
Komposition polyphoner Musik
mit Grammatiken

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Lukas Eibensteiner, BSc
Matrikelnummer 01225627

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Mag. Martin Ilčík

Wien, 12. April 2021
Lukas Eibensteiner Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Polyphonic Music Composition
with Grammars

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Lukas Eibensteiner, BSc
Registration Number 01225627

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Mag. Martin Ilčík

Vienna, 12th April, 2021
Lukas Eibensteiner Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Lukas Eibensteiner, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. April 2021
Lukas Eibensteiner

v

Danksagung

Mein tiefster Dank gilt Martin, der bereits mehrere Jahre mit mir zusammenarbeitet und
seine Zeit, seine Erfahrung und sein Wissen mit mir teilt, und meinen Eltern, Gerda und
Friedrich, die mich immer bedingungslos unterstützen.

vii

Acknowledgements

I thank Martin, who worked with me for years and shared his time, his experience, and
his knowledge with me, and my parents, Gerda and Friedrich, for their unconditional
support.

ix

Kurzfassung

In dieser Arbeit präsentieren wir einen theoretischen Ansatz für automatische Musik-
komposition mit formalen Grammatiken und einem Fokus auf polyphonen Strukturen.
Eine polyphone Struktur beschreibt in diesem Zusammenhang eine Menge musikalischer
Entitäten (Noten, Akkorde, Takte, usw.), die nicht ausschließlich sequentiell in der Zeit
angeordnet sind. Nachdem das Ergebnis einer Grammatik üblicherweise als Sequenz
dargestellt wird, ist die Erzeugung sequentieller Strukturen wie Melodien, Harmoniefolgen
und rhythmischer Muster naheliegend und wurde bereits in früheren Arbeiten erforscht.
Im Gegensatz dazu assoziieren wir jede musikalische Entität mit einer unabhängigen
Zeitspanne, was die Darstellung von sowohl sequentiellen als auch parallelen Anordnungen
ermöglicht. Mit überlappenden Entitäten können wir Akkorde, Schlagzeugmuster, und
unabhängige Stimmen modellieren—Polyphonie im kleinen und großen Maßstab. Neben
einer grundlegenden Diskussion funktionaler Techniken für polyphone Komposition mit
nicht-deterministischen, kontextfreien Grammatiken präsentieren wir die Implementie-
rung und praktische Anwendung eines automatisierten Kompositionssystems, das auf
diesen Prinzipien basiert.

xi

Abstract

We present a theoretical framework for automatic music composition with formal gram-
mars and a focus on polyphonic structures. In the context of this thesis, a polyphonic
structure is any arrangement of musical entities (notes, chords, measures, etc.) that is
not purely sequential in the time dimension. Given that the natural output of a gram-
mar is a sequence, the generation of sequential structures, such as melodies, harmonic
progressions, and rhythmic patterns, follows intuitively and has already been explored in
prior works. By contrast, we associate each musical entity with an independent temporal
scope, allowing the representation of both sequential and parallel arrangements. With
overlapping entities we can model chords, drum patterns, and parallel voices—polyphony
on small and large scales. Beyond a foundational discussion of functional techniques
for polyphonic composition with non-deterministic context-free grammars, we demon-
strate the implementation and practical application of an automated composition system
developed on these principles.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 5
2.1 Algorithmic composition . 7
2.2 Grammar-based approaches . 14
2.3 Comparison with our approach . 19

3 A Functional Framework for Context-Free Grammars 21
3.1 Basics . 22
3.2 Parameters . 26
3.3 Attributes . 29
3.4 Expressions . 36
3.5 Variation . 46
3.6 Conclusion . 51

4 Probabilistic Temporal-Split Grammars for Music Composition 53
4.1 Time . 56
4.2 Pitch . 68
4.3 Example . 73
4.4 Conclusion . 85

5 Implementation 87
5.1 Language . 87
5.2 Interface . 91
5.3 Audio . 92

6 Evaluation 93
6.1 Results . 95

xv

7 Conclusion 97
7.1 Limitations and Future Work . 97

A Source Code 99
A.1 Grammar Definition . 99
A.2 Grammar Definition (TypeScript) . 102
A.3 GUI Definition (TypeScript) . 107

List of Figures 111

List of Tables 115

Bibliography 117

CHAPTER 1
Introduction

Music is a phenomenon that may1 involve sound. Sometimes these sounds are arranged
according to rhythmic and harmonic principles, and sometimes their arrangement is
deliberately chaotic. Music can be meaningful and invoke deep emotion. It can also be a
commodity and serve as a comforting backdrop to our everyday lives. Whatever words
we use to describe music, we will hardly do it justice. When we talk about music we
remove its character; maybe especially so when we talk about it as theorists do, in terms
of notes, bars, scales, and meters. When we talk about music we have to do so in an
abstract sense because we cannot talk about it in any other way. This is not a strange or
problematic thing to do, as long as we accept that the concept of language is not itself
inherently strange and problematic.

In this thesis the concepts of language and music are strongly interweaved since we will
use a formal model of language to automate the composition process. The automation
of musical composition certainly has interesting implications. We can already see its
success in computer games, which, due to the nature of the medium, cannot have a static
soundtrack. Themes and sounds are triggered by user actions and are combined into
something that has never been heard before. Similar systems could be built for video
platforms, where we could offer generative soundtracks that adapt to visuals, dialog, cuts,
and camera movements. We might someday have procedural radio, that can be configured
to produce a lifetime of music in a personalized style, that reacts to the listener’s mood,
and from time to time plays variations of their favorite melodies. Procedural music
can also be integrated into concerts, where the artist operates as the programmer and
conductor for an orchestra of virtual musicians. These things already exist to different
degrees, and countless musicians and composers rely on automation in their everyday
work. Generative grammars—the subject of a large body of research, including this
thesis—are one of the tools in the algorithmic and computer-aided composition toolbox.

1Consider Wikipedia’s list of silent musical compositions.

1

1. Introduction

A core function of language is that it allows us to put the world into simple terms, strip
away the concrete and discover abstract relationships between its entities. Words are
placeholders for real things, for imaginary things, and sometimes for other words. They
signify something that has been replaced and they must be replaced again so we can
understand their meaning. The theory of formal grammars is a theory about systems
of symbolic replacement. It is an abstraction of language, the very tool that we use to
build abstractions in the first place. Here we no longer talk about the meaning of a word
in relation to something real or imaginary, but the relationship of words with each other.
Meaning only exists in the rules of the system—arrows from one arrangement of symbols
to another. What this theory reveals are the patterns, the repetitions, and the variations.
Like a story, music contains recurring themes, characters, and motifs. Unlike a story it
does not necessarily relate to human experience, or anything external at all. It is poetry
without semantics, an art of syntax.

When we use grammars to syntactically analyze music, we break it into its smallest
components, then group them into notes, bars, phrases, themes, or whatever higher-level
patterns we find. The premise of using grammars generatively is that we can reverse
this process of reduction, beginning at an abstract representation and replacing the
abstractions until we get something concrete. For music this could mean starting with a
particular style or song structure, successively adding themes, phrases, bars, notes, and
finally transforming these back into an audible signal. In order to create something that
corresponds to our abstraction, we have to make a series of informed decisions. Some of
these decisions will be guided by the model, for example the rules of the musical genre.
Other decisions will depend on subjective taste. A composer is aware of these options,
yet is forced to make a decision once they write their score. A system, such as the one
developed in this thesis, uses a special notation that allows the composer to state the
options, but defer the decision. The system, aware of all options, can automatically
collapse this superposition according to a set of parameters or random chance. The result
is a new song, unheard even by its composer.

The application of formal grammar theory for music analysis and composition has a
long history. The use of abstractions in musical notation certainly predates the first
formalization of grammar theory by Chomsky [Cho56]. Schenker’s work [Sch35] is an
early example of a generative approach, where music is reduced to the Ursatz, a hidden
structure beyond the concrete musical surface. One of the most popular works in the
field is A Generative Theory of Tonal Music by Lerdahl and Jackendoff [LJ+83], who
model music as four hierarchical aspects governed by strict well-formedness rules and
soft preference rules, but has mostly seen application for music analysis. Applications of
grammars for particular music generation tasks include works on melodies [LS70, LG73],
harmonic progressions [Roh07, Ste96], and tabla syntax [BK92a]. More general solutions
for music generation with grammars include the generative grammar definition language
by Holtzman [Hol80], a work by McCormack [McC96], and more recently a polyphonic
generator by Tanaka and Furukawa [TF12], probabilistic temporal graph grammars
(PTGG) by Quick and Hudak [QH13a], and extensions to PTGGs by Melkonian [Mel19].

2

While these works provide evidence for a connection between language and music and
their corresponding theories, there is an important difference: we usually see language as
something strictly linear. A symbol comes after a symbol, a word comes after a word,
and a sentence comes after a sentence. This might explain why existing research on
grammars for composition focuses on the generation of melodies, harmonic progressions,
rhythms—all purely sequential structures. Yet, within a sequential model of time the
representation of polyphonic aspects such as chords, parallel voices, or exotic sound effects
is difficult. Note that we use the term polyphony to refer to musical structures that are
not exclusively sequential, thus essentially meaning non-monophonic, in contrast to its
more specific use for music that has multiple leading voices. The generation of polyphonic
structures in prior works was either not possible within the grammar, requiring a separate
processing step [QH13b], or at least limited to chords on the terminal level [McC96] or a
fixed number of voices on the global level [TF12].

In this work we build a perspective where polyphony is the norm and tightly integrated
into the generation process. We achieve this by explicitly associating each musical
entity with a time interval, which means they can be divided, stretched, and moved
independently from each other. This representation is already common practice in musical
data formats such as MIDI, but has, to our knowledge, not been explored in conjunction
with generative grammars. Since the placement of entities is truly unrestricted, our
model is able to generate polyphony on any level of the composition. The use of arbitrary
interval arrangements leads to additional complexity for the composer, which we alleviate
with operators for splitting, tiling, trimming, and querying time intervals. The latter
provides access to local context, such as an underlying harmonic progression, and allows
us to synchronize multiple voices. This synchronization is especially important in a
polyphonic model, as the parallel parts can be generated separately, but will still fit
together in the end.

We will proceed in Chapter 2 with an elaboration of existing works and conclude it by
further contrasting the state of the art with our own work. In Chapter 3 we construct a
functional framework on the principles of context-free grammars, and discuss the use
of attributes, rule application strategies, structural, and parametric variation. On top
of this generic framework we define probabilistic temporal-split grammars in Chapter 4,
and demonstrate their practical application for music composition at the end of the
chapter. In Chapter 5 we transform the theory into a working program and present a
browser-based interface and playback environment, followed by a discussion of the results
and further comparison in Chapter 6. Conclusions will be presented in Chapter 7.

3

CHAPTER 2
Related Work

At its core, music composition appears to be a fundamentally free expression of human
creativity. Yet, musicologists can provide us with a variety of formal models for describing
different aspects and styles of music. Works on formalizing tonal music include the
Tonnetz, first proposed by Euler [Eul74], which places pitches on a triangular grid and
relates them by thirds and fifths, as shown in Figure 2.1a. It is part of a category of works
on the definition of musical spaces, which reduce the complexity of navigating between
related musical objects. Tonal Pitch Space by Lerdahl [Ler04] is another example, in
which the author defines metrics for computing the distance between pitches and pitch
sets. And Douthett and Steinbach [DS98] propose the Cube Dance, shown in Figure 2.1b,
which relates the twenty-four major and minor triads and four augmented chords by
semitone alterations.
Instead of describing particular aspects, such as pitch relations or harmonic progres-
sions, some authors have attempted to find more comprehensive models of music.
Schenker [Sch35] modelled music as a foreground level, that contains the actual notes of
a piece, and various hidden levels, which describe the foreground in terms of abstract
representations. Musical set theory, proposed by Hanson [Han60], uses sets of pitch
classes as its basic entity, that can manifest as various concrete musical objects, such
as chords or short motifs. Lerdahl et al. [LJ+83] use four hierarchical layers to analyse
music, and we will later describe their model in more detail. Looking again at the Cube
Dance in Figure 2.1b we can imagine a layman, or a simple probabilistic algorithm, that
traces random paths through the graph and comes up with new harmonic progressions.
The level of abstraction is so high that any move along an edge will result in a valid, or
even pleasant musical idea.
The notion of validity in music is of course highly subjective, but within a piece, or
group of pieces of a particular style, it is usually possible to find higher-level organization.
This organization is sometimes so heavily implied by the context that a subversion
can seem erroneous. Some musicologists have noted parallels between our ability to

5

2. Related Work

(a) Tonnetz visualization. (b) Cube Dance visualization.

Figure 2.1: Figure 2.1a and Figure 2.1b describe the harmonic progression of the
opening measures of Schubert’s Overture to Die Zauberharfe in terms of the Tonnetz
and Cube Dance respectively. The discretization of the sonic experience allows us to
reduce a complex musical arrangement to a sequence of primitive moves along the edges
of a graphical structure. Both graphics were borrowed from Chapter 5 of Audacious
Euphony [Coh12].

recognize a valid sentence in a natural language and recognizing valid compositions, when
compared to random arrangements of their respective elements [Ste84]. Many authors
agree that music can be described—at least to some extent—by linguistic rules, which
allow us to recognize larger structures in some combinations of musical entities, but not
in others [Coo59, Win68, Kei78]. Potential evidence for this connection was found by a
study on neuron activation in the human brain, which shows very similar responses for
the perception of music and language [BMP06].

In this work we use a linguistic approach towards musical modelling that builds on the
theory of formal grammars. Naturally, we are most interested in works that use grammars
for musical analysis and generation. The broader class of methods for algorithmic
composition includes, besides grammars, self-similar systems, evolutionary algorithms,
Markov models, and artificial neural networks. Note that these are only the most popular
methods and those that we will discuss in the first half of this chapter. Due to the
broad spectrum of approaches and general difficulty of assessing objective quality of a
composition, attempts have been made towards a structured evaluation of algorithmic
composition systems. Some authors have defined quantitative metrics [PW01, YL20],
others rely on qualitative models [EBPM13]. For a critical discussion on how a failure
to specify concrete goals has led to methodological problems in automated composition
research see Pearce et al. [PMW02].

6

2.1. Algorithmic composition

Figure 2.2: A visualization of the taxonomy of algorithmic composition approaches, as
provided by Fernández and Vico [FV13]. The section numbers relate to their survey, not
to this thesis.

2.1 Algorithmic composition

We can look at the content of this thesis in the context of algorithmic composition
research, where grammars are just one particular model for the composition process.
Nierhaus [Nie09], as well as the earlier survey by Papadopoulos and Wiggins [PW99],
use a flat classification system, where generative grammars, evolutionary methods, and
machine learning are the common clusters. Fernández and Vico [FV13] propose a detailed
hierarchical taxonomy of methods and provide a very useful visualization, which we show
in Figure 2.2. Herremans et al. [HCC17] use a taxonomy that focuses on the particular
challenges of the composition process, such as providing an emotional narrative, and the
components of a piece, in particular melody, harmony, rhythm, and timbre.

A comprehensive survey on the field of algorithmic composition is beyond the scope of
this thesis and again we point to the authors above. Nevertheless, in this section we want
to present what we see as the largest methodological clusters, summarize their core ideas
and relate them to the grammar approach. We will use a flat classification, beginning
self-similar systems and their relation to formal grammars through Lindenmayer systems
(L-systems). We will then look at methods that treat the creative process as a search
problem, in particular solutions involving evolutionary algorithms since they are often
used in hybrid systems and have been used for discovering new grammars. Finally,
we will present two machine-learning approaches: Markov models—since historically

7

2. Related Work

Figure 2.3: Space filling curves, such as the Hilbert curve (left), can be interpreted
musically. In this case, the horizontal movements are mapped to the time dimension,
and the vertical movements to the pitch dimension, resulting in the contour of a melody
(right). This is one of the earliest uses of L-systems for composition, and it exploits the
self-similar nature of the result, rather than using rules tailored to the music domain.
The above graphic was reproduced from a work by Prusinkiewicz [Pru86b].

there has been a lot of research, and the core idea runs, in a way, orthogonal to that of
grammars—and ultimately artificial neural networks. While the methodological divide
between deep learning and grammars is quite large, we include it due to the circumstance
that many works in that field emerged only recently.

2.1.1 L-systems
L-systems, originally proposed by Lindenmayer [Lin68], are a type of formal grammar
where rules are applied in multiple parallel passes, as opposed to grammars in the Chomsky
hierarchy, where all replacement happens sequentially. While originally developed to
describe cellular plant growth, they have been applied to graphics and music generation.
The classification of L-systems in the context of algorithmic composition varies, with
some authors grouping them with grammar-based approaches [FV13], and others treating
them as self-similar systems [Nie09]. An argument for the latter can be made, that
some authors focus more on creative mappings of the terminal string and even musically
reinterpreting L-system results from other domains, rather than finding domain-specific
rules. While not as relevant as the works in the latter half of this chapter, L-systems
share many features with other grammar-based approaches and are thus still important
in the context of this thesis.

Prusinkiewicz showed how L-systems can be used to generate fractal curves [Pru86a]
by interpreting the generated strings as input for a turtle [AD86] and later applied
this principle to score generation [Pru86b]. Rather than using the path of the turtle
as graphical output, they converted the movement to notes, by interpreting horizontal
movements as note lengths and vertical movements as scale steps. An example is visualized
in Figure 2.3. Other authors also used mapping functions based on space filling curves,
such as Mason and Saffle [MS94] and Nelson [Nel96]. Wilson [Wil09] mapped the branch
points and angles of a generated tree graphic to note events.

8

2.1. Algorithmic composition

Some authors used interpretations that do not rely on graphical mappings. Langston [Lan89]
proposes the use of sentences generated by bracketed L-systems as keys to a lookup
structure of predefined melodic and rhythmic patterns. McCormack [McC96] used pitch
letters as an alphabet to generate melodies and even added a parameter for note volume.
Pestana [Pes12] also uses pitch letters together with a post-processing step for developing
the melodies into polyphonic pieces. Morgan [Mor07] also mapped the L-system output to
sets of fixed patterns and assembled them into a multi-instrument piece. DuBois [DuB03]
and Manousakis [Man06] present various interpretations and examples of L-systems for
music composition. Kaliakatsos-Papakostas et al. [KPFKV12] define finite L-systems,
which allow the generation of rhythms that are constrained to a certain metric structure,
as opposed to most other works, were the music grows freely and without temporal
bounds.

Concepts from music theory have been used to find appropriate mappings and rules.
Worth and Stepney [WS05] compare plant generation and music generation and propose
a Schenkarian inspired [Sch35] rendering approach of background, middleground, and
foreground, where only the latter can be heard and consists of the leaves of the tree
structure. Gogins [Gog06] uses a turtle that moves within chord and voice-leading
spaces. As we have seen, some authors put effort into finding sophisticated mappings of
non-domain-specific terminals, others try to use a vocabulary close to musical structures.
Especially in the latter case, which is similar to our own approach, the creative effort
goes into finding the right rules. The next section includes some examples of evolutionary
optimization for discovering rules for musical L-systems.

2.1.2 Evolutionary Methods

We can see composition as the process of finding aesthetic combinations in the space of
all possible combinations of sounds or notes. To make this huge search-space manageable,
various researchers have used a cycle of evaluation, selection, and reproduction to raise
the average quality of a set of candidate solutions. The domain knowledge is encoded in
the population and introduced by eliminating bad individuals according to the fitness
function. The definition of this fitness function is crucial and often difficult, due to the
subjectivity in the judgement of musical quality. According to Fernández and Vico [FV13]
evolutionary methods are commonly used in hybrid systems. For example, rather than
selecting and recombining the notes of multiple melodies, we can select and recombine
the rules of multiple grammars that generate melodies.

Horner and Goldberg [HG91] use genetic algorithms for transforming one melody into
another, leading to the generation of intermediate variations. McIntyre [McI94] harmonize
melodies according to rules of baroque harmony. A more general approach towards
harmonization was proposed by Phon-Amnuaisuk et al. [PATW99], who introduced
explicit domain knowledge to steer the evolution towards correct harmonization in
arbitrary keys. Evolutionary algorithms have been applied to generating rhythmic
patterns of one bar [Hor94] and four to sixteen bar lengths [TI00]. Another application is

9

2. Related Work

the generation of counterpoint, attempted by Polito et al. [PDBB97] with a multi-agent
genetic programming system, and Acevedo [Ace04], who generated voices for Fugues.

A popular work by Biles et al. [Bil94] describes Genjam, an interactive jazz solo generator.
The system receives metric structure and harmonic progression as input, over which it
generates melodic phrases that are rated by a human mentor. They describe human men-
tors as a fitness bottleneck because their limited bandwidth, subjectivity, and inevitable
fatigue prevents the system from quickly converging towards good solutions. They later
trained an artificial neural network to perform the evaluation [BAL96]. Papadopoulos and
Wiggins attempted to solve the fitness bottleneck with a set of objective criteria [PW98].
Similarly, Towsey et al. [TBWD01] propose the use of global statistics based on a corpus
of existing music as input for the fitness function. They further identify three types of
fitness functions: the human critic, the rule-based critic, and the learning-based critic.
They conclude that the fitness function ideally incorporates multiple sources of domain
knowledge.

Lourenço [LRB09] and Kaliakatsos-Papakostas et al. [KPFKV12] apply evolutionary
programming on a more abstract level and use it to find rules for L-systems, which
they represent as strings of turtle commands and note events respectively. While this
works well enough for simple rules, it may be difficult to define mutation and crossover
operators that adhere to more complex syntactic systems. For example, the grammar
that describes the syntax of our own grammar definition language is at least context-free.
The operators would have to replace and swap nodes in the corresponding syntax trees,
a potentially much larger search space. Nevertheless, solutions for automatic grammar
inference are very interesting since the grammar formalism on its own does not help with
the discovery of the rules of a domain. This is a major disadvantage of grammars, when
compared to evolutionary algorithms, and the machine learning methods that we will
discuss next.

2.1.3 Markov Chains
A Markov chain represents sequential data as a probabilistic transition between states,
and can be used to predict the next state based on one or more prior states. For example,
if the states are notes, chords, or rhythmic intervals, the Markov chain could generate new
melodies, chord progressions, or rhythms. The transition probabilities are most commonly
represented as state transition matrices, such as the one shown in Figure 2.4, which can
either be learned from a corpus, or designed by hand-picking the weights. The timeline
of the generation process runs parallel to the timeline of the piece. This differentiates
their mode of operation from formal grammars, where we usually consider a top-down
perspective and can develop multiple sections of a piece simultaneously. According to
Fernández and Vico [FV13] and our own literature research, Markov chains are quite
commonly used in composition, and we will only cite a small subset of the works.

Ames [Ame89] provides an early survey of Markov based composition processes. Another
survey by Conklin [Con03] looks at statistical models for music generation and discusses

10

2.1. Algorithmic composition

Figure 2.4: The melody of the nursery rhyme Mary had a little lamb as a sequence
of pitch letters is shown above. Below, the derived transition probabilities for a first
order Markov chain are visualized as a matrix. The original graphic can be found in
McCormack’s paper on grammar based music [McC96].

different types of Markov models. Concrete uses include Farbood and Schöner [FS01],
who generate counterpoint solutions with probability tables estimated from existing
works. Allan and Williams [AW05] as well as Yi and Golsmith [YG07] used Markov
decision processes for harmonization. Chuan and Chew [CC07] and Simon et al. [SMB08]
generate accompaniment, the latter with hidden Markov models, where only the outcomes
are known, but not the states. Hawryshkewich et al. [HPE10] and Tidemann and
Demris [TD08] generate drum patterns. And Herremans et al. [HWSC15] generate
music for bagana, a traditional Ethiopian instrument, using Markov chains and variable
neighborhood search. There are also some interesting hybrid approaches, in particular
Gillick et al. [GTK10], who apply them to grammar inference. These references only
scratch the surface, but one can see that Markov models have been applied to a wide
variety of tasks in composition.

Clement [Cle98] evaluated the capabilities of Markov models trained on various regular
languages and conclude that Markov chains are powerful enough to generate certain
harmonic progressions, but might be insufficient for modelling more complex musical
aspects. Ames [Ame89] argues that mathematical linguists have unfairly dismissed
Markov chains as lesser grammars, while their expressive power is comparable to that of
context-sensitive grammars. We would argue that it depends on the particular formalism
since the simplest type, where only the previous state determines the next state, can be
trivially modelled by a probabilistic type-3 grammar, but higher-order Markov chains,
where at least two prior states are considered, would generally be context-sensitive. On
that topic, Moorer [Moo72] mentions how lower order Markov chains trained on existing
music lack necessary structure in their generations, while higher order chains tend to
over-fit. We earlier classified Markov chains as a machine-learning approach. Yet, while

11

2. Related Work

the transition probabilities are often derived from a corpus, lower order chains are still
transparent enough to be configured manually. In contrast, artificial neural networks are
exclusively trained on examples, and we will discuss them in the next section.

2.1.4 Artificial Neural Networks
Intuitively, artificial neural networks (ANNs) try to replicate the learning capabilities of
biological neural networks. The idea is to approximate a complicated function with a
highly interconnected and general graphical structure, in which particular connections
are incrementally strengthened or weakened, depending on the difference between desired
and actual output. Once trained, such networks can be used, not only to parse, but also
generate new data. The application of artificial neural networks to problems traditionally
related to grammars has been very successful. Consider, for example, the recently released
GPT-3 model for natural language processing [BMR+20], which can consistently generate
syntactically and often even semantically valid output in an impressive range of natural
and formal languages. Given that musical structure is largely syntactical, successful
applications of deep learning for music generation are to be expected.

There are several challenges involved with setting up such networks. Theoretical challenges
include finding a suitable representation for the data the network should process and a
corresponding definition of an input and output surface, as well as the configuration of
the internal network layout. Practical challenges include the gathering of examples and
ultimately training the network, which can be computationally expensive. In recent years
deep learning research has picked up pace, not least because hardware capabilities are
finally catching up to the incredibly demanding training procedures. While ANNs have
been applied to composition for over thirty years, starting with networks such as the one
proposed by Todd [Tod89] and sketched in Figure 2.5a, a disproportionate number of
works have surfaced only over the past decade. Again, we will present only a subset of
the available literature and refer the reader to the dedicated surveys.

Once again, we refer to Fernández and Vico [FV13] for a discussion of works that were
published before 2013. For example, Hild et al. [HFM92] present a neural network
called HARMONET for approximating harmonic structure of chorales, which was later
combined with MELONET, a network for melody generation [Hör98], and CHORDNET,
a network for finding chord sequences based on learned voice-leading constraints [Hör04].
Mozer [Moz94] uses a recurrent neural network (RNN) called CONCERT to predict
notes and chords from a given sequence and managed to generate repeating structures to
a limited extent. Plain RNNs had problems with keeping track of global structure, so
long short-term memory (LSTM) recurrent networks were proposed as an alternative
by Eck and Schmidhuber [ES02] and applied to Blues improvisation. Franklin [Fra04]
compared the effectiveness of various pitch representations for use in LSTMs, also
noting the superiority of LSTMs over plain RNNs, and later used them to generate Jazz
melodies [Fra05, Fra06].

Over the past decade the field of ANN research expanded drastically, with new works

12

2.1. Algorithmic composition

(a) Todd [Tod89]. (b) Hadjeres et al. [HPN17].

Figure 2.5: Figure 2.5a shows a sketch of an ANN from an early work and Figure 2.5b
shows a modern network design, which consists of various stages, many of which host
sub-networks that contain orders of magnitudes more neurons than the early network.
While the newer architecture is significantly more sophisticated and computationally
expensive, they are similar in that they both recurrently predict notes based on prior
network output. This is also reminiscent of higher-order Markov chains, at least from an
abstract operational perspective.

being published at an increasing rate, even though music generation is still a relatively
minor focus compared to applications in image and natural language processing. Briot
et al. [BHP17] wrote an extensive two-hundred page analysis, detailing and comparing
various techniques and network types. They classify works in terms of five interdependent
dimensions: target output, musical representation, network architecture, limitations in
terms of creativity and variability, and the strategy that controls generation. Notable
works in the modern era of deep learning research include Google’s Melody-RNN, which
was built in the context of their musical AI research project Magenta, Song from PI
by Chu et al. [CUF16], a hierarchical RNN that generates multi-track pop music, and
WaveNet by Oord et al. [ODZ+16], which is an example of a network that generates raw
audio, rather than symbolic music. As an alternative to RNNs, generative adversarial
networks (GANs) have been used by Yang et al. for MidiNet [YCY17], which generates
melodies, and for Musegan by Dong et al. [DHYY18], which generates multi-track music.

A recurring objective is the generation of Bach music, likely due to the large and readily
available corpus and consistent style. A prominent example is DeepBach by Hadjeres

13

2. Related Work

et al. [HPN17], which can generate polyphonic pieces and comes with an interactive
graphical interface. Recently, the Bach Doodle by Huang et al. [HHR+19], which can
harmonize short melodies, has received wide-spread attention when it was used on
the Google search homepage as an interactive widget. Liang [Lia16] demonstrated the
strengths of deep learning for composition when they tested the BachBot in an online
Turing test. Participants were asked to differentiate between artificial and actual Bach
music and only one out of ten was able to do so reliably. They further studied network
activations, revealing the network independently learns concepts from music theory,
mirroring earlier work in the field of image recognition [ZF14], where it was found that
the layers of convolutional networks learn increasingly abstract representation of the
data.

Undoubtedly, deep learning already achieves very impressive results and, unlike grammars,
does not require explicit knowledge of music theory. Unfortunately, the models learned
by the network are often inaccessible to humans and, once the expensive training process
has completed, the network is inert and limited to the subset of knowledge it gathered
from the training set. In a way, we can place ANNs and grammars on opposite ends of
a spectrum, where ANNs require minimal domain knowledge, but also offer a very low
level of control, and grammars, unless inferred by other means, require lots of domain
knowledge, but offer ultimate control. Control, in this sense, is strongly related to
transparency. It takes significant analytic effort to determine the abstract reason for
why a neural network arrived at a particular result, while the same question is trivially
answerable for most grammars. As such, ANNs and grammars are able to fulfill opposing,
but not at all conflicting needs, where the former is useful if we want to replicate a model
without having to understand it, and the latter is useful when we already have a model
and want to test and improve it through its application.

2.2 Grammar-based approaches
With generative grammars we use a set of formal rules to develop an abstract symbolic
structure through iterative refinement into concrete and detailed output. For example,
consider Figure 2.6, which shows the generation of a harmonic progression starting
from a single tonic key. A prominent and early generative approach was conceived by
Schenker [Sch35]. His assumption was that we can reduce many forms of music to the
Ursatz, a sort of fundamental, hidden structure, not unlike the axiom in formal grammars.
In practice, the Schenkerian approach is mostly used for analysing existing scores, with
some success towards automating this analysis [Smo80, KU08, Mar10], but it is still
recognized by numerous works in the field. The importance of the works by Chomsky
with regard to formal grammar theory cannot be overstated since his definition of a
grammar hierarchy allows us to classify and assess the expressive power of particular
grammars [Cho56]. There are further subcategories and variants of these grammar types,
which we will discuss in the context of particular works.

