et al. (2015)) 
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2.1.7 Key Performance Indicators 

In general, the interaction of DTs and key performance indicators (KPIs) can be understood in two ways: 

 The DT receives KPIs regarding the performance of the process as input information from physical 

entity and bases operation on these KPIs (can be e.g., aggregated / calculated data from processes). 

 Furthermore, KPIs can also be defined for the DT itself.  

In the following, interesting process-related KPIs, regarding the performance and sustainability (aligned to 

the overall topic of this IEA IETS Task XVIII) of an energy supply and conversion system are listed: 

 Levelized Cost of Heat (LCOH) / Levelized Cost of Energy (LCOE): estimating the average cost of 

electric power generation over the lifetime of power plants 

 Payback period: indicating how much time is needed to recover the initial investment. It can be 

calculated by dividing the initial investment in € by the yearly savings in €/a 

 Long-term economic evaluation: consideration of the yearly costs over a long period of time and 

the calculation of the accumulated costs. A good approach is to calculate the net present value 

(NPV)  

 CO2 emissions: environmental indicator, the CO2 emissions associated with the fuels are estimated 

by using pre-calculated emission factors on the primary energy consumption. 

 Primary and final energy consumption: The primary energy consumption (PE) is directly associated 

with the cost of operation of heat and power, and with the CO2 emissions, depending on the type 

of fuel that it is used. The final energy consumption, as a performance indicator, helps to analyze 

the impact on the consumer side 

 Share of renewables: represents the share of energy produced by renewable energy sources out 

of the total energy produced. Notice that Internal use of waste heat is in general not to be 

considered since it has already been produced from one of the main energy production units (or 

grid) 

 Energy flexibility and stability: extent to which a power system can modify energy (electricity and 

heat) production or consumption in response to variability, expected or otherwise 

 Autarky degree: indicates the degree of self-sufficiency. We calculate it based on the energy 

produced by the different energy production units, dividing the self-production by the total energy 

produced/imported 

 Surface needed: amount of area needed for the technical solution is indeed a relevant KPI, 

especially for solar technologies 

 

2.1.8 Optimization 

In general, “optimization” is often understood as improvement of a system, a process or a unit without a 

systematic consideration to what extent of the best possible solution (for a specific optimization criterion) 

this improvement was done. Within this work and further activities in the project “optimization” is used for 

systematic approaches to determine the best solution for a previously defined criterion (objective function) 

under given frame conditions or without violating defined limitations (constraints). 

Here, optimization is the selection of “the best” solution. In terms of industrial systems, optimization can 

be understood as the adjustment of a process or system to optimize some specified set of parameters (KPIs) 

without violating any constraints including the product quality. In this context, often applied goals are: 
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 maximizing energy, resource efficiency and the share of renewable energy or 

 minimizing CO2 emissions, cost (CAPEX and OPEX), losses, etc. 

Optimization is generally understood to be the search for the best possible solution in the 
sense of a certain goal in a decision-making area, whereby frame conditions can be taken into 
account. 

(Floudas & Pardalos (2008)) 

 

Further insights in different application fields of optimization are given in sections 2.2.8 and 2.3.5 

2.1.9 Digitization 

The term digitization generally refers to the conversion of analogue data into a digital form. Within this 

scope, “digitization” is considered as a primarily technical term, contrary to “digitalization”, which is often 

used with a different meaning (see 2.1.10). 

Digitization is the process of changing data into a digital form that can be easily read and 
processed by a computer.  

(Oxford Online Dictionary (2021)) 

 

2.1.10 Digitalization 

Digitalization is sometimes used synonymously with the term Digitization (see 2.1.9), i.e., the practice of 

converting information into a digital form that can be processed by a computer. However, from a socio-

economic perspective, the aim of digitalization is not only to convert analogue to digital signals but also to 

create value using digital content Kemmerich & Storch (2016). The following definitions have been found: 

In the context of industrialization, digitalization describes the transition to new, disruptive 
business cases driven by evolving Information and Communication Technologies, the 
automation and flexibilization of business operation and the interconnection of information, 
things and operatives. 

 (Hanschke (2018)) 

 

Digitalization, enabled by Industry 4.0 technologies allow a remotely sense, real-time 
monitoring and control of devices and cyber physical production elements across network 
infrastructures. 

