
Towards debugging facilities for
graphical modeling languages in

web-based modeling tools

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Business Informatics

eingereicht von

Hansjörg Eder, BSc
Matrikelnummer 01426985

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gertrude Kappel
Mitwirkung: Dipl.-Ing. Dr.techn. Philip Langer

Wien, 10. Dezember 2020
Hansjörg Eder Gertrude Kappel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Towards debugging facilities for
graphical modeling languages in

web-based modeling tools

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Hansjörg Eder, BSc
Registration Number 01426985

to the Faculty of Informatics
at the TU Wien

Advisor: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gertrude Kappel
Assistance: Dipl.-Ing. Dr.techn. Philip Langer

Vienna, 10th December, 2020
Hansjörg Eder Gertrude Kappel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Hansjörg Eder, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Dezember 2020
Hansjörg Eder

v

Acknowledgements

First of all, I would like to thank my family, without whose motivating and financial
support this study would not have been possible.

Moreover, I would like to thank my fellow students with whom I worked for hours on
exercises and also spent many fun evenings.

I would also like to thank my friends, who have been with me for years. Although I
had little time for activities, I could always rely on their support.

I would like to thank O.Univ.Prof. Dr. Gertrude Kappel and Dr. Tanja Mayerhofer,
who sparked my interest in Model Engineering during my Master’s studies.

I would especially like to thank Dr. Philip Langer, without whose constant support
and valuable feedback, this work would not have been possible. Thank you for encouraging
me to continue with this thesis.

vii

Kurzfassung

Die modellgetriebene Softwareentwicklung bietet Vorteile im Entwicklungsprozess, in-
dem sie die Abstraktionsebene erhöht und damit die Komplexität einer bestimmten
Domäne reduziert. Domänenspezifische Sprachen (DSSs) erhöhen die Produktivität für
Entwickler und verbessern die Kommunikation mit Domänenexperten. DSSs können
in textuelle Sprachen (TS) und grafische Sprachen (GS) unterteilt werden. Die für die
Erzeugung von DSSs erforderlichen Tools und Editoren sind in der Regel tief in eine
spezifische Entwicklungsumgebung (IDE) integriert. Diese IDEs verwenden verschiedene
Programmierschnittstellen, um die gleichen Funktionen für verschiedene Sprachen zu
implementieren, was zu mehreren Implementierungen für eine IDE führt. Zu diesem
Zweck wurde das Language Server Protocol (LSP) für TS und das Graphical Language
Server Protocol (GLSP) für GS eingeführt. Diese Protokolle trennen den Editor von den
Sprachkonzepten und ermöglichen so die Wiederverwendung eines Sprachservers über
mehrere IDEs.

Die zunehmende Komplexität in der Softwareentwicklung führt zu einem erhöhten
Auftreten von Fehlern in Programmen und Modellen und erfordert daher Debugging-
Möglichkeiten sowohl für TS als auch für GS. Daher wurde das Debug Adapter Protocol
(DAP) eingeführt, um die Kommunikation zwischen der IDE und einem konkreten
Debugger zu standardisieren. Vergleichbar mit den Zielen des LSP und GLSP beabsichtigt
das DAP eine generische grafische Benutzeroberfläche pro IDE zu verwenden und dieselben
sprachspezifischen Debugger über mehrere IDEs hinweg wiederzuverwenden.

Diese Arbeit analysiert wie das DAP für TS und das GLSP für GS kombiniert werden
können, um Modelldebugging in einer webbasierten Umgebung zu unterstützen. Des
Weiteren wird evaluiert, ob die bekannten Debugging-Konzepte zum Debuggen von TS
auf GS übertragen werden können. Diese Arbeit zielt vor allem darauf ab zu untersuchen,
ob das DAP auf GS angewendet werden kann. Darüber hinaus beabsichtigt diese Arbeit,
bestehende Debugging-Komponenten und -Frameworks, die in Bezug auf TS entwickelt
wurden, wiederzuverwenden. Die Ergebnisse dieser Arbeit werden anhand von zwei
Anwendungsfällen ausgewertet. Der erste Fall zielt darauf ab zu untersuchen, ob das DAP
für TS auf GS wiederverwendet werden kann. Der zweite Anwendungsfall zielt darauf ab,
die Wiederverwendbarkeit des entwickelten Frameworks im Hinblick auf weitere GS und
Domänenprobleme zu bewerten. Die Ergebnisse der Fallstudie zeigen, dass das DAP eine
effiziente Multi-Editor-Integration ermöglicht. Darüber hinaus zeigen die Ergebnisse, dass
das entwickelte Debugging-Framework die Anforderungen eines modernen Debuggers
erfüllt und die Integration zusätzlicher Debugger für weitere Sprachen erleichtert.

ix

Abstract

Model-driven development (MDD) offers advantages in the development process by
raising the level of abstraction and reducing the complexity of a specific domain. Domain-
Specific Languages (DSLs) used in MDD raise the productivity for developers and improve
communication with domain experts. DSLs can be divided into textual languages (TLs)
and graphical languages (GLs). IDEs provide different application programming interfaces
(APIs) for developing tool support for various languages. If tool support for a language is
required in multiple IDEs, the implementation of the same language has to be repeated for
each IDE based on their different APIs. For this purpose, the Language Server Protocol
(LSP) for TLs separates the editor interface from the language logic and allows the reuse
of one language server implementing the language logic across several LSP-based IDEs.
Like the LSP, the Graphical Language Server Protocol (GLSP) was invented to transfer
the advantages of extensibility and reusability to GLs.

Increased complexity in software development leads to an increased number of errors
in programs and models and, therefore, it requires debugging facilities for both TLs and
GLs. Therefore, the Debug Adapter Protocol (DAP) was invented to standardize the
communication between the IDE and a concrete debugger. The DAP intends that an
IDE offers one generic graphical user interface for debugging functionality and that there
is one debugger per language implementing the language-specific debug logic that can
then be reused among IDEs.

This thesis analyzes a way of combining the DAP for TLs and the GLSP for GLs
to support model debugging in a web-based environment. Furthermore, it is evaluated
whether the well-known debugging concepts for debugging source code can be transferred
to GLs. The thesis intends to reuse existing debugging components and frameworks
developed for TLs. The results of this work are evaluated in two use cases. The first
use case is the running example and aims at investigating whether the DAP for TLs
can be reused for GLs. The second use case intends to evaluate the reusability of the
developed framework concerning further GLs and domain problems. The case study’s
results indicate that the DAP enables efficient multi-editor integration of debuggers, i.e.,
one language-specific debugger can efficiently be integrated with a DAP-based debugging
interface and that a DAP-based debugging interface can efficiently integrate with multiple
language-specific debuggers. Further, the results show that the developed debugging
framework meets the requirements of a modern debugger and facilitates the integration
of debugging support for further GLs.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 3
1.4 Methodology . 4
1.5 Structure of the Work . 4

2 Background 7
2.1 Model-Driven Development . 7
2.2 Domain-Specific Languages . 12
2.3 Debugging in Domain-Specific Modeling 19

3 Web-based Modeling Tools 25
3.1 Language Server Protocol . 25
3.2 Graphical Language Server Protocol 29
3.3 Debug Adapter Protocol . 34
3.4 Summary . 38

4 Applying the DAP to GLSP 41
4.1 Running Example: Workflow Modeling Language + Diagram Editor . . 41
4.2 Requirements for Debugging the Workflow Modeling Language 47
4.3 Workflow Modeling Language Debugger 56

5 Architecture and Implementation 65
5.1 Technological Background . 65
5.2 Implementation Details . 69
5.3 Challenges . 76

xiii

6 Evaluation 81
6.1 State Machine Modeling Language . 81
6.2 Open Problems . 94
6.3 Interpretation of the Results . 95

7 Related Work 99
7.1 Debugging Domain-Specific Models . 99
7.2 Web-based DSML Environments . 103
7.3 Other Related Work . 103

8 Summary and Conclusion 105
8.1 Summary . 105
8.2 Comparison with Related Work . 106
8.3 Limitations and Future Work . 107

Bibliography 111

xiv

CHAPTER 1
Introduction

1.1 Motivation

The progress of technology leads to the increasing complexity of software components to
ensure the functionality of modern systems. Model-driven software development (MDSD)
offers advantages in the development process by raising the level of abstraction and
reducing the complexity of a specific domain. Modeling languages are an essential part
of MDSD and let users design the models for their systems. Domain-Specific (Modeling)
Languages (DS(M)Ls) are languages that are explicitly defined for a specific domain
and are represented through a concrete syntax. The concrete syntax can be further
divided into textual concrete syntax and graphical concrete syntax. The advantages of
the respective notation must be determined in relation to the concept used. If the focus
lies on the relationships between objects, graphical languages should be preferred [1].
Although Integrated Development Environments (IDEs) of these DSMLs provide some
sort of check and validation on modeled systems according to the related DSML’s syntax
and semantics descriptions, they do not have a built-in support for debugging these
models [2]. That deficiency causes the model designers not to be sure on the correctness
of their created models during the design phase. The model first has to be transformed
into a general-purpose language using code generation. The generated source code can
then be viewed with existing development environments and checked for errors utilizing
the integrated debuggers. However, the generation process takes significant effort and
time. Therefore, it should be possible to check and validate the created model already
during the design phase. Thus, only correct models are used in the code generation
process.

1

1. Introduction

1.2 Problem Statement
Current development tools provide different application programming interfaces (APIs)
for developing tool support for various languages. If tool support for a language is
required in multiple IDEs, the implementation of the same language has to be repeated
for each IDE based on their different APIs. However, this limits the extensibility and
reusability of existing components for other languages. In this context, the Language
Server Protocol1 (LSP) for textual languages separates the editor interface from the
language logic and allows the reuse of one language server implementing the language
logic across several LSP-based IDEs.

These limitations regarding extensibility and reusability not only relate to textual
languages, but also graphical languages. Since graphical languages were not considered
in the LSP from the beginning, attempts by members within the Eclipse Community2 to
extend the LSP directly to include graphical modeling turned out to be impractical [3].
Instead, a dedicated protocol for graphical languages - the Graphical Language Server
Protocol3 (GLSP) - was invented to communicate model editing operations between the
diagram editor and the graphical language server.
The use of a client-server architecture not only reduces the effort to integrate new lan-
guages with an editor but also supports the trend towards cloud-based development. Thus,
the editor does not have to be installed locally and can be kept platform-independent.
Through the shift to cloud-based solutions, modern web technologies such as HTML54

and CSS5 are used, which offer new possibilities for graphical modeling and debugging
approaches. Besides structuring the graphical user interface and integrating animations
during the debugging procedure, it further enables cloud-based collaborative development.

Increasing the complexity in software programs leads to an increased occurrence of
errors in programs, and therefore it requires debugging facilities for both textual and
graphical languages. In current development tools, because of the different APIs used by
each tool, implementing a new debugger involves significant effort. This issue led to the
introduction of the Debug Adapter Protocol6 (DAP) for textual languages to standardize
the communication between a development tool and a debugger. The protocol enables
to implement only one generic debugger UI per development tool and reuse the same
language-specific debugger across several development tools.

It is obvious that there is a need to provide debugging facilities also for graphical
modeling languages. The question arises whether the DAP defined for textual languages
can also be used for graphical languages or a new protocol is required.

1https://microsoft.github.io/language-server-protocol
2https://eclipse.org/community
3https://github.com/eclipsesource/GraphicalServerProtocol
4https://w3schools.com/html
5https://projects.eclipse.org/projects/ecd.sprotty
6https://microsoft.github.io/debug-adapter-protocol

2

1.3. Aim of the Work

1.3 Aim of the Work
The work aims to provide a visual debugger for a web-based graphical modeling editor,
which is based on the DAP and supports a user during the development of software
components in a specific domain. As part of this it has to be analyzed, whether the
DAP in its current version is suitable for graphical languages or an extension of the
protocol is required. Therefore, the requirements for debugging graphical modeling
languages are derived from an existing DSML, and potential inconsistencies in the DAP
are dissolved. Furthermore, it must be analyzed whether the existing components and
frameworks used by debuggers for textual languages, can be reused for graphical modeling
languages. Subsequently, a generic debugger capable of core debugging functionalities
will be designed. The debugger then is integrated into an existing GLSP client built on
top of the Graphical Language Server (GLS) platform7. To test the generic debugger user
interface, we require a language-specific debugger that resides on a remote server and
a language-specific debug adapter that connects the development tool to the language-
specific debugger. Figure 1.1 illustrates the interaction between the components, as
mentioned above.

Figure 1.1: A representation of how the individual components interact with each other
(adopted from [4]).

Finally, the following research questions will be answered:
RQ1: What should a debug adapter protocol look like to meet the requirements of

graphical modeling languages?
RQ2: Can the DAP for textual languages be applied to graphical model debugging,

and if not, what needs to be extended or changed?
RQ3: What generic client-frameworks and user interface/debug adapter client com-

ponents may exist for such a debug protocol that can be reused across debugging use
cases for multiple graphical domain-specific languages?

The main questions (RQ1 and RQ2) are concerned with answering how debugging
concepts for textual languages can be applied to graphical modeling languages. RQ2

7https://github.com/eclipsesource/graphical-lsp

3

1. Introduction

analyzes the existing DAP to show whether it can be used for graphical modeling languages.
The question is answered by defining different DSMLs and deriving the requirements
from those languages to implement a debugger. Based on these requirements, we can
make a statement if the DAP fulfills the purposes or needs to be extended. For the
implementation of the debugger, we use existing components and frameworks which we
can extend for the requirements. The RQ3 is about which components that have been
developed in the course of the thesis can be generalized so that they may act as a generic
basis for developing visual debuggers for any graphical language.

1.4 Methodology
The objective of Design Science research is to build innovative IT artifacts and evaluate
them. Since the central part of the thesis is to build an IT artifact that benefits its
users, we use Design Science as a methodological approach. A. Hevner et al. present
seven guidelines for Design Science in Information Systems Research [5]. Following these
guidelines, the two major steps are design and evaluation.

Design-science research must produce a viable artifact in the form of a construct,
a model, a method, or an instantiation. In this work, a generic debugger capable of
core debugging functionalities will be designed. The debugger should support the DAP
or an extension of it to allow easy integration of further graphical modeling languages.
The debugger then is integrated into an existing GLSP client built on top of the GLS
platform.

A designed artifact is complete and effective when it satisfies the requirements and
constraints of the problem it was meant to solve. It can be evaluated [6,7] in terms of
functionality, completeness, consistency, accuracy, performance, reliability, usability, fit
with the organization, and other relevant qualities [8]. In this work, the artifact to be
created is implemented utilizing an already existing DSML. In the first step, we derive
from the DSML the requirements for the debugger and implement them in a further step.
For the evaluation, we develop another DSML from which we derive new requirements
and evaluate the created artifact. We want to show that the debugger we developed can
be reused to integrate further DSMLs easily.