The basis for the grammar approach is a recursive model of musical structure. One

14

2.2. Grammar-based approaches

(a) A grammar for harmonic progressions. (b) A derivation tree.

Figure 2.6: Figure 2.6a shows a parametric context-free grammar as a set of ten rules,
each describing the replacement of a particular musical entity on the left side of the arrow
with the entities on the right side. The recursive application of these rules leads to the
development of a tree structure. Figure 2.6b shows how the grammar might generate the
harmonic progression of Bortnianski’s Tibje Pajom. The original graphics can be found
in Rohrmeier’s work [Roh07].

concrete implementation of such a hierarchy is provided by Buxton et al. [BRBM78],
who defined a score representation for use in the Structured Sound Synthesis Project.
Roads and Wieneke [RW79] review early uses of grammars as music representation
and discuss the appropriateness of formal grammars for modelling music in general.
They argue, that the use of grammars forces a discretization of music and is biased
towards hierarchical, multi-level structures, due to the nature of the derivation process.
Nevertheless, they think context-free grammars are a sufficiently powerful tool to model
many musical structures. Regular grammars were deemed too limited, while more general
grammar types with full context-sensitivity were judged as too complex for practical use.
Bod [Bod02] provides further perspectives on the role of hierarchies and tree structures
in human perception of language and music, and Yust [Yus09] explores the mathematical
features of hierarchical geometric structures in relation to melody, rhythm, and harmony.

A Generative Theory of Tonal Music (GTTM) by Lerdahl and Jackendoff [LJ+83] is one
of the most popular works in the field of generative music theory. The authors provide a
formal framework consisting of four hierarchical aspects. (1) Grouping structure describes
how neighboring events are perceived as a whole as motives, phrases, and larger structures.
(2) Metrical structure provides a regular grid of strong and weak attack points, on which
events are located. (3) Time-span reduction combines the grouping and metrical structure

15

2. Related Work

into a hierarchy of time intervals. Finally, (4) prolongational structure describes the
perception of harmonic progression, tension, and release, and mends disconnects that
arise from using time-span reduction on its own. Each of these four aspects is encoded
as sets of strict well-formedness rules, preference rules for accommodating a listener’s
perceptions, and transformational rules for resolving distortions. Efforts have been
made to automate musical analysis with GTTM [HHT06, HHT07] with some success in
synthesis through alteration of the derivation tree.

Grammars can be used to describe the transitions between abstract and concrete structures
in music and therefore lend themselves to the automation of both generation and analysis.
Since the domain knowledge is encoded in the rules, finding appropriate rules and
associated probabilistic weights to resolve ambiguities is the creative step. Many authors
resort to hand-picking rules, but one can also automatically derive rules and weights from
existing works, a process which is called grammar inference. Kippen and Bel [KB89]
used grammar inference to learn Indian drum music. They used an iterative approach
of generalization, variation, and verification through human experts. Cruz-Alcázar and
Vidal-Ruiz [CAVR98] compared multiple grammar inference algorithms and musical
coding schemes and used them to analyze and synthesize melodies in different musical
styles. Sidorov et al. [SJM14] treat music as a smallest grammar problem and approximate
the shortest grammars for representing the temporal structure of fugue voices. Various
authors compute production probabilities for a given set of rules and corpus of existing
pieces [GC07, Qui14].

2.2.1 Grammars for Composition
The works presented so far relate music and grammars in a general sense, with a focus
on analysis over synthesis. We will now look at some concrete works and applications of
grammars for composition and their particular features. The references in this section
are definitely the most relevant in the context of our own work. In an early work,
Lindblom and Sundberg [LS70] analyzed the melodies of various nursery rhymes and
derived production rules. Due to the fixed structure of eight bars, they were able to
tailor rules to particular parts, for example, guaranteeing a concluding half note and
tonic harmony at the end of every piece. Most of the rules are defined through tables,
sketches, or plain text, but they appear to be at least context-sensitive. Another early
work by Lidov and Gabura [LG73] present rules for modelling melodies as a hierarchy of
semantic labels from the phrase level down to the measure level and a set of rules for
generating melodic movement within measures.

Holtzman [Hol80, Hol81] defined the Generative Grammar Definition Language (GDDL)
and applied it to music generation. Beyond standard features for non-deterministic
derivation, such as production probabilities, GDDL provides interesting meta-level
features, which allow the selection of alternatives based on prior rule applications. For
example, one can control the probability of going from one alternative to another using
a finite-state transition matrix, or guarantee that all alternatives are selected at least
once before one is repeated. They demonstrate these capabilities by replicating a piece

16

2.2. Grammar-based approaches

by Arnold Schönberg, who is known for using similar restrictions in his compositions.
For repetition, GDDL uses special rules, which they call meta-productions, that replace
all occurrences of an LHS with a particular RHS .

McCormack [McC96] surveys multiple approaches for algorithmic composition, including
L-systems, Markov chains, and formal grammars. They propose an advanced musical
grammar system that utilizes various meta-level features, such as stochastic rule selection,
numeric parameters, and nested grammars. Symbols in their grammar carry pitch,
duration, timbre, and control parameters. While the generations are primarily sequential,
limited polyphony can be achieved by marking multiple notes as a chord. Preceding
notes can be used for matching, which allows for limited context-sensitivity.

Steedman [Ste84] defined a grammar for generating chord sequences for 12-bar Blues,
which consist of three phrases of four bars in common time. Each node in the derivation
tree has a duration, a harmonic function, and a chord type parameter, each of which
can be inherited or removed on the RHS. The replacement entities divide the time
interval of the original entity into equal parts, guaranteeing a monophonic and bounded
temporal organization. The grammar is context-sensitive, which allows for powerful
matching criteria, for example, matching the second chord of a cadence. They later
revised their grammar and showed that it can be expressed by an equivalent context-free
grammar [Ste96]. Chemillier [Che04] discusses the integration of this grammar in a
real-time system and analyzes particular classes of generated progressions. Recently,
Melkonian [Mel19] replicated this grammar, which will be discussed later.

On the topic of generating harmonic progressions, Rohrmeier [Roh07, Roh11] derived
harmonic substitution rules from various works on harmonic theory. The rules match on
harmonic functions and mode, as shown in Figure 2.6a, and the right-hand side allows
parametric embedding of the replaced symbol in a new context, relative harmonic changes,
and the addition of accidentals. The grammar is context-free, except for a special rule
for pivot chords, which they later reformulate without context-sensitivity. De Haas et
al. [DHRVW09] remodelled Rohrmeier’s earlier grammar and applied it to automatic
parsing of jazz pieces.

There has been some interest in replicating improvisation on the tabla, a Northern Indian
two-piece drum set with formal grammars [Bel89, BK92a, BK92b, Bel92, Mel19] and
Markov chains [CSŞ11]. The music is traditionally communicated using bols, which are
comparable to syllables in natural language, and follow strict syntactic rules. Bel and
Kippen [BK92b] used these syllables as a vocabulary for generating words of a type-2
language and used a type-0 grammar for combining these words into larger sequences.
The results of the type-2 system were also replicated by Melkonian [Mel19].

Gilbert and Conklin [GC07] defined probabilistic context-free grammar (PCFG) for melody
generation which uses pitch intervals as non-terminals. The use of intervals, each of
which encodes information about two adjacent notes, allows them to reformulate rules
that would normally be context-sensitive in a context-free manner, for example a rule
for generating passing notes. Keller and Morrison [KM07] defined another PCFG for

17

2. Related Work

generating jazz melodies. The terminals of the grammar encode various semantic roles
which are realized in a post-processing step. For example, an approach tone forces the
next note to be a tone of the chord. Additional constraints allow the specification of a
pitch range and leap intervals. They use the note type as a parameter so rules can be
defined that apply to non-terminals of varying durations.

Quick and Hudak generally required the use of a time parameter in their temporal gener-
ative graph grammars (TGGG) [QH13b] and later probabilistic temporal graph grammars
(PTGG) [QH13a]. Besides duration, the harmonic function and a modulation indicator
are also provided as parameters. Additionally, they allow the reuse of node identities
in multiple places on the RHS, which elegantly solves the problem of synchronizing
repeating sequences. PTGGs are used in the composition tool Kulitta [Qui14, Qui15]
to generate harmonic progressions, based on production probabilities that were learned
from existing music. Melkonian [Mel19] later extended them to melody and rhythm
generation and generalized the harmony generation using a Schenkerian approach. They
demonstrated this by encoding various grammars from musicologist literature, including
the context-free variant of the Steedman grammar [Ste96] and tabla syntax [BK92b].

PTGGs and Euterpea, a music generation library by the same authors, as well as
the extensions by Melkonian, were implemented in Haskell [HQSWC15, HQ18, Mel19],
showcasing the effective use of functional programming for defining the rules of a generative
grammar. This is preceded by works on a music notation framework [HMGW96] and
algebraic treatment of temporal media [Hud04, HJ14], in which the authors discuss
various functional techniques for algorithmic music composition and representation.
Functional programming has further been used for modelling harmony [MdH11] and
melody harmonization [KMDH13].

We move on to a work by Tanaka and Furukawa [TF12], who tackle polyphony on the
grammar level, rather than as a post-processing step. They model polyphonic music as a
list of voices, where every voice is a list of notes, and present two models for replacement.
The naive model applies a rule at a single point in time and replaces the selected time
span in all voices. In the asynchronous model replacement happens at different points in
time in each voice. Rules are inferred using a genetic algorithm and matching happens
only if the rule application preserves certain constraints. While the generated output is
polyphonic, rules still operate on a sequential voice model, replacing one monophonic
sequence with another, usually longer one.

Giraud and Staworko [GS15] used context-free parametric grammars to model Bach
inventions. They use short motifs as parameters for a simple pattern language and
demonstrate how an equivalent non-parametric grammar is more verbose. While the
motifs are not generated by the grammar, the ability to use sequences of notes as
parameters is a feature we also implemented for the grammar developed for this thesis.
Additionally, they propose a distance metric for computing how closely a particular
derivation tree matches a piece.

Other types of grammars have been used for musical applications. Petitjean [Pet12] used

18

2.3. Comparison with our approach

MetaGrammars for declaratively constructing a lexicon of chords. Some authors have
explored categorial grammars for music analysis [GW13], as well as generation [You17].
The latter used a vocabulary of domain functions, such as transposition and augmentation,
higher-order combinators, such as list mappings and Cartesian products, and a hierarchy
of musical types, such as rhythms, pitches, and scales. By adhering to the type relations
implied by the type constraints on the input and output of the functions, the system
automatically combines these elements into working programs, which in turn generate
melodies.

2.2.2 Grammars in Graphics
In the broader field of content creation with generative grammars, the music domain
might no longer rank as highly in popularity as it once had. At least from a commercial
perspective, procedurally generated graphics seem to enjoy much broader application,
considering how infeasible it would be to generate the effects and environments used
in modern video games and CGI-heavy cinematography without significant amounts of
automaton. The relationship between graphics and music has been of some interest in
algorithmic music research, primarily for approaches based on self-similarity, such as
L-systems, which can be interpreted graphically and musically. Our work has another
possible relation to graphics: the treatment of time as a spatial dimension and, generally,
the interpretation of symbolic music as points on a multi-layered lattice.

Split grammars, proposed by Wonka et al. [WWSR03] and preceded by the work on shape
and set grammars by Stiny [Sti80, Sti82], were a significant inspiration for this thesis. In
a split grammar, shapes are generated by recursively dividing spatial volumes, similar to
the splitting of the time dimension that is used in many works on algorithmic composition.
The initial split grammar later evolved into the popular CGA Shape grammar [MWH+06]
and its successor CGA++ [SM15]. The latter introduces shapes as first-class citizens,
allowing operations on generations of sub-grammars, which is a feature we partially
implemented for this thesis. Also, compare Giraud and Staworko[GS15] in the music
domain, who pass generated motifs as parameters. Various papers have been written on
the generation of building facades [ZXJ+13, IMAW15, JCS16], a problem that has some
overlap with the synchronization of voices in a polyphonic piece.

2.3 Comparison with our approach
In the previous sections we presented the state of the art in the field of algorithmic
composition, with a focus on grammar-based solutions. Now we will take a preliminary
look at what separates this work from others and where we have drawn inspiration. Since
the concrete goal of this thesis is the generation of polyphonic pieces, the treatment of the
time dimension was a primary concern. The majority of existing grammar-based solutions
do not model polyphony on the grammar level. Their representation of time is purely
sequential, closely mirroring the implicit structure of the sentence. This is of course
the simplest, most intuitive approach, if one wants to model melodies, rhythms, and

19

2. Related Work

harmonic progressions, neither of which require parallelism in the time dimension. One
exception is Tanaka and Furukawa [TF12], who do use a polyphonic model to combine
multiple voices, but the voices within are still sequential.

The need for a more flexible model of time lead us to split-grammars, which were the
initially inspired this thesis. In fact, many generative models of music use some form of
recursive temporal division; although, our own split operation might be more expressive
than what we have seen in other works. So, it is not the eponymous split operation that
makes us draw this parallel. Rather, it is the association of objects with an independent
spatial or (in the case of music) temporal scope, that not only describes the size of an
object, but also its absolute position. This allows us to freely alternate between parallel
and sequential placement in the time dimension, move or resize notes without changing
the overall structure, and even sample voices that were generated in earlier passes. The
last point is facilitated by the ability of running isolated derivation passes and reusing
the results, which has been used by Schwarz and Müller [SM15] for graphics, and to a
limited degree in music by Giraud and Staworko [GS15].

Another aspect that makes our work unique is the ubiquitous use of custom attributes.
Most of the existing grammars for composition are prescribe the types of information
that can be propagated through the derivation tree. As a consequence, such grammars
are limited to a particular musicological theory or composition task. In our system the
grammar author is not bound by any particular semantics beyond the hard limits set
by the derivation algorithm itself. We try to leave the choice of a domain model up to
the user and instead supply them with a set of useful operators and output mappings to
compensate for the increased generality.

Finally, our domain-specific language is hosted in a general purpose programming language
and users can develop ad hoc extensions, giving them even more freedom in defining
custom semantics. Our method of defining rules as functions is very similar to that
of Quick and Hudak [QH13a], who also host their system within a general purpose
functional language (Haskell). On the topic of embedded DSLs, consider the early survey
on computer-aided composition by Loy and Abott [LA85], in which they describe a divide
between programs with predefined interfaces and those with a more flexible programming
interface, where the former tend to evolve the latter, due to incredibly varied requirements.
This supports an argument by Moorer [Roa82], in which he states that music composition
requires general purpose computing and consequently, once composers are sufficiently
familiar with programming, they will require the power of a general purpose language.
With this we conclude our discussion of related works and move on to the next chapter,
in which we define the theory and various abstract features of our musical grammar
definition language.

20

CHAPTER 3
A Functional Framework for

Context-Free Grammars

Many phenomena can be understood in terms of formal language theory, including
computer programs [Sip97], the way plants grow [PL90], collections of virtual 3D ob-
jects [MWH+06], and certain aspects of music, as we have seen in Chapter 2. We can
think of a formal language as a set of sentences, each consisting of an ordered sequence
of words from a vocabulary. Assuming our vocabulary contains English words, we can
form English sentences. Assuming our vocabulary contains musical notes, we can form
melodies, or even complete scores. Instead of a sentence, word, and vocabulary metaphor,
some authors prefer word, letter, and alphabet. I personally like sentence because of the
connection between sentence structure and grammar in natural languages. Since word is
used ambiguously, we will use the more abstract term symbol (later entity) to refer to
the parts of a formal sentence.

In the hypothetical language of minuets in G major over the vocabulary of musical notes,
the score of Minuet in G Major, BWV Anh. 114 by Petzold (formerly attributed to
Johann Sebastian Bach) is a valid sentence. The score of Gymnopédie No.1 by Eric Satie
is not a valid sentence since it is neither a minuet, nor written in G major. One could
define a formal language by exhaustively enumerating all of its sentences, ignoring for a
moment that this would entail the incredible task of composing every possible minuet.
Yet, if we think of natural languages such as English, we can tell whether a sequence of
words is valid without knowing every possible sentence. There is an underlying pattern,
a set of structural constraints, which we can use to analyse almost any sequence of words
and judge it as a valid sentence, or reject it as incorrect. These are the rules of the
language.

Formal grammars are a way of defining formal languages in terms of rules. A formal rule
for the English language could say that a simple-sentence may consists of a subject,

21

3. A Functional Framework for Context-Free Grammars

which stands for any subject phrase, followed by a verb, standing for any verb phrase.
When we read a subject phrase followed by a verb phrase, we can infer that the sequence
of words must be a simple-sentence, at least according to that rule. Similarly, in music
we could say that a C-major-triad is a C, E, and G note played simultaneously or in
short succession, and an authentic-cadence may be a C-major-triad, preceded by
a G7-chord consisting of the notes G, B, D, and F. Using these rules we can decide
whether a particular piece contains an authentic-cadence. Notice how we did not
precisely specify what a subject or verb is, nor did we specify how long C, E, or G must
be, or their absolute tone height. Just as C-major-triad can be seen as a placeholder
for C, E, and G, the latter three can be seen as abstract placeholders for concrete pitches.
C could be a placeholder for C1, C2, C3, up to C8, which in turn could be placeholders
for the physical phenomenon of air pressure caused by vibrations at various multiples of
32.7 Hz. It is exactly these placeholder relations which are expressed by the rules of a
formal grammar.

This chapter is a step by step construction of the system we developed, with a very
strong focus on the meta-language, rather than the domain-specific, musical perspective.
While significant work went into the selection and integration of the various meta-level
features, we cannot point to any particular aspect that seems sufficiently innovative to
claim as our own, except for what was already mentioned in Section 2.3. However, the
specific combination of features and their integration in a functional framework is not
something we have seen before, thus it makes an important part of the contribution of
this thesis. In this chapter, we define the semantic and syntactic foundation on which we
will later base the domain-specific discussion.

3.1 Basics

Definitions: T, N, S, P, V In this thesis we build on the definition of a formal grammar
established by Chomsky [Cho56]. Two components were already mentioned in this
chapter’s introduction: symbols and rules. A formal grammar T, N, S, P is defined by
a set of terminal symbols T , a set of non-terminal symbols N , a starting symbol S ∈ N ,
and a set of production rules P , which we will address in Section 3.1.1. The two sets
N and T are disjoint, and their union forms the vocabulary V . Only terminals may be
found in the sentence. Non-terminals, on the other hand, are what we earlier referred
to as placeholders, symbols that stand for other symbols. The starting symbol S, also
known as the axiom, is a dedicated placeholder and can be seen as the polar opposite of
the sentence. While a sentence contains no placeholders and can be said to be maximally
concrete, the axiom is the most general placeholder and represents the highest level of
abstraction in our language. Every sentence can be reduced to the axiom and in turn the
axiom can stand for any sentence.

22

3.1. Basics

Example: Basics

In this example we will define the vocabulary for a simple musical grammar. We will
use the seven pitch classes of the C major scale as our set of terminals T . Consequently,
a sentence would be some sequence of notes in the C major scale. We could just as
well use a set of absolute pitches (A1, B1, C2, D2, etc.) or use all pitches of the
chromatic scale. The choice is rather arbitrary and depends on who or what may need to
interpret the sentences of our language. We will use the non-terminals G7-chord and
C-major-triad to build an intermediate abstraction layer on top of the pitch classes.
The final non-terminal authentic-cadence is used as the axiom S. Again, the boundary
is drawn arbitrarily, and we could easily imagine higher levels beyond a mere cadence,
such as a measure, phrase, or whole minuet.

In this chapter we will use a very literal interpretation of generative grammars, where
the order of the symbols in a sentence corresponds to their organization in the time
dimension. Since many musical aspects are inherently sequential—think of melodies,
rhythm, or harmonic progression—this is a very intuitive and commonly used approach.
Yet, the sequential nature of the sentence is not an inherent limitation, which is one of the
core premises of this work. As a metaphor, think of a cooking recipe: a list of ingredients
does not mean that we must eat one after another. Instead, a cook will interpret the
recipe and prepare a meal; the structure of the recipe is not apparent in the final result.

T := {A, B, C, D, E, F, G}
N := {authentic-cadence, G7-chord, C-major-triad}
S := authentic-cadence

3.1.1 Rules
A random sequence of notes from the C major scale may, with some luck, sound pleasant
to us, but only some sequences can be described as a C major triad, and it is even more
unlikely that it will contain an authentic cadence. Rules define the relations between
symbols in such a way that we can move between levels of abstraction, finding cadences
in sequences of notes, or generating sequences of notes that have a cadence.

Definitions: P, X∗, −→, [. . .] Each production rule in P describes, in its most general
form, a replacement of a sequence of non-terminal symbols with a sequence of symbols
from our vocabulary. We can write a rule concisely with an arrow: LHS −→ RHS. The
sequence that is replaced is described by the LHS (left-hand side). The sequence that
replaces it is described by the RHS (right-hand side). Separated by a colon, we may
specify an optional label that identifies the rule. For example, the rule l : x −→ y has the

23

3. A Functional Framework for Context-Free Grammars

label l. A very simple way of defining a rule is to list the symbols on both sides of the arrow
in the form N∗ −→ V ∗, where for any set X, X∗ is the set of arbitrary length sequences
of its elements. For example, {x}∗ is equivalent to the set {[], [x], [x, x], [x, x, x], . . .}.
Note the use of the bracket notation [. . .], for which we will later define some additional
semantics. For example, we do not differentiate between a plain element x and the
singleton sequence [x], and consider nested sequences such as [x, [x, [x]]] as equivalent to
the corresponding flat sequence [x, x, x].

Example: Rules

We can now formally express the relationship between the symbols of our vocabulary with
three rules P := {p1, p2, p3}. Rule p1 establishes a two-chord progression for the cadence.
Rules p2 and p3 specify the notes for the two chords. A chord progression is sequential in
the time dimension, but the notes of a chord are usually played at the same time. In
this chapter we will glance over this important distinction and may either assume an
implicit grouping, or interpret the note sequence as an arpeggio, meaning the chord notes
are played in short succession; the choice is up to the reader. A detailed discussion of
our handling of the time dimension can be found in Chapter 4. Of course, describing
the structure of an authentic cadence lacks artistic expression, but using a familiar and
clearly defined musical pattern makes the validity of the abstraction immediately obvious.

p1 : authentic-cadence −→ [G7-chord, C-major-triad]
p2 : G7-chord −→ [G, B, D, F]
p3 : C-major-triad −→ [C, E, G]

3.1.2 Derivation
The idea that rules replace sequences of symbols with other sequences is very general.
Without further restrictions, such grammars can be Turing complete. The rules in the
previous example did not fully exploit this potential since each of them used exactly one
non-terminal on the LHS. This means our grammar is at least type-2 in the hierarchy of
grammar types defined by Chomsky. Each type puts some constraints on the expressive
power of the LHS and RHS, with unrestricted grammars (type-0) being the least restrictive,
and regular grammars (type-3) the most restrictive variants. Lower numbered types
include all capabilities of the higher types, but the computational and perceived complexity
increases with higher generality.

The remaining grammar types are the context-sensitive (type-1) and the context-free
grammars (type-2), the latter of which will serve as the fundamental theoretic model
for the system developed in this thesis. Type-2 grammars have been used by various
researchers for procedural generation, arguably because they strike a good balance between

24

3.1. Basics

power and simplicity. For example, Steedman’s first grammar for Blues progressions
was context-sensitive [Ste84], but they were later able to reformulate it as a context-
free grammar [Ste96]. A general discussion about different grammar types for music
generation can be found in the early survey by Roads and Wieneke [RW79]. From here on,
all theoretic models and examples assume that the underlying grammar is context-free.

In context-free grammars a rule replaces exactly one non-terminal with zero or more
symbols, which means the form of the rule is restricted to N −→ V ∗. If one of the
replacement symbols is itself a non-terminal, it can be replaced again. This recursive one-
to-many relationship is closely modelled by a tree structure, where each rule application
defines edges between a replaced non-terminal (parent or predecessor), and a sequence of
replacements (children or successors). The root of the tree is the axiom S, the internal
nodes are non-terminals N , and the leaves are terminals T . The replacement process
is also called derivation, and the resulting tree structure is called the derivation tree.
Since the derivation does not rely on context, every subtree can be seen as an isolated
derivation, where the root of the subtree is the axiom of a sub-grammar, and the leaves
are its terminals. Consequently, any symbol in the vocabulary may be used as a starting
symbol, resulting in a sentence of the language defined by the particular sub-grammar.

The derivation algorithm constructs a derivation tree incrementally, starting from the
axiom. For each non-terminal leaf node a rule will be selected, where the LHS matches
the symbol. When the rule is applied, the output nodes are added as children to the
input node. The intermediate sequence of leaves is also called a sentential from, and a
sentential form that contains no placeholders is a sentence. Assuming every non-terminal
in the sentential form must be replaced before the derivation terminates, we must assume
that there exists a rule that matches it. If there is no such rule, the grammar is invalid.
Any set of rules from a valid grammar therefore implicitly defines non-terminals as those
symbols that may be matched by an LHS, and the terminals as those symbols that are
not matched by any rule. Most grammar examples in this thesis will not explicitly define
terminals and non-terminals and assume they can be inferred from the rules. Instead of
N and T we will mostly use the combined set V in our definitions. The distinction is
primarily necessary for the definition of type-1 and type-3 grammars.

Example: Derivation

We will use the definitions of V , S, and P from the prior examples and generate a
sentence by going through the derivation algorithm step by step. Table 3.1 shows the
numbered steps, and the resulting derivation tree is visualized in Figure 3.1. At step 0 no
rule is yet applied, and the sentential form contains only the axiom authentic-cadence.
In step 1 we replace the axiom with two new non-terminals according to rule p1. In
step 2 we could either replace G7-chord or C-major-triad, but arbitrarily chose to
replace G7-chord with rule p2. In context-free grammars it does not matter which
non-terminals are replaced first, so the order of steps 2 and 3 has no effect on the result.

25

3. A Functional Framework for Context-Free Grammars

step rule sentential form
0 − authentic-cadence
1 p1 [G7-chord, C-major-triad]
2 p2 [[G, B, D, F], C-major-triad]
3 p3 [[G, B, D, F], [C, E, G]]

Table 3.1: Derivation of a context-free grammar as a sequence of numbered steps. The
nested square brackets in the sentential form illustrate the tree structure, but serve no
further purpose.

authentic-cadence

G7-chord

G B D F

C-major-triad

C E G

Figure 3.1: Derivation of a context-free grammar as a tree.

3.2 Parameters
If we wanted to generate the authentic cadence from Section 3.1.2 for D major instead
of C major, we would have to add three new rules: one for the new chord pair and two
for the new chords. Assuming we wanted to generate a cadence in any of the twelve
major keys of the chromatic scale, the number of rules would increase by a factor of
twelve. This rightfully seems excessive for such a simple pattern. A music theorist, given
a key, can come up with the major triad and seventh chord of the dominant harmony
without having to learn all possibilities by heart. They know that the dominant harmony
is one fifth above the tonic, that a seventh chord is a major triad together with a minor
seventh, and that a major triad consists of the tonic, major third, and fifth. Rather
than absolute pitch values, the theorist thinks in terms of relative intervals. Yet, so
far the vocabulary contains only atomic labels and pitch is not something that can be
manipulated independently.

A grammar with atomic entities, such as the one we have constructed in the previous
section, can be seen as a special case of a parametric grammar with a single parameter.
We used that parameter to encode multiple separate concepts. For example, the G7-
chord combines a 7-chord with a tonic pitch G. Similarly, the symbol C is a note
with a fundamental pitch C. Separating the pitch from the semantic label enables
us to independently consider these aspects when we match and replace symbols. Our
vocabulary becomes a set of tuples of the form (x1, x2), where x1 stands for a label, such
as 7-chord or note, and x2 is the associated pitch value, such as G or C. For example,
we can define a rule that matches on an arbitrary 7-chord and use relative intervals to
calculate a pitch for the four note symbols.

26

3.2. Parameters

Definitions: V In general, the vocabulary of a parametric grammar with n parameters
consists of elements from an n-dimensional space V = X1 × . . . × Xn. Since the term
symbol implies some degree of indivisibility, we will use the term entity from here on,
when referring to the elements of the vocabulary. Barring some early and primitive
examples, most existing works use entities with multiple parameters. For example,
Steedman [Ste96] and Rohrmeier [Roh07] use the key, harmonic function, and chord
type as parameters. The grammars by Quick and Hudak [QH13b] have an explicit time
parameter for rhythmic variation. A fixed set of parameters allows one to optimize the
grammar definition language, and most authors use a compact glyph notation for their
entities. For example, Quick and Hudak [QH13b] would write III

1
4 for a third with the

duration of a quarter of the original time interval. We use a generic tuple notation, in
order to highlight that the parameter space can be freely adapted to a particular task or
model.

Example: Parameters

We will construct our new vocabulary using two parameters: label and pitch. The label is
defined over a set of semantic labels L, similar to the symbols from the previous example,
but without pitch information. So C-major-triad becomes major-triad, G7-chord
becomes 7-chord, and note will be used as a generic name for our terminals. As before,
the label will be used for matching. The pitch parameter is defined over the set of
chromatic pitch-classes C = {A, Bb, B, C, . . . , G, Ab}. In order to make the grammar
independent of a particular key, we will only refer to the pitch by the variable x2. For
relative movement we define a set of pitch intervals I = {m3, M3, P4, P5, m7} and a
binary operation + : C × I → C. As an example, the term C + P5 calculates the pitch
class one perfect fifth above C, which is G. With these parameters and the + operator,
we can now define a general authentic cadence generator. There is also a new abstraction
in rule p2, where we are able to reuse rule p3 for the definition of the seventh chord. The
derivation tree of this grammar is visualized in Figure 3.2.

p1 : (authentic-cadence, x2) −→ [(7-chord, x2 + P5), (major-triad, x2)]
p2 : (7-chord, x2) −→ [(major-triad, x2), (note, x2 + m7)]
p3 : (major-triad, x2) −→ [(note, x2), (note, x2 + M3), (note, x2 + P5)]

3.2.1 Parametric Matching
Already, the authentic cadence generator is becoming quite powerful, but there is still
very little variation besides a change of pitch. In order to musically express our sentiment
towards the progress so far, we could introduce a new parameter with two states: happy
and sad. If the mood is happy, we want to resolve into a major triad as we did before.
If the mood is sad, we want to generate a minor chord instead. There are at least two
ways in which we can control the flow of the derivation based on a parameter. Given

27

3. A Functional Framework for Context-Free Grammars

(authentic-cadence, C)

(7-chord, G)

(major-triad, G)

(note, G) (note, B) (note, D)

(note, F)

(major-triad, C)

(note, C) (note, E) (note, G)

Figure 3.2: Derivation tree of a parametric grammar with two parameters. Since we use
C for the second parameter of the root entity, the output is the same as in Section 3.1.2.
Due to the reuse of the major-triad for the generation of the 7-chord, the shape of the
tree is slightly different compared to the non-parametric example.

an entity v ∈ V , a predicate c : V → { , ⊥}, and two right-hand side replacements
α, β ∈ V → V ∗, we want to apply v −→ α(v) if c(v) = , and v −→ β(v) otherwise. A
simple case differentiation is one possible solution:

v −→ α(v), if c(v) =
β(v), otherwise

While the above works, there is another way of testing entities, that keeps the RHS
simple and utilizes the structural capabilities of a formal grammar. The purpose of
the LHS is to describe possible replacement candidates. So, if replacement should only
happen under a certain condition, we should test this in the LHS. If the test fails, we can
reject the rule outright, without considering the RHS at all. Another advantage is that
we do not have to provide an alternative branch since the derivation process will either
move on to the next rule, or terminate for this entity. We have already used matching
conditions implicitly. For an LHS such as (major-triad, x2) for rule p3, we assumed that
the derivation algorithm would interpret it as the condition x1 = major-triad. Since
we now also want other parameters to affect the matching behavior, we will make this
condition explicit. The general scheme above can be rewritten with two rules, where ¬c
is the negated condition:

c(v) −→ α(v)
¬c(v) −→ β(v)

28

3.3. Attributes

(cadence, C, s)

(7-chord, G, s)

(triad, G, h)

(., G, h) (third, G, h)

(., B, h)

(., D, h)

(., F, s)

(triad, C, s)

(., C, s) (third, C, s)

(., Eb, s)

(., G, s)

Figure 3.3: Derivation tree of a parametric grammar with three parameters (x1, x2, x3).
The two entities named third were matched by different rules and the pitch was increased
by a major third if x3 = h, and a minor third if x3 = s. The note label for the leaves is
abbreviated to "." due to spatial constraints.