(Negri et al. (2017)) 

 

To emphasize this fundamental change, the term “digital transformation” is also often used, especially if 

the change is happening on multiple levels, including the process level, organization level, business domain 

level and society level Parviainen et al. (2017). 
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2.1.11 Services 

In Industry 4.0, services in general and especially services related to physical products play an increasingly 

important role Tao & Qi (2019).  

To solve the problem of interoperability between a digital twin and different users / 
stakeholders and to enable innovative business models, the functions of the digital twin can 
be encapsulated into standardized services with user-friendly interfaces for easy and on-
demand usage. 

(Tao et al. (2019)) 

 

Services are a main part of a DT and one of five dimensions of DT modelling in the 5D-concept proposed by 

(Tao et al. (2019)). A DT without services just copies a real physical entity without further evaluation. 

Services can be grouped into (Negri et al. (2017)); (Jones et al. (2020)); Padovano et al. (2018): 

(1) functional services,  

(2) enterprise services,  

(3) application services, which are confined to specific application content and  

(4) infrastructure services  

Due to the important role of services inside a DT, ontology-based smart service architectures for DT are 

recommended, often based on RAMI4.02 Adolphs et al. (2015), acting as foundation for data integration 

and data exchange between various applications as part of the DT functionality Koschnick (2020); Steindl et 

al. (2019); (Steindl et al. (2020)). 

  

                                                             

2 RAMI 4.0 defines a service-oriented architecture. Application components provide services to other 

components via a communication protocol over a network. The basic principles are independent of 

providers, products and technologies. The aim is to break down complex processes into easily 

understandable packages, including data protection and IT security. 
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2.2 Basic Technologies and Methods (Requirements) 

2.2.1 Modeling approaches 

The following definition has been found in a whitepaper within the project “Industrial internet consortium” 

by Malakuti et al.  (2020). 

A digital twin should contain computational or analytic models that are required to describe, 
understand and predict the twins’ operational states and behaviors, and models that are used 
to prescribe actions based on business logic and objectives about the corresponding real-
world object. These models may include models based on physics or chemistry, engineering 
or simulation models, data models based on statistics, machine learning and Artificial 
Intelligence. It may also include 3-D models and augmented reality models for aiding human 
understanding of the operational states or behaviors of real-world objects. 

(Malakuti et al. (2020)) 

Here, we use modeling in the sense of the task of creating a virtual representation of some real system (or 

a process, a component, an entity, etc...). The model can then be used to compute certain properties or 

make predictions of the behavior. There is a vast number of different modeling approaches. Generally 

speaking, the best suited modeling approach for a given modeling task is determined by the available 

information and the purpose of the model. Further relevant characteristics of models are: 

 Performance 

 Real-time capability 

 Level of detail 

 Resolution of the entity in time, process level etc. 

Therefore, the following definition can be derived. 

In the context of digital twins modeling is understood as the task of creating a virtual 
representation of some real system in order to compute certain properties or make 
predictions of the behavior. Different modeling approaches can be applied. Relevant 
characteristics of models are performance, real-time capability, level of detail, resolution of 
the entity in time or process level etc. 

 

The following classifications and distinctions of models can be made: 

Dynamic vs. (quasi-)stationary models 

Dynamic models can reproduce the time-dependent behavior of a system, including the dynamic transition 

between two (quasi)-stationary states. (Quasi-)stationary models, on the other hand, are only valid if the 

system is in a stable state. This is an acceptable simplification, if the system is operated in a stable state 

most of the time and state-transitions are not of interest. 

White Box, Grey Box & Black Box modeling 

Modeling approaches can be distinguished based on the type of information that is required for the 

modeling. On the one extreme, models can be built based exclusively on analytical knowledge about the 

system - i.e., equations that describe the physics of the system. This is usually termed as White Box or 

physical modeling, because we know exactly what is going on inside the model. On the other extreme, 
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models can be derived from empirical data with virtually no knowledge about the system. These approaches 

are called data-driven or Black Box modeling, because the model output is computed by some algorithm, 

but the inner working of the model remains obscure. 

Most modeling approaches cannot be classified as either Black Box or White Box. Rather they use a 

combination of physical knowledge and empirical data. In that sense, it is useful to think of this classification 

as a continuum with White Box models on one end and Black Box models on the other. In-between, there 

are various shades of Grey Box modeling. 