1.5 Structure of the Work
This thesis consists of seven further chapters. Chapter 2 is concerned with model-driven
development in general, the introduction into domain-specific languages, and applying
debugging concepts to source code, models, and other artifacts. Chapter 3 presents
the existing client-server architecture tools this work is based on such as the Language
Server Protocol for editing textual languages, the Graphical Language Server Protocol
to create models with graphical modeling languages, and the Debug Adapter Protocol
for debugging textual languages. Chapter 4 introduces an existing graphical modeling
language and subsequently derives the requirements for implementing a debugger for this
language. Besides, a debugger implemented for this language and fulfilling the identified

4

1.5. Structure of the Work

requirements will be presented. Chapter 5 discusses the detailed experiences that were
gained during the implementation of the debugger. The results of the evaluation based
on a newly defined DSML are described in Chapter 6. Related work is presented in
Chapter 7. Finally, Chapter 8 concludes by summarizing the presented work.

5

CHAPTER 2
Background

This chapter presents essential knowledge regarding the development approaches and
concepts used in this work. The first section presents the two mechanisms of code
generation and model interpretation used in model-driven development. The second
section gives an overview of the most important characteristics of domain-specific modeling
languages. In the last section, we focus on debugging concepts used in code debugging
and how these concepts can be translated into debugging modeling languages.

2.1 Model-Driven Development
In this section, will we introduce the Model-Driven Development (MDD) approach.
Furthermore, we discuss the two mechanisms code generation and model interpretation
used in MDD.

2.1.1 Introduction to MDD
MDD aims to find domain-specific abstractions and make them accessible through formal
modeling. The development of software through MDD consists of creating a high-level
representation of the required software facilities and deriving an running application [9–13].
Intermediate steps can be enclosed to enable some kind of user interaction with the
generation process [1].

Figure 2.1: A typical MDD-based software development process [1].

7

2. Background

Figure 2.1 shows a typical development process, as described in MDD. In each phase
of the model development process, models are (semi)automatically generated using a
model-to-model transformation (M2M). Finally, the designed models are translated into
the final source code utilizing a model-to-text transformation. The example from Figure
2.1 shows the development process using a code generator, while model interpretation
skips the implementation phase and executes the model directly [1]. In the further course
of this section, we will discuss these two approaches in detail and present the advantages
of using the respective tools.

2.1.2 Benefits and Challenges
One of the main advantages of model-driven approaches is bridging the communication gap
between requirements/analysis and the final implementation. Looking at the organization
level in enterprises, this is a major problem, as there is also a gap between business needs
and IT realizations or support. Models are a valid solution as a lingua franca among
stakeholders from business and IT divisions. Furthermore, models capture and organize
the understanding of the application in a way that simplifies the discussion among the
actors and eases the integration of new team members into the development process. The
benefits of MDD can be summarized as [1].

• Increasing the effectiveness of communication between the involved parties.

• Raising the productivity of the development team due to the automation of the
development process.

• Reducing the number of errors in the final code through the automation process.

One disadvantage of MDD is that modeling and programming do not mix very well.
Existing General-purpose language (GPL) tools and IDEs cannot be reused for modeling
languages without integration issues. Programming languages commonly have a textual
concrete syntax, where source code is transformed through scanners and parser into an
abstract syntax tree. Modeling languages have either a textual or graphical concrete
syntax in which the latter is represented in the form of a diagram. Diagram editors
manipulate directly the abstract syntax [14]. Table 2.1 shows the main differences between
modeling and programming.

Table 2.1 shows that debuggers rarely exist for DSLs, while a debugger is almost
always available for GPLs. As discussed in Section 1.2, it takes significant effort and time
to develop a new debugger for a language and to integrate the debugger into an IDE.
Therefore, many DSLs are first transformed into GPL code to be able to use an existing
GPL debugger. This confirms our work to simplify the integration of new debuggers for
graphical modeling languages into web-based IDEs.

8

2.1. Model-Driven Development

Modeling Programming
Define your own notation/language Easy Sometimes possible to some extent
Syntactically integrate several lan-
guages

Possible, depends on tool Hard

Graphical notations Possible, depends on tool Usually only visualizations
Customize generator/compiler Easy Sometimes possible based on

open compilers
Navigate/query Easy Sometimes possible, depends on

IDE and APIs
View Support Typical Almost never
Constraints Easy Sometimes possible with Find-

bugs etc.
Sophisticated mature IDE Sometimes, effort-dependent Standard
Debugger Rarely Almost always
Versioning, diff/merge Depends on syntax and tools Standard

Table 2.1: Main differences between Modeling and Programming [14].

2.1.3 Code Generation and Model Interpretation
A model is an executable model [15] when its operational semantics are fully specified.
In practice, not all models have to be executable since the executability depends more on
the adopted execution engine than on the designed model itself. On the one hand, some
models are not entirely specified, but there exist execution tools that can fill the gap to
execute them. On the other hand, there might be very complex and fully specified models,
that cannot be executed because an execution engine [16–19] is missing [1]. However,
there exists also modeling languages (e.g. class diagram) that are not executable. These
modeling languages are converted to GPL code by code generation and executed with
the GPL execution engine.

In order to execute models, there exist two different alternative approaches: code
generation and model interpretation.

Code Generation

Code generators transform the models into executable code for interpretation or compila-
tion in an automatic way [20,21]. This process is similar to what is known from compilers,
and in this sense, code generators are referred to as model compilers. Generators can
be classified into declarative and operational or a mixture of both. In the declarative
approach, semantic mappings between the model’s elements and the target language are
defined, whereas the operational approach uses rule-based transformations to produce
target code step by step out of the source model. Typically the target code is some kind
of GPL. After generation, the code is already complete from the perspective of a modeler,
and no further manipulation is necessary. Nevertheless, it is possible to view and edit the
generated code with an IDE before executing the generated artifact. Figure 2.2 shows
the process of generating source code from a set of models [1].

9

2. Background

Figure 2.2: Code generation process [1].

In the following, we summarize several benefits of the code generation approach [1].

• Code generation protects the intellectual property of the modeler. By generating
the current application, the conceptualization and design of the model are not
shared with the customer. The model can be reused and evolved for future projects.
The customers only receive the source code of the application.

• The generated code is provided in a standard programming language known to any
programmer.

• Customers can choose their runtime environment. As a result, customers are not
dependent on technologies used by the vendor of the MDD approach. Since code
generation usually produces code in a standard language, the customer is not
dependent on the MDD approach in the future, since the source code can be refined
manually with available IDEs.

• Existing programming artifacts can be reused with code generation. The existing
code can be generalized and used as templates for code generation of new parts of
the software.

• In contrast to model interpreters, code generators are easier to maintain, debug,
and track. An interpreter has a generic and complex behavior to cover all possible
execution cases, whereas code generators typically consist of rule-based transforma-
tions.

• Comparing the code generator and model interpretation in terms of execution
speed, one can say that a generated application performs better than interpreting
the model.

10

2.1. Model-Driven Development

In addition to the advantages of code generation, there are also disadvantages. One
issue within code generation is that the generated source code might not look familiar to
the developers. Although the execution behaves as expected, and the code is written in
the desired programming language, the code’s structure can be completely different from
the code the programmer would write. The developers may not feel very confident to
edit or evolve the source code in the future. For this reason, Marco Brambilla et al. [1]
proposed a Turing test for code generation, similar to the classic Turing test for AI1.
They defined the Turing test for code generation tools as follows.

"A human judge examines the code generated by one programmer and one code gener-
ation tool for the same formal specification. If the judge cannot reliably tell the tool from
the human, the tool is said to have passed the test." ([1], p. 31)

Code generation tools that pass the Turing test have proved that they can produce
code in a way that humans would do and should, therefore, be acceptable to them.

Model Interpretation

Model interpretation uses a generic engine that parses the elements of the model and
executes them on the fly with an interpretation approach. Model interpretation can be
characterized by the following properties and benefits [1].

• In the case of model interpretation, there is no need to delve into the application’s
source code. The model replaces the code, and therefore no code exists which could
be inspected.

• Modifications on the model can be done during the runtime, if the interpreter
supports continuing the execution by parsing the updated version of the model.

• There is no code generation step required after changing the model. This signifi-
cantly shortens the turnaround time in incremental development approaches.

• The running application’s behavior can be changed by simply extending the inter-
preter while keeping the same models.

• There is no deployment phase required because the designed model is already the
executable artifact.

• Compared to code generation, model interpretation [22,23] allows easy debugging [24–
26] of models during runtime. Interpreters can process models step by step. With
code generation, it requires sophisticated tools because the executable application
must be hooked to the model concepts, and the modeling tool must catch events
from the running application.

1https://en.wikipedia.org/wiki/Turing_test

11

2. Background

Although many users know about the advantages of model interpretation, some of
them are not ready to make themselves dependent on the MDD tool vendor [1]. Since
the source code is not available, one cannot simply continue executing and evolving the
application. Furthermore, performance concerns are often one of the reasons why this
approach is discarded [1]. Besides, the users are instructed to install a new platform
(model interpreter) in their IT Infrastructure that may be critical in large enterprises
due to strict IT architecture policies and security issues [1].

2.2 Domain-Specific Languages
This section introduces the characteristics of Domain-Specific Languages (DSLs). The
main ingredients of DSLs, abstract syntax, concrete syntax, and semantics are essential
to design a valid DSL and will be introduced in this section. Furthermore, we will
present the benefits and challenges and give some examples of DSLs. Please note that in
the modeling realm, DSLs are called Domain-Specific Modeling Languages (DSMLs) to
emphasize that they are modeling DSLs. However, DSL is by far the most commonly
used term, and therefore we will stick to it in the upcoming discussions.

2.2.1 Introduction to DSLs
DSLs raise the level of abstraction beyond programming by defining the solution in a
language that uses concepts and rules from a specific problem domain [27]. DSLs are
programming languages used by humans to instruct computers to do something. They
should be designed in a way that they are easier to read and understand. However, DSLs
should also be executable by a computer. The expressiveness comes from expressions
and the way they are composed together. DSLs have limited expressiveness and should,
therefore, only provide the features needed for the specific domain [27]. Therefore, DSLs
are only used to implement a particular aspect of a system instead of building an entire
system. Finally, DSLs have a clear focus on a small application domain, which is why
they cannot be reused for other domains [27].

General-purpose languages (GPLs) are in contrast to DSLs Turing-complete. This
means that anything computable with a Turing machine can be implemented with a
GPL. Furthermore, all GPLs are interchangeable. Everything that can be expressed
in one language can also be expressed in any other language. Nevertheless, there are
also problems in the area of GPLs, where special features are required [28]. Thus, many
different GPLs have been developed over the years, e.g. Java, C#, Python. Table 2.2
shows the main differences between GPLs and DSLs. While DSLs and GPLs may have
characteristics from both the second and the third column, DSLs are more likely to have
characteristics from the third column [14].

12

2.2. Domain-Specific Languages

GPLs DSLs
Domain large and complex smaller and well-defined
Language size large small
Turing completeness always often not
User-defined abstractions sophisticated limited
Execution via intermediate GPL native
Lifespan years to decades months to years (driven by context)
Designed by guru or committee a few engineers and domain experts
User community large, anonymous and widespread small, accessible and local
Evolution slow, often standardized fast-paced
Deprecation/incompatible changes almost impossible feasible

Table 2.2: Domain-specific languages versus general-purpose languages [14].

Fowler identified two main categories of DSLs, namely, internal and external DSLs [27].

• Internal DSLs are usually built on top of a general-purpose language or extending
the language. The DSL is written using a particular grammar and only uses a subset
of the host language’s features to handle one small aspect of an overall system.
The grammar is restricted to the legal syntax of its general-purpose language but
should give the feeling of a custom language. Due to the same syntax rules, the
host language’s existing tools can be reused for the internal DSL. Besides, error
handling and reporting in the main language can be partially reused for the internal
DSL.

• External DSLs have their custom syntax and are separated from the main
language of the application with which they work. A model of an external DSL,
whether textual or graphical, is parsed and then executed by an interpreter or
translated into another language, typically a GPL, using a code generator. In
contrast to internal DSLs, there exist no utilities that will support the use of the
newly created language. One will have to figure out a practical way for common
features like parsing, syntax highlighting, exception handling, and reporting.

2.2.2 Benefits and Challenges
In the following, the benefits of DSLs identified by Fowler [27], Voelter et al. [14], and
Kelly et al. [29] are listed.

• Productivity. A higher level of abstraction makes it easier to read and understand
a model and leads to better productivity. Few lines of DSL code replaces a lot of
GPL code, thus reducing the overall complexity of a program. This makes it easier
to find errors and modify the system. Finally, users of DSLs are not dependent on
learning a huge and complex GPL like Java. Instead, they only need to understand
a fraction useful in their problem domain.

• Quality. DSLs increase not only productivity but also quality in terms of fewer bugs,
better architectural conformance, and increased maintainability. This approach is
also known as correct-by-construction. If the DSL is designed in the right way, only
the construction of correct programs is allowed.

13

2. Background

• Validation and Verification. Since DSLs are semantically richer than GPLs,
they are not cluttered with implementation details. DSLs are aware of the domain
concepts. Therefore, error messages use more meaningful wording, and analyses
are easier to implement. Due to the involvement of domain experts, manual review
and validation become more efficient.

• Involvement of Domain Experts. On the one hand, developers are not aware
of the domain, they communicate with the domain experts to construct a well-
designed DSL. On the other hand, domain experts do not have to deal with complex
implementation details but can easily create programs. Visualizations or simulations
can further facilitate understanding.

• Productive Tooling. Many external DSLs come with their custom IDEs that
are aware of the language and improve the user experience. Such features include
static analyses, code completion, visualizations, debuggers, simulators, and more.
This not only makes it easier for new users to learn the language but also increases
user productivity.

In addition to benefits, there are also challenges to overcome [14,27, 29].

• Language Cacophony. Using multiple languages in one project is much more
complicated than using a single one. For new project members, it is hard to
understand what is going on in the system. Many forget that learning a new DSL
is much easier through the level of abstraction and takes less effort than learning a
GPL. However, it must be considered whether it would be more sensible to learn
the underlying model instead of the DSL used.