Example: Parametric Matching

We will now define a parametric cadence generator with a three-dimensional vocabulary
(x1 ∈ L, x2 ∈ C, x3 ∈ {h, s}), where h stands for happy, and s stands for sad. In p2 we
set x3 = h because a dominant seventh is always a major chord. Everywhere else x3
is passed down to the children unchanged. In rule p3 the triad is generated with the
new label third. In rules p4 and p5 we use an additional condition on x3 to generate a
major or minor third offset depending on the value of x3. Note that we are assuming an
implicit binding of the three variables x1, x2, and x3. The derivation tree is visualized in
Figure 3.3.

p1 : x1 = cadence −→ [(7-chord, x2 + P5, x3), (triad, x2, x3)]
p2 : x1 = 7-chord −→ [(triad, x2, h), (note, x2 + m7, x3)]
p3 : x1 = triad −→ [(note, x2, x3), (third, x2, x3), (note, x2 + P5, x3)]
p4 : x1 = third ∧ x3 = h −→ (note, x2 + M3, x3)
p5 : x1 = third ∧ x3 = s −→ (note, x2 + m3, x3)

3.3 Attributes
At this point we already designed three different versions of a simple cadence generator,
one with just labels, one with an additional pitch parameter, and one with an additional

29

3. A Functional Framework for Context-Free Grammars

mood parameter. This workflow of iterating on an existing model, changing, adding,
generalizing features, is quite natural when inventing musical grammars. From an artistic
point of view, there are simply no hard criteria for the correctness of the results, and our
decisions will often depend on system feedback. Form a technical standpoint, it can be
very difficult to predict the results in advance, especially once non-deterministic features
come into play, and one must make incremental changes to understand the effect. So,
if continuous modifications of our grammar are guaranteed in practice, the underlying
framework should make changes as painless as possible.

So far, changing the value space of a parameter is straight-forward. We did this multiple
times already with the label parameter x1, when we added new labels or discarded obsolete
ones. In comparison, adding and removing an entire parameter is far from painless since
it requires us to update each parameter tuple. In case of the mood parameter x3, the
problem became especially evident because it is only used once in the RHS and twice
in the LHS. In general, a rule will depend on a subset of the parameters and any other
parameters will be passed to the children unchanged. Making such changes would be
easier if we could decouple the rule definition from the exact structure of the entity
space, allowing the rules to only access what they need. This leads us to the concept of
attributes, which were invented by Wegner [Knu90].

Definitions: K, Xk, kget, kset We define the set K = {k1, . . . , kn} of parameter iden-
tifiers and associate them with the dimensions of our n-dimensional parameter space
V = Xk1 × . . . × Xkn . For every k ∈ K we define a getter function kget : V → Xk

and a setter function kset : Xk → (V → V). For a particular k ∈ K and ∀l ∈ K \ {k}
the functions are defined in such a way that for any v ∈ V and xk ∈ Xk the following
equivalencies are satisfied:

f := kset(xk)
kget(f(v)) = xk

lget(f(v)) = lget(v)

This just means that a setter only changes the value of one particular parameter, working
as an identity function for the rest, while a getter retrieves the latest value. If kget(v) = xk

for some entity v ∈ V , we say v has or defines an attribute with the key or name k and a
value xk. kset and kget are also called the accessors of the attribute.

Definitions: k, . . . Note how kget and kset(xk) are both functions over the domain
V . We call such functions expressions, and in Section 3.4 we will discuss them in detail.
We can simplify our syntax by assuming that expressions are evaluated implicitly on the
current entity v ∈ V . So, on both sides of a rule we may write kget or just k instead
of kget(v). On the right-hand side we will write kset(xk) instead of (kset(xk))(v) and
kset(xk), . . . , lset(xl) for setting multiple attributes. The exact semantics of the angle

30

3.3. Attributes

bracket notation . . . will be defined in Section 3.4.2, but it is essentially a higher-order
expression that applies the first expression within the brackets to the current entity, and
each subsequent expression to the output of the prior one. Since the setter leaves all
but one attribute untouched, attribute values will automatically propagate downwards
in the derivation tree—from the parent to the child. This type of behaviour is known
as attribute inheritance, and means that we do not have to pass invariant parameters
explicitly.

Example: Attributes

In this example we will associate our three parameters (x1, x2, x3) with three attribute
names K = {label, pitch, mood} with the same values as before. Using descriptive
attribute names helps us understand the semantics of a rule at a glance. Since we must
set the label attribute for every new entity, we have slightly optimized the syntax in
these examples. Whenever a label x ∈ L appears within the RHS, it actually stands for
labelset(x). For pitch and mood we use the normal setter syntax. Now notice that by
using attributes instead of positional parameters, rules p1 and p3 no longer depend on
mood and will be unaffected by future changes to it. Compared to the previous example,
the overall behavior of our grammar remains the same, and the structure of the derivation
tree has not changed.

p1 : label = cadence −→ [7-chord, pitchset(pitch + P5) , triad]
p2 : label = 7-chord −→ [triad, moodset(h) , note, pitchset(pitch + m7)]
p3 : label = triad −→ [note, third, note, pitchset(pitch + P5)]
p4 : label = third ∧ mood = h −→ note, pitchset(pitch + M3)
p5 : label = third ∧ mood = s −→ note, pitchset(pitch + m3)

3.3.1 Optional Attributes
For the latest example, we defined initial values for all parameters. This is necessary
since we must select a particular element from V as the axiom. Yet, our definition of
attributes does not inherently require that every entity defines every parameter, as long
as we do not use its getter before we used its setter. This can be useful in practice when
we model more complex structures with multiple semantic levels. For example, we could
encode the chord type as a special chord attribute that is determined once the derivation
reaches the chord level of the piece. Under our current definition every entity, including
the axiom, would have to define the chord attribute, but semantically it does not make
sense to say a cadence is a type of chord.

Definitions: ∅ With optional attributes we formalize the situation where a particular
dimension of an entity cannot be meaningfully defined. An attribute k is optional when

31

3. A Functional Framework for Context-Free Grammars

its value space contains the special value ∅. When the attribute value is ∅, we say the
attribute is undefined, otherwise we say it is defined or, more informally, that it exists.
Unless a value is explicitly specified, we generally assume that an optional attribute is
undefined for the axiom. We further define four new accessors:

khas : V → { , ⊥} : v → kget(v) = ∅

kdef : Xk → (V → V) : xk → v → v, if khas(v)
(kset(xk))(v), otherwise

kor : Xk → (V → Xk) : xk → v → kget(v), if khas(v)
xk, otherwise

ktag : V → V : kset()

Definitions: khas, kor, kdef , ktag Again, khas, kor(xk), kdef (xk), and ktag are expressions
and will be implicitly applied to the current entity. khas is used to test whether an entity
defines a particular attribute. Within the LHS, we may also just write k instead of khas.
kdef works like kset if k is undefined, otherwise it has no effect. kor retrieves the current
value if k is defined, otherwise it retrieves the specified fallback value. Finally, ktag can
only be used for attributes that include in their value space. We will use { } as the
value space for optional attributes that do not need a particular value.

Example: Optional Attributes

In this example we assume pitch and mood are optional. In p1 we use the fallback value
C for computing the fifth and initialize it for the triad. Rules p2 to p5 all depend on
pitch and check for its existence in the LHS. p4 and p5 check the mood attribute using
an equality, which will fail if its value is ∅. For this reason, we now guarantee that mood
is defined in p3 using the fallback value h.

p1 : label = cadence −→ [7-chord, pitchset(pitchor(C) + P5) ,

triad, pitchdef (C)]
p2 : label = 7-chord ∧ pitch −→ [triad, moodset(h) ,

note, pitchset(pitch + m7)]
p3 : label = triad ∧ pitch −→ [note, third, mooddef (h) ,

note, pitchset(pitch + P5)]
p4 : label = third ∧ pitch ∧ mood = h −→ note, pitchset(pitch + M3)
p5 : label = third ∧ pitch ∧ mood = s −→ note, pitchset(pitch + m3)

32

3.3. Attributes

3.3.2 Goal Fulfillment
The introduction of optional attributes ushers in a philosophical shift in our system.
Entities are no longer structurally the same, but may represent different types of musical
objects depending on the available attributes. Up to now we differentiated between
entities based on the nominal label attribute, which has very limited semantic meaning.
For example, we could encode the labels 7-chord and triad as a chord attribute that
has the particular chord type as its value. Semantically, this would be a richer and
arguably cleaner model of our domain. A rule that generates a chord could then match
on the chord attribute, rather than testing the overloaded label attribute. The problem
is that this chord attribute will be inherited to the children, and the same rule would
match again and again. We avoid this with label by only matching on particular values
and then changing it for every child. For example, we must set note as a dummy label
for our terminals, even though we never actually use it for matching. Ideally, we want
structural matching, but without risking an infinite recursion.

When the derivation algorithm encounters an entity with the chord attribute, it should
select a rule that can make a chord, for example, by replacing it with the chord notes.
We could also say chord is a goal for the entity, and a rule that specifies it in the LHS
represents a claim, of sorts, that the rule is able to fulfill this goal. The idea is that a
rule can only be applied if it can fulfill at least one goal. Once the rule has been applied,
the goal can be considered fulfilled, and the rule will not be applied to the same entity
again. There are multiple possible ways to integrate goal fulfillment mechanism into our
system. Do we declare goals on the entity, or do they depend on the rule? Are goals
implicitly or explicitly marked as fulfilled? How can we allow the repeated fulfillment of
the same goal for deliberate recursion? The particular solution we describe below is just
one possibility and not necessarily optimal by every metric.

Definitions: G, k!, k! In the LHS of a rule p ∈ P , we may write k! to add k to the
set G(p) ⊆ K of goals that p can fulfill. For example, if the LHS of p is k! ∧ l, then
G(p) = {k}. The logical operators are irrelevant at this stage. The set of G(v) ⊆ K is
the set of unfulfilled goals on the entity v ∈ V . When we want to test whether some rule
p matches entity v, we first intersect G(p) with G(v). If the intersection is empty, no
goal can be fulfilled, and the rule does not match. Otherwise, if at least one goal can be
fulfilled and the condition is satisfied and the rule is selected, all goals in the intersection
are marked as fulfilled. Within the RHS we can reset the fulfillment state by writing k!,
which we can use to cause deliberate recursion. Analogously, we can write k! to manually
fulfill k. Automatic fulfillment happens before the RHS is applied since we may want to
immediately change the fulfillment state.

With this model we can decide on a per-rule basis which attributes are treated as goals
and which are used only for conditional matching. This is useful because sometimes
attributes should become goals at a later point, and some attributes should not be fulfilled
at all. Consider the pitch and mood attributes, which are potentially propagated down
from the axiom. Goal semantics do not seem to be meaningful for these two, as they are

33

3. A Functional Framework for Context-Free Grammars

better understood as shared parameters of various musical abstraction levels. Regarding
deliberate recursion, resetting the fulfillment state in the RHS rather than in the LHS
is more expressive since it allows us to specify both the recursion and the conditional
termination within a single rule.

Example: Goal Fulfillment

In this example we will use goal fulfillment instead of a nominal label attribute for
matching. We remove the label attribute altogether and add the valueless cadence and
third attributes and a chord attribute with the values {7, triad}. We fulfill exactly one
goal in each LHS, but we could potentially specify an arbitrary number, as long as that
number is not zero. The note label does not need a replacement because we no longer
need to explicitly mark the terminals, which leads to the degenerated expression for
the chord root in rule p3. The expression works as an identity function and replaces
the input entity with itself. The use of chord! in rule p2 immediately resets the fulfillment
state, so that p3 can fulfill it again. Since we use two different rules and p3 does not reset
the goal again, there will be no infinite recursion. As intended, we no longer need to use
a label for the terminals. The pitch attribute seems slightly out of place since we use it
in almost every rule. We will discuss this phenomenon in the next section.

p1 : cadence! −→ [chordset(7), pitchset(pitchor(C) + P5) ,

chordset(triad), pitchdef (C)]
p2 : chord! = 7 ∧ pitch −→ [chord!

set(triad), moodset(h) ,

pitchset(pitch + m7)]
p3 : chord! = triad ∧ pitch −→ [, thirdtag, mooddef (h) , pitchset(pitch + P5)]
p4 : third! ∧ mood = h ∧ pitch −→ pitchset(pitch + M3)
p5 : third! ∧ mood = s ∧ pitch −→ pitchset(pitch + m3)

3.3.3 Attribute Semantics
The pitch attribute is overloaded with four different meanings: at first it describes the
tonic of the cadence, then the root for a chord, then an alterable note for the third,
and for the terminals it is simply the fundamental frequency of the note. We could use
different attributes for each of these meanings, but they seem to coexist quite naturally
within the pitch attribute. There are various reasons why the concept of pitch works well
across abstraction levels, not least because it is a core dimension of music, and many
musical objects can be reduced to or derived from a fundamental pitch. Anyway, pitch
is queried and written quite often in our grammar and whenever this happens we need
to guarantee its existence, either by checking for it in the LHS or providing a default
value. At this point, working with the grammar is still rather tedious, reminiscent of

34

3.3. Attributes

programming in a very low-level language. We have built a custom model of a cadence
by defining attributes, matching conditions, and primitive mutations, but the behavior of
the derivation algorithm is not inherently musical, except for the + operator for pitches
and intervals. We will soon introduce additional abstract features, but this will only get
us so far. Domain-specific features are essential, otherwise we will not end up with a
system for music generation, but with a generic programming language. Still, flexibility is
important too, considering Moorer’s stance on the value of general purpose programming
for composition [Roa82].

So, how will we define domain-specific features in a way that is unobtrusive and does not
impose unnecessary limitations? For one, we will provide these features as composable
functional models. These functions take certain musical structures as input, and generate
new structures as their output. The structures are defined in terms of attributes, some of
which the function will consume, others it will add or replace. For example, an instrument
model that synthesizes a sound may consume a pitch, time, and volume attribute and
generate a sequence of audio samples. Ideally, the semantics of these attributes overlap
with those used by other models. If multiple models assume identical semantics for a
particular attribute, we call it an attribute with canonical semantics. The reason why
the pitch attribute works well is that it is part of a common interface that is shared by
all of our rules. If each rule defined its own identifier for the role of the pitch attribute,
we would have to do some renaming between representations. Further, if we commit
to the semantics of the pitch attribute, we can define other functions that depend on
them. For example, we could reformulate the + operator for pitches and intervals as a
domain-specific pitch+(x) function, which adds the interval x to the current pitch value
in a very concise way.

We will often attempt to find canonical semantics in order to simplify the interaction
between the various domain-specific models that we employ. Canonical attributes are
attributes that are associated with canonical semantics, though there is nothing special
about these attributes in terms of syntax or behavior. In the context of our cadence
generator the pitch and mood attributes could be called canonical since they transcend
the boundaries of multiple rules. Ultimately, this classification is primarily useful to
differentiate them from ad hoc attributes, that are specific to a particular example. In
practice, the initialization of these attributes is an important consideration. For example,
what happens if we use pitch+ on an entity that does not define pitch? We will usually
avoid undefined behavior by providing fallback values, but raising an error, or at least a
warning, are viable alternatives. In the future we may want to rely on a type system for
recognizing such problems early.

Example: Attribute Semantics

In this example we commit to the pitch attribute as a fundamental component of our
model. We will define the function pitch+ : I → (V → V), which returns a setter
expression via the mapping x → pitchset(pitchor(C) + x). This allows us to streamline
the notation for the pitch modification since the pitch getter is used implicitly with a

35

3. A Functional Framework for Context-Free Grammars

guaranteed default value C. We also remove the existence check from the LHS, since
our rules no longer require an explicit pitch. Obviously, we would still specify a pitch for
the axiom, but the grammar is now at least correct without it, albeit C is an arbitrary
choice.

p1 : cadence! −→ [chordset(7), pitch+(P5) , chordset(triad)]
p2 : chord! = 7 −→ [chord!

set(triad), moodset(h) , pitch+(m7)]
p3 : chord! = triad −→ [, thirdtag, mooddef (h) , pitch+(P5)]
p4 : third! ∧ mood = h −→ pitch+(M3)
p5 : third! ∧ mood = s −→ pitch+(m3)

3.4 Expressions
The fundamental feature of a context-free derivation is a one-to-many relationship between
entities. As a consequence, many components of our grammar are parametrized by a
single entity. For example, given an input entity, the LHS returns the result of the
matching condition, the RHS generates a sequence of replacement entities, the setter
copies the entity and adds an attribute, and the getter retrieves the value of an attribute.
Taking the predominance of this type of function into consideration, we generally try to
control the flow of entities implicitly. We have used a declarative notation in the previous
sections, where we avoided references to the input entity, but we have not yet provided an
explanation of the mechanism. In this section we will find a unifying functional model for
the features so far, which is naturally quite abstract, but will help us keep our definitions
simple and our syntax declarative.

Definitions: Y We call a function of the form V → Y , where V is the set of entities,
an expression over the constants Y . An important subtype are expressions over sentences,
which would be any function V → V ∗. For example, the RHS and setter expression are
both sentence expressions, albeit an RHS may generate sentences of arbitrary length,
while a setter generates exactly one entity. We have to differentiate between the setter
function kset and the setter expression kset(xk) for some attribute k and value xk. The
former is a function that returns an expression, the latter is an expression. Expressions
can be the result of a function, but they are especially useful as function arguments.
Often, the value that we pass to the setter function depends on the input entity v ∈ V .
For example, we may want to copy the value of an attribute l to attribute k by writing
kset(l), where l is short for lget.

A parametric expression is an expression that depends on a parameter, and we could
define it as a function of the form X → (V → Y), where X is the set of parameters.
The setter function is one example since we defined it as kset : Xk → (V → V) for

36

3.4. Expressions

some attribute k with a value space Xk. Yet, using Xk as the domain of our setter
function is inconvenient because unless we just want to set a constant xk ∈ Xk, we must
explicitly evaluate any expression V → Xk. Instead, we define a parametric expression
as (V → X) → (V → Y), which covers the general case, where we specify the parameter
x in terms of the input entity v. This allows us to use kset(l) directly, where l is an
expression V → Xk. A constant xk can be set via kset(v → xk), where v is simply ignored.
Note that the evaluation of an expression is always the responsibility of the receiving
function. In the example our new setter function receives an expression l, and (kset(l))(v)
will internally assign l(v) to attribute k.

Definitions: Yλ, λ For setting a constant we could either use our earlier setter function
that was defined over Xk, or manually wrap every constant xk ∈ Xk in a dummy
expression v → xk, as shown above. Since neither solution is ideal we generalize the
two concepts. Given a set of constants Y = Y 0

λ as a basis, we recursively define the set
of nth-order expressions Y n

λ = Y n−1
λ ∪ (V → Y n−1

λ), where n ∈ N is a finite number.
For example, the first-order expressions Y 1

λ are equivalent to Y ∪ (V → Y). Nth-order
expressions include any chain of the form V → . . . → V → Y with at most n occurrences
of V . When the exact value of n is not important, which is the common case, we will just
write Yλ instead of Y n

λ . We further define a function λ : Yλ → (V → Y), that reduces
any higher-order expression yλ to a plain expression by recursively applying yλ to the
input entity v ∈ V :

λ(yλ) = v → yλ, if yλ ∈ Y

(λ(yλ(v)))(v), otherwise

We will usually assume an implicit application of λ, which means we can just write yλ(v)
instead of (λ(yλ))(v). For example, with 0 ∈ Nλ we can write 0(v), which is equivalent
to (λ(0))(v) = 0 ∈ N. Note that since expressions are evaluated recursively, we cannot
differentiate between the sets (Yλ)λ and Yλ. Consequently, defining expressions over
expressions can lead to ambiguity and should be avoided. Due to type variance rules, we
can redefine any function (V → X) → Yλ as a function Xλ → (V → Y) without losing
generality. Yet, it can be convenient to use the general higher-order form of the parametric
expression Xλ → Yλ, especially for ad-hoc definitions, where we do not want to think
about the order of the expressions on either side of the function arrow. For example, the
setter can be defined as a function kset : (Xk)λ → Vλ, and we may freely use kset(xk ∈ Xk)
or kset(l ∈ (V → Xk)). We can redefine it as a function kset : (Xk)λ → (V → V) without
restricting its use, but the implementation must now guarantee a simple expression as
the result.

Definitions: M, R, −→ Finally, we establish that an LHS is an expression mλ ∈ Mλ

that evaluates to a pair (w ∈ { , ⊥}, G ⊆ K) ∈ M , where w indicates the success of the
matching condition, and G are the goals that would be fulfilled by the rule’s application.
Respectively, an RHS may be any sentence expression v∗

λ ∈ V ∗
λ . The star-operator takes

37

3. A Functional Framework for Context-Free Grammars

precedence, which means V ∗
λ = (V ∗)λ. At first glance the application of a rule appears

to be a two-step process, where we evaluate the LHS and then—if it matched—evaluate
the RHS. Yet, the evaluation of the LHS already determines the result of the RHS, as
the input entity for both steps must be the same. We can represent the results of both
sides with the set R = M × V ∗ and define the set of possible rules as Rλ. We use our
familiar arrow notation to combine an LHS mλ with an RHS v∗

λ to get a rule in Rλ:

mλ −→ v∗
λ ≡ v → (mλ(v), v∗

λ(v)), if mλ matches v ∈ V

(mλ(v), []), otherwise

Example: Expressions

In this example we show how our various notational constructs can be described in terms
of expressions. We use plain expressions wherever possible, as the unnecessary use of
higher-order expressions can obfuscate the definitions. For the accessors we define an
attribute k with value space Xk. The RHS, LHS, and rules were already explicitly defined.
Note that P are the rules of a particular grammar, while Rλ is the set of all possible
rules. The final three lines describe the derivation algorithm as a whole and our two
types of bracket notation. How these three functions work in detail will be discussed in
Sections 3.4.1 and 3.4.2.

khas : V → { , ⊥}
kget : V → Xk

kor : (Xk)λ → (V → Xk)
kset : (Xk)λ → (V → V)
kdef : (Xk)λ → (V → V)
ktag : V → V

LHS ∈ Mλ

RHS ∈ V ∗
λ

Rλ = (M × V ∗)λ

P ⊂ Rλ

derive : P(Rλ) → (V → V ∗)
[. . .] : (Rλ)∗ → (V → V ∗)
. . . : (Rλ)∗ → (V → V ∗)

38

3.4. Expressions

3.4.1 Sub-Grammars
A cadence and a chord exist on different levels within the semantic structure of a piece.
The cadence describes an abstract relation between tension and release, which is at a
lower level expressed as a concrete progression of chords. Let us consider the latest
version of our cadence generator, which we defined in Section 3.3.3. While the fulfillment
of the cadence is well encapsulated within the first rule, the four remaining rules expose a
lot of details about the chord generation process. For example, the third goal is fulfilled
within the global scope of the derivation, but will hardly become relevant outside of chord
generation. In this section we introduce nested derivation, which allows us to encapsulate
rules in sub-grammars. Grammars with sub-grammars are also known as hierarchical
grammars and have been used for music generation by McCormack [McC96].

Definitions: derive, axiom Context-free derivation over a particular set of rules can
be understood as a mapping from an axiom, which is a single entity, to a sentence, which
is a sequence of entities. We define a function derive : P(Rλ) → (V → V ∗), which takes a
set of rules as its parameter and returns a sentence expression that performs context-free
derivation in the familiar manner. With derive we can use a context-free sub-grammar
as the RHS of a rule. In order to remove the need for a dedicated starting symbol, we
define the special predicate axiom, which only matches the direct input entity for the
expression returned by derive. In terms of goal-fulfillment, we will treat a sub-grammar as
a black-box, where attributes can pass freely between the boundaries, but the fulfillment
state is local to the particular derivation. Every application of derive pushes a clean
fulfillment context onto the fulfillment context stack of the axiom, and removes this
context from the terminals once derivation has finished. Any operation that affects
fulfillment uses the top-most fulfillment context of the entity. In practice this means that
all goals on the axiom of a nested grammar are unfulfilled. Any internal fulfillment will
be discarded once it terminates and not leak into the scope of the super-grammar.

Example: Sub-Grammars

In this example we will encapsulate the rules for chord generation into a CHORD sub-
grammar and use this sub-grammar in our main grammar CADENCE. Note that we
use the rule labels as variables in order to syntactically simplify the example. It would
be equivalent to replace the CHORD label with the body of the chord rule. The most
important part of this example is the use of the derive function as the RHS of rule p2.
Rule p1 is almost exactly the same as in Section 3.3.3, except that we now use the axiom
predicate, rather than the cadence goal, which served no purpose beyond being an entry
point. Rule p2 fulfills the chord goal by applying the CHORD sub-grammar in its RHS .
The four rules q1 to q4 correspond to rules p2 to p5 of the example in Section 3.3.3. We
do not use the axiom here since different rules should be used, depending on the value
of the chord attribute. Since each grammar has its own goal fulfillment context, rules q1
and q2 of the CHORD grammar can fulfill the chord goal, even though it was already
fulfilled in p2 of the CADENCE grammar.

39

3. A Functional Framework for Context-Free Grammars

CADENCE : derive(
p1 : axiom −→ [chordset(7), pitch+(P5) , chordset(triad)]
p2 : chord! −→ CHORD

)

CHORD : derive(
q1 : chord! = 7 −→ [chord!

set(triad), moodset(h) , pitch+(m7)]
q2 : chord! = triad −→ [, thirdset, mooddef (h) , pitch+(P5)]
q3 : third! ∧ mood = h −→ pitch+(M3)
q4 : third! ∧ mood = s −→ pitch+(m3)

)

3.4.2 Fork and Pipe
The derive function implements the most general strategy for combining rules in our
system, but in many cases we do not need the complexity that comes with a recursive
derivation process. Instead of a complete sub-grammar consisting of four rules, we could
generate the chord notes in parallel and use conditional clauses to modify the third and
add the seventh. The steps of this process have a fixed order, and we would have to
carefully enforce this order with goals. In this section we will look at two particular
functions that can be used as a simpler alternative for defining deterministic, non-recursive
sub-grammars. We know them from the prior examples as our two types of bracket
notation, but until now they lacked a formal definition and name: fork and pipe.

Definitions: m The core mechanism behind fork and pipe can be explained with
a restricted definition as two functions (V ∗

λ)∗ → (V → V ∗) over sequences of sentence
expressions, which we will later generalize to functions (Rλ)∗ → (V → V ∗) over sequences
of rules. In order to treat the set of right-hand sides V ∗

λ as a subset of the set of rules
Rλ, we define a trivial LHS m = (, {}) ∈ M and assume that an RHS v∗

λ ∈ V ∗
λ is

equivalent to the rule m −→ v∗
λ. Note that this would also allow the use of a plain RHS

as a rule for the derive function. Since derive additionally requires that at least one goal
must be fulfilled, a rule with a trivial LHS will simply be ignored.

Definitions: [. . .] The fork function performs parallel application and evaluates each
input rule directly on the input entity. The results are concatenated into a flat sequence
of children. We use our familiar square bracket notation as a special syntax. Assume
f, fi ∈ V ∗

λ and f = [f1, . . . , fn], then f(v) = f1(v) · . . . · fn(v) for any entity v, where ·
is the concatenation operator. This definition is fully compatible with our prior use of

40

3.4. Expressions

square brackets, but we are now using arbitrary sentence expressions within. For example,
we can nest forks, but since the resulting sequences will be concatenated, the nested
fork [[[f1], f2], f3] is equivalent to the flat fork [f1, f2, f3]. The empty fork [] removes the
branch from the sentential form since it describes a replacement of the parent entity with
zero children. Additional examples are shown in Table 3.2.

Definitions: . . . The pipe function applies its input rules sequentially. Only the
first rule is evaluated on the input entity. The second rule is evaluated on the results
of the first rule, the third rule is evaluated on the results of the second rule, and so
on. We use angle brackets as a special syntax for a pipe. Using the same variables and
concatenation operator as before, if f = f1, . . . , fn and f1(v) = (w1, . . . , wm), then
f(v) = [f2, . . . , fn (w1), . . . , f2, . . . , fn (wm)]. For the base case, where n = 0, we define

(v) = v, which we call the empty pipe. The evaluation of a pipe can be modelled by a
derivation tree, where v is the root at depth 0, (w1, . . . , wm) are its children at depth
1, and each entity in f(v) is a leaf node at depth n. A rule fi is applied to all nodes
at depth i − 1 and generates a new tree level at depth i. Again, the notation is fully
compatible with the prior examples, and we may use any rule within the brackets. We
can even nest pipes, but—under our restricted definition—a nested pipe f1 , f2 , f3
will be equivalent to the corresponding flat pipe f1, f2, f3 . Additional examples and
interactions with the fork function are shown in Table 3.2.

In order to generalize fork and pipe from (V ∗
λ)∗ to (Rλ)∗, we must find a meaningful

interpretation for rules with a non-trivial LHS. In a fork, a failing rule will be interpreted
as the empty fork []. For example, given two sentence expressions f, g ∈ V ∗

λ , [⊥ −→
f, g] = [[], g] = g. For the pipe, we declare that a failing rule will terminate the current
branch. For example, ⊥ −→ f, g is equivalent to the empty pipe . When a non-trivial
LHS is involved, nested pipes may have different semantics, as the nested pipe can
terminate, but evaluation will continue in the outer pipe. For example, ⊥ −→ f , g is
equivalent to , g = g . The behaviour of the pipe becomes more interesting when
the LHS matches certain entities, but not others. Given two entities w1, w2 ∈ V and an
LHS mλ ∈ Mλ that matches w1, but not w2, [w1, w2], mλ −→ f = [f(w1), []] = f(w1).
Finally, goal fulfillment inside fork and pipe is generally allowed, but they do not create
their own fulfillment context.