Adaptive vs. static models 

Traditionally, modeling was a laborious task done by experts. Once a model was set up, it could not be 

adapted without a big effort. With the advent of data-driven modeling, this is no longer the case. With the 

right strategies, models can be adapted automatically based on real-time data. This is especially valuable 

for systems that change over time (due to wear, degradation, etc....). With adaptable models, accurate 

predictions of the system behavior can be computed, where static models would yield inaccurate results. 

Stochastic vs. deterministic modeling 

Stochastic modeling defers from deterministic modeling in that it features at least one random variable. 

The uncertain variables are usually modeled by means of statistics and probabilistic constraints, through 

probability density functions Li & Dong (2019). Typical stochastic modeling approaches include scenario 

representation, stochastic modeling and chance constrained stochastic modeling Alqurashi et al. (2016). 

Causal vs. acausal models 

In causal modeling, the modeled system is, directly or indirectly, described by a system of ordinary 

differential equations (ODE) in explicit form Schweiger et al. (2020). Simply speaking, causal models feature 

direct equations, where it is clear how the unknown quantities are derived from the known ones, hence 

“causal”. However, the development of such models becomes difficult especially for large scale systems 

François E. Cellier, Hilding Elmqvist, Martin Otter (1996). This led to the development of the acausal 

approach where models essentially are expressed in terms of undirected equations (Schweiger et al. 

(2020)). 

 

2.2.2 Big Data 

In general, the term "big data" became established when huge amounts of digital data sources and storage 

abilities became possible. This field deals with data processing faced with increasing and rapidly growing 

data availability. Three characteristic traits of big data, proposed by Doug Laney in 2001 are: volume 

(enormous data quantity), velocity (created in real-time) and variety (being structure, semi-structured and 

unstructured) (Hofmann et al. (2020)). 

Big data is high-volume, high-velocity and high-variety information assets that demand cost-
effective, innovative forms of information processing for enhanced insight and decision 
making.  

(Gartner (2021)) 
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2.2.3 Information and Communication Technology 

Information and Communication Technology (ICT) is a very broad field extending the information 

technology (IT) domain. Due to powerful technological developments in this field, it is considered as a key 

driver for digitalization and encompasses essential enablers for DTs. 

The term “Information and Communication Technology” is generally accepted to mean all 
devices, networking components, applications and systems that combined allow people and 
organizations (i.e., businesses, nonprofit agencies, governments, and criminal enterprises) to 
interact in the digital world.  

(Pratt (2021)) 

 

2.2.4 Sensors and data acquisition 

Sensors are technical components measuring certain physical or chemical properties qualitatively or 

quantitatively. These measured variables are recorded and converted into further processable electrical 

signals. In general, the following classifications for sensors are used (Hofmann et al. (2020)):  

 active & passive sensors (they either generate an electrical signal based on the measuring principle 

or require auxiliary energy supplied from outside to generate an electrical signal) 

 based on the measuring principle (e.g. mechanical, resistive, piezoelectric, capacitive, optical, 

acoustic, magnetic sensors) Hoffmann (2015) 

 Smart sensors represent a new classification category. They process data in an intelligent way, 

provide additional information about their environment or about themselves and can 

communicate within a sensor system (e.g. to improve measurement accuracy) Wollert (2015).  

Especially this last category gains importance due to a new development in computing and communication/ 

IT, the Internet of Things (IoT), see section 2.2.5.  

A device that responds to a physical stimulus (such as heat, light, sound, pressure, magnetism, 
or a particular motion) and transmits a resulting impulse (as for measurement or operating a 
control). 

(Merriam Webster (2021)) 

 

2.2.5 Internet of Things (IoT) 

In general, the Internet of Thing (IoT) is understood as connection between physical devices on the basis of 

internet technology. Mentioning of IoT started around 2005, e.g. in a report by the International 

Telecomunications Union (ITU): 

Machine-to-machine communications and person-to-computer communications will be 
extended to things, from everyday household objects to sensors monitoring the movement 
of the Golden Gate Bridge or detecting earth tremors. Everything from tires to toothbrushes 
will fall within communications range, heralding the dawn of a new era, one in which today’s 
internet (of data and people) gives way to tomorrow’s Internet of Things. 