• Effort of building the DSLs. Before using a DSL in a project, one has to build it
first. It is important to consider whether the effort and costs involved in generating
the DSL are worth it. This must be taken into account in the overall cost-benefit
analysis right from the start of the project. For technical DSLs that address aspects
such as components, state machines, or persistence mapping of software engineering,
this question does not usually arise because they have great potential for reuse. In
the meantime, there are modern tools available that significantly reduce the effort
required to develop new DSLs. Generally speaking, three factors reduce the cost of
DSLs: in-depth knowledge about a domain, experience of the DSL developer, and
productivity of the tools.

• Language Engineering Skills. As mentioned in the previous point, it takes
a certain amount of experience and skill to build a new DSL. Although modern
language workbench facilitates the introduction of new languages, there is still a
certain learning curve. Building relevant languages and defining the right abstraction
level requires experience and practice, which can be gained over time while working
with different languages and problem domains.

14

2.2. Domain-Specific Languages

• DSL Hell. The constant simplification to create new DSLs poses another issue.
Many developers tend to introduce a new DSL instead of searching for and learning
an existing DSL for that specific domain. This ends up in a bunch of incomplete
DSLs, each covering common domains but not compatible. One way to avoid this
is to create DSLs is such a way so they can be easily extended or used as a starting
point for other languages. Features can be easily added to the existing language.

2.2.3 Examples
In this section, we discuss examples of existing DSLs. In particular, the DSLs HQL,
BPMN, and WebML are introduced.

Hibernate Query Language (HQL)

HQL2 is a DSL with a textual syntax that combines object-oriented coding with relational
databases. HQL is similar to the Structured Query Language3 (SQL) syntax, but instead
of working with database tables and columns, HQL queries use persistent objects and
their properties. The Hibernate O-R Mapper translates the HQL query into a SQL
statement that matches the corresponding database type. Listing 2.1 shows an example
query in HQL [27].

select person from Person person , Calendar ca l endar
where ca l endar . ho l i day s [’ na t i ona l ␣day ’] = person . birthDay

and person . n a t i o n a l i t y . ca l endar = ca lendar

Listing 2.1: HQL example [27].

Business Process Model and Notation (BPMN)

BPMN4 is a well-known standard for business process modeling that consists of notational
structures for designing business processes based on flowcharting techniques. BPMN
aims to provide business process modeling for business users and technical users at the
same time by displaying both simple and complex systems. The BPMN 2.0 specification5

enables the execution of business process models as well as the transformation of models
into other execution languages, especially into the Business Process Execution Languages6

(BPEL) [30].
Furthermore, BPMN was designed to provide a simple, readable, and understandable

language for all business stakeholders. This might be the business analyst who creates
and completes the processes or the technical developer who implements the processes or
the business manager who controls and manages the processes. Consequently, BPMN can

2https://docs.jboss.org/hibernate/core/3.3/reference/en/html/queryhql.html
3https://iso.org/standard/63555.html
4http://bpmn.org/
5https://omg.org/spec/BPMN/2.0
6https://oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

15

2. Background

be used to overcome the communication gap, which might occur between business process
design and implementation [30]. Figure 2.3 shows a BPMN model, which describes the
process of hiring people in a company.

Figure 2.3: BPMN example [1].

Web Modeling Language (WebML)

WebML7 is a high-level modeling language for hypertext specifications. WebML consists
of simple notational constructs that defines a hypertext as a set of pages. The notation
consists of control units, operations, and edges, which connect the control units. WebML
is strongly oriented towards the notation of well-known conceptual modeling languages
like Entity-Relationship8 (ER) and Unified Modeling Language9 (UML): every concept
has a notational construct, and specifications are diagrams. Therefore, users familiar
with UML or ER do not have to worry about learning a new language [31]. Figure 2.4
shows a WebML model that describes the user interface of a website for navigating a
product catalog by category.

Figure 2.4: WebML example [1].

7http://webml.deib.polimi.it/page1.do.html
8http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.1085
9https://uml.org/

16

2.2. Domain-Specific Languages

2.2.4 DSL Language Constructs
In this part of the section, we would like to discuss the components of a DSL, as it is
important to understand them when creating a new language. DSLs, like languages in
general, consist of syntax and semantics. The syntax is further divided into abstract
syntax and concrete syntax, where the abstract syntax addresses the structure and
grammatical rules of a language, and the concrete syntax defines the representation of
the language to the user. The definition of the language’s meaning is referred to as
semantics [1, 14, 29, 32, 33]. Figure 2.5 shows the three ingredients of a DSL and their
relationship to each other.

Figure 2.5: The three main ingredients of a modeling language and their relationships [1].

Abstract Syntax

Describes the conceptional structure of a language, its properties, model hierarchy
structures, model correctness rules, and how the different elements can be connected.
The abstract syntax is specified in the metamodel [34, 35]. The term "meta" is used
because the language specification is one level of abstraction higher than the models.
Figure 2.6 shows the metamodel of a finite-state automaton. The metamodel consists of
the FSAModel containing States and Transitions. A state has the properties isInitial,
isFinal, and name. Furthermore, a state has optional outgoing and incoming transitions.
Transitions have a property event to trigger the transition. A transition has exactly
one source state and exactly one target state. These can be two different states or one
state that represents both source and target. The syntax of a language also includes
grammatical rules (e.g. a model contains zero or up to an undefined amount of states)
which are taken from the problem domain. The advantage of defining the rules in the
language is that the effort required to check the model for errors is reduced. Considering
several code generators exist for one language, the checking would have to be done for
each code generator. The grammatical rules determine how models can be constructed:
they define the legal values, relationships between concepts, and how certain concepts
should be used [1, 29].

17

2. Background

Figure 2.6: The abstract syntax of a finite-state automaton [36].

Semantics

Every language has a meaning, also called semantics. When a new element is added to
a model or two elements are connected, meaning is created. Usually, the semantics are
derived directly from the problem domain for which the DSL is designed. For instance, the
implementation of an infotainment system for a car already has a well-defined meaning
within the application domain. In this problem domain, the modeling concepts, like a
knob, a menu, or an event, can be found. In general-purpose languages, it is up to the
developers to adapt the semantics and language concepts to a specific problem domain.
Every individual developer implements the mapping between concepts and problem
domains differently. For this reason, different types of models are also created for the
same problem domain. This is the advantage of a DSL that insists on using the concepts
and semantics of the application domain [29].

In the following, we introduce different kinds of methods to formally define the
semantics.

The operational semantics method uses an interpreter to define a language. The
interpreter produces an evaluation history when it interprets the program. The evaluation
history is a sequence of internal interpreter configurations. The meaning of a program in
the language is the produced evaluation history [37].

The denotational semantics method uses a valuation function to bind a program
directly to its meaning, called its denotation. In contrast to operational definitions, the
denotational definition does not require an interpreter or computation steps [37].

The axiomatic semantics method does not explicitly define the meaning of a program.
Properties that are expressed with axioms and inference rules from symbolic logic are
defined for the language constructs. To construct a formal proof, the property of a
program is deduced from the axioms and rules. The kind of properties that can be proved
are used to determine the character of an axiomatic definition. Axiomatic definitions
are more abstract than denotational and operational definitions. The properties proved
about a program may not be enough to completely determine the program’s meaning [37].

18

2.3. Debugging in Domain-Specific Modeling

Concrete Syntax

The concrete syntax is the most visible part of the language, as it describes the notation
of the language and is strongly oriented towards the domain concepts. The representation
is either graphical or textual but can also be visualized in the form of a matrix or table.
Modeling languages are usually represented graphically combined with text. Figure
2.7 shows the domain concept and the associated notational structures of a finite-state
automaton. Which form of notation is used for a DSL depends strongly on the real
representation of the domain concept. To stay with the car example: A knob for a
car infotainment system should have a similar visualization in the modeling language.
Regarding the completeness of representation and representation fidelity, it can be said
that the presence of exactly one notational construct for each concept is an essential
criterion for interpreting different modeling concepts and notations. This approach avoids
overloading the notational constructs and ensures that all concepts can be represented
with the language [29].

Figure 2.7: The concrete syntax of a finite-state automaton [36].

2.3 Debugging in Domain-Specific Modeling
There are two important facets of the development process of domain-specific modeling.
Developing transformations and developing models. Model transformation [38–41] in the
context of Model-Driven Engineering (MDE) is used to convert a source model into a
target model. If both the source model and the target model match the same metamodel,
this is called an endogenous transformation and is used to perform model refactoring
and optimization. However, if both have a different metamodel, it is an exogenous
transformation and used for tasks like code generation and reverse engineering. There
exist also studies that deal with the debugging of model transformations [42, 43]. Since
this work focuses on the generation of models and their interpretation, we will deal in
the course of this section only with debugging models and artifacts itself, but not with

19

2. Background

debugging transformations. First, debugging of source code, including the procedure
and the advantages of debugging, are discussed. Afterward, the individual debugging
concepts and how they are used for debugging code are represented. Finally, it will be
analyzed how these debugging concepts can be transferred to modeling languages.

2.3.1 Debugging Code
Debugging is an essential part of every developing process. Any software that is developed
should be bug-free before delivery. Debugging is a process used by developers and software
testers to find errors and fix them [44]. Several studies deal with the most common
causes of errors and why some errors cause more damage than others [45]. To track down
and resolve bugs, concepts like stepping through code, interrupting the execution, or
investigating information about the current program state can be used. The debugging
process can be divided into six main phases [46]:

1. Identify Error: The earlier the error is found, the more time and costs can be
saved. Errors that occur at the customer site increase the costs and damage the
company’s reputation.

2. Identify the Error Location: After the error has been detected, it is necessary
to identify the exact location within the source code that causes it. With the
knowledge of the exact position of the faulty code, the error can be fixed faster.

3. Analyze Error: In this phase, a suitable procedure must be found to analyze the
error. The debugger provides information regarding the program’s state and the
data structure to analyze the error. This is a critical phase because by fixing the
bug that has occurred, new errors can creep into the code.

4. Prove the Analysis Result: Once the error has been analyzed, the focus must
be on the software’s further errors. This includes writing test cases to ensure the
correct functioning of the software.

5. Cover Lateral Damage: In this phase, tests must be performed to check the
changed code. Those test cases which do not pass the test must be investigated.
As soon as all test cases pass the test, the debugging process’s last phase can be
initiated.

6. Fix and Validate: This is the last phase, all bugs are fixed, and all test scripts
are executed.

The advantages of software debugging can be summarized as follows [46]:

• Saves time. Performing debugging during the development process saves time
because software developers do not need to write complex code to find the error.

• Reports Errors. As soon as errors occur, debuggers provide an error report.
This enables early detection of errors and thus simplifies the software development
process.

20

2.3. Debugging in Domain-Specific Modeling

• Easy Interpretation. The information provided through the debugger about the
execution state and the data structures makes it easier to interpret errors. The
software developer can fix errors before the product is delivered to the customer.

The following debugging facilities are commonly used in modern IDEs and their
debuggers. However, it is only a selected list of all available debugging facilities, but that
is sufficient as an effective basis for debugging source code [42].

Execution Modes

All available IDE debuggers provide two basic functionalities: First, to execute a program
continuously until the program is terminated or interrupted by the developer and second
step-by-step execution of one statement at a time. Further execution features are the
stop and pause commands for the terminating or non-terminating halt of the execution.
Using the step-by-step mode or the start/continue command, the programmers re-enters
continuous mode [42].

Steps

There are usually three kinds of step commands in every debugger: step-over, step-in,
and step-out. The step-over command executes the current statement as one block. On
the step-in command, the debugger goes through all the sub-statements contained by the
current statement step-by-step. This further requires a change of scope. The step-out
command executes the application until the end of the current scope is reached, and the
debugger is one level higher in the call stack [42].

Runtime Variable I/O

When the application’s execution is paused, debuggers provide the functionality to read
and change the program’s global and local variables. While the execution is paused,
developers can assign any values to variables, apart from basic types. The significant
advantage of this feature is that no print statements are necessary for the user to
investigate the program’s current state [42].

Breakpoints

The developer can specify breakpoints to interrupt the program’s execution at a specific
point in the source code. Breakpoints are set on statements to pause the execution
before the debugger executes the given statement. Most debuggers also support more
advanced breakpoints: Breakpoints with boolean conditions, breakpoints with hit counts,
exception breakpoints, data breakpoints, or function breakpoints. Condition breakpoints
halt the execution if any from the developer specified condition over the state is fulfilled.
Hit counts for breakpoints pause the execution when the statement is executed an
arbitrary number of times. Exception breakpoints pause the execution as soon as a
certain exception is thrown. Data Breakpoints interrupt the execution when the value of a

21

2. Background

certain variable changes. Function breakpoints lead to a halt in the program when calling
a certain function. Exception breakpoints, data breakpoints and function breakpoints
are not associated with a specific source location [42].

Stack Traces

Stack traces provide the developer with a view of the function calls that led the program
into its current state. While the execution is paused, stack traces become visible. The
programmer can dive into any other level in the stack trace for variable viewing and
source code editing [42].

Exceptions

Exceptions are thrown during runtime and inform the user that the system is in an error
state and may halt the program’s execution. The exception contains information on the
error, the type of exception, and the state (exception context) of the program when the
error occurred. There are many exceptions predefined in languages to report events like
null-pointer dereferencing and I/O problems. When an error occurs, the runtime system
climbs up the call stack and searches for a method that contains a block of code that
can handle the exception. This code is also known as an exception handler. Appropriate
exception handlers can be defined by developers to catch an exception and handle the
exception (take appropriate action) to recover from the identified issue. If no exception
handler can handle the thrown exception, the runtime system terminates. Finally, it
should be mentioned that programmers can also implement new types of exceptions to
enable support for system-specific exceptional situations [42].

2.3.2 Debugging Models
Hans Vangheluwe and Raphael Mannadiar [42] identified two different debugging scenarios
in domain-specific modeling. These two scenarios have roughly the same basic workflow
but differ in the different expertise of the users. On the one hand, designers are debugging
model transformations and artifacts generated by them. They are fully aware of the
model transformation that describes their models’ semantics and generates artifacts.
Their goal is to ensure the correctness of the generated artifact. On the other hand, the
modelers are interested in the correctness of their domain-specific model and are only
familiar with the semantics of their model without being aware of artifacts generated
from them. Below we re-visit the debugging concepts described in the previous section
and translate them to debugging in domain-specific modeling [42].

Execution Modes

Playing and stopping the execution require functionality to run or kill the generated
model or program remotely. Considering stepping, one must first identify how a step
can look in a particular model. This can be challenging, depending on the language.
Vangheluwe and Mannadiar [42] propose in their paper a very general definition.