Example: Fork and Pipe

In this example we will define a grammar that is equivalent to the one from Section 3.4.1,
but we will use fork and pipe instead of derive. For the CADENCE grammar we use a
pipe at the top-level. As usual, p1 creates two entities with the chord goal, where the
first has the chord value 7 and is transposed by a fifth. The triad goal is not longer
necessary. In p2 we feed each of the two entities into the CHORD grammar. On a high
level, CADENCE corresponds to example 10 in Table 3.2, and p1 corresponds to example
7. Note how we no longer have to use an LHS here, since the application order is fixed.

41

3. A Functional Framework for Context-Free Grammars

f ∈ (V → V ∗) f(v ∈ V)
1 [] ()
2 (v)
3 [a] (a(v))
4 a (a(v))
5 [a, b] (a(v), b(v))
6 a, b (b(a(v)))
7 [a, b , c] (b(a(v)), c(v))
8 [a, b, c] (a(v), c(b(v)))
9 a, [b, c] (b(a(v)), c(a(v)))

10 [a, b], c (c(a(v)), c(b(v)))
11 [a, b , c, d] (b(a(v)), d(c(v)))
12 [a, b], [c, d] (c(a(v)), d(a(v)), c(b(v)), d(b(v)))

Table 3.2: This table shows basic combinations of fork and pipe. We define four expressions
a, b, c, d ∈ Vλ, which describe arbitrary one-to-one mappings between entities. We do
not use sentence expressions V ∗

λ because it is important that each of these expressions
generates exactly one entity. For example, if a could return an arbitrary number of
entities, writing b(a(v)) in the third column would be invalid. In summary, the fork
function provides concatenation for sentence expressions, while the pipe function can be
used for function composition and mapping over sentences. Consider examples 10 and 12,
where the first expression in the pipe generates two entities, and the second expression is
applied to both.

The CHORD grammar has changed significantly. Each of the four rules q1 to q4 generates
one note of the chord, which are concatenated using a top-level fork. Rule q1 generates
the bass note, and since the pitch should not change, we simply use an identity mapping
expressed as an empty pipe. In q2 we generate the third, by first shifting the pitch by a
minor third interval. We then use a guarded expression that only matches if the chord
is a seventh chord or the mood is happy. If either is the case, we shift the third up by
another half-step to create a major third, otherwise pipe ignores the RHS and stops after
the first expression, yielding a minor third. Rule q3 generates the fifth, which is rather
straight-forward. Finally, in rule q4 we only want to generate the fourth note if the chord
is a seventh chord. As fork replaces a failing rule with an empty fork [], this branch will
be ignored if the chord is a triad. Even though we use two LHS in this grammar, we
did not need any goal fulfillment since fork and pipe, unlike derive, are not inherently
recursive and will terminate either way.

42

3.4. Expressions

CADENCE :
p1 : [chordset(7), pitch+(P5) , chordtag]
p2 : CHORD

CHORD : [
q1 :
q2 : pitch+(m3), chord = 7 ∨ mood = h −→ pitch+(1)
q3 : pitch+(P 5)
q4 : chord = 7 −→ pitch+(m7)

]

3.4.3 Sentences

Although we can now define sub-grammars of varying complexity and use them as the
RHS of a rule, their application is not truly encapsulated. With the derive and pipe
functions a sentence generated by a sub-grammar immediately replaces an entity in the
outer grammar’s sentential form, where they are visible to its rules. Yet, sometimes we
will want to transform or aggregate the result of the sub-grammar before we integrate
it into the scope of the outer grammar. The derivation of the transformed entities
can then resume in the familiar manner. Beyond encapsulation, this allows us to run
context-sensitive passes over sub-grammar results, significantly expanding the space of
possible operations. Schwarz and Müller [SM15] were the first to use sub-grammar results
as first-class citizens in shape grammars.

Definitions: count, filter, kset(v∗) Using sentences as first-class citizens simply means
that we have functions that take sentence expressions as their input. Fork and pipe are
examples of such functions and can be used for concatenation and mapping. Another
example is the function count : V ∗

λ → (V → N) : v∗
λ → (v → |v∗

λ(v)|), which calculates
the length of the sentence generated by v∗

λ for the input entity v. A function filter :
V ∗

λ × { , ⊥}λ → (V → V ∗) : (v∗
λ, c) → v → . . . can be used for selecting entities from

the sentence v∗
λ(v) that match the condition c. Our implementation provides additional

aggregation functions, which we will not discuss in detail. It is further possible to retain
a sentence for later use. Given an attribute k over the value space V ∗ of sentences, we
can use our familiar setter kset(v∗

λ) to store the result of v∗
λ ∈ V ∗

λ under k. We can access
the generated entities via the getter of k at any later point.

43

3. A Functional Framework for Context-Free Grammars

Definitions: append, select Finally, we define a generic way of integrating a sentence
into the sentential form. Assume we have a sentence expression v∗

λ ∈ V ∗
λ and an input

entity v ∈ V . We only need a certain set of attributes from v∗
λ(v), and at the same time

we want to preserve some attributes of v. We do not know anything about v∗
λ, so it may

or may not preserve the attributes we need. How can we guarantee that the internals
of v∗

λ do not affect the main grammar? We define a function append : V ∗
λ → (V → V ∗),

that copies the attributes of every entity vi in the sentence v∗
λ(v) to a clone of v. The new

entities will preserve all attributes of v that do not appear in the corresponding entity
vi. Naturally, both v∗

λ(v) and (append(v∗
λ))(v) generate the same number of entities.

Further, we define select : P(K) → (V → V), which marks every optional attribute on v
as undefined, unless it appears in the specified subset of K. This allows us to discard
implementation-specific attributes and define a clean output interface for sub-grammars.

Example: Sentences

In this example we will use isolated evaluation of sentence expressions to define a variant
of our earlier CHORD grammar. This time, we want to set the value of a new attribute
gain for the chord notes, which describes the relative loudness of a note. gain is defined
over the non-negative real numbers, where 0 is complete silence, and, for any two gain
values x, y, we assume x is louder than y iff x > y. Depending on the value of the chord
attribute, the CHORD grammar will generate a triad or a seventh chord. If we use the
same gain value for each note, the four notes of the seventh chord will naturally be louder
than the three notes of the triad. Instead, we want both chords to have the same total
gain, with 1/3 for each triad note, and 1/4 for the seventh chord notes.

We define the EQUALIZED_CHORD grammar as a pipe that is wrapped in an append
function. This outer append call will guarantee that the attributes of the input entity will
be preserved, regardless of where we use this grammar. In p1 we evaluate the CHORD
grammar and store the resulting entities in the notes attribute, which is defined over the
sentences V ∗. After p1 there is still only one entity that gets processed by the pipe, since
the notes generated by CHORD are isolated inside the attribute. In p2 we use the count
function to calculate the number of chord notes and set the gain attribute accordingly.
Next, in p3 we use the getter notes again to fetch the chord notes and use select to
isolate the pitch attribute. After all, we may not know whether the output of CHORD
defines its own gain value that would overwrite the one we have calculated in p2. The
append call combines the single input entity that carries the gain with the three or four
pitch values that we selected. Finally, we use select to remove all attributes except for
pitch and gain.

44

3.4. Expressions

EQUALIZED_CHORD : append(
p1 : notesset(CHORD)
p2 : gainset(1/count(notes))
p3 : append(notes, select({pitch})
p4 : select({pitch, gain})

)

3.4.4 Ranges
The fork function allows us to replace the parent entity with a sequence of children, but
we have to explicitly specify these children in one way or another. We are still lacking a
function for expanding a single entity into multiple ones. Cloning is arguably the simplest
operation for generating an entity sequence from a single entity. We can define a clone
function that generates a specified number of copies of the input. As opposed to fork,
this function would allow us to specify the length of the generated sequence dynamically.
Yet, truly identical clones are of course not very useful since they will all be derived in
the same way. Instead of generating exact copies of the input, we want to associate each
output entity with a unique value.

Definitions: range We define a function range : Nλ × (N → V ∗
λ) → (V → V ∗) which

performs the mapping (n, f) → [f(0), . . . , f(n − 1)]. The input n is the number of copies,
and f is a function that takes the index of the copy and maps it to a sentence expression.
First, we generate indices (0, . . . , n − 1) and apply f to each, then we concatenate the
resulting n sentence expressions with a fork. We definitely want to generalize range to
take any numeric expression in Nλ, rather than a constant number. It may further be
convenient to supply the evaluated value n as an additional parameter to f , so that one
can transform the index based on the total. One use-case for this is the generation of
a reversed range (n − 1, . . . , 0). Within a sentence, the index of a particular entity is
implicit, and our implementation provides helper functions for iterating over sentences.

Example: Ranges

In this example we use range to generate a dynamic number of measures, which is supplied
via a parameter n. In p1 we pass the value n to range. Instead of i → indexset(i) we can
directly pass the setter function to write the index to the index attribute. Rule p2 matches
on even and odd numbered measures to generate an alternating pattern of a dominant
seventh and a tonic triad. It also demonstrates how a fork with guarded expressions can
emulate a case differentiation. Finally, in rule p3 we apply the EQUALIZED_CHORD
grammar from the previous example. CHORDS is actually just another parametric

45

3. A Functional Framework for Context-Free Grammars

expression. For example, to generate 8 chords we could write CHORDS(8), which is an
expression V → V ∗.

CHORDS : (n ∈ Nλ) →
p1 : range(n, indexset)
p2 : [

even(index) −→ chordset(7), pitch+(P5)
odd(index) −→ chordtag

]
p3 : EQUALIZED_CHORD

3.5 Variation
A human composer uses their creative intuition to locate a piece in a space of possibilities
bounded by whatever they consider to be a valid musical idea. Up to now we side-stepped
the problem of modelling the creative aspect by avoiding decisions in the derivation
process altogether. For every non-terminal there was only a single matching rule and
consequently the resulting sentence was fully determined from the start. Yet, abstraction
is more than an efficient encoding. We can see a minuet in G major as a placeholder for
many pieces, not just as an identifier for one particular minuet. Variation is the missing
ingredient, which elevates formal grammars from a complex tool for musical notation to
a powerful tool for automatic composition.

When we expand the possibility space by offering alternatives for the replacement of
some non-terminal, we also need a strategy for deciding between these alternatives. Some
classic composers published musical games that allow the composition of new pieces by
randomly selecting from a framework of predefined bars, most notably Mozart with his
minuet generator [Zas05]. The player of the game needed no musical knowledge, only
a pair of dice. For this work we will use a similar approach, where the grammar is the
framework, and the replacement decisions are delegated to a non-deterministic selection
process. Leaving the decisions up to randomness is arguably not very sophisticated, and
we could imagine alternative strategies which incorporate empirical analysis of existing
music or direct user intervention. On the other hand, the chance-based approach is
trivial to implement and will nonetheless produce interesting results. It also forces us to
actively shrink the possibility space around parts of the process that should have less
variance, which hopefully leads to grammars that consistently generate satisfying output
for various starting conditions.

46

3.5. Variation

Definitions: rng, seed At the core of all non-deterministic features of the grammar
lies the canonical rng attribute, which is a function that generates a new random number
from the interval I = [0, 1] ⊂ R each time it is evaluated. Note that such a function needs
mutable internal state, for example a counter that gets incremented after each evaluation.
When the rng attribute is inherited, the internal state is not cloned, which means child
entities are desynchronized by default. We define seed : (Nλ)∗ → (V → V), which uses
the specified numbers to initializes a new random number generator and sets it as the
value of the rng attribute. The seed function can be used to synchronize children, which
will be discussed in Section 3.5.1.

Definitions: rand, uniform Based on the rng attribute we can define additional
non-deterministic functions. We define rand : V → I, which simply evaluates the rng
function of the input entity and returns the random number. For example, the expression
[kset(rand), kset(rand)] will generate two entities with attribute k that holds a random
number. Since the state of an inherited random number generator is shared, both
evaluations of rand will yield a different result. We further define uniform : (Rλ)2 →
(V → R), which takes a tuple of number expressions (aλ, bλ) ∈ (Rλ)2 and returns an
expression that samples from a uniform distribution between aλ(v) and bλ(v), when
evaluated with some entity v ∈ V .

Definitions: pick, choice, derive In a non-deterministic grammar a non-terminal may
be matched by multiple rules. In order to make a decision, we define a discrete choice
mechanism for rules with the function pick : P(Rλ) → (V → R). It evaluates each input
rule and discards those that did not match. The remaining ones are the candidates Q,
of which one is selected at random using a number generated by rng. Note that pick
propagates the result of the selected rule to the caller, which is the reason why it returns
an expression over R. When Q is empty, pick has no available options and will not match.
The derive function uses pick internally for non-deterministic derivation. For parametric
variation, we define choice : Y → (V → Y), which can be used to randomly select a value
from an arbitrary set Y . Note that choice is undefined when no candidate exists, and an
implementation may simply raise an error in that case.

Definitions: w−−→ When it comes to picking an option, uniform selection is not always
optimal. Deliberate use of uncommon patterns can lead to great original compositions,
but their overuse might sound strange. The selection frequency can be controlled with
a weighting mechanism. In Section 3.4 we defined the result of an LHS as a tuple
(w ∈ { , ⊥}, G ⊆ K). We will now generalize the binary value w to a non-negative
number w ∈ R+, which we call the weight of the rule. A rule with weight 2 will be
selected twice as often as a rule with weight 1, and w = 0 indicates a matching failure.
For some LHS mλ ∈ Mλ and RHS v∗

λ ∈ V ∗
λ , we define a weight wλ ∈ R+

λ by writing
mλ

wλ−−−→ v∗
λ. For a trivial LHS, we will just write wλ−−−→ v∗

λ instead of wλ−−−→ v∗
λ. If no

weight is specified, we assume a weight of 1, so uniform selection will be the default

47

3. A Functional Framework for Context-Free Grammars

part1 part2 progression probability
p3 p3 V-I-V-I 2/3 ∗ 2/3 = 4/9
p3 p4 V-I-I-IV 2/3 ∗ 1/3 = 2/9
p4 p3 I-IV-V-I 1/3 ∗ 2/3 = 2/9
p4 p4 I-IV-I-IV 1/3 ∗ 1/3 = 1/9

Table 3.3: Each row shows one possible combination of rules p3 and p4 applied to the two
part entities generated by p2. Rule p3 has a relative weight of 2.0 and will be selected
twice as often as rule p4, leading to the probabilities specified in the last column.

behavior. For choice we may use the same syntax to assign weights to the options, albeit
without an LHS.

Example: Variation

In this example we will use the uniform, pick, and choice functions for variation. In p1
we use choice to select a random value for the mood attribute, h for ‘happy’ and s for
‘sad’. Neither option has a weight, so either will be selected with the same probability.
Next, rule p2 will fulfill bars and generate two new entities with the part goal. The part
goal is interesting since it can be fulfilled by two rules. p3 will generate our familiar
cadence, a V-I progression in roman numeral notation, while p4 will generate a I-IV
progression. Since derive uses pick internally, the system will select a random rule from
Q = {p3, p4} for each of the two entities, resulting in one of the four progressions shown
in Table 3.3. In p5 we use the EQUALIZED_CHORD grammar for generating the chords
and attach the valueless note attribute. Finally, in p6 we add some imperfections by
using uniform to slightly randomize the gain value.

PROGRESSION : derive(
p1 : axiom −→ moodset(choice(h, s)), barsset(2)
p2 : bars! −→ range(bars, partset)

p3 : part!
2.0−−−→ [chordset(7), pitch+(P5) , chordtag]

p4 : part! −→ chordtag, [, pitch+(P4)]
p5 : chord! −→ EQUALIZED_CHORD, notetag

p6 : note! −→ gainset(gainor(1) ∗ uniform(0.9, 1.0))
)

3.5.1 Synchronization
Variation is the antithesis to repetition, yet for music generation we generally need both.
Remember the rule from the prior examples that generated two entities with the part

48

3.5. Variation

goal. The part goal was fulfilled by a non-deterministic sub-grammar with two possible
results, which we may call a and b. What if, instead of the four possible combinations
{aa, ab, ba, bb} that are listed in Table 3.3, we wanted to restrict the result to only allow
{aa, bb}? The two parts should be derived randomly, but both should be derived with
the same rules and parameters. In a pure context-free grammar, once two entities are
separated, we can no longer access information from the former sibling. We need a way of
synchronizing the subtrees before the separation occurs. Quick and Hudak [QH13a] solve
repetition with their let-in construct, which allows a subtree to have multiple parents,
resulting in a duplication of its leaves in the generated sentence.

We usually do not want the subtrees to be completely identical. For our handling of
the time dimension, which we will present in Chapter 4, every entity gets an explicit
time interval and identical copies of a subtree would all end up in the same place. So,
repetition is more general than duplication since it includes translation in the time
dimension. Quick and Hudak avoid this distinction by encoding the temporal offset
in the order of the terminals, so the absolute temporal scope of an entity is implicit
during the derivation. Another limitation of their approach is that there is no way to
desynchronize two subtrees. In our previous example we randomized the gain attribute
to add imperfections as they might occur when a human plays the piece. If the two parts
are still synchronized at that point, both will develop the exact same loudness profile,
which is not very realistic. In this section we present two solutions, one based on seeding
and one that uses isolated derivation.

A pseudo-random number generator (PRNG) generates a fixed, yet seemingly random
and uniformly distributed sequence from an initial source of entropy, called a seed. One
may think of the seed as a compressed sequence, which is unpacked by the rules of the
PRNG, conceptually similar to the way a deterministic grammar takes an axiom and
unpacks the sentence. Synchronizing n subtrees is then as simple as using the same seed
for each of their roots. For desynchronizing the subtrees we have to retain some entropy
from a point after the separation, but before the synchronization, using the following
six-step process: (1) We generate the shared seed s and store it in an attribute. (2) We
generate roots of the n subtrees using some grammar f , and (3) add an independently
generated seed si, i ∈ (1, . . . n) to each subtree root. (4) We initialize the entity’s PRNG
with the shared seed s, which synchronizes (5) the application of the non-deterministic
sub-grammar g. (6) We reintroduce the entropy and desynchronize all leaf entities by
mixing the independent seed si with a random number from the PRNG initialized with
s and using the result as a new seed. The following rule shows how we may implement
these six steps within our system:

sset(rand), f, sset(rand), seed(s), g, seed(s ∗ rand)

Using seed(s) at the end does not suffice because this would actually synchronize all
entities generated by g in the same way we synchronized the result of f with seed(s).

49

3. A Functional Framework for Context-Free Grammars

Instead, we combine the independent seed si, which is stored in the s attribute and
constant within the subtree, with a synchronized random number generated by rand,
which uses the PRNG initialized in step (4) and is different for all m entities generated
by g. Ideally, we would use a bijective operator to combine these numbers, but since the
theoretic probability of picking any random number from a real interval is zero, we can
just use multiplication. After step (6) each of the n times m entities should have a PRNG
initialized with a different seed. While the example is suitable to illustrate the general
mechanism, it is a low-level strategy and requires lots of user attention. For practical
application we can define a higher-level construct which takes the two grammars f and g
as input and automatically performs the other steps. Yet, there is an alternative solution,
albeit less general, which covers many use-cases.

Instead of synchronizing the roots and developing n trees in parallel, we can apply the
non-deterministic grammar g once and make n copies of the resulting subtree. The
difference to the solution by Quick and Hudak is that we can independently define
how the subtree is integrated under the subtree roots generated by f . Note that with
this strategy g is evaluated before f and must therefore not depend on any attributes
generated by f . The process works as follows: (1) We evaluate g once and retain the
resulting sentence. (2) We evaluate f to generate the subtree roots, or rather the nodes
where we later attach the subtrees. Finally, (3) we append the result of g to each result
of f using some transformation operator that adapts the subtree to its new context,
for example with append and select. Note that the seeded approach is more powerful
since it runs the sub-grammar n times instead of once, and while the subtrees might be
synchronized in one aspect, they are not required to be synchronized in every aspect.
The second approach requires fewer steps and intuitively mirrors how we might compose
a piece on paper, where we come up with a short motif and use it multiple locations with
minor changes. The following rule shows how we could implement the second approach
using an attribute k and append as the operator:

kset(g), f, append(k)

Example: Synchronization

In this example we will synchronize the generation of our chord sequence, so that it
consists of either V-I or I-IV chord pairs, but never both. We define the non-deterministic
sub-grammar CHORD_PAIR, where q1 generates our V-I cadence and q2 the I-IV pair.
In the main grammar PROGRESSION, the rules p1 to p3 correspond to the three steps
from before. First, we generate a single chord pair and store it in the pair attribute.
Second, we generate two subtree roots and differentiate them via the time attribute.
Third, we append the retained pair to each subtree root. Using append here preserves
the time attribute, which means we have successfully synchronized the subtrees, without
duplicating them exactly. Rule p4 is self-evident. Finally, in rule p5 we randomize the

50

3.6. Conclusion

gain. Since we never reinitialized the PRNG, we can be sure that all leaf entities will be
randomized independently.

CHORD_PAIR : pick(
q1 : [chordset(7), pitch+(P5) ,]
q2 : [, pitch+(P4)]

)

PROGRESSION :
p1 : pairset(CHORD_PAIR)
p2 : range(2, timeset)
p3 : append(pair)
p4 : EQUALIZED_CHORD
p5 : gainset(gainor(1) ∗ uniform(0.9, 1.0))

3.6 Conclusion
In this chapter we presented the various features and constructs of our procedural gener-
ation framework, which is based on context-free grammars. These included the handling
of multi-dimensional entity spaces with parametric and attribute-based grammars, a
formalism for declarative notation, nested derivation of sub-grammars and propagation of
grammar results, and finally techniques for non-deterministic variation and synchroniza-
tion. While we motivated these features with musical examples, the presented concepts
are general and could potentially be applied to generation tasks in other domains. This
means, on the other hand, that the framework is not yet optimized for music generation
tasks. In the next chapter we will solve this by extending our generic framework with
domain-specific musical models.

51

CHAPTER 4
Probabilistic Temporal-Split

Grammars for Music Composition

Consider a musical composition with two or more interrelated voices that play at the
same time. They are independent, in the sense that they can define their own movement
and rhythmic patterns, but are synchronized to a shared metric and harmonic framework.
In music notation individual voices and instruments are often written in separate staves,
for example, the left and right hand of the piano piece in Figure 4.1. Each stave spans
the whole duration of the piece, and the individual voices within are read sequentially. To
implement this model in a context-free grammar we could derive each voice individually,
then combine the results by playing them at the same time. Yet, without further
constraints this approach is insufficient because due to non-determinism in the derivation
process the voices might become desynchronized. As soon as the algorithm branches into
different voices, sharing information between them becomes difficult. Rather, we need
some way of providing a shared metric and harmonic context that allows the voices to
actually fit together, instead of merely coexisting in the same temporal space.

The synchronization of voices is a fundamental challenge when generating non-monophonic
structures with context-free grammars, and in this chapter we will discuss our solution.
First, we define a common measurement system, expressed as a set of domain-specific
temporal units, which allows us to independently align voices in different subtrees. For
example, using a common tempo and time signature, we can guarantee that beats of
multiple voices coincide. This solution is trivial since we simply adopt features from
classical music notation. Second, we allow delaying the point of separation of voices to
arbitrary depths in the derivation tree. For this we associate each entity with a time
interval, in a way that is reminiscent of the use of spatial volumes in split-grammars, and
allow layering, recursive splitting, and space-filling with a repeat operator. Finally, we
combine the meta-level features of isolated derivation and operations on sentences with
the domain-specific units and split operations to generate textures of abstract musical

53

4. Probabilistic Temporal-Split Grammars for Music Composition

34
34

Lent et douloureux

Figure 4.1: Score representation of measures five to eight of Gymnopédie No.1 by Eric
Satie.

aspects, which we can use as a common substrate for the voices of a polyphonic piece.
For example, we can generate a harmonic progression in an isolated subtree and access it
from an independently generated melody and bass line.

We summarize our approach as probabilistic temporal-split grammars, highlighting the
synchronization challenges that arise from probabilistic generation and the parallels to
the functional approach, parametric treatment of time, and recursive divisions of the
timeline used in probabilistic temporal graph grammars (PTGG) [QH13a]. Additional
details on how our method relates to existing works will be presented in Chapter 6. The
implied connection to the concept of split-grammars in computer graphics is intentional.
As explained in Section 2.3, the reason for this is not just the recursive division of the
timeline with a split operator, which PTGGs already introduced to the music domain, but
the use of an explicit scope. In music the sentence itself can be a sufficient representation,
at least for monophonic structures. In computer graphics we usually consider at least two
spatial dimensions, which means we cannot intuitively derive the placement of entities
from a one-dimensional sentence. Thus, an explicit encoding of the spatial dimensions
predates our use of this concept for modelling time in grammars for composition.

Musical Structures

The system we constructed in Chapter 3 allows us to delegate focus to parts of a
composition and apply incremental changes to them. This focus is expressed as a mutable
sequence of entities, and the resulting music will be an aggregation of that sequence’s final
state. Attributes allow us to attach custom semantics to the entities, which means we
can conceivably build any kind of representation within the confines of our system. Rules
describe how we may navigate between representations and, in the case of a generator,
we move from the abstract towards the concrete. There is a vast spectrum between the
top-most abstract intent of composing polyphonic music, and the bottom-most concrete
sensation of that music as a sonic signal. In this section we will briefly look at the options
that we may find on this spectrum and then develop a canonical representation level that
we will use as a basis. One may call this level the terminal representation, but it is in no
way a final representation, in the sense that this representation still has to be mapped to
the desired output format.

Over the past centuries musicologists came up with a variety of abstract models for

54

musical structure, melody, rhythm, dynamics, and harmony. As mentioned in Chapter 2,
such models were often developed to aid musical analysis. This is not to say that they
cannot be used in a generative context—the core premise of generative grammars is the
reversal of the analytic parsing process—but implementing such models is not trivial.
Consider, for example, the implementation of Lerdahl’s and Jackendoff’s A generative
theory of tonal music [LJ+83] by Hamanaka et al. [HHT06] and their discussion of the
ambiguities in the original theory. Further, given our concrete requirement for polyphonic
music, we must ensure that our chosen model is either versatile enough to cover our needs,
or flexible enough to be combined with other models. Both aspects are very difficult to
judge without a deep understanding of the specific theory and music theory in general.
Ultimately, we concluded that for the purpose of generating polyphonic pieces we do not
require a particular musicological framework, only that voices can be generated in a way
that entangles them rhythmically and harmonically.

As an alternative to the top-down approach, where we derive the system from an advanced
analytic model, we can construct it around our desired output, and add higher-level
models as the need arises. If we intend the grammar results to be playable by an orchestra,
they must be constrained by the rules of a score and physical limitations of real-world
instruments. If, on the other hand, we only intend automated interpretation via software,
we can pick from a broader range of encodings at different levels of abstraction. On
the high-level end of the spectrum we have digital sheet music formats or the complex
states of digital audio workstations. At the intermediate level we have formats such as
MIDI, which reduces music to a set of time intervals on a semitone scale, but makes no
assumptions about the actual sound synthesis, nor the structure of the piece. At the
lowest level we have primitive waveforms and frequency space, where we can express
sounds as combinations of oscillations. For our concrete goals we do not need to focus
much on the physical qualities of the sounds, as they relate to timbre or audio effects. The
output of the grammar can still be symbolic, in the sense that it would need interpretation
by a musician or synthesizer.

After various experiments we ended up with something close to MIDI as our preferred base
representation. It provides the necessary freedom for polyphony in the time dimension,
while being accessible to humans and symbolic in nature. Other advantages of this
model are a one-to-one association between entities and notes, a small, homogeneous
set of canonical attributes, and a trivial rendering step. Familiar features from musical
notation, such as meter for time measurements and diatonic scales for pitch, can be
provided as optional higher-level models and will be discussed in later sections. From a
musicological perspective, this model is rather primitive and should be familiar to anyone
who has enjoyed a basic music education. The domain-agnostic features of the system
already require learning a wealth of concepts. Having an accessible domain model seems
reasonable if we intend the practical application of our work by anyone besides experts
in both music and computer science.

55

4. Probabilistic Temporal-Split Grammars for Music Composition

Figure 4.2: Three parallel sequences of intervals on a timeline. Together they approximate
the temporal structure of the first two measures in Figure 4.1. Sequence (a) represents
the melody, (b) represents the chords, and (c) the bass line.

4.1 Time
Polyphony is a musical feature that relates strongly to the time dimension, the represen-
tation of which is consequently of primary interest to us. In a score, such as Figure 4.1,
we can find notes, rests, measures, tempo markings, time signatures, key signatures,
dynamics—each either directly represents or associates with a point in time, a duration,
or a time interval. The starting time of a note is encoded in the notes, rests, and other
markings that precede it, and its length is determined by the note symbol. A musician
reads the score left to right and plays note after note. The sentence generated by a
grammar is a sequence, so assuming our terminals are notes, we could simply play the
terminals in the order they were generated. This is arguably the most obvious inter-
pretation of formal grammars for composition, and it was implied for the examples in
Chapter 3. Just like note symbols, an entity in this model may have a duration parameter
for representing rhythmic variation. For playback, we can calculate the cumulative sum
of these duration values to get the absolute offset of a note on the timeline. Figure 4.2
shows a sequence (a) of six quarter note intervals and a sequence (c) of two whole measure
intervals.

With a sequence we can express a monophonic melody or bass line. In order to express a
chord, which we could see as a trivial example of polyphony, the intervals of multiple notes
must coincide. We could achieve this by associating each entity with a set of pitch values,
where each pitch spawns a note over the entity’s time interval, analogous to multiple note
heads along a single stem. This generalizes to rests (zero pitch values), single notes (one
pitch value), and chords (multiple pitch values), while still using a sequential encoding.
Sequence (b) in Figure 4.2 shows an interval sequence that contains rests as well as
chords. Yet, for any such sequence, the bounds of the intervals are global—there cannot
be a note across interval boundaries. We can only express a singular rhythmic pattern.
In an earlier work [Eib16] we used this approach with an additional mechanism, where we
could mark a note as played or held, to optionally hide divisions caused by superimposed
patterns of finer temporal granularity. In practice this model was not very intuitive and
seemed inadequate for achieving the explicit goal of generating polyphonic pieces.