International Telecommunications Union (2005) 
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In subtask 1 of this IEA IETS Task XVIII the following definition was presented in the whitepaper: 

The IoT is a concept, in which basically any device - mechanical or digital - is connected in a 
network with the ability to transfer data without the requirement of human interaction. 

(Hofmann et al. (2020)) 

 

2.2.6 Ontology/ Knowledge representation 

Knowledge presentation and reasoning, sometimes also referred to as knowledge engineering, is a 

promising field of AI and IT. This discipline attempts to integrate knowledge into computer systems to 

develop solutions for complex problems. 

Ontologies are knowledge representations of a domain that contain explicit descriptions of 
concepts, properties, attributes or features of those concepts and logical restrictions on the 
classes and properties. They are explicit conceptualization of objects, concepts, and their 
relations that form a knowledge base as well as the basis of what “exists” in a “universe of 
discourse” for AI systems. 

(Hofmann et al. (2020)) 

Data analysis methods in combination with domain knowledge from ontologies can be used to analyze and 

semantically enrich the time series data, i.e. to add certain metrics to the data and to automatically identify 

and label inconsistencies (Steindl et al. (2019)). Therefore, ontologies are considered a key enabler for 

digital twins. 

2.2.7 Simulation 

Simulation is a key aspect for digital twins and energy systems modelling. Within the meaning of computer 

science, we consider its definition as follows. 

Simulations require the use of models, which represent the key characteristics and behavior of the given 

process of system, and which are executed by computers to produce a simulation.  

2.2.8 Optimization method 

Depending on the set optima criteria, a process or system can be optimized. In many cases the step of the 

optimization is a mathematical optimization (mathematical programming) and addresses the selection of 

the best element (Elements), with regard to set criterion, from a set of available alternatives INFORMS 

(2014).  

Optimization problems of sorts arise in all quantitative disciplines from computer science and engineering 

to operations research and economics, and the development of solution methods has been of interest in 

mathematics for centuries Du et al. (2008).  

Applying digitalization, an industrial system is modelled and simulated, consisting of mathematical 

functions and the optimization problem is maximizing or minimizing one or more of these functions. Again, 

Simulation is the prediction of a real-world process or system with given parameters over 
time. 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Mathematics
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the optimization can be done for decarbonization of a system, exergetic optimization, economic 

optimization, etc. 

2.2.9 Virtual reality (VR) 

In general, virtual reality can be understood as a simulated experience in the fields of entertainment, 

education and business, including e.g. virtual meetings. Augmented reality in comparison is a “more 

extended” aspect of the experience. A general definition of virtual reality is the following one:  

Virtual reality is a technology where the user can immerse into a virtual environment and can 
roam and interact with it. 

(Zhou & Deng (2009)) 

 

2.2.10 Augmented reality (AR)  

Augmented reality is a technology which aims to blend a virtual and the real world. E.g., virtual images are 

added to the real environment or elements of the real environment are removed. Jetter et al.  

(2018)summarize that augmented reality does not necessarily create a new artificial reality but overlays 

additional virtual information on real objects or surroundings. This technology can be extended to all senses 

Azuma (1997).  (Azuma ) (1997) identified potential for application in many fields such as medical treatment, 

entertainment, or industry and divided augmented reality in three important components: virtual reality 

fusion, real-time interaction, and 3D registration. An early definition for augmented reality is  

A system that supplements the real world with virtual (computer-generated) objects that 
appear to coexist in the same space as the real world. 

(Azuma et al. (2001)) 

 

Further definitions on the topic can be found e.g. by Billinghurst et al.  (2015). However, lately augmented 

reality has been mentioned as visualization tool for DTs to improve different aspects of manufacturing. 

Thus, the range of applications and the relevance of augmented reality for DTs is expected to grow in the 

future. 
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2.3 Applications and value creation based on services by Digital Twins 

On a DT platform multiple services can interact with each other and have access to various interfaces and 

data sources. A benefit is that the data is managed in one central place. Data pre-processing has only to be 

done once and this also ensures that all services have the same information. Certain functionalities, like a 

specific simulation model, can be encapsulated as a service and then be used by various other services.  

2.3.1 Condition Monitoring 

Similar to the definitions in Álvarez Tejedor et al. (2011) and Chaulya & Prasad (2016), Condition Monitoring 

(CM) can be described as  

The assessment of the current condition of a physical entity by employing measurement data. 