22

2.3. Debugging in Domain-Specific Modeling

"Any modification of the state of a domain-specific model constitutes a step, where
the notion of the state encompasses the values of the parameters of every construct in the
model." ([42], p. 15)

Like stepping, pausing the execution also presents a certain challenge. The pause
mode should depend on the structure and semantics of the domain-specific model. The
most common and widely used approach is to pause the execution right before the
execution of the next step at the model level. While this approach is sufficient for
modelers, it should be noted that it could be further refined to apply to designers. It is a
great advantage and sometimes even necessary for designers to pause or step on the level
of generated code statements [42].

Steps

The meaning of stepping over, into and out, may be considered from two orthogonal
perspectives. On the one hand, the notation can be translated one-to-one for DSLs
that support hierarchies and composition. Taking a statechart-based language when the
current state is within a composite state, stepping out would continue the execution
of the model until it leaves the parent state. On the other hand, considering that an
implicit hierarchy is created between the generated artifact and the source model, it
can be useful for the designer, in case of the step-in command, to switch the execution
pointer of the debugger to the corresponding lower-level entities. Keeping up with the
statechart example, the use of the first step-in command would allow the designer to
step through the underlying statechart, while another step-in command would allow
the designer to step through the statements of the code generated from the statechart.
Stepping out would bring the designer back to the higher-level representations. These
different stepping modes confirm the requirement for two different debug modes for
designers and modelers [42].

Runtime Variable I/O

While the execution is paused, variable values of domain-specific models and lower-level
generated artifacts can be viewed and modified using the model editing tool. The real
challenge is that a change of a variable at one level of abstraction must also be visible on
every other level to ensure overall consistency [42].

Breakpoints

Breakpoints, as known from typical IDE debuggers, can be translated one-to-one to the
DSM world. Nevertheless, there are differences between the requirements of a modeler
and those of a designer. For the modeler, it is sufficient to specify breakpoints only on
the model level, whereas for the designer, it is relevant to set breakpoints on each level
of abstraction between model and end artifact. Depending on the modeling language,
it must be defined which elements of a model can be marked as breakpoints. Looking

23

2. Background

again at the statechart-based language, it probably makes most sense that individual
states support the setting of breakpoints. In the course of transitions that use actions, it
should also be considered whether one can set a breakpoint before executing the action
and thus pausing the application. In the case of Petri-Nets [47], where the state is
implicitly represented, this approach is not practical. Hans Vangheluwe and Raphael
Mannadiar [42] instead porpose for this case that breakpoints are specified as patterns.
When the patterns are matched in the model, the execution gets paused. As in code
IDEs, hit counts and boolean conditions could be specified in the same manner. While
function breakpoints are not important for the modeler, they can be useful for the
designer concerning generated artifacts and the functions called at this level. Exception
breakpoints are strongly oriented on how exceptions are handled in the domain-specific
models, and the lower level generated artifacts [42].

Stack Traces

As known from code debugging, stack traces in the domain-specific model and artifact
debugging are bound to the terms stepping in and stepping out. From the perspective of
the modeler, the structures of the hierarchy and composition of DSMLs are reflected. On
the other hand, the designer debug mode might display sequences of related actions at
different levels between model and generated artifact [42].

Exceptions

As we mentioned in the previous section about DSMLs, only correct models can be created
due to the abstract syntax’s definitions. Therefore, when debugging models, exceptions
do not occur at the level of the model but during the execution of the synthesized
artifact. Although the models are animated and updated in real, only the artifacts are
executed. Exceptions can be caused by I/O errors or bugs in the execution engine or
third party libraries but also through operational semantics transformation of lower-level
models. Some of these exceptions can be translated one-to-one into domain-specific
terms. In contrast, other exceptions require propagation and translation facilities for
the presentation to the designer or modeler. Furthermore, it should be noted that
some exceptions are only of minor importance for the modeler, and others may provide
information that is useful only for the designer. The DSL architect’s task is to decide
between exceptions that are passed on to the highest level of abstraction and those that
are silently handled [42].

24

CHAPTER 3
Web-based Modeling Tools

This chapter discusses existing technologies for implementing web-based modeling tools.
In particular, the protocols LSP, GLSP, and DAP are introduced.

3.1 Language Server Protocol
The number of programming languages has increased rapidly over the last few years.
Besides, more and more IDEs were created [48]. Nevertheless, it is difficult for the IDE
developer to keep up and constantly offer new language support. Language providers
are very interested in offering as many IDE integrations as possible for their language to
gain a broader user community. The result is an m-times-n complexity to integrate all
existing languages into every available IDE. In 2016, Microsoft, RedHat1, and Codenvy2

introduced the Language Server Protocol3 (LSP) to separate the language-specific logic
from the integration into an IDE. The language server, which is offering the language
logic, can thus be implemented in any programming language. Code-completion, goto
definition, and refactoring are only a few functionalities computed in a language-specific
server process [49].

LSP’s goal is to communicate messages over a standardized protocol between the
language server process and the IDE client process, which integrates the language into an
IDE. This process reduces the complexity of integrating all languages into every existing
IDE to m+n. Since the introduction of the LSP, more than 100 language servers and
more than 30 tools have been implemented that support LSP. These include popular
languages like Java, TypeScript, C, and Python. On the editor side, the LSP is supported

1https://redhat.com/en
2https://codenvy.com
3https://microsoft.github.io/language-server-protocol

25

3. Web-based Modeling Tools

by IDEs like Eclipse4 or VSCode5. In addition to general-purpose languages, there
already exist various language servers for domain-specific languages (e.g. HTML, LateX6,
CSS). However, Xtext7 [50] is the only language workbench that currently supports the
language server protocol. This allows languages that are implemented with Xtext to take
advantage of the LSP’s features and benefits [49].

3.1.1 Architecture of the LSP
The protocol uses the stateless and lightweight remote procedure call protocol JSON-
RPC8 in its version 2.0, which uses JSON as a data format. JSON-RPC was designed to
transmit remote procedure calls over a network. However, it can also be used to transfer
data from a client to a server running on the same physical machine. Most language
server implementations run on the same physical machine as the operated IDE. The
LSP distinguishes between three different types of messages: requests, responses, and
notifications. A request message describes a request between the client and the server.
Every processed request must send a response message as a result of a request back to the
sender of the request. A notification message works like an event and notifies the receiver
of an occurred activity. All messages are divided into a header and a content part. The
header specifies the content length and content type. The content part contains the
actual content of the message [51].

Figure 3.1 shows an editing process and the resulting communication between the
three actors, the user, the the client (IDE / development tool), and the language server.
The user, shown on the left side of the illustration, starts the communication between
the client and the server through its actions. The arrows between the client and the
server mark the messages that have been standardized in the language server protocol.
The session starts when the user opens a document. The development tool then notifies
the language server that a document has been opened. As a next step, the user edits
the document. Again, a notification is sent to the server from the development tool.
After the server has received the notification, it analyzes the changes done by the user.
If errors or warnings are detected by the server, they are returned to the client. In a
further step, the user executes a goto definition action. The client sends a request to
the server with the current cursor position within the document. In Listing 3.1, the
request textDocument/definition of the goto definition action is shown in detail as a
JSON-RPC call. Besides, the URI to the text document, the line, and character location
are transferred to the language server. The server then determines the exact position of
the variable declaration and sends the resulting location back to the development tool as
a response. The corresponding JSON-RPC call is shown in Listing 3.2. The response
includes the new URI and the location range of the target position. The development

4https://eclipse.org/ide
5https://code.visualstudio.com
6https://latex-project.org
7https://eclipse.org/Xtext
8https://jsonrpc.org/specification

26

3.1. Language Server Protocol

tool is responsible for opening the correct document based on the location and setting
the cursor to the specified position. The last message notifies the server that the user
closed the document. Based on the example shown, it can be seen that the protocol is
based on documents and the positions within them. As a result, the protocol remains
independent of the specific language for which the LSP is used.

Figure 3.1: Communication between the development tool and the language server during
the editing session [51].

1 {
2 " j s o n r p c " : " 2 . 0 " ,
3 " id " : 1 ,
4 " method " : " textDocument / d e f i n i t i o n " ,
5 " params " : {
6 " textDocument " : {
7 " u r i " : " f i l e : / / / p%3A/mseng/VSCode/ Playgrounds /cpp/ use . cpp "
8 } ,
9 " p o s i t i o n " : {

10 " l i n e " : 3 ,
11 " c h a r a c t e r " : 12
12 }
13 }
14 }

Listing 3.1: Goto definition action in a C++ file [51].

27

3. Web-based Modeling Tools

1 {
2 " j s o n r p c " : " 2 . 0 " ,
3 " id " : 1 ,
4 " r e s u l t " : {
5 " u r i " : " f i l e : / / / p%3A/mseng/VSCode/ Playgrounds /cpp/ prov ide . cpp " ,
6 " range " : {
7 " s t a r t " : {
8 " l i n e " : 0 ,
9 " c h a r a c t e r " : 4

10 } ,
11 " end " : {
12 " l i n e " : 0 ,
13 " c h a r a c t e r " : 11
14 }
15 }
16 }
17 }

Listing 3.2: Response to the goto definition request in a C++ file [51].

3.1.2 Features of the LSP
Since not all languages and IDEs support all the protocol features, the supported features
are sent as so-called "capabilities" from the IDE to the language server during the initial
requests. The language server interprets missing Capabilities as not being supported by
the client. Unknown Capabilities are ignored. The language server responds to the initial
request with the Capabilities it supports. In the following, we briefly describe the LSP
key features, which are supported by most language server implementations [51].

Code completion. The client sends the request code completion, including the
current document and the cursor position within the document to the language server.
The server responds to the request by sending the computed completion elements for
the given position back to the development tool. The client process then forwards the
completion proposals to the context menu from which the user selects the element. In
the case of an expensive completion, the completion can be represented by a handler. As
soon as the user selects an element from the context menu, the handler sends another
request to the language server to request the entire completion text.

Hover. The development tool sends the request hover to the language server to
compute additional information shown in a tool tip. The hover menu feature further
supports text-formatting, including line breaks, lists, and indentations.

Goto Definition. Through the request goto definition, the language server responses
the position of a given symbol within a document. The request goto type determines the
position of a given type. For the implementation location of a given symbol, the request
goto implementation is available in the LSP.

28

3.2. Graphical Language Server Protocol

Workspace symbols. The development tool sends the request workspace symbol
taking a query string to the language server to reveal all matching workspace symbols
within the workspace. Workspace symbols are an index (or tag) file of names found in
source and header files of various programming languages.

Find references. The request find references returns a project-wide list of locations
based on the current cursor position. Each of the locations references the symbols at the
current cursor position.

Diagnostics. Diagnostics is executed by the language server and might be handled
per file or for a complete project. Through diagnostics, errors and warnings are detected
and sent via notification to the development tool. If no errors or warnings occurred, the
server generates a notification with an empty list of diagnostics. Therefore the client
always replaces the current diagnostics, and no merge is required.

In addition to the capabilities already mentioned, the LSP also contains other in-
teresting features such as code lens or signature help. New features will continue to be
integrated into the LSP, and so the LSP in version 3.16.0 will support features like call
hierarchy or semantic token.

3.2 Graphical Language Server Protocol

The Graphical Language Server Protocol (GLSP) was introduced by EclipseSource9 in
2018 and follows the same architectural pattern as the LSP for textual languages, but
uses it for graphical modeling languages. Initial attempts to reuse the LSP for graphical
modeling had to be rejected due to the different requirements of textual and graphical
languages. Thus, a new protocol has been defined. The GLSP is primarily based on
the client-server communication protocol of the diagram framework Eclipse Sprotty10.
Additionally, GLSP comes with edit functionalities and server-specific communication.
Probably the most important use case for the protocol is the development of web-based
diagram editors, which connect to a language server and transmit messages via the
protocol. Besides the defined protocol, the Graphical Language Server (GLS) platform11

provides a client and a server framework that can be integrated into existing IDEs. The
client is responsible for rendering and time-critical operations, such as fade out effect,
whereas the server is in charge of the language-specific semantics [52]. In Chapter 4,
we will use the platform in the running example to integrate a diagram editor into the
web-based IDE framework Eclipse Theia12.

9https://eclipsesource.com
10https://projects.eclipse.org/projects/ecd.sprotty
11https://eclipse.org/glsp
12https://theia-ide.org

29

3. Web-based Modeling Tools

3.2.1 Architecture of the GLSP
As already mentioned, the GLSP builds strongly on the client-server protocol of Eclipse
Sprotty and its architecture. Sprotty is a web-based diagram framework using modern
web-technologies like SVG for rendering and CSS for styling. A unidirectional event-cycle
is an essential part of the architecture with a virtual DOM as opposed to the model-
view-controller pattern. Therefore, the event flow is always clear, does not form feedback
loops, and takes less effort to test [53]. Figure 3.2 shows an overview of the Sprotty
architecture, which is described in the following.

All relevant information regarding the diagram and the operations that can be
performed on it is stored on a graphical language server. The client is only equipped
with the most necessary details, which it needs to render the diagram. Sprotty was
developed to take over the visualization part of language servers. The Sprotty server
extends language servers created with the language workbench Xtext. This facilitates
the creation of graphical representations for DSLs. It is precisely this approach on which
the GLSP is based: Separation of language logic from IDE integration. Instead of using
the LSP for textual languages, the GLSP for graphical modeling languages can be used.
Besides, the GLSP extends the static visualization of Sprotty with edit functionalities [52].

Figure 3.2: The architecture of the diagram framework Eclipse Sprotty [53].

30

3.2. Graphical Language Server Protocol

In the following, we describe the main concepts of the Eclipse Sprotty architecture,
which is essential for the GLSP [53].

• SModel. The diagram is stored in a graph model called SModel. The diagram’s
elements are organized in a tree hierarchy and have the properties parent and chil-
dren. Based on the model root (i.e. SModelRoot), elements can be searched within
the tree through their ID. All elements of the model inherit from SModelElement.
An SModelElement consists of a unique ID and a type to reference its View. A
View knows how to turn a graph model element and its children into a virtual
DOM node. To use the client/server architecture of Sprotty, the graph model needs
to be serializable. The schema of an SModelElement is a serialized JSON type.
Within the schema, cross-references are represented by the ID of the element to be
referenced. When looking at an edge, an SEdgeSchema refers to its source using
the ID of its source SNode. Finally, to create the model out of the corresponding
schema, deserialization is taken over by an SModelFactory.

• Actions. Actions are executed on the graph model and its elements. They are
defined as JSON objects and are transmitted between client and server. From
the model source or the Viewer, actions are sent via the action dispatcher. The
action dispatcher takes the received action and converts it into a command using
the appropriate action handler. There are two different ways on how to control the
model. First is through a local model source, which directly changes the model on
the client, and secondly through a remote source controlled by a diagram server.