We can think of a single voice as a special case of an interval arrangement, where the start
of an interval coincides with the end of the preceding interval. In the same vein, parallel

56

4.1. Time

Figure 4.3: A step by step construction of the temporal structure from Figure 4.2 using
an explicit interval for every entity and both sequential and parallel placement. The
nesting of the interval bounds indicates how the replacement intervals are defined in
relation to the replaced interval. In (1) we start with a sequence of two whole measure
intervals. (2) replaces each measure with three parallel voices, which we split into notes
and rests in (3). In (4b) we once again use parallel voices to generate chords.

voices would be an arrangement where the bounding intervals of the voices overlap. For
example, we can interpret Figure 4.2 as at least three levels of arrangements. The initial
interval contains a top-level parallel arrangement of three voices (a), (b), and (c), each of
which contains a second-level sequential arrangement, and a third level of parallelism in
the chords of (b). Traditional scores are mostly limited to these three levels (four if you
count the measure level), but the recursive nature of the derivation process allows us to
extend this principle to arbitrary depths. We can freely alternate between placement
strategies on a per rule basis. Figure 4.3 shows how we may generate the two measures
using a total of four levels of nested arrangements.

Definitions: time, span A consequence of mixing placement strategies is that the note
duration alone no longer determines a unique arrangement. We solve this by borrowing
the concept of scope from split-based grammars. The scope describes the boundaries of
an entity and encodes its absolute placement, so we avoid dealing with context-sensitive
dependencies between terminals. In graphics the scope is usually represented by a 3D
transformation of space, whereas in music it would be a 1D transformation of time. We
encode this transformation as a number pair (t0, t1) ∈ R2 and define Δ = t1 − t0. Δ may
also be negative if t1 < t0, although we will usually refrain from using negative time
intervals. We integrate this model into the grammar with two real-numbered attributes
time for t0 and span for Δ. If not explicitly specified, we assume time and span are
equal to zero.

57

4. Probabilistic Temporal-Split Grammars for Music Composition

Example: Time

In this example we apply our temporal model to replicate the structure of the fifth
measure of Gymnopédie No.1, which is the first measure shown in Figure 4.1. It consists
of two quarter notes for the melody, a three-note chord, and a bass note. We assume that
the length of a quarter note is 1 and set the duration of the measure to 3 in p1. In p2 we
fork our single entity into three parallel parts for the bass, chord, and melody. The bass
note fills the whole measure and we can use the empty pipe as the identity function.
In the CHORD sub-grammar we first delay the chord by 1 in q1 and set its duration to
one half note in q2. Rule q3 copies the entity to generate three chord notes. Finally, the
MELODY sub-grammar first sets the span to 1 in r1 and then generates two notes in r2,
which are offset by 1 and 2 respectively.

PIECE :
p1 : spanset(3)
p2 : [, CHORD, MELODY]

CHORD :
q1 : timeset(time + 1)
q2 : spanset(2)
q3 : range(3)

MELODY :
r1 : spanset(1)
r2 : [timeset(time + 1), timeset(time + 2)]

4.1.1 Meter
A random arrangement of notes, uniformly distributed over time and frequency, will not
resemble music. Since we want to use randomness for variation we must structure the
entity space in a way that increases the likelihood for generating music-like arrangements.
For that we need to consider the mechanism behind rhythm and harmony and find models
for expressing these features effectively. The simplest rhythm is just a beat, a regular
pulse of air pressure over time; think of the clicks produced by a metronome. Two beats
fit together if their pulses frequently coincide. For example, two metronomes clicking at

58

4.1. Time

the same rate will click together in harmony, assuming they started at the same time.
If one of them clicks faster than the other, for example at a ratio of 2:1 or 1000:999,
sometimes they will click in unison and sometimes they will not. For the first ratio, 1 out
of 2 clicks will coincide, for the second ratio only 1 in 1000 will. Musical theory revolves
around frequencies that harmonize, which means that their ratios tend to be simple, such
as 2:1 and not 999:1000.

Our metric model closely resembles that of classic musical notation. In a score the
temporal organization of the piece revolves around three measuring systems that are
related by simple ratios. It uses a regular pattern of pulses called the beat as the
fundamental unit, and we use the tempo parameter T ∈ R+ to convert between beats
and physical time in seconds. In digital contexts the tempo is usually specified as the
number of beats per minute (BPM). Multiple beats are grouped into measures, and the
number of beats within a measure is encoded in the beat count parameter N ∈ R+. The
third measuring system expresses the duration in terms of fractions of a whole note. The
conversion to beats is defined by the beat type parameter B ∈ R+, where the length of a
whole note is assumed to be B beats. The pair (N, B) has the same semantics as the two
numbers of the time signature in musical notation. For example, if N = 3 and B = 4,
there are three beats per measure, and the duration of each beat is equivalent to 1/4
of a whole note. We define the conversion factors of various temporal units that can be
derived from these parameters in the upper part of Table 4.1.

A measuring system based on tempo and meter is very intuitive for musicians, but it has
some limitations. For one, it anchors the fundamental beat unit, and by extension all
other dependent units, to an absolute duration. This means that if we rely solely on these
units, all our rules will be bound to a particular temporal granularity. For example, we
can replace a quarter note with two subsequent eighth notes, but we cannot easily divide
a note of arbitrary length into two equal parts. For this purpose we use an additional
measuring system which is decoupled from the beat unit. In this system a duration
Δ ∈ R serves as the base unit. With these relative units we can divide arbitrary time
intervals. Relative units also solve a second limitation of the classic measuring system,
namely that the latter does not define any larger divisions beyond the measure level.
With relative units we can define both microscopic and macroscopic temporal structures.
The relative time units available in the system are shown in the lower part of Table 4.1.

Definitions: tempo, beats, beatType We define the canonical attributes tempo, beats,
and beatType for holding the three parameters T , N , and B. We will reuse the span
attribute for the duration parameter Δ. While some factors in Table 4.1 can be defined
as simple numeric constants, such as ‘minute’, others depend on one or more parameters.
As an example, we could implement the ‘beat’ unit with a function beat : Vλ → (V →
R) : u → v → minute(u(v))/(tempoor(120))(u(v)). Note that instead of evaluating the
expressions directly on the input entity v, we apply them to the entity u(v). This form
allows us to specify a parameter implicitly as an inherited attribute, or explicitly as an
attribute on u. For example, if we write spanset(beat), the setter will treat beat like a

59

4. Probabilistic Temporal-Split Grammars for Music Composition

unit factor base
second 1 second
minute 60 second
hour 60 minute
beat 1/T minute
measure N beat
whole B beat
half 1/2 whole
quarter 1/4 whole
eighth 1/8 whole
sixteenth 1/16 whole
relative Δ second
percent 1/100 relative

Table 4.1: Conversion table for the temporal units. Reading: A minute is equal to 60
seconds. The computation of the conversion factors for the absolute units relies on three
parameters: the tempo T , the number of beats per measure N , and the beat type B.
The computation of relative units relies on a duration Δ.

second-order expression, apply it twice to v, and use either its tempo attribute, or the
fallback value 120. If we instead write spanset(beat(temposet(60))), then the new entity
(temposet(60))(v) will be used to supply the tempo. The above recipe for the ‘beat’ unit
works analogously for the other units. For N and B we assume the fallback value 4.

Example: Meter

In this example we extend the previous example with our new units. We start by globally
setting a slow tempo of one beat per second in p1 and a three-quarter time signature in
p2 and p3. Each measure has three beats, so the measure expression in p4 evaluates to 3
seconds. In p5 we fork into the bass, chord, and melody voices. For the bass note, we use
the identity function. Here it would be equivalent, yet redundant, to write spanset(rel)
instead. In the CHORD and MELODY sub-grammars we express the delay and duration
of the entities in quarters and half notes, rather than absolute numbers.

60

4.1. Time

PIECE :
p1 : temposet(60)
p2 : beatsset(3)
p3 : beatTypeset(4)
p4 : spanset(measure)
p5 : [, CHORD, MELODY]

CHORD :
q1 : timeset(time + quarter)
q2 : spanset(half)
q3 : range(3)

MELODY :
r1 : spanset(quarter)
r2 : [timeset(time + quarter), timeset(time + half)]

4.1.2 Split
The split operation allows us to divide a given volume into an arrangement of sub-volumes,
in our case a time interval into a sequence of sub-intervals. These sub-volumes must not
overlap, and their bounds are constrained to coincide—hence the name. In the previous
example we modified the time and span attributes directly to define the temporal scope
of an entity relative to that of its parent. The split operation only needs to know the
length of the parts and computes the absolute bounds as a cumulative sum relative to
the bounds of the available space. Our general exploration of the time dimension in
Section 4.1 already implied that a split operation can be useful for music generation. It
is the missing sequential operation in the parallel-sequential duality in our model of a
polyphonic structure. As opposed to parallel arrangements, which are trivial to generate
due to attribute inheritance, the split operation needs further definition.

Let us first explore concrete ways in which we can use a split operation in music. We
can start with a piece of a certain length and generate an overall structure, such as an
intro measured in seconds, a sequence of equal-length themes, and an outro that is half
the length of a theme. At a lower level, we can split themes into hyper-measures and

61

4. Probabilistic Temporal-Split Grammars for Music Composition

measures. Below the measure level, we can use uniform splits with a division number of
two and three to generate a metric structure. Rhythmic patterns can be generated with
relative sizes, for example a (1/4, 2/4) pattern in a three-quarter meter. Or we could
specify the same pattern just with the numerators (1, 2) and let the split operation infer
the three-part division from their sum. For splitting the measure of an arbitrary meter,
we could define a one-quarter part and a flexible part, which will fill the remaining space.
From these use-cases we can deduce some basic requirements for the split operation.
There can be an arbitrary number of parts, and their sizes can be defined as a fixed or
flexible quantity. Fixed sizes are useful when we want to fit the parts onto our metric
grid, for example when splitting a measure into quarter notes. Flexible sizes are useful
for distributing remaining space. We must also be able to apply rules to the resulting
parts individually. For example, we may need to mark one part as an ‘intro’ and another
as an ‘outro’.

A particular split is defined by a scope, which is the available volume, and a pattern, which
describes how the available volume is divided. We define the scope as a pair of numbers
(t0, t1) ∈ R2 and its size Δ = t1 − t0. From the pattern we derive a sequence of sizes
(Δ1, . . . , Δn) for the resulting sub-volumes. We calculate the cumulative sum of these sizes,
starting at the scope’s first bound t0, to get the split offsets (t0 = s0, . . . , sn). The final
result are the scopes for the adjacent scopes for the sub-volumes ((s0, s1), . . . , (sn−1, sn)) ∈
(R2)n. For example, if the sizes for the sub-volumes are (2, 3) and the scope is (1, 8), the
split offsets are (1, 3, 6) and the resulting volumes are ((1, 3), (3, 6)). Under this definition
the sub-volumes only align with the first bound t0 when the sum of their sizes is equal to
Δ. In order to align the sub-volumes with the second bound t1, we could stretch them,
align them to either side, to the center, or an arbitrary pivot point, resize, duplicate, drop,
insert, or redistribute individual elements, or truncate the overflowing volumes. Yet, we
do not have to include this in the split model since these strategies can be implemented
as stand-alone operators on the split result.

We define the split pattern as a sequence of number pairs ((δ1, ω1), . . . , (δn, ωn)) ∈ (R2
+)n,

where δi is the fixed size and ωi is the flexible size of the ith element. We calculate the
total fixed size δ = δ1 + . . . + δn, the total flexible size ω = ω1 + . . . + ωn, the remaining
space ωΔ = max{0, Δ − δ}, and the flexible unit ωU = ωΔ/ω (0 if ω = 0). The final size
of a sub-volume can now be calculated as Δi = δi + ωiωU . What this means is that the
fixed size is the minimum size of the resulting part, while the flexible size is a relative
weight that is used to distribute the remaining space. If there is no remaining space, the
contribution of the flexible size is zero. For example, the pattern ((1, 1), (0, 2)) applied to
the scope (1, 8) yields δ = 1, ω = 3, ωU = (7 − 1)/3 = 2, and consequently two resulting
volumes ((1, 4), (4, 8)). If the scope were (1, 2), no remaining space would be available
and the result would be ((1, 2), (2, 2)), where the second volume is empty.

Definitions: split, f lex, size We integrate the split operation into our grammar with a
function split : V ∗

λ → (V → V ∗), which takes the split pattern as a parameter and yields
a sentence expression that generates the resulting entities. We will use the canonical time

62

4.1. Time

and span attributes of the input entity as the scope and also use them for the scope of the
sub-volumes. Defining the split pattern as a sentence is useful as we can generate it using
a fully-featured sub-grammar. The split operation is just a particular context-sensitive
transformation on a sequence of entities. We define two new canonical attributes: size
for the fixed size δi, and flex for the flexible size ωi. Per default, if neither size nor
flex are defined, the part will be treated as if it had a flex value of one. This means a
uniform split into n parts can be expressed as split(range(n)) because ωΔ = Δ and the
final length of each part will be Δ/n. When only one of the two attributes is defined,
the other attribute will be treated as if it were zero. Any attributes on the entities in the
pattern will be preserved, except for time and span, which will be overwritten, and flex
and size, which will be discarded. We can use append and select to integrate the split
result into the sentence, as discussed in Section 3.4.3.

Example: Split

In this example, we will again replicate the temporal structure of a part of Gymnopedie
No.1, shown as a score in Figure 4.1. With the split rule we are now able to concisely
replicate the four steps shown in Figure 4.3. Rules p1 to p4 generate a four measure
interval with a three-quarter meter. In p5 we split this interval into four equal parts and
store their indices in the m attribute. This corresponds to step (1) in the figure, with
the difference that we are generating four measures instead of just two. Rule p6 models
the parallel separation of the three voices. Note that the score contains quarter rests for
the melody and chord part. There are various ways of handling rests. For example, we
could mark the note as silent, or we could simply delete the entity using an empty fork [].
Here we use the rest attribute as a valueless marker.

Once again, we use the identity function for the bass note, as it just needs to inherit the
scope. The CHORD sub-grammar splits the measure into a rest with the length of a
quarter, and an entity with the valueless chord attribute. Since the chord entity has no
size, it will behave as if we set flex to one and fill the remaining space of the measure.
In rule q2 we generate three parallel entities for every part that was marked with chord,
but not for those marked with rest. The melody consists of a sequence of quarter notes,
except for the last measure, which we exclude via m = 3 in r1. All other measures are
split into three equal size notes numbered with the i attribute, before being passed to
the second rule. Note that the pipe terminates when one LHS fails, so if we want the
derivation to continue in r2, r1 must be wrapped in its own pipe in order to treat it as
an optional step, rather than a termination criterion. The second rule only applies to the
first note of the first measure, which we mark as a rest.

63

4. Probabilistic Temporal-Split Grammars for Music Composition

PIECE :
p1 : temposet(60)
p2 : beatsset(3)
p3 : beatTypeset(4)
p4 : spanset(4 ∗ measure)
p5 : split(range(4, mset))
p6 : [, CHORDS, MELODY]

CHORDS :
q1 : split([resttag, sizeset(quarter) , chordtag])
q2 : chord −→ range(3)

MELODY :
r1 : m = 3 −→ split(range(3, iset))
r2 : i = 0 ∧ m = 0 −→ resttag

4.1.3 Repeat
Assume that we want to split an entity into a sequence of measures. In the previous
example we knew that the length of the piece was four measures, and consequently we
could just use a uniform split with four parts. If we already know the desired number of
measures N , we can define a split pattern ((m, 0), . . . , (m, 0)) with N elements, where m
is the constant size of a measure, and ignore the size of the parent scope Δ altogether.
But what if we want to define a rule that fills an entity with an arbitrary size? Of course,
we can calculate the maximum number of measures that fit into the scope as N = Δ/m .
This way we can ‘tile’ an entity with equal length parts, which can be very useful when
we want to generate structures inside of parts that are flexible. For example, we may
want to generate beats in a measure of arbitrary time signature, or replace a chord of
arbitrary length with an arpeggio of eighth notes. Since this is a common pattern, we
provide it as a dedicated repeat model.

The repeat model generalizes the split model with an extra step at the beginning. In
this step we make N copies of the pattern, concatenate them, and use this as the actual
pattern for the split operation. Under this model the difference between a normal split

64

4.1. Time

and a repeating split is the calculation of N . For a normal split N would be 1. For a
repeating split we first calculate δ, which is the minimum size of the pattern, and then
N = Δ/δ , which yields the maximum number of times the pattern fits into the scope
without exceeding it. For example, given the pattern ((4, 0), (0, 1)) and Δ = 10, the
minimum size of the pattern is δ = 4, and the number of repetitions is N = 2. The pattern
will be repeated two times and yield four sub-volumes with sizes (4, 1, 4, 1). Compare
that to the result of a split without repetition, where only two sub-volumes would be
generated and their sizes would be (4, 6). Alternatively, we can calculate N = Δ/δ ,
which means the pattern will be repeated until the scope is covered completely. That
way we can guarantee at least one repetition, even if δ > Δ > 0.

Definitions: repeat , repeat We can integrate the repeat model by defining two
functions repeat and repeat that are equivalent to split in all ways, except for the
computation of N . In some situations we must access the repetition number N as well
as the index i of each pattern instance. For example, when we tile a piece with measures,
we might want to add a prelude to the first measure. The problem is that the result
of the split is a flat sequence of sub-volumes, and information about the individual
repetition instances is lost. We solve this here with a second parameter over the functions
N × N → F , which we call the indexer. If an indexer is specified, the function will be
invoked for every generated entity with the number pair (i, N), where i is the repetition
index. Note that we use a similar mechanism for the range function that we defined in
Section 3.4.4.

Definitions: trim Both split and repeat align the generated entities to the first bound
of the temporal scope, but the pattern is not guaranteed to meet the second bound. For
example, if we use repeat with a pattern that does not evenly divide the interval, the
last entity will exceed the scope. This is undesirable in many situations, as it can cause
monophonic voices to become polyphonic, or allow the harmony from one section to bleed
into the next. We define a function trim : V ∗

λ → (V → V ∗), which clamps the scopes
of the specified entities to the scope of the input entity. Entities that have an empty
overlap with the original scope will be removed entirely. For example, given a scope (0, 2)
and two entities with scopes ((1, 3), (2, 4)), trim will shorten the first entity to (1, 2) and
remove the second one.

Example: Repeat

In this example we will use the repeat function to define a division for entities that have
an arbitrary duration. Once again, we start by setting a tempo and the length of the
piece, but this time the length is a random number. In p3 we define a split pattern
that consists of a single beat followed by a random number of beats. Since we use the
repeat function, the system will calculate how many instances of this pattern fit into
the randomly generated length of the piece without exceeding it. Alternatively, we could
use repeat and wrap it in trim. Once the entities are generated they are passed to

65

4. Probabilistic Temporal-Split Grammars for Music Composition

the indexer, which marks every generated part with the arp attribute, except for the
last pattern instance. Finally, in p4 we replace all entities with the arp attribute with a
sequence of half beats, using the repeat function once again. In this case it does not
matter which repeat variant we use, as the scope will be divided perfectly. We also do
not use an indexer since we are not interested in the repetition number.

PIECE :
p1 : temposet(60)
p2 : spanset(uniform(1, 2) ∗ minute)
p3 : repeat ([

sizeset(beat)
sizeset(choice(1, 2, 3) ∗ beat)

], (i, N) → i = N −→ arptag)
p4 : arp −→ repeat (spanset(beat/2))

4.1.4 Query
We use the term query to describe a function that extracts information from a sentence.
We have already discussed some of them in Section 3.4.3. For example, the filter query
returns only those entities in a sentence that match a certain predicate. In this section we
will discuss temporal queries, which select entities based on their location on the timeline.
With temporal queries we can treat the value of an attribute as a time-dependent function.
For example, we can generate a harmonic progression and store it in an attribute. We
can then fork into multiple voices, which we develop with independent sub-grammars.
In a final pass, we can combine the independent rhythmic and melodic information of
the two voices with the common harmony of the corresponding temporal segment in the
progression and calculate a pitch for each note.

Definitions: query We define a temporal query as a function that takes three pa-
rameters: a texture, which is a sequence of intervals that should be queried, a scope,
which defines a location on the texture, and a binary relation between intervals, which
determines whether an interval in the texture is selected by the scope. We will only use
the overlap relation between intervals. For example, given a texture ((0, 2), (2, 3), (2, 5)),
a scope (2, 4), the query function will yield the intervals ((2, 3), (2, 5)). Of course, the in-
tervals on their own do not provide much information. In practice they will be associated
with additional data, for example an entity. For integrating temporal queries into our
system, we once again rely on the time and span attributes for encoding the intervals of
both the scope and the texture elements. We define the function query : V ∗

λ → (V → V ∗),

66

4.1. Time

where the parameter is a sequence of entities that is used as the texture. The resulting
sentence expression returns only those entities in the texture that overlap with the scope
of the input entity.

4.1.5 Example: Query

In this example we will generate a harmonic progression, store it in an attribute, and later
query it from three rhythmically independent voices. First, let us look at the generation
of the harmonic progression in the HARMONIC sub-grammar. Within the scope of the
input entity, the rule generates a repeated sequence of two measures, where the first has
the subdominant (IV) as its harmony, and the second has the tonic (I). This is similar
to the alternating harmonic pattern in the first sixteen measures of Gymnopédie No.1.
We assume that the meter, tempo, and scope are already defined for the main grammar.
We start in p1 by generating the harmonic progression in the texture attribute. Rule
p2 forks into our three voices. We do not care how the voices are defined, but assume
that each generates an independent rhythmic division of the piece. Finally, in p3 we use
query to sample the texture attribute and append the harmony attribute to the entities
in each voice. Note that if an entity in one of the voices overlaps with multiple measures,
query will return multiple entities. If this is not desired, we can wrap the query into
an additional operator. For example, we could randomly select one of the results using
choice.

HARMONIC : repeat (
sizeset(measure)
[harmonyset(IV), harmonyset(I)]

)

PIECE :
p1 : textureset(HARMONIC)
p2 : [BASS, CHORD, MELODY]
p3 : append(

query(texture)
select({harmony})

)

67

4. Probabilistic Temporal-Split Grammars for Music Composition

4.2 Pitch
Beyond a certain number of beats per time interval, around 20 per second for humans,
we can no longer perceive them individually. We instead describe the experience as
hearing a sound of a certain frequency. While only some people can accurately identify
absolute frequencies, most people are able to differentiate between frequency ratios. Just
as with rhythm, the use of simple frequency ratios leads to harmony. After the unison,
a ratio of 1:1, the second most harmonic ratio is the octave at 2:1. Two frequencies
separated by octaves sound so similar, that in theory we can sometimes ignore the octave
separation entirely. This phenomenon is known as octave equivalence, and we refer to
such an equivalence class as a pitch class or chroma. Higher numbered ratios, such as
2:3 for the perfect fifth, or 3:4 for the major third, gave rise to the twelve pitch classes
commonly considered in western music theory.

For polyphony the particular sounds are not important, but we want at least to be able to
use basic harmonic rules to relate the frequencies of multiple voices. In musical notation
a note is associated with a single scalar attribute called its fundamental frequency or
pitch, which is a reduction of a complex instrument sound to the most characteristic
element of its spectrum. The timbre, which is the particular configuration of overtones
generated by an instrument playing the note, is lost in this reduction. Our system uses
the same approach and associates each terminal with exactly one pitch value. When
discussing the time domain we briefly mentioned that we could use multiple pitches
per entity to represent chords, but we have since shown that we can model chords with
multiple parallel entities. A one-to-one mapping between entities and notes is sufficient.

Definitions: freq, play, gain We define the canonical freq attribute which represents
the fundamental frequency of the entity in Hertz. For example, freqset(440) sets the
frequency to A4 in standard tuning. Timbre is not relevant for our approach, so we mainly
consider it a nominal quality for differentiating between voices. Yet, for the evaluation of
our system we did implement a playback environment with additional parameters for
fitting sounds to the abstract note representation. Various timbres may be provided as
virtual instruments that map a set of frequency values to particular audio samples. We
use the play attribute for selecting an instrument by name, and the freq attribute for
selecting the closest audio sample, with optional fine-tuning if the selected sample does
not match the frequency. Additionally, we define the gain attribute for controlling the
relative loudness of a note, where 0 is complete silence and 1 is an arbitrary, non-silent
baseline. The amplitude of a signal can actually be considered a dimension on its own,
but it does not warrant a dedicated discussion in the context of this thesis.

Example: Pitch

In this example we will apply our simple pitch model to generate a sound. For the
play attribute we set the value “sine” which indicates that we want to generate simple
sine waves, rather than the sound of a prerecorded instrument. In p3 we generate a

68

4.2. Pitch

number of entities as indicated by the overtones attribute, for which we defined a fallback
value in p2. We use the generated index i to calculate the harmonic overtones of the
current frequency. For example, if the number of overtones is eight, and the frequency
is 440, which is A4 in scientific pitch notation, it will generate the harmonic overtones
(440, 880, 1320, 1760, . . . , 3520), which correspond to (A4, A5, E5, A6, . . . , A7). Note that
when the factor is a power of two, the resulting frequency has the same pitch class as the
fundamental frequency. Finally, in p5 we set the gain to the reverse index and scale it
by the number of overtones. The 0th overtone, which is the fundamental frequency, will
receive a gain of one, and the gain decreases with increasing frequency.

OVERTONES :
p1 : playset(“sine”)
p2 : overtonesdef (8)
p3 : range(overtonesor(8), iset)
p4 : freqset((i + 1) ∗ freqor(440))
p5 : gainset((overtones − i)/overtones)

4.2.1 Key
Western theory of harmony commonly involves scales, which are particular sets of pitches.
A diatonic scale is a scale that contains seven of the twelve pitch classes of the chromatic
scale and is constrained in such a way that the notes are maximally spread out across the
octave. We can describe this as a pattern of two half step intervals (one semitone) and
five whole step intervals (two semitones), where the two half steps are separated by a
minimum of two whole steps. The major scale, as one particular example, is constructed
from two whole steps, one half step, three whole steps, and one half step to complete
the octave. We can start this pattern from any of the twelve pitch classes, leading to a
total of twelve possible major scales. We assume equal temperament with twelve equally
spaced pitch classes within an octave, which is the predominant tuning system used in
western music. This means we will regard enharmonic notes, such as C# and Db, as
identical.

In this section we will define a model for calculating a frequency given any combination
of key, mode, octave, harmonic function, scale degree, and accidental. The model is
defined by a numeric formula that can be separated into four components: (1) an offset
d ∈ Z within the seven-tone diatonic scale, (2) a discontinuous function modeM ∈ Z → Z
from the diatonic scale to the twelve-tone chromatic scale, (3) an offset c ∈ R within
the chromatic scale, and (4) an exponential function hertz : R → R from the chromatic
scale to physical frequency. The chromatic scale is a logarithmic representation of pitch,

69

4. Probabilistic Temporal-Split Grammars for Music Composition

where each whole number step is equivalent to a semitone interval. The origin of this
system is arbitrary, and we use the MIDI standard of assigning A4 (440 hz) to 69. We
can combine these terms into a frequency f0 using the following formula:

f0 = hertz(c + modeM (d))

The term d consists of two offsets within the coordinate system of the diatonic scale. The
first offset is defined by the harmony parameter H ∈ Z, which represents a harmonic
function. It is zero for the tonic (I), one for the supertonic (II), two for the mediant
(III), and so forth. To the harmonic offset we add the degree parameter D ∈ Z for
selecting a scale degree relative to the harmony. Again, we assume a value of zero is the
first scale degree (I), one is the second (II), etc. Both parameters are defined over Z
since a fractional degree or harmony is not musically meaningful. This system allows
us to specify offsets within a scale as the nth degree of the mth harmonic function. For
example, the seventh degree (VII) of the tonic function (I) and the third degree (III) of
the dominant function (V) are both equal to an offset of 6 (VII). This is not particularly
complicated and can be defined as a sum:

d = H + D

The function modeM is more complex as it must perform a discontinuous mapping from
the diatonic scale to the chromatic scale. A major scale can be defined by a pattern
(ai)i=0 = (2, 2, 1, 2, 2, 2, 1) of semitone intervals, and by rotating this pattern we get
the seven diatonic modes. We define the function a(i ∈ Z) = ai mod 7 to extend the
pattern infinitely in both directions and use the mode parameter M ∈ Z as the origin
within this extended pattern. We use roman numeral notation, where the major mode
is canonically the first mode with M = 0 (I). For example, M = 5 (VI) starts the
pattern at the sixth element and yields the rotation (2, 1, 2, 2, 1, 2, 2), which is called the
Aeolian or minor mode (VI). The input to modeM is an offset z ∈ Z in scale degrees,
for example the term d defined above. For a positive diatonic scale degree z we can
calculate the number of semitones using a(M) + a(M + 1) + . . . + a(M + z − 1). For
example, the semitones of a third (III) in the minor mode (VI) can be calculated with
modeV I(III) = mode5(2) = a(5) + a(6) = 2 + 1 = 3.

The above formula is not yet defined for negative values of z. Generally, we want the value
modeM (z) to be equivalent to the number of semitones of z scale degrees from the tonic
in mode M . For example, modeI−III is a diatonic third below the major tonic, which is
equivalent to three semitones. For this we separate z into the modulo p(z) = (z mod 7)
and quotient q(z) = z/7 , where inversely z = 7 ∗ q(z) + p(z) for all z ∈ Z. The value
of p(z) is the offset within the current rotation of the pattern, q(z) is the number of
complete rotations, and 7 is the period of the diatonic scale. The total semitone offset

70

4.2. Pitch

can be calculated as 12 ∗ q(z) + a(M) + a(M + 1) + . . . a(M + p(z) − 1), where 12 is the
period of the chromatic scale. For M = 0 and z = −2 this yields p(z) = 5, q(z) = −1,
and a total semitone offset of a(0) + . . . + a(4) − 12 = 2 + 2 + 1 + 2 + 2 − 12 = −3, a
negative minor third. The general formula for z ∈ Z looks like this:

modeM (z ∈ Z) = 12 ∗ q(z) +
p(z)

i=0
a(M + i)

For mapping intervals on the chromatic scale to physical frequency, we need to define an
origin. In musical notation, a clef is used to associate the lines in a stave with an absolute
pitch, but we may just use a semitone offset c from some arbitrary base frequency. As
mentioned above, we use the MIDI convention of associating A4 with 69. For example,
one semitone above A4 is A#4 (70), and nine semitones below is C4 (60). We express
c via three parameters. The octave parameter O ∈ Z is measured in twelve-semitone
intervals, which means that incrementing O by one increases the offset by 12. Since MIDI
number zero counter-intuitively corresponds to C-1 (negative one) we shift O up by one
to compensate. For example, O = 4 maps to a semitone offset of 12 ∗ (4 + 1) = 60, which
is equal to C4. In addition, we define the key parameter K ∈ Z and the alter parameter
A ∈ Z, which are offsets measured in plain semitones. For example, with O = 4, K = 7,
and A = 1 we get c = 60 + 7 + 1 = 68, which corresponds to G#4. We use the general
formula below:

c = 12 ∗ (O + 1) + K + A

Finally, we define the hertz function, which maps a MIDI number to its frequency. There
is not a lot to discuss, as this step adds no further parameters to our model. For some
use-cases a conversion to physical frequency might not even be necessary, for example, if
we want to generate MIDI output. The constant 2 in the formula below stands for the
exponential doubling of the frequency for every octave of 12 semitones, and the constant
69 is the MIDI number of A4 at 440 Hz:

hertz(x ∈ R) = 440 ∗ 2(x−69)/12

In conclusion our diatonic model has six whole-numbered parameters O, K, A, M, H, D ∈
Z. From a theoretic perspective, the parameters O, K, A may also be defined for real
numbers R, but fractional values are only meaningful for the alter parameter A, which
we can use to slightly change the tuning of a note. The pairs (K, A) and (H, D) can
seem redundant since they are just added together. Yet, from a musical perspective the
separation does make sense, as they cover different semantic use-cases. For example, we

71

4. Probabilistic Temporal-Split Grammars for Music Composition

may define the key K globally for the piece and alter a note locally using A. Or we might
generate a progression of harmonies with H and develop a melody within the harmony
using the D parameter. It is only in our particular model that these heterogeneous
concepts become interchangeable. For example, had we assumed just intonation instead
of equal temperament, enharmonic notes would no longer be equivalent, and a semitone
offset for modelling accidentals would be insufficient.