By preprocessing the raw data (normalization, PCA, Feature Extraction, sensor fusion, soft sensors, …) 

valuable information about the current state of the physical entity is gathered and further utilized in several 

CM-related Services like Fault Detection and Classification or Predictive Maintenance. 

Fault Detection and Classification 

The goal of fault detection and classification in the context of a DT is to automatically detect and classify 

faulty conditions of the physical entity based on the information provided from condition monitoring in 

order to enhance the safety and reliability of industrial process operations Shokry et al. (2016). For complex 

classification tasks, machine learning methods (e.g. Support Vector Machines, Decision Tree, k-Nearest 

Neighbor, Artificial Neural Networks, …) often come into use. 

Soft sensors 

Soft sensors, sometimes also technically denoted as inferential estimators, represent an attractive 

approach for estimating primary process variables, especially when conventional hardware sensors are not 

available, too expensive or when technical limitations hamper their on-line use Zamprogna et al. (2005). 

They typically use models and measured secondary process variables to provide additional information on 

the state of the process. 

2.3.2 Types of Maintenance 

Predictive Maintenance 

As stated by (Sinha et al. (2010)), the main objective of predictive maintenance is to employ the information 

gathered from condition monitoring to predict the point of time at which maintenance activities are the 

most cost-efficient and before the physical entities optimal performance deteriorates.  

Preventive Maintenance 

In contrast to predictive maintenance, preventive maintenance is performed periodically. It is meant to 

prevent the physical entity from sudden failure and/or deterioration in efficiency by inspecting, servicing 

and replacing critical parts of the physical entity on a predetermined frequency. Similar definitions can be 

found in Mokhatab et al. (2019), (Álvarez Tejedor et al. (2011)) and Papavinasam (2014). 

Reactive Maintenance 

Reactive maintenance, also known as breakdown maintenance, is the type of maintenance which is 

performed at a point of time at which a critical failure of a significant deterioration in efficiency already 
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occurred in a certain part of the physical entity. Due to higher downtime and maintenance cost compared 

to predictive and preventive maintenance, reactive maintenance only plays a minor role in the context of 

DTs. 

2.3.3 Predictive control 

Basic process control systems, e.g. PID-based control schemes, are integrated in the process components 

to ensure basic requirements for operation and automation. Advanced process approaches are usually 

integrated in higher layers, often later than basic PIC controllers. Their aim is to consider performance or 

improvement and optimization potentials in the process. Advanced process control systems combine 

process knowledge with control techniques in an intelligent way. They enable considering coupled, multi-

variable system dynamics. Lately, developments in this field focused on model-based control, e.g. adaptive 

or model predictive control. Examples are: fuzzy control, robust control, neural network-based control, 

optimal control, etc. (Hofmann et al. (2020)) 

 

Typically, advanced control methods involve more complex calculations than the 
conventional PID controller algorithm. Advanced control has the following features: 

 Process modeling and parameter identification (off-line or on-line)  

 Prediction of process behavior using process model 

 Evaluation of performance criterion; subject to process constraints  

 Optimization of performance criterion  

 Matrix calculations (multi-variable control)  

 Feedback control 

(Airikka (2004)) 

 

2.3.4 Forecasting 

Forecasting is a common statistical task in business and is about predicting the future as 
accurately as possible. 

Therefore, all available information including historical data and knowledge of any future events that might 

impact the forecasts are needed to achieve a precise forecast. There are different things which can be 

forecasted. Some can be easier forecasted than others. Several factors affect the predictability of an event 

or a quantity including: 

 How well do we understand the factors that contribute to it 

 How much data is available  

 Whether the forecasts can affect the thing we are trying to forecast 

Forecasts can be classified in the three different groups short-term, medium-term, and long-term forecasts. 

This classification describes how long the prediction horizon is. Another way to classify forecasts is to 

separate them qualitative and quantitative forecasts. For the DT quantitative forecasts are in focus. In the 

field of the DT various objects are interesting for a forecast. Some of them are energy demand, production 

capacity, redispatch potentials, downtimes, remaining useful lifetime etc.   
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2.3.5 Decision Making Support 

Decision support systems for industrial systems gain attractiveness due to raising complexity, competition 

and challenging requirements from legal and regulatory frameworks.  