• Commands. Commands take the current model, execute the operation on it, and
return a new model taken up by the Viewer, which initiates a new rendering process.
Commands are passed to the command stack, which has a redo and undo stack in
addition to the stack to be executed. Thus, individual commands can be repeated
or undone. The execution stack can be used to merge individual commands. This
makes especially sense in the context of a move command, where only the starting
point and endpoint are of interest.

• Viewer. The Viewer is in charge of creating a new virtual DOM from the model.
The information necessary to create the virtual DOM is stored in the View of a
model element. A View must be registered in the ViewRegistry so that the Viewer
can look up the View, based on the ID of the model element. Furthermore, it is
possible to add event listeners or animation to the Viewer using its Decorators.

• Features. Features are supported by model elements and describe the interaction
between the user and the diagram element. A feature contains the action that is
triggered and the corresponding command that has to be executed. Furthermore,
a feature requires a singleton Symbol as an identifier to check if a model element
supports this feature. An SModelExtension can be added to store further informa-
tion in the model to support the feature. Additionally, listeners can be registered

31

3. Web-based Modeling Tools

to listen to events that execute the interaction on the DOM elements. Finally, a
Module is required to register the above information to the client infrastructure.

Figure 3.3 shows the communication between the user, client, and graphical language
server while adding new elements to the diagram. The client’s first message to the server
represents various requests from the Eclipse Sprotty framework base protocol, which, for
example, request the model and the bounds from the server. The bounds are the position
(x, y) and dimension (width, height) of an model element. Then the development tool
asks the language server to transmit all available operations. The operations received
from the server are added to the palette view of the development tools’ diagram editor.
They can then be used to add new model elements to the diagram. In a further step, the
user creates a new node within the diagram. The client sends a create node operation
with the element type and the location within the diagram to the server. This modifies
the model and the language server sends the new model back to the client using an
update model action, which triggers the rendering of the diagram with the new model. In
another use case, the user creates a new edge between two existing elements. A create
edge operation is executed and sent to the language server. In turn, the server modifies
the model and adds a new edge between the two, based on the source and target ID of
the respective elements. After the model has been changed, the new model is sent back
to the client, taking over the rendering.

Figure 3.3: A user invokes a GLSP-based communication between client and server
through adding new elements to a diagram [52].

32

3.2. Graphical Language Server Protocol

3.2.2 Features of the GLSP
In the following, we briefly describe the key features of the GLSP [52].

Request and Update Model. The request model action is sent as the first message
from the client to the graphical language server to initiate the communication between
the two and, at the same time, request a graphical model. The server responds to this
client request, either with a set model action or an update model action. The update
model action is sent to the client after each modification of the model on the server. If
the client does not have a model, the update model action behaves like a set model action.
If a model already exists, the old model root schema is replaced by a new schema.

Operations Request. The request operation action is sent from the client to the
server to request the list of available operations. Operations are requests that change
the model. The server, in turn, responds with a set operation action. GLSP currently
supports six different types of operations:

• Create node: This action creates a new node within the diagram. Specifying the
element type, location, and container within which the operation is to be executed.

• Create connection: This action creates a new connection between two elements.
The action transfers the ID of the source element as well as the ID of the target
element. This operation can be extended to create edges.

• Delete: This action performs the deletion of a specific item based on the ID.

• Change bounds operation: This action is used to change the position or dimen-
sion of an element.

Element Pop-up. As soon as the user moves the mouse over an element, the client
sends the request popup model action to the graphical language server to get detailed
information about the element. The server responds with a set popup model action to
display the pop-up menu on the one hand and to remove it in the diagram editor on the
other hand.

Select. A select action is triggered as soon as the user clicks on a selectable element.
The action can be handled locally by the development tool or sent to the graphical
language server to respond to a selection change. Furthermore, the server can change
the selection remotely and inform the client about this via the select action. Finally, the
GLSP has a select all action to select or deselect all the model elements at once.

Command Palette. The command palette action sent from the client to the server
requests the available operations for one or more selected elements. The server uses the
received IDs to determine the available operations and sends them back to the client
with a set command palette action.

33

3. Web-based Modeling Tools

Reconnect and Reroute Connection. The reconnect connection action is sent
from the client to the server to change either the source element or the target element
of an existing connection. The transmitted message contains the ID of the connection,
as well as the ID of the new source and target elements. Compared to the deletion of
an existing connection and the resulting re-creation of a connection, reconnecting has
the advantage that the object identity and the properties of the connection are already
on the server. The reroute connection action changes the existing route of a connection,
where the new route is transmitted as an array of routing points.

3.3 Debug Adapter Protocol
The Debug Adapter Protocol (DAP) was introduced before the Language Server Protocol
but follows a similar approach. Due to the different APIs of development tools, it takes
significant effort to implement a debugger for programming languages. The DAP aims to
standardize the communication between the development tool and debugger and thus
to make it possible to implement a single generic user interface that supports the DAP
on the client-side and a well-specified protocol on the server-side. A debugger then
implements the debugger logic of a particular language also follows the DAP protocol.
This makes it easy to integrate debuggers for different languages into an IDE and re-use
debuggers across IDEs. Since existing debuggers may not adopt the DAP, the debug
adapter should adapt existing debuggers or runtime APIs to the DAP. Figure 3.4 shows
on the left side different development tools, where each tool integrates the implementation
of a debugger user interface to support the language-specific debugger. On the right side,
the development tools are using generic debugger user interfaces. The DAP-based tools
are connected through a debug adapter, supporting the DAP to the language-specific
debuggers. This reduces the effort to support a new debugger considerably [4].

3.3.1 Architecture of the DAP
The DAP was designed before JSON-RPC was released. Therefore, it uses its own
protocol, which is very similar to JSON-RPC. The messages consist of a header and a
content part separated by a carriage return and line feed. The most important data types
which are used by the DAP are Strings because the user sees exactly this in the graphical
user interface. This allows an easy implementation of the debug adapter. The debug
adapter can either function as a debugger itself or be connected to an external debugger.
The DAP has many features, but not all debug adapters support them as well. Each
feature has a capability flag, which lets the development tool know if a debug adapter
supports this feature or not. Therefore, these feature flags are summarized in the DAP
under the interface Capabilities. If a flag does not exist, the development tool assumes
that the adapter does not support this feature [4]. Since the DAP is not stateless, the
server needs to know all kinds of states and sequences of what has happened. If the
server terminates, the debug progress on the client-side is lost [4].

34

3.3. Debug Adapter Protocol

Figure 3.4: Communication between development tools and debuggers with and without
DAP [4].

The DAP consists of three types of protocol messages. First, requests containing
the command that should be executed by the debug adapter and arguments that carry
the necessary information for the execution process. Secondly, responses that act as
acknowledgment and return the generated information from the execution process back
to the development tool. Finally, events initiated by the debug adapter inform the tool
about the current state of the execution. An example of such an event is the stop event,
which informs the development tool that the execution has been stopped for some reason.
This may be due to a breakpoint or an exception.

Figure 3.5 shows the communication between the development tool, debug adapter,
and a GNU debugger13. The communication is started by the user, creating a new debug
session. Subsequently, the development tool sends the initialize request to the debug
adapter. In the initialization phase, the Capabilities are exchanged between the IDE
and the debug adapter. The debug adapter then connects to the GNU debugger and
starts the debugger. In addition to the Capabilities, the initial request also contains other
useful information about the development tool, such as its name or the format of the file
paths (native or URI) used.

As soon as the debug adapter is ready to receive configuration requests, it generates
a new initialized event to inform the development tool about its status. Due to this
process, the adapter does not require a buffering implementation for configuration
information. After receiving the initialized event, the development tool starts sending

13https://gnu.org/software/gdb/

35

3. Web-based Modeling Tools

the configuration information to the debug adapter. These are a sequence of requests
that set the different types of breakpoints, followed by the configuration done request
that signals the completion of the configuration process. The breakpoints are forwarded
to the GNU debugger for validation, and the result is sent back to the development tool
via the debug adapter. After the successful completion of the configuration process, the
launch request follows, starting the debugger’s execution. The debug adapter forwards
the name of the file to be debugged to the GNU debugger and runs the execution.

Figure 3.5: Communication between the development tool, debug adapter, and debugger
during the start of a new debug session following the DAP [4].

3.3.2 Features of the DAP

In the following, we represent the features of the DAP regarding the debugging concepts
introduced in Section 2.3 [4]. All requests, responses, events, and data types are clearly
presented in the Debug Adapter Protocol specification14.

14https://microsoft.github.io/debug-adapter-protocol/specification

36

3.3. Debug Adapter Protocol

Execution Modes

After a debug session has been started and the configuration process has been executed,
the client sends the launch request to the debug adapter to start the debugger. This
request contains debugger-specific information such as the debugger server address or a
stop on entry flag. The stop on entry flag informs the GUI that the debugger will be
stopped when it enters the file and before the first statement is executed. The execution
mode can be started with or without debugging. Once the debugger is started and is in
the stop state, the debugger can be continued by using the continue request. Through a
pause request sent by the client, the execution can be stopped again. For this purpose,
the debug adapter generates a stop event to inform the development tool about the halt
of the execution. After the debug adapter was successfully launched, the development
tool sends a threads request to the adapter and starts listening for new thread events.
All requests exchanged between the development tool and the debug adapter during the
debug session must specify the corresponding thread ID. Depending on whether the debug
adapter supports multiple threads or not, the debugger responds either with all currently
existing threads or at least one (dummy) thread. To terminate the debug session, the
development tool sends a terminate request to the debug adapter to terminate the session
gracefully. This gives the debugger the ability to complete all remaining tasks and finally
ends the debug session. If the debugger continues to run, the development tool tries
to terminate the debugger again, but this time it uses the disconnect request, which
terminates the session forcefully.

Steps

In order to step through the execution, the debug adapter protocol provides the next
request to run again for one step. The debug adapter responds with a new stop event,
including the appropriate reason and thread ID, after the step is complete. Using the
step-in request, the debug adapter steps into a function or method, if possible. Otherwise,
the step-in request behaves like a next request. To reach a level higher after a step-in
command, the client sends a step-out request to the adapter.

Runtime Variable I/O

The exchange of the variables takes place using the variable request, which returns all or
only a part of the variables. The child variables of a value can we retrieved using the
variable reference. The variables reference relates to a specific variable. In addition to
displaying variables, they can also be modified. For this purpose, the DAP provides a
set variable request in which the name of the variable and the new value are sent to the
debug adapter. In response, the adapter sends the new value and its data type to the
client.

37

3. Web-based Modeling Tools

Breakpoints

The DAP supports most types of breakpoints. For each type of breakpoint, requests
are sent to the debug adapter. Using the set breakpoints request, the development tool
transmits all breakpoints that exist for a single source. The adapter deletes all previous
breakpoints for this one source and then sets the breakpoints contained in the request.
The DAP also supports function breakpoints. The transferred breakpoints are validated
through the debugger and sent back to the development tool as the actual breakpoints
via a response message. This is to communicate to the client if a breakpoint could not
be set at the defined position or if the breakpoint was set to a different position by the
debugger. In addition to specifying hit counts and conditions, exception breakpoints and
data breakpoints can also be transferred via the protocol. As soon as a breakpoint is hit
during execution, the debug adapter creates a new stop event and adds the respective
type of breakpoint (e.g. function breakpoint) to signal the cause of the execution’s halt.

Stack Traces

In order to receive the stack trace of the current execution state, the development tool
can send a stack trace request to the debugger. The request contains arguments to filter
the returned stack frames. This means that only those stack frames that belong to the
thread specified in the request are returned. A unique ID identifies a stack frame across
all threads. This ID can be used to obtain the scopes of a frame using the scopes request
or to restart the execution of a specific frame. The stack frame further stores the name of
the frame, typically a method name, as well as the line and column of the frame within
the file. Additional optional properties, such as the source of the frame, can also be
transferred from the debugger to the development tool.

Exceptions

During the execution of a program, there may occur exceptions. In this case, the debug
adapter generates a new stop event with the corresponding reason (e.g. an exception).
There are two ways an exception can be processed and displayed by a development tool.
In the first, an output event is generated after the stop event. The output event can be
used to output a sequence of characters to the debug console. In the second variant, the
development tool sends an exception info request to the debug adapter after receiving
the stop event. The response that follows is filled with detailed information about the
exception that occurred. After the development tool has received the exception info
response, the information can be further processed and displayed on the debug console.

3.4 Summary
To sum up the previous sections, LSP, GLSP, and DAP are protocols that standardize
the communication between an IDE and a language-specific server that provides editing
or debugging support. The LSP separates the language-specific logic from the actual

38

3.4. Summary

editor logic. Since the LSP is only suitable for textual languages, the GLSP was defined
to build client-independent language servers for graphical modeling languages. The DAP
allows the implementation of one generic debugger interface for a development tool that
can communicate with different debuggers via debug adapters. The debug adapters can
be reused across multiple development tools, which significantly reduces the effort to
support a new debugger in different tools.

39

CHAPTER 4
Applying the DAP to GLSP

In Chapter 2, we discussed which features a modern debugger should provide and how
these debugging concepts can be applied to graphical modeling in general. Afterward, we
introduced both the GLSP and the DAP in Chapter 3 and showed which features and
advantages these web-based tools offer. In this chapter, we will discuss how to apply the
DAP to the GLSP and integrate a new debugger for a graphical modeling language. First,
we will introduce the Workflow Modeling Language (WFML) and its custom diagram
editor. The requirements for the debugger are then derived from the WFML. Finally, we
introduce the implemented debugger and discuss the features using visualizations.

4.1 Running Example: Workflow Modeling Language +
Diagram Editor

The WFML1 was designed by EclipseSource in the course of the development of the
Graphical Language Server (GLS) platform. The WFML is an executable/interpretable
language and is therefore very well suited for the purposes to develop a debugger for
graphical modeling languages. In Section 2.2, we discussed the components of which a
domain-specific language consists and that were used to define the WFML. The abstract
syntax of the WFML was defined using the Ecore Modeling Framework (EMF) [54]. The
EMF is a modeling framework and code generation facility for generating tools and other
applications based on a structured data model. The Java code generated from the EMF
Ecore model was integrated into the server framework of the GLS platform. The concrete
syntax was designed using the diagram framework Eclipse Sprotty, which we already
presented in the course of the introduction of GLSP. The default shapes of the Sprotty
framework can be adapted/extended to fit the requirements of the WFML.