Definitions: diatonic, octave, key, alter, mode, harmony, degree We will now integrate
the presented model into our meta-language by defining six canonical attributes: octave,
key, alter, mode, harmony, degree. For each we assume a fallback value of zero, except
for octave, which is 4 by default. The choice of a default octave is rather arbitrary, but
it is optimally in a clearly audible range. With these canonical attributes we define
the parametric expression diatonic : Vλ → (V → R), where the parameter is an entity
expression Vλ that carries a subset of the attributes above, and the result is a frequency
in R as described by our model. Again, the use of an entity expression as an argument
allows us to set the parameters explicitly or implicitly. For example, we can write
freqset(diatonic(degreeset(2))) to use the second degree, or write freqset(diatonic) to
read the degree from the input entity or use the fallback value.

We can further improve the usability of the model with predefined musical constants.
As mentioned above, scale degrees, harmonic functions, and modes are often identified
by roman numerals. We use a zero-based mapping, where I is equal to zero and II to
one since the first degree is equivalent to an offset of zero, while music notation usually
counts from one. We also provide constants for the names of the harmonic functions (e.g.
tonic, subdominant, dominant), modes (e.g. major, minor, ionian, dorian), accidentals
(e.g. natural, flat, b, bb), semitone intervals (e.g. M3, P4, P5), pitch classes (e.g. C, C#,
Db, D), octaves (e.g. middle, bass), and absolute pitches (e.g. A4, Bb5, C#6).

Example: Key

In this example we want to play ascending scales for every diatonic mode and every pitch
class. Rule p1, p2, and p3 are very similar and generate numbered clones. We use these
three levels of indices to assign three diatonic attributes, first the key in p1, then the
mode in p2, and finally the degree in p3. In p4 we compute the freq using the diatonic
function. The alter, harmony, and octave are not specified and their default values will
be used. We use our split function to arrange the notes as a sequence.

72

4.3. Example

SCALES : split(
p1 : range(12, keyset)
p2 : range(7, modeset)
p3 : range(8, degreeset)
p4 : freqset(diatonic)

)

4.3 Example
Now that we have the abstract theoretic tools and domain-specific models for time and
pitch at our disposal, we can transition to their practical application. In this section we
will demonstrate the generation of motifs, high-level piece layouts, and chord progressions,
culminating in the definition of a complete, polyphonic composition based on these
components. The resulting pieces will consist of multiple voices, each with a unique
layout that divides the duration of the piece into a sequence of measures. In each measure
we query a shared chord progression that we generate beforehand, which synchronizes
the voices to a common harmonic context. The application of our polyphonic model
shows that we can decouple voices and abstract musical aspects from each other, while
not compromising on their synchronization and the quality of the compositions.

Our way of constructing the example in this section—starting at lower-level grammars
and progressively integrating them into higher-level ones—goes in the opposite direction
of the derivation process. The reason is that the lower-level grammars are more closely
related to the generated music and thus easier to understand. The separate definition of
these sub-grammars should further demonstrate that they are easy to reuse, recombine,
and replace when we are not satisfied with the results. Transparency and loose coupling
are after all primary advantages of grammars over other methodologies. A compact
version of the code in this chapter, as well as a translation to TypeScript, can be found
in Appendix A. The audio files are attached to the digital version of this thesis and also
available online: https://github.com/eibens/thesis-2021

4.3.1 Motifs
We start by defining sub-grammars that generate motifs, which is the first level of
abstraction above the note level. A motif is a short arrangement of sounds, no longer
than a measure, which fits into the metric and harmonic framework, but usually has
no further internal organization. Within a motif we may access metric and harmonic
attributes such as key, mode, harmony, tempo, beats, and beatType, but we will avoid
changing them, as the motif should not deviate from its context. Attributes that we will

73

https://github.com/eibens/thesis-2021

4. Probabilistic Temporal-Split Grammars for Music Composition

change are time, span, gain, and freq, as long as these changes take the context into
consideration. For example, we can use the metric units for measures, beats, and note
fractions, but should avoid absolute and relative splits, as they are not aligned with the
metric structure. We will define four different motif generators: BASS, PAD, LEAD, and
DRUM.

Example: Helpers

Before we implement the actual motif generators, we define several helper functions
that simplify their definition. CUT splits the entity into two parts (A, B) or (B, A),
where A has a fixed size s and B fills the remaining space. Besides their temporal scope,
both parts are equivalent. We additionally trim the result, in order to guarantee that it
fits into the input entity. REP repeats a part of a fixed size s until the input entity is
covered and assigns the index to the index attribute. Again, we trim the result. DEG1
and DEG2 assign a random value to the degree attribute. DEG1 only picks from the
most important scale degrees: the tonic, third, fifth, and octave. DEG2 picks from the
remaining degrees. Finally, PR can be used within a pipe to apply an optional step f
with probability p. It will be used throughout this section.

CUT : (s ∈ Rλ) → trim(choice(split([sizeset(s),]), split([, sizeset(s))))
REP : (s ∈ Rλ) → trim(repeat (sizeset(s), indexset))
DEG1 : degreeset(choice(I, III, V, V III))
DEG2 : degreeset(choice(II, IV, V I, V II))
PR : (p ∈ [0, 1]λ, f : V ∗

λ) → rand ≤ p −→ f

Example: Bass Motif

BASS generates notes for a bass line and is the first and simplest of our four motif
generators. We start by repeating a random time interval. Since the primary purpose of
the bass is to communicate the fundamental frequency, we will only change the degree if
it is not the first note of the motif. Even then we only pick from the most important
scale degrees as provided by DEG1. In the last two steps we select a random octave
and calculate the corresponding frequency. A subset of the possible results is shown in
Figure 4.4.

74

4.3. Example

Figure 4.4: Each measure shows a possible result of the BASS grammar (File:).
We normalized the results to C-major and common time.

BASS :
REP(choice(measure, whole, half, quarter))
index > 0 −→ DEG1
octaveset(choice(1, 2))
freqset(diatonic)

Example: Pad Motif

PAD generates chord notes in order to provide harmonic context for the piece. Per
default the chord will be a triad, but can be extended to a seventh chord or higher by
setting the chord attribute. The factor 2i calculates scale degrees that correspond to
chord notes. For example, if chord = 3, the resulting degrees will be (I, III, V). For
additional texture we randomly divide the scope using CUT, which splits off a half,
quarter, or eighth note from the start or end of the interval. We apply it once before the
chord note generation, which splits the whole chord, and once after, which splits each
note individually. Unlike BASS, we determine the octave for the whole motif and not for
each note individually. A subset of the possible results is shown in Figure 4.5.

PAD :
octaveset(choice(3, 4))
PR(0.5, CUT(choice(half, quarter, eighth)))
range(chordor(3), i → degreeset(2i))
PR(0.5, CUT(choice(half, quarter, eighth)))
freqset(diatonic)

Example: Lead Motif

LEAD is the most complex of the four motif grammars as it will generate the melody,
which should ideally be distinct in its movement and rhythm. We start by applying

75

4. Probabilistic Temporal-Split Grammars for Music Composition

Figure 4.5: Each measure shows a possible result of the PAD grammar (File:).
We normalized the results to C-major and common time, and use chord = 3. The
splitting of the individual chord notes in the last three examples causes a high degree of
polyphony, which is difficult to represent in a single staff.

Figure 4.6: Each measure shows a possible result of the LEAD grammar). We
normalized the results to C-major and common time.

Figure 4.7: These examples show how the LEAD grammar behaves under varying metric
constraints (File:). The seed is constant for each measure.

two optional splits and assign a random degree with DEG1 to generate a preliminary
structure for the motif. An optional REP further divides each note and the degree will be
reassigned with a certain probability. Note that we use DEG2 with a lower probability,
as it uses degrees that are less harmonic than those of DEG1. A subset of the possible
results is shown in Figure 4.6 and Figure 4.7.

LEAD :
PR(0.5, CUT(choice(half, quarter, eighth))
PR(0.5, CUT(choice(half, quarter, eighth))
DEG1
PR(0.5, REP(choice(half, quarter, eighth))
PR(0.5, DEG1)
PR(0.25, DEG2)
freqset(diatonic)

Example: Drum Motif

DRUM is our final motif grammar and generates regular pulses with a randomly selected
interval. As most percussion instruments do not have pitch, we will instead modify the
gain attribute to increase the variability. We scale the gain relative to the duration of

76

4.3. Example

Figure 4.8: Each measure shows a possible result of the DRUM grammar (File:).
We normalized the results to common time. The accents indicate that the notes with
an even index are louder than the rest. The scaling of the loudness in relation to the
duration is not depicted.

the entity and then alter the gain of every second beat to increase the fidelity. In the last
step we add a random offset to beats, as long as they are equal or less than a quarter in
length. A subset of the possible results is shown in Figure 4.8.

DRUM :
REP(choice(measure, half, quarter, eighth))
gainset(gain ∗ span/whole)
odd(index) −→ gainset(gain/2)
span ≤ quarter −→ timeset(time + choice(0, span/2))

Example: Motif Selection

Finally, we wrap the four motif generators in a single fork and use the nominal role
attribute to select only one of the branches. We will later assign a role to each voice,
which will cause them to play motifs in a consistent style. The set of roles is easily
extensible with additional grammars. We can even have multiple motif grammars for a
role by wrapping them in the choice function, for example choice(DRUM1, DRUM2). A
motif, as we have defined it earlier, has no higher-level organization. Our next step is
the generation of a musical layout that contains repetition. The leaves of this structure
can then be filled by the MOTIF grammar.

MOTIF : [
role = ’lead’ −→ LEAD
role = ’pad’ −→ PAD
role = ’bass’ −→ BASS
role = ’drum’ −→ DRUM

]

77

4. Probabilistic Temporal-Split Grammars for Music Composition

4.3.2 Layouts
The next step is the integration of the motifs into a larger structure. As the motif
grammars generate a large variety of possible arrangements, repetition must be provided
in the larger context. Besides the basic methods for handling repetition and variation
discussed in Section 3.5, we have not yet proposed a scheme for generating the structure
of a larger piece. In the context of this example we define a musical layout as a sequential
arrangement of entities, where each entity is associated with a nominal label attribute
that identifies the shape of the subtree. For example, a binary form with repeated themes
can be described by four labels AABB. We will generate such patterns with a binary
tree generator LAYOUT, which randomly repeats nodes using the SYNC helper function
defined below. We will then synchronize multiple layouts, one for each voice, using the
LAYER grammar. An optional application of the LABEL grammar allows us to select
individual seeds for the motifs and generate sparse layouts by dropping measures.

Example: Probabilistic Synchronization

A simple grammar over a vocabulary of labels {A, B, . . .} and rules such as {A −→
AA, A −→ AB, . . .} could be used to generate patterns with repetitions. We consider
two cases: (1) the entities on the RHS are synchronized (AA, BB), (2) or they are not
synchronized (AB, BA). We isolate this choice in a helper function SYNC, which takes
a synchronization probability p and a sentence expression f that generates the subtree
roots. We define the attribute sync, which will be used as a temporary variable that
holds a random number. Depending on the probability p, we will either use sync as
the seed for each subtree, or use a random value. In the first case, the result will be
completely monotonous (AAA...), and in the second case it will have no repetition at
all (ABC...). SYNC on its own is not yet very useful, but this will change once we
apply it on multiple levels of the derivation tree. This approach builds roughly on the
synchronization workflow discussed in Section 3.5.1.

SYNC : (p ∈ [0, 1]λ, f ∈ V ∗
λ) →

syncset(rand)
f

p < sync −→ syncset(rand)
seed(sync)

Example: Recursive Layout Generation

LAYOUT recursively divides the input entity and applies SYNC at each branch point. We
use the derive function to express a recursion and a new attribute depth for terminating
the derivation after a certain number of levels. Consider Section 3.3.2 for details on

78

4.3. Example

Figure 4.9: This visualization shows six generations of LAYOUT with depth = 4, where
the monotony decreases from top (monotony = 1) to bottom (monotony = 0) in steps of
0.2. Note that the visualization is limited to 16 colors, which causes the last row to show
random repetitions, even though the monotony is zero and no synchronization occurred.

recursive rules. Since we use the constant 2 for the splits, the result is a binary tree, and
the total length of the pattern is 2n, where n is the initial depth. The monotony attribute
can be used to control the synchronization probability, and its effect is visualized in
Figure 4.9. For example, with an initial depth of two, the rule will be applied once at
the root and once for each of the resulting parts, yielding four entities in total. If only
the first split is synchronized, the grammar generates ABAB. If all but the first split get
synchronized, the pattern is AABB. With LAYOUT we can already generate interesting
pieces of variable length by simply feeding its result to the motif generators. For this
example we assume f is the identity function . In the next example we will use the f
parameter to further modify the split results, allowing us to synchronize layouts.

LAYOUT : (f ∈ V ∗
λ) → derive(

depth! > 0 −→
depth!

set(depth − 1)
SYNC(monotonyor(0), split(range(2)))
f

)

Example: Synchronization between Layouts

While LAYOUT could be used to generate the structure of a piece, the use of a single
layout will synchronize the motifs across all voices. This can be desirable. For example,
in a repeated binary form with the layout AABB we generate the A motif twice in all
voices, then the B motif twice in all voices, leading to two pairs of perfect repetitions. But
for the sake of variability it would be interesting if one voice could play AABB, another

79

4. Probabilistic Temporal-Split Grammars for Music Composition

Figure 4.10: This visualization shows six generations of LAYER with depth = 4,
diversity = 0.25, and a different value for the layer attribute in each row.

ABAB, and yet another AAAB. This can be achieved by generating a layout for each
voice individually. Then again, this will lead to the voices to be perfectly desynchronized,
which is interesting but may sound chaotic over longer pieces.

As a generalization of the two strategies, we define the LAYER grammar, which allows
us to gradually adjust the synchronization between multiple layouts. We assume that the
layer attribute contains a number that uniquely identifies the layout, or alternatively
use a random number. Only then do we synchronize the generation of the layout using
a global seed stored in the piece attribute. We define the diversity attribute, which is
the probability that one branch of a layout gets desynchronized from other instances
of LAYOUT that were generated with the same piece value. The idea is that we can
generate the layout individually for each voice, but use the same piece value for all of
them. With a diversity of zero, the result is effectively the same as if we had generated a
single layout for all voices. If the diversity is one, all voices will have a unique layout,
as only the unique seed in layer will be used. The effect of the diversity attribute is
visualized in Figure 4.10.

LAYER :
layeror(rand)
seed(piece)
LAYOUT(PR(diversity, seed(rand + layer)))

Example: Layout Transfer Function

At last, we use LABEL as a transfer function for mapping the random numbers generated
by LAYOUT to a set of predefined labels. To achieve this we set the label attribute
with a random element from a numeric sequence stored in the labels attribute. This
gives us greater control over the resulting layout, as we can change individual labels,
while keeping everything else as it was. Another aspect that we control with the labels is

80

4.3. Example

Figure 4.11: This visualization shows six generations of LAYER with depth = 4, using
labels = (1, 0, 0, 0, 0, 0) for the first instance, labels = (1, 2, 0, 0, 0, 0) for the second, up
to labels = (1, 2, 3, 4, 5, 6) for the last one. The sparsity of the layer increases with the
number of zeros in the label pool.

sparsity. A voice does not have to cover the whole piece. In fact, the piece will sound
much more interesting if certain voices only appear during certain parts of the piece.
We use the label 0 as a marker for entities that should be removed. For example, if
labels = (0, 1, 2), on average a third of the entities will be removed. The effect of various
settings for labels is shown in Figure 4.11. As a final step, we set the seed by combining
label with the global piece seed. It is important that we add a global source of entropy,
otherwise we will restrict the results to the number of unique values in the label pool.

LABEL :
labelset(choice(labels))
label = 0 −→ []

seed(piece + label)

4.3.3 Chords
With the MOTIF and LAYER grammars we can already generate a wealth of pieces, but
they will all sound quite monotonous. What is missing is a chord progression. Pitch
and harmony, while an essential aspect of music, were not the primary concern in this
thesis. We do not attempt to approximate any particular harmonic practice, as has
been done by Steedman [Ste96] and Rohrmeier [Roh11]. Given that both grammars are
context-free we should be able to define them within our framework, but we will not
attempt this here. Instead, our progression example will be rather primitive: we first
generate a chord pool with the CHORDS grammar, and after generating a temporal
division we assign a random chord from the pool to each entity. This process is defined
in the PROGRESSION grammar. We model the harmonic information of a chord with
the attributes KH = {key, mode, harmony, chord}, where chord encodes the number of

81

4. Probabilistic Temporal-Split Grammars for Music Composition

chord factors, for example 3 for a triad, 4 for a seventh chord, and so forth. In addition
we define the chords attribute over the sentence V ∗, in which we will store the chord
pool. On the piece level we will use it to store the complete harmonic progression, so
that we can query it with the CHORD grammar and use the same chords in every voice.

Example: Chord Pool Generation

CHORDS generates the chord pool. It does not matter how the chords are arranged. We
generate four chords, the tonic (I), subdominant (IV), dominant (V), and parallel minor
(VI) in one of two modes: major = I or minor = V I. Each chord will be a triad, except
for the dominant, where we add the seventh by setting chord to 4. We could additionally
alter the key, or use Jazz chords with added sevenths and ninths. Since the chords will
be arranged randomly it is essential to encode harmonic constraints already in the chord
pool, for example by not excessively mixing keys or modes.

CHORDS :
modeset(choice(major, minor))
chordset(3)
[harmonyset(I), harmonyset(IV), harmonyset(V), harmonyset(V I)]
harmony = V −→ chordset(4)

Example: Random Chord Progressions

PROGRESSION generates a chord progression for a sentence f using our chord pool. We
first set the chords attribute with the result of the CHORDS grammar. Next, we apply
f , which generates the temporal division for our progression. Finally, for each entity
generated by f , we select a random chord from chords and append only the harmonic
attributes KH .

PROGRESSION : (f ∈ V ∗
λ) →

chordsset(CHORDS)
f

append(choice(chords), select(KH))

Example: Chord Texture Query

CHORD is a helper function that we will use to query the chords attribute. Since query
returns all overlapping entities, we use a function first that returns only the first entity

82

4.3. Example

of a sentence. In order to guarantee that there is at least one entity, we use the identity
function as a fallback. Since we want to preserve attributes on the input entity, we
again only append the harmonic attributes KH .

CHORD : append(
first([query(chords),])
select(KH)

)

4.3.4 Pieces
We now have all the necessary components for generating a complete, polyphonic piece.
Our piece will consist of multiple voices in different roles, which we define in the VOICE
grammar. The harmonic information on which we build these voices comes from a
singular chord progression layer that we generate with the PROGRESSION grammar,
similar to the example in Section 4.1.4. The GLOBALS grammar will randomize global
parameters on the axiom, and the PIECE grammar will integrate all these components
and apply them in the correct order.

Example: Voices

VOICES generates the roots for the voice layers of our polyphonic piece. We define a
role for each voice, which will be used by MOTIF to select one of the motif grammars.
The play attribute is the name for an instrument or instrument family. How this value is
interpreted is up to playback system. For the pad, bass, and drums we use the label pool
(1, 2), which means each has at most two different motifs per piece. The label pool for
the two leading voices is more interesting. When the first voice plays motif 1, the second
voice is silent, as indicated by the label 0. When the second voice plays motif 2, the first
voice is silent. Motif 3 will be played by both at the same time. This only works if we
additionally set the layer attribute of the lead voices to the same value.

VOICES : [
roleset(’bass’), playset(’contrabass’), labelsset(1, 2)
roleset(’pad’), playset(’piano’), labelsset(1, 2)
roleset(’lead’), playset(’violin’), labelsset(1, 0, 3), layerset(1)
roleset(’lead’), playset(’piccolo’), labelsset(0, 2, 3), layerset(1)
range(4), roleset(’drum’), playset(’percussion’), labelsset(1, 2)

]

83

4. Probabilistic Temporal-Split Grammars for Music Composition

Example: Randomizing Global Attributes

GLOBALS initializes the attributes that will be constant for the whole piece. We start by
setting the global attributes and the piece attribute, which will be used by our LAYER
and LABEL grammars. Our motif generators are flexible enough that they can handle
almost any meter, as shown in Figure 4.7. There is no particular reason for setting exactly
these attributes either. For example, one could use a different tempo for different parts of
a piece, or we could set the monotony for each voice individually. Alternatively, we can
integrate these attributes as parameters in a graphical interface to give users primitive
control over the generated result, which we show in Figure 5.1. For any other canonical
attributes that are missing here, we assume the default values that were established in
this chapter.

GLOBALS :
pieceset(rand)
keyset(uniform(0, 12))
temposet(uniform(80, 140))
beatsset(choice(2, 3, 4, 6))
beatTypeset(choice(4, 8))
monotonyset(uniform(0.25, 0.75))
diversityset(uniform(0, 0.5))
depthset(choice(2, 3, 4))

Example: Piece

Finally, we define the PIECE grammar, which will generate the complete piece. For the
overall duration of the piece we set span to a number of measures equal to the number
of leaves in the layer. For the chords attribute we use the PROGRESSION grammar
and pass the LAYER as its argument. This means the chord progression will have the
same temporal structure as the voices, which is useful since we will later query it with
the CHORD function. The last rule applies our various sub-grammars in sequence. Note
that the LABEL and CHORD sub-grammars generate only one entity, while VOICES,
LAYER, and MOTIF may generate any number of entities.

84

4.4. Conclusion

PIECE :
GLOBALS
spanset(2depth ∗ measure)
chordsset(PROGRESSION(LAYER))
VOICES, LAYER, LABEL, CHORD, MOTIF

Figure 4.12 shows one example of the PIECE grammar. We can see how the algorithm
reuses the limited set of motifs and how the two lead voices interact. The piano grammar
has more variation than the other voices, as the seventh chords have an additional
note. The piece lacks overall structure. For example, there is no satisfying harmonic
resolution at the end, but this would be a lot to ask from our random progression
generator. Nevertheless, the results are quite satisfying. Most importantly, the piece
features polyphony on the large scale as a set of semi-independent voices, which are all
synchronized to a hidden chord layer, and on the small scale in the form of chords and
random arpeggios. We were able to achieve this within the boundaries of our theoretic
framework, without compromising musical quality or our intuitions about the composition
process. In the upcoming Chapter 5 we will discuss how we implemented this theoretic
framework, followed by additional musical results in Chapter 6.

4.4 Conclusion
In this chapter we presented domain-specific musical extensions for the generic framework
presented in Chapter 3. These included a strategy for generating both sequential
and parallel temporal structures, which we called probabilistic temporal-split grammars,
various operators that can be used to generate and transform interval arrangements, and
simple models for meter and diatonic scales. We further demonstrated their application
with various isolated examples and finally within a larger grammar that produces
complete, multi-instrument pieces. This concludes the detailed definition of our theoretical
contributions. In the next chapter we will discuss the implementation of our framework
as a TypeScript library and an accompanying browser-based playback environment and
score visualization.

85

4. Probabilistic Temporal-Split Grammars for Music Composition

13

9

5

Cb.

Cb.

Cb.

Contrabass

Pno.

Pno.

Pno.

Piano

Vln.

Vln.

Vln.

Violin

Picc.

Picc.

Picc.

Piccolo

 = 120

Figure 4.12: Manual transcription of one generation of the PIECE grammar. The drum
voices are not included. The document attachments include two musical interpretations,
one with percussion (File:) and one without (File:).

86

CHAPTER 5
Implementation

In this chapter we describe how we realized the theoretic ideas from the previous chapters
as an executable program. We will discuss technologies that we used and show how
certain parts of the theory are implemented. The decision for the final technology
stack primarily depended on audio playback and visualization capabilities, available
programming languages, and portability. In the end, audio and graphics requirements
could be sufficiently met by a modern web browser. The framework and grammars are
written in TypeScript, a strongly typed superset of JavaScript. Concerning portability
we have to consider two types of clients: developers, who use the system to create musical
grammars, and consumers, who want to listen to the generated music, or interact with
the derivation process on a high level. While we can expect developers to install specific
libraries and tools, the consumer will be reluctant to install additional software. By
deploying the application as a website the consumers can access it with zero setup.

5.1 Language
We experimented with custom interpreters, but soon realized that designing a new
language was infeasible. At this point robust behavior and mature tooling are more
useful to us than an optimized syntax. JavaScript, the web’s native programming
language, can be criticized for various inconsistencies in its core design, lack of type-
safety, and fragmented ecosystem. On the positive side it lends itself well to a functional
programming style, it has terse syntax, and allows for a high-degree of meta programming.
The latter is useful when we want to integrate our system into custom code editors
and run code fragments directly in the application. As mentioned, we use TypeScript
(version 4.2) for development, which alleviates much of the pain associated with untyped
scripting languages. Its flexible type system is capable of statically verifying most of
our components. Unfortunately, the formal TypeScript specification is locked at version
1.8 [Mic16] and the authors now rely on the TypeScript handbook [Mic21] as the main

87

5. Implementation

source of documentation. We will only describe the most vital parts of the code and only
those aspects that were strongly influenced by the technology.

Before we introduce code examples, we provide a short summary of TypeScript’s syntax.
The first line below defines a constant named f. Its type is inferred from the value on
the right side of the equal sign, which is an anonymous function. The signature of this
function specifies two generic type parameters A and B, a parameter a of type A, and a
parameter b of B. The return type [B, A] is a tuple, where the first element is of type B

and the second of A. The implementation follows after the arrow and generates a tuple
by reversing the order of the arguments. f essentially swaps its arguments. TypeScript
further allows us to define types without implementation. The second line describes the
type of variable f as the type F. Note that in the type definition the return type comes
after the arrow rather than after a colon. The third line is similar to the second line,
but binds the generic parameters directly to the type, which allows us to specify them
explicitly. For example, we can write F1<string, number>, but not F<string, number>.

const f = <A, B> (a: A, b: B): [B, A] => [b, a]

type F = <A, B> (a: A, b: B) => [B, A]

type F1<A, B> = (a: A, b: B) => [B, A]

5.1.1 Expression Implementation

Expressions are an important part of our domain-specific language, as explained in
Section 3.4. The idea is that whenever a non-function value is expected, we can either
specify a constant, or a function over some input set, usually our entities. The names in
the code do not necessarily correspond to the names used in the theory. For example,
instead of an entity v ∈ V we use a variable x with a type X, as our generic definition of
an expression is practically not restricted by our definition of an entity. Restrictions on
the expression input, for example the presence of certain attributes, can be specified with
type constraints where necessary. We define a type shorthand Fun<Y, X> for a function
from a set X to a set Y. The Exp<Y, X> type represents an expression as either a constant
Y, or a function from X to the same type of expression. In this specific case we cannot
use our function shorthand Fun<Exp<Y, X>, X> as it breaks TypeScript’s recursion rules.
In Section 3.4 we defined the λ function for converting a higher-order expressions to a
plain function, which is called exp in our implementation. The val function is a helper
function for evaluating an expression in a single call.

type Fun<Y, X> = (x: X) => Y

type Exp<Y, X> = Y | ((x: X) => Exp<Y, X>)

const exp = <Y, X> (f: Exp<Y, X>): Fun<Y, X> => /*impl*/

const val = <Y, X> (f: Exp<Y, X>, x: X): Y => exp(f)(x)

88

5.1. Language

5.1.2 Attribute Implementation

An object in JavaScript is a bag of key-value pairs, which we can dynamically modify
with a variety of syntactic constructs. The language essentially has attributes built into
its core design. Besides dynamic access and enumeration, it has the spread syntax, which
can be used to integrate an existing object into a new object, and deconstruction syntax,
which takes a subset of an object’s properties [Ecm20]. Consequently, we do not need
an implementation for select and append, which were defined in Section 3.4.3. Further,
JavaScript’s prototypal inheritance model allows us to define a prototype for an object,
which means that any access on a property that is not available directly on the object
itself will be delegated upwards in the prototype chain. This is equivalent to native
attribute inheritance, as described in Section 3.3. Although we did not do any profiling,
using prototypal inheritance should be very efficient, since the parent state is reused, and
a JavaScript interpreter is likely optimized for property lookup. A setter with prototypal
inheritance can be implemented like this:

const setp = <O, X> (o: Exp<O, X>): Fun<X & O, X> => x => (

Object.assign(Object.create(x), val(o, x))

)

Unfortunately, properties on prototypes are hidden from certain meta-programming
features. We instead prefer using plain objects and the spread syntax for inheritance, as
every native construct that works on prototypal properties also works on plain properties,
but the converse is not true. For example, the spread syntax only considers properties
defined directly on the object, and native serialization to JSON also ignores prototypes.
The following code defines a setter using the spread syntax.

const set = <O, X> (o: Exp<O, X>): Fun<X & O, X> => x => (

{...x, ...val(o, x)}

)

The lines below illustrate how the setter can be used in practice. The object literal
syntax allows us to set multiple attributes at once, which is a major difference from the
setter we used in the theoretic examples. In this concrete example, there is a dependency
between halfAnswer and answer, so we cannot set both in the same call. The third line
uses an alternative syntax, but is otherwise equivalent to the second line.

set({halfAnswer: 21})

set(x => ({answer: 2 * x.halfAnswer}))

set(’answer’, x => 2 * x.halfAnswer)

89

5. Implementation

5.1.3 Grammar Definition
The generic core types and library functions are independent from a particular entity
type, so that a grammar author can define a custom entity type and benefit from static
type-checking. The framework provides the Entity type for convenience, which defines
the various canonical attributes of our musical models, including the basic time, span,
and freq attributes, metric and diatonic attributes, and additional attributes necessary
for playback and visualization. The EntityDefaults object defines the default values for
an Entity. Custom attributes can be added to the Entity type with a type union and to
the entity object with the spread syntax. In the example below we add the custom chord

attribute from Section 4.3.3 with a default value of 3.

type ChordEntity = Entity & {chord: number}

const entity: ChordEntity = {...EntityDefaults, chord: 3}

The chord function below is a reusable sub-grammar that takes a number expression as an
argument and generates n chord notes. Ideally, the entity type for a sub-grammar can be
specified as a constrained generic type argument. In the concrete example, constraining
X to extend Entity is actually much stricter than necessary, as the sub-grammar only
relies on the degree and freq attributes. Over time, a grammar author can build a whole
library of modular functional components for their desired musical style. The equivalent
theoretic notation is shown below the code.

const chord = <X extends Entity> (n: Exp<number, X>): Fun<X[], X> => pipe(

range(n, i => set(’degree’, 2 * i)),

set(’freq’: diatonic)

)

CHORD : (n ∈ Nλ) →
range(n, i → degreeset(2i))
freqset(diatonic)

These final lines show how we can evaluate chord using entity as input. Despite using
the custom entity type ChordEntity, the complete example is statically verifiable by
TypeScript’s type-checker.

const notes = chord<ChordEntity>(x => x.chord)

const score: ChordEntity[] = val(notes, entity)

90

5.2. Interface

Figure 5.1: This screenshot shows the interface for the example from Section 4.3 (File:
). The colors in the visualization indicate the instrument. Some parts of the

magenta voice are hidden by the blue voice. The controls on the left side correspond to
the attributes set by the GLOBALS sub-grammar.