A decision support system is a computer-based application that collects, organizes, and 
analyzes business data to facilitate quality business decision-making for management, 
operations and planning. A well-designed decision support system aids decision makers in 
compiling a variety of data from many sources: raw data, documents, personal knowledge 
from employees, management, executives and business models. Decision support system 
analysis helps companies to identify and solve problems and make decisions.  

(Techopedia (2021)) 

In the context of industrial applications, often optimization methods are applied to support decision making 

regarding both, strategic decisions such as investments and pricing decisions and operational decisions. The 

following two optimization approaches are partly already used in real tools and applications. 

 Design Optimization: Optimization of the technical specifications of an entity (e.g. capacities of 

machines, plants, ...). 

 Operational Optimization: Optimization of the usage of given units (time schedule and operation 

mode), optimal scheduling of production, storage management, ... 

DTs have the possibility to offer the service of decision support when applied in industrial environment. 

2.3.6 Flexibility 

In general, “flexibility” is used to characterize different properties for industrial systems. A rather general 

approach is to define flexibility as opportunity to achieve a specific outcome in different ways or the 

sensitivity of manufacturing systems to change Chryssolouris (1996). This is summarized in the following 

definitions. A very short, but rather comprehensive definition was given by (Golden & Powell ) (2000). 

Flexibility is the capacity to adapt. 

(Golden & Powell (2000)) 

A more extensive definition can be found in Wikipedia. 

 

(Chryssolouris ) (1996) distinguishes between the following types of flexibility: 

 Machine flexibility – ability to make a change required for specific production processes 

 Process flexibility – ability to produce in different ways with different materials 

 Routing flexibility – ability to handle breakdowns and continue operation 

 Volume flexibility – ability for economic operation for different volumes 

In the context of engineering design one can define flexibility as the ability of a system to respond 

to potential internal or external changes affecting its value delivery, in a timely and cost-effective 

manner. Thus, flexibility for an engineering system is the ease with which the system can 

respond to uncertainty in a manner to sustain or increase its value delivery. 

 Wikipedia (2020) 



 

 

13.06.2022 DIGITAL TWINS - Terms and Definitions Page 31 of 37 

Task XVIII  Subtask 2 – Methods and Applications of Digital Twins 

 Expansion flexibility – ability to expand system easily or in modular way 

 Operation flexibility – ability to interchange ordering of operations for each part type 

 Production flexibility – universe of part types a system can produce 

In the following examples different meanings for the term flexibility are given. A more detailed overview of 

different types of flexibility and their rather low correlation is analyzed for pulp and paper factories by 

Upton  (1995). 

Flexibility in production 

Regarding the product-related view the following understanding of flexibility could be detected: 

 Flexibility of product type (often considered as lot size 1), e.g. 3-D printers but also large production 

units which can easily change between different types of products (e.g. same paper machines for 

specific papers) 

 Flexibility in the actual production amount (often mentioned as examples for flexible processes in 

“scheduling” or demand side management analysis) 

Flexibility of energy supply 

Here, two main contributions how flexible unit operation can be distinguished: 

 Flexibility regarding how energy is provided 

o Using more than one energy-carrier in one energy supply, conversion of storage unit (e.g. 

hybrid-fired units) 

o Fulfilling one demand level with more than one energy supply unit and thus more than 

one energy carrier (e.g. heat-only-boilers and power-to-heat units to supply steam) 

 Flexibility regarding how fast the energy supply schedule can be changed in order to react to 

changing circumstances (prices, production changes, failures, etc.) 

o This can be realized by fast ramping and fast starting energy supply units (often 

understood as “flexible units”) 

o Another option is to operate storage units or combinations of storage and production units 

in such a way (decouple supply and consumption time) that flexibility can be provided by 

them  

By combining the flexibilities mentioned above another aspect comes along: the importance of when 

energy is provided (“be flexible in the planning”). Not only flexible units but also the respective planning 

tools can help to provide flexibility. Here, above-described concepts of operational optimization of energy 

supply systems can help to take advantage of the flexible components in industrial production and energy 

supply systems. 

Another important concept often mentioned in related discussions is “Demand Side Management”. The 

target of Demand Side Management is a flexible load control to enhance energy efficiency and cost 

optimization. Examples for demand side management can be  

 Peak shaving 

 Valley filling 

 Load shifting 
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