The WFML describes a workflow within a system or organization. This workflow can
be a process consisting of a sequence of tasks and decisions. The language consists of

1https://github.com/eclipse-glsp/glsp-examples

41

4. Applying the DAP to GLSP

task nodes, activity nodes, and edges that connect the nodes. Furthermore, it is possible
to introduce hierarchical structures within the WFML. To do so, one can create new
diagrams, which are named according to the respective tasks.

The metamodel of the WFML shown in Figure 4.1 introduces the relevant language
constructs. The WFML metamodel extends the GLSP metamodel2 which serves as the
basic structure for the GLS platform. The language constructs of the GLSP metamodel
can be extended by the specific language constructs. Every element of the model
is a GModelElement. A GModelElement can have zero or an undefined amount of
GModelElement children. The GLSP metamodel shows a GGraph class which extends
the GModelRoot class. The GGraph class stores the model, which consists of Edges,
TaskNodes, and ActivityNodes. A TaskNode can be further divided into a manual task
or an automated task using the property taskType. The type of an ActivityNode can be
specified via the property nodeType. The WFML distinguishes decision nodes, merge
nodes, fork nodes, and join nodes. The WeightedEdge class has a property probability
and extends the GEdge class. The GEdge class has the properties sourceId and targetId.
Finally, a GEdge has optional source and target model elements.

Figure 4.1: The WFML metamodel extending the GLSP metamodel.

2https://github.com/eclipse-glsp/glsp-server/blob/master/plugins/org.
eclipse.glsp.graph/model/glsp-graph.ecore

42

4.1. Running Example: Workflow Modeling Language + Diagram Editor

In the following, we present the modeling concepts of the workflow language in detail:

• Task. A task describes a specific task, which is to be executed during the process
run. The notation of a task is a rounded rectangle with the task name inside the
border. A task has a property duration to specify the time needed to execute the
task. The WFML distinguishes between the following two tasks.

– Manual Task. A manual task is expected to be performed without any
process execution engine or application. The duration for manual tasks is set
to zero.

– Automated Task. A process engine executes an automated task. The task
is completed when the interpreter has executed the script defined for the task.
An automated task requires a certain amount of time to complete the task.
The time needed is specified in the duration property.

The concrete syntax of automated tasks differs from manual tasks in that both
have a different background color. Manual tasks are colored blue and automated
tasks are colored gray. Besides, there is an icon next to the name of the task, which
either depicts an "A" for automated or by an "M" for manual.

• Activity Node. Activity nodes are control nodes used to coordinate the flows
between other nodes. The workflow language supports the following four types of
activity nodes:

– Decision node. This node accepts exactly one incoming flow and selects
exactly one outgoing flow from one or more outgoing flows. Which of the flows
is taken depends on the evaluation of the guards at the outgoing edges. The
notation of a decision node is a diamond-shaped symbol with one ingoing edge
and one or more outgoing edges.

– Merge Node. This node merges multiple incoming alternate flows to accept
a single outgoing flow. Merge nodes are used together with decision nodes.
The notation of a merge node is a diamond-shaped symbol with one or more
incoming edges and one outgoing edge.

– Fork node. This node accepts an incoming flow and has several outgoing
flows on the other side. The incoming flow is split into multiple concurrent
flows to provide parallelism in workflow diagrams. The notation of a fork node
is a line segment with one incoming edge and two or more outgoing edges.

– Join node. This node has multiple incoming flows and only one outgoing
flow and is used to synchronize incoming concurrent flows. Join nodes are
used together with fork nodes to support parallelism in workflow diagrams.
The notation of a join node is a line segment with several incoming edges and
one outgoing edge.

• Edge. Edges are direct connections between nodes and describe the further flow
of the process. The source node and target node of an edge must be in the

43

4. Applying the DAP to GLSP

same diagram as the edge. Weighted Edges have an additional probability and
are evaluated during runtime to determine which of the edges will be traversed.
Weighted edges are used in the context of decision nodes. In the current version of
the WFML, weighted edges are the only way to define guards for decision nodes.
Additional guards can be integrated by extending the relevant components of the
client/server framework of the GLS platform. The notation of an edge is an open
arrowhead line connecting two nodes. The graphical representation of weighted
edges and standard edges is different in color. The standard edges are colored in
black, and the weighted edges are shown in blue color.

Figure 4.2 illustrates an example defined with the WFML. The example shows how the
individual language concepts interact with each other during the brewing process of a
coffee machine. The task without any incoming edges is considered the starting point.
The process starts when the machine’s brew button represented through the manual task
"Push" is pushed. Compared to the manual task "Push", the automated task "ChkWt"
has an additional property duration, which specifies the time needed to execute the task.
The automated task "ChkWt" is responsible for checking the water tank level of the coffee
machine and is connected to a decision node via a standard edge. The decision node is
recognizable by the number of incoming and outgoing edges. The decision node shown
has two outgoing weighted edges, which are colored in blue and are selected depending
on the respective probability. Depending on which weighted edge is selected, either the
manual task "RflWt" or the automated task "WtOK" is executed. It should be noted
that in a real environment, the next step is determined by the result of the previously
executed manual task "ChkWt". However, in the current version of the WFML, there is
only the possibility of making decisions based on the weighted edges’ probabilities.

The manual task "RflWt" represents the process of refilling the water tank, while
the automated task "WtOK" represents the output on the information display of the
coffee machine. A merge node is used to merge alternative flows. The merge node
is represented by an activity node with two incoming standard edges and exactly one
outgoing standard edge. From the merge node, the outgoing standard edge leads to the
automated task "ChkTp". The automated task "ChkTp" measures the brewing unit’s
current temperature and includes the child diagram shown in Figure 4.3. The diagram to
check the temperature of the brewing unit consists of the automated tasks "ReadSensors",
"ProcessData", and "DetermineTp". We want to point out that the diagram is only an
example that allows us to represent the hierarchical structure of the WFML. The tasks
presented here for measuring the temperature may differ from those of a real system.

The "ChkTp" task is followed by a further decision-making process. In this process,
either the manual task "PreHeat" preheats the brewing unit to the required temperature
or the manual task "KeepTp" keeps the current temperature. After the decision-making
process has been completed, the alternative flows are merged by another merge node.
The transition to the last task "Brew" is executed through a standard edge. This task is
used to finally brew the coffee. Since the manual task "Brew" has no outgoing edge, the
brewing process ends.

44

4.1. Running Example: Workflow Modeling Language + Diagram Editor

Figure 4.2: The WFML diagram editor with the brewing workflow example.

Figure 4.3: The WFML diagram to check the temperature of the coffee machine.

Diagram Editor

The GLS platform comes with a basic implementation for diagram editors. The diagram
editor is part of the client framework provided by the GLS platform and can be deployed
stand-alone or integrated into custom web-based IDEs such as Eclipse Theia or VSCode.
These custom IDEs can be adapted using extensions developed by the communities of
the IDEs. The basic implementation of a web-based IDE such as Eclipse Theia provides
various workspace facilities (e.g. create, open, save file, repeat/undo command, paste,

45

4. Applying the DAP to GLSP

copy, and cut). Additionally, one can also reveal and hide various window views, such
as the debug view or the output console. Furthermore, through the integration of the
diagram editor into the web-based IDE, GLSP specific functions are integrated into the
IDE’s graphical user interface. In the following, we will introduce some of the available
features of the diagram editor:

• Modification of the diagram view. The GLSP diagram editor provides several
features to modify the diagram.

– Center. Aligns the desktop screen to the center of the diagram.
– Export. Allows to create an SVG representation of the diagram and save it

in the same workspace as the model source.
– Fit to screen. Rearranges the view of the diagram so that all elements are

visible.
– Layout. The layout command aligns all elements of the diagram in an orderly

manner.
– Align. The align command realigns the individual elements within the

diagram.
– Resize. The resize command allows changing the size of the elements. The

height or the width of the individual elements can be adjusted to the size of a
selected element.

• Tool Palette. As already mentioned in Section 3.2 about the features of GLSP,
available operations can be requested from the server utilizing the request operation
action. The obtained operations can then be displayed via the Sprotty framework
in a tool palette, as shown in Figure 4.2 on the right. The WFML diagram
editor provides operations to create the previously presented language concepts
of the WFML. The design of the tool palette can be individually adapted to the
requirements of the language. The WFML tool palette has a select on click function
represented by the mouse pointer icon and delete on click function represented by
the eraser icon. To insert an element into the diagram, the element is picked from
the tool palette (e.g. manual task), and added to the diagram by clicking on the
desired position.

• Hover Elements. If the user moves the mouse pointer over the element in the
diagram, a pop-up appears, displaying detailed information about the element (e.g.
the duration of an automated task).

• Command Palette. By right-clicking within the diagram, another pop-up appears,
which offers the user additional features. Depending on whether the user clicks
on an existing element or a free position within the diagram, the user can either
delete the existing element or create a new one. Further features can be added by
extensions of the client or server framework and adapted to the languages used.

46

4.2. Requirements for Debugging the Workflow Modeling Language

• Use of the Keyboard. Besides using the mouse, individual features can also be
controlled via the computer keyboard. Deleting elements with the delete key is an
example.

4.2 Requirements for Debugging the Workflow Modeling
Language

One of the aims of this work is to reuse existing frameworks and parts of the graphical
user interface of the Theia-debug extension for textual languages, thus minimizing the
effort required to introduce new graphical modeling language debuggers. In Section 2.3,
we discussed the debugging concepts for textual languages, and afterward, we discussed
how to translate these concepts for debugging graphical modeling languages. We realized
that the basic functionalities needed for graphical modeling languages are very similar to
those of the textual languages and, therefore, the existing components can be reused. For
this reason, we use the existing open-source Theia-debug extension3 for textual languages,
which can be integrated into the Eclipse Theia framework. The Theia-debug extension
comes with a generic graphical user interface for debugging features. The debugger user
interface shown in Figure 4.4 offers visual representations on digital control panels to
interact with the user. The debug view on the left side of Figure 4.4 includes various
control commands and information views. Besides, there exists an additional debug
menu tab, which lists all available control commands. In Section 4.3 we will discuss
the individual control panels and information views. Furthermore, the Theia-debug
extension supports the DAP, and offers various contribution points to adapt/extend the
debugger facilities to the requirements for graphical modeling languages. This way, the
specific debug adapter developed for the WFML will be integrated into Eclipse Theia. In
the following, we will address the requirements for debugging the WFML and how the
existing frameworks can be used to fulfill them.

Execution Modes

The user needs functionalities to start, pause, and stop the execution of the model.
Furthermore, the user requires a graphical user interface that can be used to operate
these commands and display relevant information to the user.

For this purpose, we first need to look at the DAP in terms of whether language-
specific information is relevant for the requests to start, pause, and stop the execution.
Secondly, we have to analyze if the debug window provided by the Theia-debug extension
can be reused. Finally, we need an external debugger that is available on a remote server.
This debugger should know the WFML language constructs and offer functions to debug
and interpret a WFML model.

3https://npmjs.com/package/@theia/debug

47

4. Applying the DAP to GLSP

Figure 4.4: The debugger GUI of the Theia-debug extension.

1. Language-specific debug request data: Looking at the DAP and the corre-
sponding messages to start the debug session, one can see that they are independent
of the kind of language used. The initially exchanged messages only contain in-
formation regarding the development tool and the debug adapter. This allows
reusing the components for starting the debug session without investing much time
in adapting the components. Furthermore, pausing the debug session and the pause
request for textual languages can be transferred to graphical modeling languages
without any further adaptations. For this, the running thread’s ID is passed to
the adapter, which pauses the specific thread. After the thread has been paused
successfully, the debug adapter first sends the response and then a stop event (with
reason ’pause’). Upon-receipt, the development tool first requests all threads that
exist at that point of time and then the stack trace for the thread mentioned in
the stop event. Then the variables for the current stack frame are requested. The
received information is displayed via the debug view. The development tool sends
the DAP’s disconnect request to terminate the debugger. The debug adapter sends
the response, followed by a terminate event that indicates that debugging of the
debugger has terminated.

2. Debug window of the Theia-debug extension: The debug window and the
containing items such as icons, menus, and further windows of the Theia-debug
extension allow the user to interact with the debugger tools. These components use
a generic approach that supports various textual languages. Since the components
are not dependent of the syntax or semantics of the language, these components
can be reused to support graphical languages.

48

4.2. Requirements for Debugging the Workflow Modeling Language

3. Language-specific debugger: For the WFML debugger, a client-server architec-
ture is required that allows the debug adapter to connect to the specific debugger
and exchange messages. We assume that both the IDE and the debugger are on
the same physical machine. Thus, we do not have to include the diagram file in
the start request. We only send the path of the file to the debugger. In turn, the
debugger must be able to parse the model, store it accordingly, and execute the
model.

Steps

The user should be able to step through the model and execute one model element at
a time. Before looking at which components can be reused or must be extended to
implement the defined requirement for the WFML debugger, the question arises: "What
does it mean to take a step within the WFML?". As already discussed in Section 2.3, it
varies from language to language, what it means executing a step within the model. In
the WFML, we use a step to execute a task or to control the workflow. Furthermore,
the step-in and step-out commands are required for hierarchy structures. If the step-in
command is used on a composite task, the child diagram should open, and the execution
should stop at the first task in the child diagram. Using the step-out command within the
child diagram, should open the parent diagram and stop the execution before the next step.

In the following, we analyze the DAP in terms of whether language-specific information
is relevant for the requests to step, step in, and step out. Besides, the language-specific
debugger requires methods to step through a model, step into a child model, and step
out back to the parent model.

1. Language-specific debug request data: The components of the Theia-debug
extension suitable for this purpose are based on the thread ID of the executed
debug session. The next request of the DAP transmits the thread ID to the debug
adapter, which in turn forwards the command to the debugger. The debugger
performs a step and sends the information of the new stack frame back to the
debug adapter, after the step is completed. Subsequently, the debug adapter sends
a stop event, including the received information to the development tool.
The DAP offers requests to transfer step-in and step-out information between the
development tool and the debug adapter. These protocol messages depend on the
ID of the current running thread. To step into the child model, the development
tool sends the stepIn request to the debug adapter. The stepOut request forces the
debugger to step back into the parent model. The debug adapter then forwards
the information to the debugger.

2. Language-specific debugger: For the stepwise execution of the model, a concept
must be developed in the course of the implementation of the WFML debugger,
which executes the individual model elements one after the other. The model
elements should be executed in the order in which they are connected in the

49

4. Applying the DAP to GLSP

diagram by the edges. The selection of an edge is performed randomly based on
the specified weights. The debugger requires functionality to step into the child
model and start a new debugging process for the child model. When the debugger
is forced to step out of the child model, the debugging process of the child model
should be finished and the execution should halt at the next model element of
the parent model. Besides, a solution must be found on how the individual model
elements can be interpreted to finally execute the task. In Chapter 6, we will deal
with this issue in detail and present one solution.