5.2 Interface

In addition to the scripting interface, users can interact with the grammar through a
graphical interface and score visualization, pictured in Figure 5.1. The visualization
maps time to the horizontal and logarithmic frequency to the vertical axis. Notes are
displayed as colored bars based on their time, span, and freq attributes. The color of
a note depends on the nominal color attribute, which selects one of sixteen predefined
colors and allows visual separation between notes. Horizontal and vertical grid lines
mark specific values on the X and Y axes. Labels are only visible when the user places
their cursor on or near them. Their values are measured in seconds for the X axis and
MIDI numbers for the Y axis. The button in the top-left corner can start and pause
playback. While the sound fonts are loading in the background, this button is disabled.
Once all resources are available, a vertical playback progress indicator is displayed at
the start of the score. This indicator can be moved to another point on the timeline by
clicking on the corresponding vertical grid line. At the left side of the interface are the
grammar controls, which can be used to modify attributes of the initial entity. They
must be manually defined by the user.

For authoring new grammars, it is important that we can quickly review changes to the
code and manipulate parameters. We initially attempted to integrate a code editor into
the interface, and for some time even relied on the browser’s built-in REPL and multi-line
code editor. Yet, most of the web-based options we tested were far less sophisticated

91

5. Implementation

than desktop-based editors, especially in regards to code completion, navigation, and
type-checking. In the end we adopted a hybrid approach, where the grammar author
works in their preferred editor to develop the grammar and interface, and a file-watcher
automatically rebuilds and reloads the code after a change. The latency is usually
negligible, and one can use the interface controls for fine-tuning parameters. The benefit
is that we have complete access to version control, package managers, type-checking, and
other productivity tools that enable us to develop mature, well-organized modules.

5.3 Audio
Our requirements for audio processing are rather primitive. We only need to be able to
load a large number of short audio files and schedule them for playback. With the Web
Audio API we can setup complex graphs of audio data sources, filters, and sinks, that
can be manipulated with low latency parameter handles. We barely scratched the surface
of this rich API, as we can load, decode, and schedule an audio file with just a few lines
of code. Symbolic audio formats such as MIDI usually rely on sound fonts, which are
essentially mappings from frequencies to audio samples. The generation of a sound font
is not trivial, as one needs to record or synthesize a large number of instrument sounds.
Fortunately, several collections of free sound fonts have been published under permissive
licenses. As the file sizes can become quite large, the player loads sound fonts lazily over
the network. We use the play attribute with an URL that points to the font.

Once a score is generated and the sounds are loaded, the user can start the audio player.
Initially, we implemented an immediate playback strategy with JavaScript’s native timing
mechanism. Playback would start at the earliest set of notes, and we would use setTimeout

to wait until the start of the next set of notes. Yet, the temporal precision employed
by setTimeout and setInterval turned out to be insufficient. Further, due to notes being
scheduled immediately, this approach caused delays when the processor could not keep
up. For that very reason, the Web Audio API provides precise timing via currentTime

and allows scheduling notes in advance. Since scheduling the whole score is wasteful, we
implemented a hybrid approach. We use an imprecise scheduling loop with setInterval,
which accurately schedules all notes within the current time window. The time windows
overlap, so that notes get scheduled early enough, even if the imprecise loop falls behind.
A peeking iterator takes the events from a chronological queue, so that no note can be
scheduled twice. Further, we connect each audio node to a master node in the audio
graph, which we can disconnect to stop playback of all active and scheduled notes.

92

CHAPTER 6
Evaluation

In this chapter we will once more compare our approach to the state of the art. This
comparison is not trivial, as the ultimate goal of this and similar works is the provision
of potential, which is difficult to measure meaningfully. This potential appears on two
levels, once on the level of the individual grammar and its possible results, and once again
on the level of the framework and the different types of grammars we can define. The
underlying model that describes both aspects is the same, as the grammar definitions
themselves can be considered sentences in a meta-grammar. While we could study the
distribution of pieces generated by the example in Section 4.3 and count the number
of combinations of its non-deterministic choices, it will say little about the capabilities
of the meta-grammar, which is more interesting to us. Yet, a similar analysis of the
meta-grammar is much more difficult, as its entities have complicated relationships that
need to be considered when we count not only the number of possible combinations
of the grammar features, but those that are semantically meaningful. Even then, the
comparison of such statistics across multiple works and their respective meta-grammars
is not guaranteed to be enlightening.

Instead, we will attempt a qualitative comparison, with a focus on the polyphonic aspect.
As explained in Section 2.1, machine learning and related methods are orthogonal to
generative grammars and we will not consider them. For formal grammar approaches we
will consider interesting features of the meta-grammar, but not the particular instances.
For example, Steedman [Ste96], Rohrmeier [Roh07], and Bel and Kippen [BK92b] focus
on the empirical replication of certain styles of music. As such their work is of course
very valuable to us since we can attempt to integrate their grammars as sub-grammars
into our own framework. For example, we could swap our naive chord progression
grammar with Steedman’s context-free grammar for jazz chord sequences. But from the
meta perspective, their languages are optimized with very specific constraints towards a
different goal.

93

6. Evaluation

A more meaningful comparison can be made with the works by Quick and Hudak on
probabilistic temporal graph grammars (PTGG) [QH13a] and the subsequent extensions
by Melkonian [Mel19], as they intend to define a theoretic framework with general
applicability and use a parametric model of time. We speculate that our model of time
subsumes that of PTGGs, as it is based entirely on split operations with relative units
and note durations, both of which are provided in our framework. Melkonian extends
PTGGs with matching on note durations, which we allow by representing the LHS as a
general predicate. Subtree synchronization can be emulated by reusing a derivation result,
or with a shared seed, although the implementation in Haskell with the let-in construct
seems like a very elegant solution. Finally, in regards to polyphony, PTGGs do not seem
to provide a native mechanism. Quick and Hudak achieve polyphony through a processing
step that happens on the terminals of the grammar. Yet, the scores presented in these
works do not suggest that time intervals may freely overlap even after post-processing.

The work by Tanaka and Furukawa [TF12] is very relevant, as they integrate polyphony
on the grammar level. Interestingly, they do not use a recursive or parametric division
of the timeline. Instead, the total duration of the notes on the RHS is greater than the
duration of the replaced entity. Subsequent notes are pushed back in the song, which
consequently grows with every replacement. We can emulate this insertion of entities
with a split operation on the whole voice after each replacement, but it is arguably
counter-intuitive within our temporal model. Tanaka and Furukawa perform this type of
replacement on multiple parallel voices and only allow replacement if certain constraints
are fulfilled, for example that all voices grow by the same amount. The rules themselves
are generated with machine learning. We speculate that it might be challenging to design
rules by hand in such a system, as it seems difficult to predict their interaction with
the constraints across multiple voices. Their polyphonic model is further limited to a
fixed set of voices, while our approach allows the definition of voices on every level of the
derivation tree.

The generative grammar definition language (GGDL) by Holtzman [Hol81] provides
a variety of interesting meta-level features. While the presented scores appear to be
polyphonic, it is not explained in detail how it is achieved. It is possible that a polyphonic
mapping is part of the final stage of their derivation pipeline. In that case, it can be
emulated in our system with a pipe over the initial grammar and the polyphonic mapping
rule. McCormack [McC96] presents a similar construction of various grammar features
such as nested derivation as we did in Chapter 3. Polyphony can be achieved with both
parallel and sequential placement of notes, but only with discrete symbols. This is very
easy to replicate with our temporal model. They do allow context-sensitive matching,
which is not available in our system. Neither work uses an explicit parametric treatment
of the time dimension.

Our own model of time appears to be capable of replicating the temporal structures used
in prior works. Its recursive parallelism allows us to define pieces with an unbounded
number of entities within the same temporal slice, which we have not seen before in similar
systems. We believe this is a very important feature of a polyphonic music generation

94

6.1. Results

system since many types of music require polyphony on at least two levels: voices and
chords. Nested grammars allow us to integrate context-sensitive operations directly into
the rules of the grammar and allow for subsequent rule application on their results, which
is not possible if the same operation is applied in a post-processing step. Finally, we
think that using generated sentences as a common context, as we did with the harmonic
progression, is an effective and intuitive way of synchronizing parallel branches of the
derivation tree that integrates elegantly with the other features of our meta-language.

When we look at computer-generated music from the outside, it can be difficult to judge
how valuable it really is. How many pieces would one need to hear to be convinced that
an automatic music generator does not just cycle through a set of manually composed
pieces? If we want someone to appreciate our music in terms of the creative work that
went into it, they need to understand the instrument, and how easy that is depends on
the complexity of said instrument. In fact, it is often the use of simpler tools that is more
impressive. For example, it is easy to see oneself playing a beat using pots and utensils,
which means we can better appreciate when someone does it skillfully. The same beat
played on an expensive drum-set may not find as much recognition because the implicit
expectations for both the instrument and the player are much higher.

In formal grammars the notion of complexity is rigorously defined in terms of the Chomsky
hierarchy. It was an impressive accomplishment when Mark Steedman reformulated the
context-sensitive jazz chord grammar [Ste84] as a context-free grammar [Ste96] with
comparable results, as the former is embedded in a framework on a fundamentally
different complexity level. Inversely, it is very much expected that we can generate music
with a Turing complete language, and thus the additional complexity must be justified in
the sophistication of the results. Again, it is a question of potential and how much of it
we actually utilize. The claim that our theoretic framework is context-free is true to an
extent, but the unrestricted use of attributes and nested grammars with context-sensitive
operations strongly indicates that this is not the whole truth. Further, embedding the
system in a general-purpose language allows truly unrestricted manipulation. We believe
we managed to strike a good balance between restrictions and freedoms in our system,
without too many sacrifices in terms of simplicity and musical intuitions. Nevertheless, it
is important that we consider used potential when evaluating such systems, especially
when we compare them to the work of others who intentionally chose more restrictive
models.

6.1 Results
At last, we provide some additional results for the grammar example from Section 4.3 in
the top section of Table 6.1. The other two table sections list results of two alternative
grammars with a similar setup. The difference between them is primarily the selection
of the instruments, where the ‘piano’ grammar uses a single piano sound font, and the
‘synth’ grammar uses a mixture of synthesized sounds. They both feature a two-tier
layout, where we first divide the piece into sections, and only then divide each section

95

6. Evaluation

file key chords bpm meter
A minor 120 4/4
A major 136 6/8
E major 114 4/4
E minor 93 4/4
A# minor 108 2/8
G# major 87 3/8
A major 126 6/8
- jazz 144 4/4
C major 143 4/4
C minor 140 3/4
- jazz 138 2/4
- jazz 144 4/4
- jazz 120 4/4

Table 6.1: As selection of pieces generated with our approach. The audio files are attached
to the digital version of this thesis and also available online, where we publish additional
variations and results:
https://github.com/eibens/thesis-2021

into measures. Sparsity is used on the section level as well as the measure level, which
means voices can be silent over large stretches of the song. We further use a ‘jazz’ chord
pool with seventh and ninth chords, in addition to the major and minor chord pools.
The chord pool can vary from one section to the next. We have now almost reached the
end of this thesis. In the final chapter we will summarize our contribution and talk about
potential future directions.

96

https://github.com/eibens/thesis-2021

CHAPTER 7
Conclusion

In this thesis we developed a formal grammar approach for generating polyphonic music
called probabilistic temporal-split grammars. Each musical entity is associated with
an independent temporal scope, and replacement entities are implicitly layered due
to attribute inheritance. This allows us to model parallel structures—from chords to
complex voice patterns—at all levels of the derivation tree. Sequential placement of
entities is facilitated by a split operator, which supports absolute, relative, and flexible
part sizes, and a repeat operator, which can be used to tile intervals of arbitrary duration.
Parallel voices can be supplied with common context by retaining terminal strings of
sub-grammars and extracting their entities with a time-based query mechanism. We
have further defined models of meter and diatonic pitch, reminiscent of classic musical
notation, for calculating absolute time and frequency values from relative parameters.

The domain-specific models are embedded in a generic functional framework for defining
non-deterministic, context-free grammars. Its successful application provides evidence
that the functional paradigm is well suited to model this type of system and, by employing
a component-based architecture, remains transparent even for complex grammars. Its
implementation as a library within a general-purpose language makes it easily extensible.
Further, using a generic attribute-based representation for entities instead of a fixed
parametric representation allows the grammar author to work with custom musical
structures. Of course, the additional generality does not come without cost, as the burden
of developing higher-level musical abstractions is shifted to the user.

7.1 Limitations and Future Work
We believe our approach is intuitive and accessible in theory, but the implementation
as a TypeScript library may pose serious usability problems. Scripting languages are
commonly considered to be easier to learn then conventional programming languages,
and JavaScript specifically is extremely popular, but their use still requires significant

97

7. Conclusion

programming knowledge. As such, our target audience must be familiar with both
programming and music theory. The former could be helped with a domain-specific or
visual language, for example a node-based interface. Alternatively, we could provide a
visualization of the derivation tree and integrate user input directly into the derivation
process. The derivation of a terminal entity could be suspended until the user chooses the
next operation, essentially allowing them to construct pieces and rules in a semi-automatic
fashion. This could also be used as an alternative to random number generators, as the
user could assume control over non-deterministic decisions.

While this work showed that a scope-based approach to music composition can be fruitful,
other models for the time dimensions should be explored. For example, a lattice-like
structure, similar to the lines of a written score, could be used to place notes within the
scope of an entity. This would subsume our metric units and also generalize well to the
pitch dimension and non-diatonic scales. The unification of meter and pitch could go
even deeper, given that frequency is itself a rhythmic phenomenon. The former describes
the interplay of periodic signals below the audible threshold of 20 Hz, the latter signals
above. The linear transformation of the time dimension, defined by the entity’s offset and
duration, can alternatively be thought of as a wave, where the offset is the phase and the
duration is the wavelength. A system that uses a wavelike representation in frequency
space as the underlying model could be capable of representing both large-scale score
generation and small-scale sound synthesis.

Allowing the reuse of sub-grammar results provides a basis for context-sensitive operations,
as we have demonstrated with the split operator and temporal queries. The library could
be improved with additional score analysis tools. For example, we could create a melody
in a generative pass, extract the emerging harmonic information in an analysis pass, and
use this to generate accompaniments in a second generative pass. The end goal would be
a bidirectional system of score generation and score parsing, where the system state goes
through multiple subsequent translations between abstract and concrete representations.
With an improved interface, composers could use such a system to reverse-engineer
existing scores and dynamically remix their components. This could be extended to raw
audio, where Fourier analysis can reveal metric and harmonic structure. The analyzed
audio data could be sliced into samples, which could be used to build new sound fonts
on the fly. In the end, there remains a lot to be explored—at least until someone finds a
general method for turning abstract ideas into concrete reality. For music, this does not
seem like a distant possibility.

98

APPENDIX A
Source Code

This chapter contains the source code for the music generator described in Section 4.3.
Note that only the grammar and GUI definitions are included, not the complete library.
Implementation details can be found in Chapter 5.

A.1 Grammar Definition
This section lists the theoretic code from Section 4.3. Listing it here in compact form
allows for convenient comparison with the corresponding TypeScript source code in
Section A.2.

CUT : (s ∈ Rλ) → trim(choice(split([sizeset(s),]), split([, sizeset(s))))
REP : (s ∈ Rλ) → trim(repeat (sizeset(s), indexset))
DEG1 : degreeset(choice(I, III, V, V III))
DEG2 : degreeset(choice(II, IV, V I, V II))
PR : (p ∈ [0, 1]λ, f : V ∗

λ) → rand ≤ p −→ f

BASS :
REP(choice(measure, whole, half, quarter))
index > 0 −→ DEG1
octaveset(choice(1, 2))
freqset(diatonic)

PAD :
octaveset(choice(3, 4))
PR(0.5, CUT(choice(half, quarter, eighth)))
range(chordor(3), i → degreeset(2i))
PR(0.5, CUT(choice(half, quarter, eighth)))

99

A. Source Code

freqset(diatonic)

LEAD :
PR(0.5, CUT(choice(half, quarter, eighth))
PR(0.5, CUT(choice(half, quarter, eighth))
DEG1
PR(0.5, REP(choice(half, quarter, eighth))
PR(0.5, DEG1)
PR(0.25, DEG2)
freqset(diatonic)

DRUM :
REP(choice(measure, half, quarter, eighth))
gainset(gain ∗ span/whole)
odd(index) −→ gainset(gain/2)
span ≤ quarter −→ timeset(time + choice(0, span/2))

MOTIF : [
role = ’lead’ −→ LEAD
role = ’pad’ −→ PAD
role = ’bass’ −→ BASS
role = ’drum’ −→ DRUM

]

SYNC : (p ∈ [0, 1]λ, f ∈ V ∗
λ) →

syncset(rand)
f

p < sync −→ syncset(rand)
seed(sync)

LAYOUT : (f ∈ V ∗
λ) → derive(

depth! > 0 −→
depth!

set(depth − 1)
SYNC(monotonyor(0), split(range(2)))
f

)

LAYER :
layeror(rand)
seed(piece)
LAYOUT(PR(diversity, seed(rand + layer)))

100

A.1. Grammar Definition

LABEL :
labelset(choice(labels))
label = 0 −→ []

seed(piece + label)

CHORDS :
modeset(choice(major, minor))
chordset(3)
[harmonyset(I), harmonyset(IV), harmonyset(V), harmonyset(V I)]
harmony = V −→ chordset(4)

PROGRESSION : (f ∈ V ∗
λ) →

chordsset(CHORDS)
f

append(choice(chords), select(KH))

CHORD : append(
first([query(chords),])
select(KH)

)

VOICES : [
roleset(’bass’), playset(’contrabass’), labelsset(1, 2)
roleset(’pad’), playset(’piano’), labelsset(1, 2)
roleset(’lead’), playset(’violin’), labelsset(1, 0, 3), layerset(1)
roleset(’lead’), playset(’piccolo’), labelsset(0, 2, 3), layerset(1)
range(4), roleset(’drum’), playset(’percussion’), labelsset(1, 2)

]

GLOBALS :
pieceset(rand)
keyset(uniform(0, 12))
temposet(uniform(80, 140))
beatsset(choice(2, 3, 4, 6))
beatT ypeset(choice(4, 8))
monotonyset(uniform(0.25, 0.75))
diversityset(uniform(0, 0.5))
depthset(choice(2, 3, 4))

PIECE :
GLOBALS

spanset(2depth ∗ measure)

101

A. Source Code

chordsset(PROGRESSION(LAYER))
VOICES, LAYER, LABEL, CHORD, MOTIF

A.2 Grammar Definition (TypeScript)
This section lists the TypeScript source code that corresponds to the grammar in Sec-
tion 4.3 and generated the results listed in the top part of Table 6.1. The import
statements at the beginning of the file load the library functions provided by our frame-
work. The ’./drums’ module defines constants for a non-standard percussion instrument
and is not part of the library. The typed declaration MyEntity extends the Entity type
with custom attributes, as explained in Section 5.1.3. The rest of the file closely resembles
the code in Section A.1.

001 import {diatonic, eighth, Entity, gleitz, half, measure, measures, overlaps,

quarter, rel, repeat, split, translate, trim, whole} from ’@dipl/lib-music’

002 import {clone, Exp, filter, first, fork, Fun, indexed, map, noop, pipe, pipeDeep,

range, Seq, set, setx, use, val, when} from ’@dipl/lib-core’

003 import {choice, pr, rand, seed, uniform} from ’@dipl/lib-rng’

004 import {frac, lte, pow, round} from ’@dipl/lib-math’

005 import {acousticGrandPiano, contrabass, I, II, III, IV, major, minor, musyngKite,

piccolo, V, VI, VII, VIII, violin} from ’@dipl/lib-constants’

006 import * as drums from ’./drums’

008 export type MyEntity = Entity & {

009 piece: number

010 depth: number

011 monotony: number

012 diversity: number

013 layer: number

014 label: number

015 labels: number[]

016 chord: number

017 role: ’bass’ | ’lead’ | ’pad’ | ’drum’

018 chords: MyEntity[]

019 }

021 function Cut<X extends Entity> (size: Exp<number, X>): Fun<X[], X> {

022 return trim(choice(

023 split<X>(setx({size}), noop),

024 split<X>(noop, setx({size}))

102

A.2. Grammar Definition (TypeScript)

025))

026 }

028 function Rep<X extends Entity> (size: Exp<number, X>): Fun<X[], X> {

029 return trim(indexed(repeat<X>({

030 size,

031 cover: true

032 }), i => set({index: i})))

033 }

035 function Deg1<X extends Entity> (): Fun<X, X> {

036 return setx({degree: choice(I, III, V, VIII)})

037 }

039 function Deg2<X extends Entity> (): Fun<X, X> {

040 return setx({degree: choice(II, IV, VI, VII)})

041 }

043 function Pr<X extends Entity> (p: Exp<number, X>, f: Exp<Seq<X>, X>): Fun<X[], X> {

044 return when(pr(p), f)

045 }

047 function Bass<X extends Entity> (): Fun<X[], X> {

048 return pipe(

049 Rep(choice<number, X>(half, quarter)),

050 when(x => x.index > 0, Deg1()),

051 setx({octave: choice(1, 2)}),

052 setx({freq: diatonic})

053)

054 }

056 function Pad<X extends MyEntity> (): Fun<X[], X> {

057 return pipe(

058 setx({octave: choice(3, 4)}),

059 Pr(0.5, Cut(choice<number, X>(half, quarter, eighth))),

060 range(x => x.chord || 3, i => set({degree: i * 2})),

061 Pr(0.5, Cut(choice<number, X>(half, quarter, eighth))),

062 setx({freq: diatonic})

063)

064 }

066 function Lead<X extends MyEntity> (): Fun<X[], X> {

067 return pipe(

103

A. Source Code

068 Pr(0.5, Cut(choice<number, X>(half, quarter, eighth))),

069 Pr(0.5, Cut(choice<number, X>(half, quarter, eighth))),

070 Deg1(),

071 Pr(0.5, Rep(choice<number, X>(half, quarter, eighth))),

072 Pr(0.5, Deg1()),

073 Pr(0.25, Deg2()),

074 setx({freq: diatonic})

075)

076 }

078 function Drum<X extends Entity> (): Fun<X[], X> {

079 return pipe<X>(

080 Rep(choice<number, X>(measure, half, quarter, eighth)),

081 setx({gain: x => x.gain * x.span / val(whole, x)}),

082 x => when(x.index % 2 === 1, setx({gain: x.gain / 2})),

083 x => when(lte(x.span, quarter), translate<X>(choice(0, rel(1 / 2))))

084)

085 }

087 function Motif<X extends MyEntity> (): Fun<X[], X> {

088 return trim((x: X) => ({

089 lead: Lead<X>(),

090 pad: Pad<X>(),

091 bass: Bass<X>(),

092 drum: Drum<X>()

093 }[x.role]))

094 }

096 function Sync<X extends Entity> (p: Exp<number, X>, f: Exp<X[], X>): Fun<X[], X> {

097 return use(rand, sync => pipe<X>(

098 f,

099 use(p, p => seed<X>(p < sync ? rand : sync))

100))

101 }

103 function Layout<X extends MyEntity> (f: Exp<X[], X>): Fun<X[], X> {

104 return pipeDeep(

105 x => x.depth,

106 Sync(x => x.monotony, split(clone(2))),

107 f

108)

109 }

104

A.2. Grammar Definition (TypeScript)

111 function Layer<X extends MyEntity> (): Fun<X[], X> {

112 return pipe(

113 seed(x => x.piece),

114 Layout(when(pr(x => x.diversity), seed<X>(rand, x => x.layer)))

115)

116 }

118 function Label<X extends MyEntity> (): Fun<X[], X> {

119 return pipe(

120 x => setx({label: choice(...x.labels)}),

121 x => when<X>(x.label === 0, []),

122 x => seed(x.piece, x.label, x.layer)

123)

124 }

126 function Chords<X extends Entity> (): Fun<X[], X> {

127 return pipe(

128 setx({mode: choice(major, minor)}),

129 set({chord: 3}),

130 map([I, IV, V, VI], harmony => set({harmony})),

131 when(x => x.harmony === V, set({chord: 4}))

132)

133 }

135 function Progression<X extends MyEntity> (f: Exp<X[], X>): Fun<X[], X> {

136 return pipe<X>(

137 setx({chords: Chords}),

138 f,

139 x => ChordAppend(choice(...x.chords))

140)

141 }

143 function ChordAppend<X extends Entity> (c: Exp<X, X>): Fun<X, X> {

144 return use(c, ({harmony, key, mode, chord}) => set(

145 {harmony, key, mode, chord}

146))

147 }

149 function Chord<X extends MyEntity> (): Fun<X, X> {

150 return ChordAppend<X>(

151 first(filter<MyEntity, X>(x => x.chords, overlaps), noop())

152)

153 }

105

A. Source Code

155 function Voices<X extends MyEntity> (): Fun<X[], X> {

156 const Play = (n: number) => gleitz(musyngKite, n)

157 return fork(

158 setx({

159 role: ’pad’,

160 play: Play(acousticGrandPiano),

161 labels: [1, 2],

162 color: 2,

163 layer: rand

164 }),

165 setx({

166 role: ’lead’,

167 play: Play(violin),

168 labels: [1, 0, 3],

169 color: 0,

170 layer: 1

171 }),

172 setx({

173 role: ’lead’,

174 play: Play(piccolo),

175 labels: [0, 2, 3],

176 color: 1,

177 layer: 1

178 }),

179 setx({

180 role: ’bass’,

181 play: Play(contrabass),

182 labels: [1, 2],

183 color: 3,

184 layer: rand

185 }),

186 pipe(

187 clone(4),

188 seed<X>(rand),

189 setx({

190 role: ’drum’,

191 play: drums.font,

192 freq: choice(...drums.hats, ...drums.snares, ...drums.snares),

193 labels: [1, 2],

194 gain: 1 / 2,

195 color: 4,

196 layer: rand

106

A.3. GUI Definition (TypeScript)

197 })

198)

199)

200 }

202 export function Globals<X extends MyEntity> (): Fun<X, X> {

203 return setx({

204 piece: round(uniform(0, 10000)),

205 key: round(uniform(0, 12)),

206 tempo: round(uniform(80, 140)),

207 beats: choice(2, 3, 4, 6),

208 beatType: choice(4, 8),

209 monotony: frac(round(uniform(25, 75)), 100),

210 diversity: frac(round(uniform(0, 50)), 100),

211 depth: choice(2, 3, 4)

212 })

213 }

215 export function Init<X extends MyEntity> (f: Fun<X[], X>): Fun<X[], X> {

216 return pipe(

217 x => seed(x.piece),

218 setx({span: measures(pow(2, x => x.depth))}),

219 f

220)

221 }

223 export function Piece<X extends MyEntity> (): Fun<X[], X> {

224 return Init(pipe<X>(

225 setx({chords: Progression(Layer)}),

226 Voices,

227 Layer,

228 Label,

229 Chord,

230 Motif

231))

232 }

A.3 GUI Definition (TypeScript)
This section lists the TypeScript source code that defines the graphical user interface
shown in Figure 5.1. We assume that the grammar definition code from Section A.2 is
located in the module ’./grammar’. We define the starting entity, the visual controls, and

107

A. Source Code

the grid lines for the score visualization. The vis function generates the interface, and
the render function attaches it to the browser window.