Breakpoints

Like textual languages, where breakpoints can be set in the source code, the user should
be able to set a breakpoint on a specific model element in the WFML diagram editor.
To support hierarchical structures, each workflow is defined in a separate diagram that
is stored in a GLSP model schema. These model schemas are treated independently in
the graphical language server of the WFML. It should be noted that this allows model
elements in different diagrams to have the same ID. Thus, breakpoints in a WFML model
require a reference to the respective diagram in which they were set. A breakpoint should
be visible after it has been set by marking the corresponding element. In addition to
the graphical rendering of the breakpoint within the diagram, it is also necessary that a
breakpoint window is available within the debug window, as known from conventional
textual language debuggers. This additional display of the breakpoints makes sense
because the user not only wants to see the breakpoints within one diagram but a list of
all breakpoints within the whole project. Finally, the breakpoint window should provide
functions to enable and disable breakpoints.

To implement the requirements mentioned above, we first need to analyze which
existing components of the tools available can be reused and which ones have to be
modified. On the one hand, the client framework of the GLS platform is required to
implement the graphical modifications within the diagram. On the other hand, the
Theia-debug extension is needed, to take over the management of the breakpoints and
further to list all breakpoints in the breakpoint window. At the same time, it is important
to analyze if one of the existing DAP requests for setting breakpoints in the WFML can
be reused.

1. Language-specific debug request data: We first analyzed if the existing proto-
col messages for setting breakpoints in textual languages also meet the requirements
for graphical modeling languages. In Section 3.3, we discussed source breakpoints,
function breakpoints, data breakpoints, and exception breakpoints among the types
of breakpoints supported by the DAP. Source breakpoints are set within the source
code for textual languages and store the path of the source file as well as the
line on which the breakpoint is located. On the other hand, graphical modeling
languages have no lines, but consist of connected model elements. The elements of
the WFML are based on the diagram framework Sprotty, which uniquely identifies

50

4.2. Requirements for Debugging the Workflow Modeling Language

model elements via their ID. The GLSP uses the data type String for the ID of
model elements, while the line in which a source breakpoint is located is transferred
over the DAP as a number data type. This discrepancy between the different data
types and the different representation of elements prevented us from using the set
breakpoints request of the DAP for source breakpoints.

Subsequently, we looked at the set function breakpoints request that exists for
function breakpoints, which are also provided by the DAP. Function breakpoints
compared to source breakpoints are identified by the name of a method, whereas
the property name is stored as a String data type. Model elements within the GLSP
also have a property name, which is stored as String data type. This consistency in
the data types would suggest reusing the set function breakpoints requests. However,
function breakpoints are not defined for a single source file but are valid throughout
the entire project. In the WFML, certain tasks with the same name may be
defined within one diagram or the entire project. Therefore, the execution might
encounter breakpoints that were not marked by the user. This would contradict
the requirements we identified for the debugger to set breakpoints on individual
model elements. Furthermore, the definition of a function corresponds to an entire
workflow rather than a single task. The same applies to other DAP requests, such
as exception breakpoints and data breakpoints, to send breakpoints to the debug
adapter. Exception breakpoints pause the execution as soon as a certain exception
is thrown. Data breakpoints interrupt the execution when the value of a certain
variable changes. Furthermore, the data breakpoints and the exception breakpoints
are transmitted to the debug adapter without the unique affiliation to a particular
diagram.

Since none of the existing requests can be used for the requirements, a concept must
be designed that allows the setting of GLSPBreakpoints and their transmission
to the debug adapter. For this purpose, the Theia-debug extension offers the
possibility to extend the protocol with custom requests. Therefore, a new request
can be defined, which transfers the GLSPBreakpoints to the debug adapter. A
GLSPBreakpoint requires, on the one hand, a property to store the ID of the model
element for that a breakpoint should be set and, on the other hand, a property that
stores the source, i.e., the path of the diagram in which the breakpoint is located.
As mentioned initially, model elements can have the same ID in different workflows
because each workflow is stored in a separate GLSP model schema. Therefore,
we need the model element’s ID and the path to the diagram in which the model
element was defined. This allows the breakpoint to be unambiguously assigned to
one element.

2. Breakpoint window of the Theia-debug extension: The components of the
Theia-debug extension responsible for the management of breakpoints must be
extended to support the newly defined GLSPBreakpoints. This also includes the
display of breakpoints within the breakpoint window.

51

4. Applying the DAP to GLSP

3. GLSP extension for breakpoints: To implement the graphical requirements
for the WFML debugger, the existing client framework of the GLS platform must
be extended. In Section 3.2, we have already discussed the architecture of the
GLSP in detail and mentioned, among other things, features that are supported by
model elements. For the model elements of the WFML, to support breakpoints,
a new breakpoint feature must be defined. The breakpoint feature is described
in detail in Section 5.2. Furthermore, additional actions and the corresponding
commands within the client framework of the GLS platform must be created to
support the process of setting breakpoints. On the one hand, an action is needed
that allows setting breakpoints and, on the other hand, an action that removes
those breakpoints from the model elements. Besides, actions and their associated
commands have to be defined to enable and disable breakpoints.
Another point is the extension of the context menu, which appears when the
user right-clicks on a model element. The commands for adding and removing
breakpoints must be added to the menu and connected to the previously mentioned
actions for setting and removing breakpoints.
Finally, the breakpoint feature requires a decorator responsible for highlighting
the model element’s frame (e.g. displaying the frame in a reddish color). All
these GLSP extensions have to be combined in a separate GLSPDebugModule to
ensure easy integration into the client infrastructure. In Section 5.2, the breakpoint
decorator and the GLSPDebugModule are presented in detail.

4. Language-specific debugger: The WFML debugger should be implemented so
that the GLSPBreakpoints transmitted by the debug adapter can be stored based
on the diagram source. If further breakpoints are added during execution, the
current breakpoints should be overwritten by the new ones. As a result of running
the model, each model element must be checked to see if there is a breakpoint at
that position. If this is the case, further execution should be stopped, and the user
should be informed. As soon as the user restarts the execution via the development
tool, the WFML debugger should continue at the interrupted state.

Stack Trace

The user wants to view the procedure calls that are currently on the stack. Therefore, a
call stack window is required that shows the order in which the nodes of the WFML are
getting called. The stack frame which is currently being called is at the top of the stack.
Below is the stack frame, which called the current stack frame. At the bottom of the
stack lies the top call workflow from which the underlying workflow’s call was started.
Besides, the user wants to see the current stack frame within the diagram. The model
element, which is currently executed and lies at the top of the stack (i.e. the current
stack frame), should be highlighted (e.g. a green frame). As discussed in Section 2.3, the
stack trace in model debugging is strongly bound to the terms stepping in and stepping
out. Since the WFML supports hierarchy and composition, the call stack can be used to
reflect these structures.

52

4.2. Requirements for Debugging the Workflow Modeling Language

For these requirements, we first have to analyze if the existing request for stack
traces of the DAP can be reused. Second, we have to look at the components of the
Theia-debug extension, whether they can be reused to control and display the stack
trace. Third, we have to integrate new actions in the GLSP to highlight the current stack
frame. Finally, the language-specific debugger requires functionalities to deal with the
hierarchical structures and to determine the call stack.

1. Language-specific debug request data: For the exchange between the debugger
UI of the IDE and the debug adapter, the DAP offers the stack trace request, which
we already introduced in Section 3.3. The interface for stack frames stores the
name of the frame as a String data type and contains an optional attribute source,
which stores the frame’s location.

2. Call stack window of the Theia-debug extension: The existing call stack
window of the Theia-debug extension and the corresponding components necessary
to determine the stack trace will be used. This is possible since the representation
in the call stack window works with String data types. Thus, we need to send the
IDs of the model elements as a String data type to the development tool.

3. GLSP extension for current stack frame: For the implementation of the
graphical representation of the current stack frame, the client framework of the
GLS platform must be extended with further actions. On the one hand, an action
and the associated command to set the current stack frame is needed and, on the
other hand, an action to remove the stack frame. In Section 5.2, we explain what
actions and commands look like based on the action and the command that are
necessary to add and remove breakpoints. The command belonging to the action
checks whether the model element is valid as a stack frame or not. A model element
is valid as a stack frame if it supports the stack frame feature. The feature, as well
as the actions and commands, can be added to the GLSPDebugModule.

4. Language-specific debugger: The WFML debugger requires a separate process
for each hierarchy level of the model, determining the current stack frame at each
step. Thus, the call stack can be filled with the stack frames of the respective model
levels. When the execution of child models has finished, the WFML debugger
must jump back into the process execution of the parent model and continue the
execution on the current stack frame of the model now present.

Runtime Variable I/O

When the model’s execution is paused, the user requires a view where the variable values
of the current stack frame are shown.

To implement these requirements, we first have to analyze the requests for variables of
the DAP. Second, we will look at, how we can reuse the variable view of the Theia-debug
extension. Finally, the implementations for the language-specific debugger will be derived.

53

4. Applying the DAP to GLSP

1. Language-specific debug request data: In the course of representing the key
features of the DAP, we have already presented the variable request, which is sent
to the debug adapter from the Theia-debug extension. Furthermore, variables
in the DAP are defined by the name of the variable, the value of the variable,
and the type of the value. The variables are sent from the WFML debugger,
where the variables are stored in terms of the textual languages (e.g. Java) in
which the debugger is implemented. Therefore, a specific mapping to reuse the
variable request for graphical languages is not required. This aspect further allows
reusing not only existing components for managing and displaying the variables
in the Theia-debug extension but also the corresponding protocol messages of
the DAP. The debug adapter should forward the variable request to the WFML
debugger, which determines the variables of the current element (e.g. duration of an
automated task). The WFML debugger should then send back the results via the
debug adapter, which in turn uses the DAP’s set variable response to forward the
variables to the development tool or, more precisely, to the Theia-debug extension.
The extension should be responsible for displaying the received variables in the
graphical user interface.

2. Variables window of the Theia-debug extension: The Theia-debug extension
has a variable view, which is part of the debug view. As with the call stack view,
the variables are also presented as String data types. This allows us to reuse the
existing components for our requirements.

3. Language-specific debugger: The WFML debugger requires functionalities to
parse and store variables of a model element. After each step or the occurrence of
an exception, the current variable, as well as the corresponding values, should be
sent to the development tool via the debug adapter.

Exceptions

The user wants to be informed in case an exception occurs during the execution of the
model and what caused the exception. This must be presented to the user, who usually
only has knowledge of the modeling language, in an understandable form.

First, we have to analyze, how an exception can occur in the model interpretation
approach. Second, we will look at the debug console of the Theia-debug extension
to display exception information. Finally, we discuss the language-specific debugger
implementation.

1. Definition of exceptions in a specific language: In Section 2.3, we talked
about the levels at which exceptions occur and how they can be treated. Looking
at the WFML, the grammatical rules defined in the abstract syntax can be used to
ensure that errors are avoided when creating models, and thus only correct models
are constructed. Nevertheless, errors may occur during runtime, or more precisely,
in the case of the execution of the synthesized artifacts (e.g. the model schema).
We mentioned in the introduction of the GLSP that the graphical model is stored

54

4.2. Requirements for Debugging the Workflow Modeling Language

as a JSON object. Using this object, the model can be parsed through the WFML
debugger, and finally, the elements executed step by step. In this parsing process,
errors may already occur, which were caused by an incorrect translation of the
graphical model into the JSON format. During the execution, further exceptions
can be triggered due to programming errors in the real debugger or the frameworks
used.

2. Debug console of the Theia-debug extension: For the implementation of
exceptions, the components of the Theia-debug extension can be used again, since
displaying of exceptions is usually a single output on the debug console. In Section
3.3, we discussed the possible variants for the transfer of exceptions via the DAP.
In the following, we go into more detail about the approach using the debug console
for showing the exceptions to the user. For this purpose, we would like to take as an
example a situation that leads the execution of the model into an error state. The
WFML allows decision nodes to be used with both standard edges and weighted
edges, of which the latter contain a certain probability of being selected during
execution. When running the model with standard edges, however, there is an error
state of the execution engine, which can be attributed to the fact that the execution
engine did not find any probabilities in this situation and could not continue the
execution. The resulting NullPointerException is described in terms of the language
in which the debugger was written (e.g. Java for the WFML debugger). This
exception has to be catched and converted into domain-specific terms. In the case
of the example, the output should contain the location (e.g. the model element)
where the error occurred, the cause, and, if possible, suggested solutions. The
WFML debugger should stop the execution and transmit the exception information
to the debug adapter, which, in turn, should generate a stop event informing the
development tool about the stop of the execution due to an exception. Through an
output event, the debug adapter should send all information provided to it by the
WFML debugger to output the exception in the development tool’s debug console.

3. Language-specific debugger: The WFML debugger must detect the error and
provide the appropriate exception handlers that can handle the occurring exceptions.
Different exceptions may occur depending on the language, which is why exceptions
handlers must be adapted to the languages used. Subsequently, the debugger
must be able to stop execution after an exception occurs and send the respective
information such as the call stack, variable values, and the exception information
to the debug adapter. The debug adapter should only be responsible for forwarding
the information it receives from the WFML debugger to the development tool.

Requirements Overview

Table 4.1 gives an overview of the requirements for debugging the WFML. The cells
colored in green represent the existing components we can reuse, whereas the cells
colored in red represent the components we have to implement/adapt. The shortcut

55

4. Applying the DAP to GLSP

"NA" stands for "No Action", i.e., no implementation or adaption is required. In the first
column, the requirements mentioned above are listed. The second column shows which
components we can reuse from the Theia-debug extension. The third column shows the
requests and events that can be used from the DAP. The fourth column represents the
modification using the GLSP to integrate graphical animations. The fifth column shows
the implementations necessary for the WFML debug adapter. Therefore, we will extend
the vscode-debugadapter module4 to implement the requirements. The last column lists
all requirements for the debugger implementation. This part is the most affordable since
we have to implement the debugger from scratch.