01 import {render} from ’preact’

02 import {fieldset, inputs, label, number, presets, propKey, vis} from ’@dipl/dom-vis’

03 import {EntityDefaults, measure, repeat} from ’@dipl/lib-music’

04 import {fork, Fun, map, set} from ’@dipl/lib-core’

05 import {Globals, Init, MyEntity, Piece} from ’./grammar’

07 const entity: MyEntity = {

08 ...EntityDefaults,

09 piece: Math.round(Math.random() * 10000),

10 depth: 4,

11 monotony: 0.5,

12 diversity: 0.5,

13 layer: 0,

14 label: 0,

15 labels: [1],

16 chord: 3,

17 role: ’drum’,

18 chords: []

19 }

21 const input = inputs<MyEntity>(

22 fieldset(’Controls’, inputs(

23 presets({random: Globals}),

24 propKey(label, ’piece’, number(0, 10000, 1)),

25 propKey(label, ’key’, number(0, 12)),

26 propKey(label, ’tempo’, number(80, 140)),

27 propKey(label, ’beats’, number(2, 6)),

28 propKey(label, ’beatType’, number(2, 8)),

29 propKey(label, ’monotony’, number(0, 1, 0.01)),

30 propKey(label, ’diversity’, number(0, 1, 0.01)),

31 propKey(label, ’depth’, number(0, 5))

32))

33)

35 function Lines<X extends MyEntity> (notes: X[]): Fun<X[], X> {

36 return Init(

37 fork(

38 repeat<X>({size: measure}),

39 map(notes, x => set({freq: x.freq}))

40)

41)

108

A.3. GUI Definition (TypeScript)

42 }

44 render(

45 vis({

46 input,

47 axiom: entity,

48 notes: Piece,

49 lines: Lines

50 }),

51 document.body

52)

109

List of Figures

2.1 Figure 2.1a and Figure 2.1b describe the harmonic progression of the opening
measures of Schubert’s Overture to Die Zauberharfe in terms of the Tonnetz
and Cube Dance respectively. The discretization of the sonic experience allows
us to reduce a complex musical arrangement to a sequence of primitive moves
along the edges of a graphical structure. Both graphics were borrowed from
Chapter 5 of Audacious Euphony [Coh12]. 6

2.2 A visualization of the taxonomy of algorithmic composition approaches, as
provided by Fernández and Vico [FV13]. The section numbers relate to their
survey, not to this thesis. 7

2.3 Space filling curves, such as the Hilbert curve (left), can be interpreted
musically. In this case, the horizontal movements are mapped to the time
dimension, and the vertical movements to the pitch dimension, resulting in the
contour of a melody (right). This is one of the earliest uses of L-systems for
composition, and it exploits the self-similar nature of the result, rather than
using rules tailored to the music domain. The above graphic was reproduced
from a work by Prusinkiewicz [Pru86b]. 8

2.4 The melody of the nursery rhyme Mary had a little lamb as a sequence of
pitch letters is shown above. Below, the derived transition probabilities for a
first order Markov chain are visualized as a matrix. The original graphic can
be found in McCormack’s paper on grammar based music [McC96]. 11

2.5 Figure 2.5a shows a sketch of an ANN from an early work and Figure 2.5b
shows a modern network design, which consists of various stages, many of which
host sub-networks that contain orders of magnitudes more neurons than the
early network. While the newer architecture is significantly more sophisticated
and computationally expensive, they are similar in that they both recurrently
predict notes based on prior network output. This is also reminiscent of
higher-order Markov chains, at least from an abstract operational perspective. 13

2.6 Figure 2.6a shows a parametric context-free grammar as a set of ten rules,
each describing the replacement of a particular musical entity on the left side
of the arrow with the entities on the right side. The recursive application of
these rules leads to the development of a tree structure. Figure 2.6b shows
how the grammar might generate the harmonic progression of Bortnianski’s
Tibje Pajom. The original graphics can be found in Rohrmeier’s work [Roh07]. 15

111

3.1 Derivation of a context-free grammar as a tree. 26
3.2 Derivation tree of a parametric grammar with two parameters. Since we

use C for the second parameter of the root entity, the output is the same
as in Section 3.1.2. Due to the reuse of the major-triad for the generation
of the 7-chord, the shape of the tree is slightly different compared to the
non-parametric example. 28

3.3 Derivation tree of a parametric grammar with three parameters (x1, x2, x3).
The two entities named third were matched by different rules and the pitch
was increased by a major third if x3 = h, and a minor third if x3 = s. The
note label for the leaves is abbreviated to "." due to spatial constraints. . 29

4.1 Score representation of measures five to eight of Gymnopédie No.1 by Eric
Satie. 54

4.2 Three parallel sequences of intervals on a timeline. Together they approximate
the temporal structure of the first two measures in Figure 4.1. Sequence (a)
represents the melody, (b) represents the chords, and (c) the bass line. . . 56

4.3 A step by step construction of the temporal structure from Figure 4.2 using
an explicit interval for every entity and both sequential and parallel placement.
The nesting of the interval bounds indicates how the replacement intervals are
defined in relation to the replaced interval. In (1) we start with a sequence of
two whole measure intervals. (2) replaces each measure with three parallel
voices, which we split into notes and rests in (3). In (4b) we once again use
parallel voices to generate chords. 57

4.4 Each measure shows a possible result of the BASS grammar (File:).
We normalized the results to C-major and common time. 75

4.5 Each measure shows a possible result of the PAD grammar (File:).
We normalized the results to C-major and common time, and use chord = 3.
The splitting of the individual chord notes in the last three examples causes a
high degree of polyphony, which is difficult to represent in a single staff. . 76

4.6 Each measure shows a possible result of the LEAD grammar). We
normalized the results to C-major and common time. 76

4.7 These examples show how the LEAD grammar behaves under varying metric
constraints (File:). The seed is constant for each measure. 76

4.8 Each measure shows a possible result of the DRUM grammar (File:).
We normalized the results to common time. The accents indicate that the
notes with an even index are louder than the rest. The scaling of the loudness
in relation to the duration is not depicted. 77

4.9 This visualization shows six generations of LAYOUT with depth = 4, where
the monotony decreases from top (monotony = 1) to bottom (monotony = 0)
in steps of 0.2. Note that the visualization is limited to 16 colors, which causes
the last row to show random repetitions, even though the monotony is zero
and no synchronization occurred. 79

112

4.10 This visualization shows six generations of LAYER with depth = 4, diversity =
0.25, and a different value for the layer attribute in each row. 80

4.11 This visualization shows six generations of LAYER with depth = 4, using
labels = (1, 0, 0, 0, 0, 0) for the first instance, labels = (1, 2, 0, 0, 0, 0) for the
second, up to labels = (1, 2, 3, 4, 5, 6) for the last one. The sparsity of the
layer increases with the number of zeros in the label pool. 81

4.12 Manual transcription of one generation of the PIECE grammar. The drum
voices are not included. The document attachments include two musical
interpretations, one with percussion (File:) and one without (File:

). 86

5.1 This screenshot shows the interface for the example from Section 4.3 (File:
). The colors in the visualization indicate the instrument. Some

parts of the magenta voice are hidden by the blue voice. The controls on the
left side correspond to the attributes set by the GLOBALS sub-grammar. . 91

113

List of Tables

3.1 Derivation of a context-free grammar as a sequence of numbered steps. The
nested square brackets in the sentential form illustrate the tree structure, but
serve no further purpose. 26

3.2 This table shows basic combinations of fork and pipe. We define four expres-
sions a, b, c, d ∈ Vλ, which describe arbitrary one-to-one mappings between
entities. We do not use sentence expressions V ∗

λ because it is important that
each of these expressions generates exactly one entity. For example, if a could
return an arbitrary number of entities, writing b(a(v)) in the third column
would be invalid. In summary, the fork function provides concatenation for
sentence expressions, while the pipe function can be used for function compo-
sition and mapping over sentences. Consider examples 10 and 12, where the
first expression in the pipe generates two entities, and the second expression
is applied to both. 42

3.3 Each row shows one possible combination of rules p3 and p4 applied to the
two part entities generated by p2. Rule p3 has a relative weight of 2.0 and
will be selected twice as often as rule p4, leading to the probabilities specified
in the last column. 48

4.1 Conversion table for the temporal units. Reading: A minute is equal to 60
seconds. The computation of the conversion factors for the absolute units
relies on three parameters: the tempo T , the number of beats per measure N ,
and the beat type B. The computation of relative units relies on a duration
Δ. 60

6.1 As selection of pieces generated with our approach. The audio files are
attached to the digital version of this thesis and also available online, where
we publish additional variations and results: https://github.com/eibens/
thesis-2021 . 96

115

https://github.com/eibens/thesis-2021
https://github.com/eibens/thesis-2021

Bibliography

[Ace04] Andres Garay Acevedo. Fugue composition with counterpoint melody gen-
eration using genetic algorithms. In International Symposium on Computer
Music Modeling and Retrieval, pages 96–106. Springer, 2004.

[AD86] Harold Abelson and Andrea A DiSessa. Turtle geometry: The computer as
a medium for exploring mathematics. The MIT Press, 1986.

[Ame89] Charles Ames. The Markov process as a compositional model: A survey
and tutorial. Leonardo, 22(2):175–187, 4 1989.

[AW05] Moray Allan and Christopher Williams. Harmonising chorales by proba-
bilistic inference. In Proceedings of the 17th Conference on Advances in
Neural Information Processing Systems, pages 25–32. The MIT Press, 2005.

[BAL96] John Biles, Peter Anderson, and Laura Loggi. Neural network fitness
functions for a musical IGA, 1996.

[Bel89] Bernard Bel. Pattern grammars in formal representations of musical struc-
tures, 1989.

[Bel92] Bernard Bel. Modelling improvisatory and compositional processes. Lan-
guages of Design, Formalisms for Word, Image and Sound, 1(1):11–26,
1992.

[BHP17] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep
learning techniques for music generation: A survey, 2017.

[Bil94] John Biles. GenJam : A genetic algorithm for generating jazz solos. In
Proceedings of the 1994 International Computer Music Conference, pages
131–137. ICMA, 1994.

[BK92a] Bernard Bel and Jim Kippen. Bol processor grammars, 1992.

[BK92b] Bernard Bel and Jim Kippen. Modelling music with grammars: formal
language representation in the Bol Processor, 1992.

117

[BMP06] Steven Brown, Michael J Martinez, and Lawrence M Parsons. Music and
language side by side in the brain: a PET study of the generation of melodies
and sentences. European Journal of Neuroscience, 23(10):2791–2803, 2006.

[BMR+20] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners, 2020.

[Bod02] Rens Bod. A unified model of structural organization in language and
music. Journal of Artificial intelligence research, 17:289–308, 2002.

[BRBM78] William Buxton, William Reeves, Ronald Baecker, and Leslie Mezei. The
use of hierarchy and instance in a data structure for computer music.
Computer Music Journal, pages 10–20, 1978.

[CAVR98] Pedro P Cruz-Alcázar and Enrique Vidal-Ruiz. Learning regular grammars
to model musical style: Comparing different coding schemes. In Inter-
national Colloquium on Grammatical Inference, pages 211–222. Springer,
1998.

[CC07] Ching Hua Chuan and Elaine Chew. A hybrid system for automatic
generation of style-specific accompaniment. In 4th International Joint
Workshop on Computational Creativity, 2007.

[Che04] Marc Chemillier. Toward a formal study of jazz chord sequences generated
by Steedman’s grammar. Soft Computing, 8(9):617–622, 2004.

[Cho56] Noam Chomsky. Three models for the description of language. IRE
Transactions on Information Theory, 2(3):113–124, 1956.

[Cle98] Bradley J Clement. Learning harmonic progression using Markov models,
1998.

[Coh12] Richard Cohn. Audacious Euphony : Chromatic harmony and the triad’s
second nature. Oxford University Press, 2012.

[Con03] Darrell Conklin. Music generation from statistical models. Journal of New
Music Research, 45, 6 2003.

[Coo59] Deryck Cooke. The Language of Music. Oxford University Press, 1959.

[CSŞ11] Parag Chordia, Avinash Sastry, and Sertan Şentürk. Predictive tabla
modelling using variable-length Markov and hidden Markov models. Journal
of New Music Research, 40(2):105–118, 2011.

[CUF16] Hang Chu, Raquel Urtasun, and Sanja Fidler. Song from PI : A musically
plausible network for pop music generation, 2016.

118

[DHRVW09] W Bas De Haas, Martin Rohrmeier, Remco C Veltkamp, and Frans Wiering.
Modeling harmonic similarity using a generative grammar of tonal harmony.
In Proceedings of the 10th International Conference on Music Information
Retrieval (ISMIR), 2009.

[DHYY18] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. Musegan:
Multi-track sequential generative adversarial networks for symbolic music
generation and accompaniment. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), 4 2018.

[DS98] Jack Douthett and Peter Steinbach. Parsimonious graphs: A study in
parsimony, contextual transformations, and modes of limited transposition.
Journal of Music Theory, 42(2):241–263, 1998.

[DuB03] Roger Luke DuBois. Applications of generative string-substitution systems
in computer music. Phd thesis, Columbia University, 2003.

[EBPM13] Arne Eigenfeldt, Oliver Bown, Philippe Pasquier, and Aengus Martin.
Towards a taxonomy of musical metacreation: Reflections on the first
musical metacreation weekend. Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, 9(1), 2013.

[Ecm20] Ecma International. ECMAScript 2020 Language Specification, 262 edition,
2020.

[Eib16] Lukas Eibensteiner. Procedural music generation with grammars. Bachelor’s
Thesis, TU Wien, 2016.

[ES02] Douglas Eck and Juergen Schmidhuber. Finding temporal structure in
music: Blues improvisation with LSTM recurrent networks. In Proceedings
of the 12th IEEE Workshop on Neural Networks for Signal Processing, pages
747–756, 2002.

[Eul74] Leonhard Euler. De harmoniae veris principiis per speculum musicum
repraesentatis. Novi Commentarii academiae scientiarum Petropolitanae,
18:330–353, 1774.

[Fra04] Judy A Franklin. Recurrent neural networks and pitch representations
for music tasks. In Proceedings of the 17th International Florida Artificial
Intelligence Research Society Conference, pages 33–37, 2004.

[Fra05] Judy A Franklin. Jazz melody generation from recurrent network learning
of several human melodies. In Proceedings of the 18th International Florida
Artificial Intelligence Research Society Conference, pages 57–62, 2005.

[Fra06] Judy A Franklin. Recurrent neural networks for music computation. Informs
Journal on Computing, 18(3):321–338, 2006.

119

[FS01] Mary Farbood and Bernd Schöner. Analysis and synthesis of Palestrina
-style counterpoint using Markov chains. In Proceedings of the 2001 Inter-
national Computer Music Conference, pages 471–474, 2001.

[FV13] Jose D Fernández and Francisco Vico. AI methods in algorithmic composi-
tion: A comprehensive survey. Journal of Artificial Intelligence Research,
48:513–582, 2013.

[GC07] Édouard Gilbert and Darrell Conklin. A probabilistic context-free grammar
for melodic reduction. In Proceedings of the International Workshop on
Artificial Intelligence and Music, 20th International Joint Conference on
Artificial Intelligence (IJCAI), Hyderabad, India, pages 83–94, 2007.

[Gog06] Michael Gogins. Score generation in voice-leading and chord spaces. In
Proceedings of the 2006 International Computer Music Conference, 2006.

[GS15] Mathieu Giraud and Slawek Staworko. Modeling musical structure with
parametric grammars. In Mathematics and Computation in Music, pages
85–96. Springer, 2015.

[GTK10] Jon Gillick, Kevin Tang, and Robert M Keller. Machine learning of jazz
grammars. Computer Music Journal, 34(3):56–66, 2010.

[GW13] Mark Granroth-Wilding. Harmonic analysis of music using combinatory
categorial grammar. Phd thesis, The University of Edinburgh, 2013.

[Han60] Howard Hanson. Harmonic materials of modern music: Resources of the
tempered scale. Appleton Century Crofts, 1960.

[HCC17] Dorien Herremans, Ching-Hua Chuan, and Elaine Chew. A functional
taxonomy of music generation systems. ACM Computing Surveys, 50(5),
2017.

[HFM92] Hermann Hild, Johannes Feulner, and Wolfram Menzel. HARMONET: A
neural net for harmonizing chorales in the style of J. S. Bach. In Advances
in neural information processing systems, 1992.

[HG91] Andrew Horner and David E Goldberg. Genetic algorithms and computer-
assisted music composition. In Proceedings of the 4th International Confer-
ence on Genetic Algorithms, 1991.

[HHR+19] Cheng-Zhi Anna Huang, Curtis Hawthorne, Adam Roberts, Monica Din-
culescu, James Wexler, Leon Hong, and Jacob Howcroft. The Bach Doodle:
Approachable music composition with machine learning at scale. In Pro-
ceedings of the 18th International Society for Music Information Retrieval
Conference, 2019.

120

[HHT06] Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo. Implementing “a
generative theory of tonal music”. Journal of New Music Research, 35(4):249–
277, 2006.

[HHT07] Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo. FATTA: Full auto-
matic time-span tree analyzer. In Proceedings of the International Computer
Music Conference, volume 1, pages 153–156, 2007.

[HJ14] Paul Hudak and David Janin. Tiled polymorphic temporal media. In Pro-
ceedings of the 2nd ACM SIGPLAN International Workshop on Functional
Art, Music, Modeling, and Design, pages 49–60, 2014.

[HMGW96] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore
music notation: An algebra of music. Journal of Functional Programming,
6(3):465–483, 1996.

[Hol80] Steven R Holtzman. A generative grammar definition language for music.
Journal of New Music Research, 9(1):1–48, 1980.

[Hol81] SR Holtzman. Using generative grammars for music composition. Computer
Music Journal, 5(1):51–64, 1981.

[Hor94] Damon Horowitz. Generating rhythms with genetic algorithms. In AAAI-
94: Proceedings of the 12th National Conference on Artificial Intelligence,
volume 94, page 1459. American Association for Artificial Intelligence, 1994.

[Hör98] Dominik Hörnel. MELONET I: Neural nets for inventing baroque-style
chorale variations. In Proceedings of the 10th International Conference on
Neural Information Processing Systems, pages 887–893, 1998.

[Hör04] Dominik Hörnel. Chordnet: Learning and producing voice leading with
neural networks and dynamic programming. Journal of New Music Research,
33(4):387–397, 2004.

[HPE10] Andrew Hawryshkewich, Philippe Pasquier, and Arne Eigenfeldt. Beat-
back: A real-time interactive percussion system for rhythmic practise and
exploration. In Proceedings of the 2010 Conference on New Interfaces for
Musical Expression, 2010.

[HPN17] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: A
steerable model for Bach chorales generation. In Proceedings of the 34th
International Conference on Machine Learning, pages 1362–1371, 2017.

[HQ18] Paul Hudak and Donya Quick. The Haskell School of Music: From signals
to Symphonies. Cambridge University Press, 2018.

121

[HQSWC15] Paul Hudak, Donya Quick, Mark Santolucito, and Daniel Winograd-Cort.
Real-time interactive music in Haskell. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Functional Art, Music, Modelling
and Design, pages 15–16, 2015.

[Hud04] Paul Hudak. An algebraic theory of polymorphic temporal media. In
International Symposium on Practical Aspects of Declarative Languages,
pages 1–15. Springer, 2004.

[HWSC15] Dorien Herremans, Stéphanie Weisser, Kenneth Sörensen, and Darrell
Conklin. Generating structured music for bagana using quality metrics
based on Markov models. Expert Systems with Applications, 42(21):7424–
7435, 2015.

[IMAW15] Martin Ilčík, Przemyslaw Musialski, Thomas Auzinger, and Michael Wim-
mer. Layer-based procedural design of façades. Computer Graphics Forum,
34(2):205–216, 2015.

[JCS16] Diego Jesus, António Coelho, and António Augusto Sousa. Layered shape
grammars for procedural modelling of buildings. The Visual Computer,
32:933–943, 2016.

[KB89] Jim Kippen and Bernard Bel. The identification and modelling of a
percussion language, and the emergence of musical concepts in a machine-
learning experimental set-up. Computers and the Humanities, 23:199–214,
1989.

[Kei78] Allan Keiler. Bernstein’s "the unanswered question" and the problem of
musical competence. The Musical Quarterly, 64(2):195–222, 1978.

[KM07] Robert M Keller and David R Morrison. A grammatical approach to
automatic improvisation. In Fourth Sound and Music Conference, 2007.

[KMDH13] Hendrik Vincent Koops, JoséPedro Magalhães, and W Bas De Haas. A
functional approach to automatic melody harmonisation. In Proceedings of
the 1st ACM SIGPLAN workshop on Functional art, music, modeling &
design, pages 47–58, 2013.

[Knu90] Donald E Knuth. The genesis of attribute grammars. In Attribute Grammars
and Their Applications, pages 1–12. Springer, 1990.

[KPFKV12] Maximos A Kaliakatsos-Papakostas, Andreas Floros, Nikolaos Kanellopou-
los, and Michael N Vrahatis. Genetic evolution of L and FL-systems for
the production of rhythmic sequences. In Proceedings of the 14th annual
conference companion on Genetic and evolutionary computation, pages
461–468, 2012.

122

[KU08] Phillip B Kirlin and Paul E Utgoff. A framework for automated Schenkerian
analysis. In Proceedings of the 9th International Conference on Music
Information Retrieval, 2008.

[LA85] Gareth Loy and Curtis Abbott. Programming languages for computer
music synthesis, performance, and composition. ACM Computing Surveys,
17(2):235–265, 1985.

[Lan89] Peter Langston. Six techniques for algorithmic music composition. In
Proceedings of the International Computer Music Conference, volume 60,
1989.

[Ler04] Fred Lerdahl. Tonal pitch space. Oxford University Press, 2004.

[LG73] David Lidov and Jim Gabura. A melody writing algorithm using a formal
language model. Computer Studies in the Humanities, 4(3-4):138–148,
1973.

[Lia16] Feynman Liang. Bachbot: Automatic composition in the style of Bach
chorales. Master’s thesis, University of Cambridge, 2016.

[Lin68] Aristid Lindenmayer. Mathematical models for cellular interactions in
development ii. simple and branching filaments with two-sided inputs.
Journal of Theoretical Biology, 18(3):300–315, 1968.

[LJ+83] Fred Lerdahl, Ray Jackendoff, et al. A generative theory of tonal music,
volume 1996. The MIT Press, 1983.

[LRB09] Bruno F Lourenço, Jos é C L Ralha, and Márcio CP Brandao. L-systems,
scores, and evolutionary techniques. In Proceedings of the 6th Sound and
Music Computing Conference, pages 113–118, 2009.

[LS70] Björn Lindblom and Johan Sundberg. Towards a generative theory of
melody. STL-QPSR, 10(4):53–86, 1970.

[Man06] Stelios Manousakis. Musical L-systems. Master’s thesis, Koninklijk Conser-
vatorium, 2006.

[Mar10] Alan Marsden. Schenkerian analysis by computer: A proof of concept.
Journal of New Music Research, 39(3):269–289, 2010.

[McC96] Jon McCormack. Grammar based music composition. Complex systems,
96:321–336, 1996.

[McI94] Ryan A McIntyre. Bach in a box: The evolution of four part baroque
harmony using the genetic algorithm. In Proceedings of the 1st IEEE
Conference on Evolutionary Computation. IEEE World Congress on Com-
putational Intelligence, pages 852–857. IEEE, 1994.

123

[MdH11] José Pedro Magalhães and W Bas de Haas. Functional modelling of musical
harmony: an experience report. ACM SIGPLAN Notices, 46(9):156–162,
2011.

[Mel19] Orestis Melkonian. Music as language: putting probabilistic temporal
graph grammars to good use. In Proceedings of the 7th ACM SIGPLAN
International Workshop, pages 1–10, 2019.

[Mic16] Microsoft Corporation. TypeScript Language Specification, 1 2016.

[Mic21] Microsoft Corporation. TypeScript Handbook, 3 2021.

[Moo72] James Anderson Moorer. Music and computer composition. Communica-
tions of the ACM, 15(2):104–113, 1972.

[Mor07] Nigel Morgan. Transformation and mapping of L-systems data in the
composition of a large-scale instrumental work. In Proceedings of the
European Conference on Artificial Life, 2007.

[Moz94] Michael C Mozer. Neural network music composition by prediction: Explor-
ing the benefits of psychoacoustic constraints and multi-scale processing.
Connection Science, 6(2):247–280, 1994.

[MS94] Stephanie Mason and Michael Saffle. L-systems, melodies and musical
structure. Leonardo Music Journal, 4:31–38, 1994.

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc
Van Gool. Procedural modeling of buildings. ACM Transactions on
Graphics, 25(3):614–623, 2006.

[Nel96] Gary Lee Nelson. Real time transformation of musical material with fractal
algorithms. Computers & Mathematics with Applications, 32(1):109–116,
1996.

[Nie09] Gerhard Nierhaus. Algorithmic composition: paradigms of automated music
generation. Springer, 2009.

[ODZ+16] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio, 2016.

[PATW99] Somnuk Phon-Amnuaisuk, Andrew Tuson, and Geraint Wiggins. Evolving
musical harmonisation. In Artificial Neural Nets and Genetic Algorithms:
Proceedings Of The International Conference In Portoroz, Slovenia, pages
229–234. Springer, 1999.

124

[PDBB97] John Polito, Jason M Daida, and Tommaso F Bersano-Begey. Musica ex
machina: Composing 16th-century counterpoint with genetic programming
and symbiosis. In International Conference on Evolutionary Programming,
pages 113–123. Springer, 1997.

[Pes12] Pedro Pestana. Lindenmayer systems and the harmony of fractals. Chaotic
Modeing and Simulation, 1(1):91–99, 2012.

[Pet12] Simon Petitjean. Describing music with metagrammars. In International
Workshop on Constraint Solving and Language Processing, pages 152–165.
Springer, 2012.

[PL90] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty
of plants. Springer, 1990.

[PMW02] Marcus Pearce, David Meredith, and Geraint Wiggins. Motivations and
methodologies for automation of the compositional process. Musicae Scien-
tiae, 6(2):119–147, 2002.

[Pru86a] Przemyslaw Prusinkiewicz. Graphical applications of L-systems. In Pro-
ceedings of Graphics Interface ’86 / VisionInterface ’86, pages 247–253,
1986.

[Pru86b] Przemyslaw Prusinkiewicz. Score generation with L-systems. In Proceedings
of the International Computer Music Conference, 1986.

[PW98] George Papadopoulos and Geraint Wiggins. A genetic algorithm for the
generation of jazz melodies. In Proceedings of STEP 98, 1998.

[PW99] George Papadopoulos and Geraint Wiggins. AI methods for algorithmic
composition: A survey, a critical view and future prospects. In Proceedings
of the AISB symposium on musical creativity, volume 124, pages 110–117,
1999.

[PW01] Marcus Pearce and Geraint Wiggins. Towards a framework for the evalua-
tion of machine compositions. In Proceedings of the AISB’01 Symposium
on Artificial Intelligence and Creativity in the Arts and Science, 2001.

[QH13a] Donya Quick and Paul Hudak. Grammar-based automated music com-
position in Haskell. In Proceedings of the 1st ACM SIGPLAN workshop
on Functional art, music, modeling & design, pages 59–70. Association for
Computing Machinery, 2013.

[QH13b] Donya Quick and Paul Hudak. A temporal generative graph grammar
for harmonic and metrical structure. In Proceedings of the International
Computer Music Conference, 2013.

125

[Qui14] Donya Quick. Kulitta: A Framework for Automated Music Composition.
Yale University, 2014.

[Qui15] Donya Quick. Composing with kulitta. In Proceedings of the International
Computer Music Conference, 2015.

[Roa82] Curtis Roads. A conversation with james a. moorer. Computer Music
Journal, 6(4):10–21, 1982.

[Roh07] Martin Rohrmeier. A generative grammar approach to diatonic harmonic
structure. In Proceedings of the 4th sound and music computing conference,
pages 97–100, 2007.

[Roh11] Martin Rohrmeier. Towards a generative syntax of tonal harmony. Journal
of Mathematics and Music, 5(1):35–53, 2011.

[RW79] Curtis Roads and Paul Wieneke. Grammars as representations for music.
Computer Music Journal, pages 48–55, 1979.

[Sch35] Heinrich Schenker. Der Freie Satz. Universal Edition, 1935.

[Sip97] Michael Sipser. Introduction to the Theory of Computation. PWS Publish-
ing, 1997.

[SJM14] Kirill A Sidorov, Andrew Jones, and A David Marshall. Music analysis as
a smallest grammar problem. In Proceedings of the 15th Conference of the
International Society for Music Information Retrieval (ISMIR 2014), pages
301–306, 2014.

[SM15] Michael Schwarz and Pascal Müller. Advanced procedural modeling of
architecture. ACM Transactions on Graphics, 34(4):1–12, 2015.

[SMB08] Ian Simon, Dan Morris, and Sumit Basu. MySong: automatic accompani-
ment generation for vocal melodies. In Proceedings of the 2008 Conference
on Human Factors in Computing Systems, pages 725–734, 2008.

[Smo80] Stephen W Smoliar. A computer aid for Schenkerian analysis. Computer
Music Journa, 4(2):41–59, 1980.

[Ste84] Mark J Steedman. A generative grammar for jazz chord sequences. Music
Perception, 2(1):52–77, 1984.

[Ste96] Mark Steedman. The blues and the abstract truth: Music and mental
models. Mental models in cognitive science, pages 305–318, 1996.

[Sti80] George Stiny. Introduction to shape and shape grammars. Environment
and Planning B: Planning and Design, 7(3):343–351, 1980.

126

[Sti82] George Stiny. Spatial relations and grammars. Environment and Planning
B: Planning and Design, 9(1):113–114, 1982.

[TBWD01] Michael W Towsey, Andrew R Brown, Susan K Wright, and Joachim
Diederich. Towards melodic extension using genetic algorithms. Educational
Technology & Society, 4(2):54–65, 2001.

[TD08] Axel Tidemann and Yiannis Demiris. A drum machine that learns to
groove. In Annual Conference on Artificial Intelligence, pages 144–151.
Springer, 2008.

[TF12] Tsubasa Tanaka and Kiyoshi Furukawa. Automatic melodic grammar
generation for polyphonic music using a classifier system. In Proceedings of
the 9th Sound and Music Computing Conference, 2012.

[TI00] Nao Tokui and Hitoshi Iba. Music composition with interactive evolution-
ary computation. In Proceedings of the 3rd International Conference on
Generative Art, 2000.

[Tod89] Peter M Todd. A connectionist approach to algorithmic composition.
Computer Music Journal, 13(4):27–43, 1989.

[Wil09] Adam James Wilson. A symbolic sonification of L-systems. In Proceedings
of the International Computer Music Conference, 2009.

[Win68] Terry Winograd. Linguistics and the computer analysis of tonal harmony.
Journal of Music Theory, 12(1):2–49, 1968.

[WS05] Peter Worth and Susan Stepney. Growing music: musical interpretations
of L-systems. In Workshops on Applications of Evolutionary Computation,
pages 545–550. Springer, 2005.

[WWSR03] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky.
Instant architecture. ACM Transactions on Graphics, 22(3):669–677, 2003.

[YCY17] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. MidiNet: A convolutional
generative adversarial network for symbolic-domain music generation, 2017.

[YG07] Liangrong Yi and Judy Goldsmith. Automatic generation of four-part
harmony. In Proceedings of the 5th UAI Bayesian Modeling Applications
Workshop, 2007.

[YL20] Li-Chia Yang and Alexander Lerch. On the evaluation of generative models
in music. Neural Computing and Applications, 32:4773–4784, 2020.

[You17] Halley Young. A categorial grammar for music and its use in automatic
melody generation. In Proceedings of the 5th ACM SIGPLAN International
Workshop on Functional Art, Music, Modeling, and Design, pages 1–9.
Association for Computing Machinery, 2017.

127

[Yus09] Jason Yust. The geometry of melodic, harmonic, and metrical hierarchy.
In International Conference on Mathematics and Computation in Music,
pages 180–192, 2009.

[Zas05] Neal Zaslaw. Essays in Honor of László Somfai on His 70th Birthday.
Studies in the Sources and the Interpretation of Music, chapter Mozart’s
Modular Minuet Machine, pages 219–235. Scarecrow Press, 01 2005.

[ZF14] Matthew D Zeiler and Rob Fergus. Visualizing and understanding con-
volutional networks. In Proceedings of the 13th European Conference on
Computer Vision, pages 818–833. Springer, 2014.

[ZXJ+13] Hao Zhang, Kai Xu, Wei Jiang, Jinjie Lin, Daniel Cohen-Or, and Baoquan
Chen. Layered analysis of irregular facades via symmetry maximization.
ACM Transactions on Graphics, 32(4), 2013.

128

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Algorithmic composition
	Grammar-based approaches
	Comparison with our approach

	A Functional Framework for Context-Free Grammars
	Basics
	Parameters
	Attributes
	Expressions
	Variation
	Conclusion

	Probabilistic Temporal-Split Grammars for Music Composition
	Time
	Pitch
	Example
	Conclusion

	Implementation
	Language
	Interface
	Audio

	Evaluation
	Results

	Conclusion
	Limitations and Future Work

	Source Code
	Grammar Definition
	Grammar Definition (TypeScript)
	GUI Definition (TypeScript)

	List of Figures
	List of Tables
	Bibliography

		2021-04-12T11:39:31+0200
	Michael Johann Laurenz Wimmer
	Signature verification at http://www.signature-verification.gv.at