Requirement Theia-debug ex-
tension (GUI)

DAP GLSP Debug Adapter
(vscode-
debugadapter)

Debugger

Start command view launch request open diagram connect to
debugger, send
model

parse, execute,
and interpret
model

Pause command view pause request NA forward pause
request

pause execution

Stop command view disconnect request NA forward stop
request

stop execution

Step command view next request NA forward step
request

get next el-
ement, send
element

Step In command view stepIn request open child
diagram

forward stepIn
request

step into child
model

Step Out command view stepOut request open parent
diagram

forward stepOut
request

step out of child
model

Breakpoints Extending the
breakpoint view
for GLSPBreak-
points

setGLSPBreakpoints
request

add/remove &
enable/disable
breakpoints

send GLSP-
Breakpoints

stop execution
on breakpoint

Stack Trace call stack view stackTrace request highlight
current stack
frame

response stack
trace

send stack trace

Variable variable view variables request NA response
variables

send variables

Exceptions debug console output event NA response
exception

handle excep-
tion

Table 4.1: Requirements for Debugging the WFML.

4.3 Workflow Modeling Language Debugger

This section introduces the developed debugger for the WFML. We implemented the
previously defined requirements and concepts to provide the user with a debugger that
supports the debugging concepts we discussed in Chapter 2.

Using the example of a model in the WFML introduced in Section 4.1, we want to
present the features of the WFML debugger. In Figure 4.5, the web-based IDE containing
the debug view window, which we were able to reuse from the Theia-debug extension,
is shown. The debug view is further subdivided into a command view, threads view,

4https://npmjs.com/package/vscode-debugadapter

56

4.3. Workflow Modeling Language Debugger

call stack view, variables view, and breakpoints view. Within the command view, the
following buttons are provided to control the execution:

• Play. Starts a new debug session and opens the diagram to be debugged.

• Continue. Starts the debugger to run again after the execution was paused.

• Step Over. Starts the debugger to run again for one step.

• Step In. Forces the debugger to step into a child diagram. If there is no target to
step into, the step-in command behaves like step-over.

• Step Out. Forces the debugger to step out from a child diagram.

• Restart. Restarts the execution of the debug session.

• Stop. Stops the execution of the debug session.

• Pause. Pauses the execution of the debug session. Only visible while the execution
is continued.

Figure 4.5: The WFML debugger is paused directly after starting the debug session.

In the threads view, the current thread is displayed, and the status in which the thread
is located. In Figure 4.5, the thread with the ID 1 has the status "Paused on Entry".
This means that the debug session was started, and the execution stopped immediately
before the first element. Stopping before the first element is a debug adapter specific
setting, which is specified using a boolean flag during the initialization phase between the
development tool and debug adapter. A missing flag would mean an immediate execution
of the model after the start of the debug session. However, if a breakpoint was set, the
execution halts at the breakpoints location (e.g. the model element). As described in

57

4. Applying the DAP to GLSP

Section 3.3, the DAP also supports multiple threads, which, however, for the sake of
simplicity, were left out of the WFML debugger, and thus only one thread is treated.

After a debug session has been started, the user can start to step through the model
using the step commands. Figure 4.6 shows the debugger after taking the first step,
where thread 1 changed to the status "Paused on Step". The information about the
current stack frame transmitted by the WFML debugger is now clearly displayed in the
debug view. Underneath the threads view, the call stack view is located, which represents
the ID of the first model element within the diagram. The ID of the model element is
displayed because, on the one hand, the WFML is a language that supports the reuse
of certain tasks in the model and, on the other hand, because edges and activity nodes
both have no labels. Next to the ID of the model element, the source of the diagram
in which the element is stored is shown in the call stack view. Furthermore, the client
framework of the GLS platform was extended to add functionality to change the graphical
representation of the current stack frame within the diagram. Figure 4.6 shows that the
model element that represents the current stack frame is highlighted through its green
frame.

Another requirement for the WFML debugger was to display the variables of the
model elements in a readable form. For this, the variable view, which is shown in Figure
4.6, was used. The variables for the current element are listed based on the variable name
and the associated value. Besides, if the mouse hovers over the name of the variable, the
corresponding data type is displayed.

Figure 4.6: The WFML debugger is paused at the first model element and shows the
information corresponding to the current stack frame.

58

4.3. Workflow Modeling Language Debugger

In addition to stepping through the model, the WFML debugger also offers the feature
to jump into a child diagram. This changes the current stack frame and the call stack.
Figure 4.7 shows the new call stack. In this case, the first task within the newly opened
diagram is on top of the stack frame of the parent model, as shown in the call stack
view. In addition to the IDs of the two tasks, the sources of the respective diagrams are
shown. Another feature of the debug view allows opening the corresponding diagram in
the editor by double-clicking on the respective source. Thus, the user can easily switch
between the diagrams. The new stack frame, recognizable by the green frame, has been
moved to the child diagram’s first element. In the further course, the user can use the
step-out command to jump back into the higher-level diagram. The remaining tasks of
the child diagram are completed, and the execution is paused again before the execution
of the next element of the parent diagram. Instead of using the step-out command, the
user can also step to the child diagram’s last task and return to the parent diagram via a
further step command.

Figure 4.7: After the step-in command was executed, the debugger opens the child model.

The user can right-click on a model element to add or remove a breakpoint. After
that, the context menu pop-up appears, which is also used to add and remove elements.
Figure 4.8 shows the pop-up with the add breakpoint and remove breakpoint commands.
After the breakpoint has been marked, it appears in the breakpoints view, which is part
of the debug view. As in the call stack view, the element’s ID is used in the breakpoints
view to identify the breakpoint uniquely. Based on the source, the user knows in which
diagram the breakpoint is located and can immediately open the corresponding diagram
by double-clicking on it. Besides, the client framework of the GLS platform was extended
as described in Section 4.1 with further actions to highlight an model element with a red
frame, if it was marked as a breakpoint. In Figure 4.9, two elements from different dia-
grams were marked with a breakpoint, and therefore the color of the frames changed to red.

59

4. Applying the DAP to GLSP

Figure 4.8: The context menu appears after a right-click on one or more model elements
and provides the option to add and remove breakpoints.

Figure 4.9: After breakpoints were set in the individual models, they appear in the
breakpoint window and the affected elements are highlighted with a red frame in the
WFML editor.

If a breakpoint is set, it is enabled by default. However, the user may disable break-
points, so they are not included in determining when the debugging process should stop
next. A breakpoint that is no longer required during debugging can be deleted entirely.
In Figure 4.10, the possible options to enable, disable, and remove breakpoints through

60

4.3. Workflow Modeling Language Debugger

Figure 4.10: Further commands to enable or disable breakpoints appear after right-clicking
into the breakpoints window.

the breakpoint view are shown. By right-clicking into the breakpoint view, a new pop-up
appears that includes the commands to remove all breakpoints, enable all breakpoints,
and disable all breakpoints. These commands apply for the whole project and also remove
the red frame marking a breakpoint on a model element. Besides enabling and disabling
all breakpoints, it is also possible to only enable and disable a single breakpoint through
the checkbox shown next to the ID of a breakpoint. Figure 4.11 shows two breakpoints
in their respective diagrams, whereas the first breakpoint is unchecked and thus disabled.
The coloring of the element border in the diagram disappeared as well.

After the user has set the breakpoints and started the execution of the model, the
breakpoints are transmitted to the WFML debugger using the set GLSPBreakpoints
request. If the debugger encounters a breakpoint during execution, the further execution
is stopped, and the halt of the debugger is communicated to the user. Figure 4.12 shows
a situation where exactly this case occurred. The executed thread changed to the status
"Paused on Breakpoint". The call stack view shows the current stack frame, and the
variable view presents the corresponding variables. Within the diagram, the red-colored
frame, which marks a breakpoint, has changed to a green frame to display the current
stack frame. Using the step commands, the user can step through the remaining elements
of the model or continue the execution with the continue command.

There may also be errors in the execution of the model, so one of the requirements
for the WFML debugger was that exceptions are catched and presented to the user in
an understandable form. For this use case, the example model was changed such that
another outgoing edge was connected to a task. The modified model example can be seen

61

4. Applying the DAP to GLSP

Figure 4.11: Disabling the breakpoint removes the breakpoint from the execution process.

Figure 4.12: The WFML debugger paused on a breakpoint and presents information
about the current stack frame.

in Figure 4.13. In addition to the previously existing edge between the automated task
ChkWt and a decision node, a further edge between the task ChkWt and the automated
task WtOK was added. The WFML debugger parses all model elements at the start
of the debug session. The elements will then be executed step by step in the sequence
they are connected. However, when the execution hits the ChkWt task, the debugger
only expects one outgoing edge from the task. Several outgoing edges are known to the
WFML debugger only in the context of activity nodes. In the case of a task having

62

4.3. Workflow Modeling Language Debugger

several outgoing edges, the debugger is in an error state and can no longer continue
the further execution of the model. The debugger changes to the status "Paused on
Exception". An exception message is shown, which provides the location of the error,
the cause, and a suggested solution for the occurred error. As shown in Figure 4.13, the
exception is output via the debug console. The user is informed that alternative flows are
not allowed on the element and that a decision node should be used instead. In addition
to the output of the exception in the debug console, the current stack frame is shown
graphically in the diagram as well as in the debug view.

Figure 4.13: The WFML debugger paused on an exception and presents the information
about the current stack frame and the thrown exception.

In summary, the WFML debugger provides all the necessary features of a modern
debugger, and graphical animations have supplemented these. In the course of the
development, existing frameworks available for textual languages could be reused or
adapted for the requirements of a debugger for graphical languages. Finally, the DAP
was successfully used in connection with the GLSP. For the interested reader, we refer to
Chapter 5 for the detailed architecture and implementation of the WFML debugger. In
Chapter 6, we will define another DSML and implement a debugger for this new language
based on the developed framework.

63

CHAPTER 5
Architecture and Implementation

This chapter presents details on the implementation of the WFML debugger. We first
define the technologies used besides the web-based modeling tools, namely Eclipse Theia
and InversifyJS. After that, we show how the main debugging concepts described in the
previous chapter can be implemented. Finally, we present the challenges we discovered
during the implementation of the WFML debugger. Most of the challenges not only affect
the WFML in particular but are also relevant for other DSMLs. The implementation
of the WFML debugger GUI adaption1 including the WFML debug-adapter, and the
WFML debugger2 is available on GitHub.

5.1 Technological Background
This section introduces technical background information on the two frameworks Eclipse
Theia and InversifyJS used in the practical part of this thesis.

5.1.1 Eclipse Theia
Eclipse Theia3 is an open-source framework for creating desktop or web-based IDEs.
To support both variants with a single source, Theia executes two separate processes.
One of these two processes is the front-end, representing the client and responsible for
rendering the user interface. The other process is the back-end running on Node.js4. The
communication between the two processes works through JSON-RPC messages that are
exchanged via WebSockets5 or a REST API6 via HTTP7. In the desktop-based version

1https://github.com/EderH/graphicalLSP
2https://github.com/EderH/gml-interpreter
3https://theia-ide.org
4https://nodejs.org/en
5https://tools.ietf.org/html/rfc6455
6https://restfulapi.net
7https://w3.org/Protocols

65

5. Architecture and Implementation

Electron, however, both front-end and back-end run locally. On the other hand, in a
remote context, the back-end would run on a remote host. Theia has been designed so
that a simple extension of the functionalities is possible at any time. For this purpose,
Theia supports two different expansion mechanisms, namely extensions and plug-ins.
They may make use of services and contribution points.

Extensions. Extensions allow easy access to existing extensions like the Monaco
Editor8 and adapt/extend it to one’s custom requirements. For the communication
between the individual extensions, the Theia framework uses dependency injection, which
adds the extensions to the remaining components during the build time. We will present
Dependency Injection in Section 5.1.2.

Plug-ins. Compared to extensions, plug-ins do not block Theia core processes since
the code is running in a separate process. Plug-ins can be installed/uninstalled during
runtime without recompiling the whole IDE. This makes sense in the case of a tool
provider who delivers a full custom solution, where customers can integrate their own
plug-ins without affecting the stability of the base tool. In order to contribute a new
plug-in, Theia provides several APIs in the Theia API extension Theia-plugin.

Services. Services can be used by components of other extensions. Whereas plug-ins
stick to the APIs offered by the Theia extension for Theia-plugins. For example, one
instance can provide the SelectionService, so that other extensions can get an instance
injected and use it. The SelectionService can be reused and extended to select a model
element of the WFML.

Contribution Points. In order to provide a hook within extensions for others to
contribute, one should define a contribution point. The contribution point is defined
as an interface and can then be implemented by other extensions. An example of a
contribution point is the OpenerService within the "Editor Extension", which allows
registering OpenHandlers. OpenHandlers are necessary to open a new widget within the
editor. The OpenHandler gets bound to the component through a contribution provider.
A contribution provider is basically a container for contributions where contributions
are instances of a bound type. In this work, we bound the OpenHandler to the diagram
editor to open the diagram widgets.

In order to create an IDE with Theia, a package.json file is required that contains
the package metadata like name and version as well as the runtime and build-time
dependencies. There are already various Node.js packages available, which can be
integrated into custom IDEs and subsequently adapted, depending on which individual
requirements are placed on the IDE.

8https://microsoft.github.io/monaco-editor

66

5.1. Technological Background

Debug Extension

Figure 5.1 gives an overview of the Theia-debug extension architecture, focusing on the
interaction between the debug session and the debug adapter. When a user decides to
debug an application they request a specific debug configuration, which will be resolved
by the debug adapter. In the running example of the thesis, the launch configuration
requests the WFML debug adapter. The launch configuration for the WFML is described
in Section 5.2.4. The debug adapter can modify a passed debug configuration by adding,
changing, or removing attributes. This already happens before the debug adapter is
started. The debug adapter is integrated into the Theia back-end process (server). After
the debug adapter is started a new debug session is initialized on the front-end process
(client). The debug session handles the communication between the client and the server.
The debug session manager controls the debug sessions on the client-side. This includes
starting a new debug session for the received debug configuration, managing breakpoints
across debug sessions, and terminating a running debug session. The client session
factory is used to integrate a custom implementation of the debug session. If a new
debug adapter needs to be added, the debug contribution is used as a contribution
point. The contribution provides all available debug configuration types and tells the
server-side architecture how to start the debug adapter. The adapter factory is used to
start the debug adapter inside a separate container. After the debug adapter is started,
the debug adapter session gets started. The debug adapter session works as a proxy
between the client and the debug adapter itself. To customize the debug adapter session
the adapter session factory can be used. The debug service provides functionality to
configure and start a new debug adapter session based on the debug configuration. The
debug adapter session manager is responsible to manage all available debug adapter
sessions and, therefore, to create or remove a debug adapter session from the running
application [55].

Figure 5.1: Communication between the Theia front-end process (client) and the Theia
back-end process (server) in the Theia-debug extension (adopted from [55]).

67

5. Architecture and Implementation

Furthermore, the Theia-debug extension has a generic debugger graphical user inter-
face which we reused. The debug windows are implemented as widgets, which can be
integrated into the existing Theia graphical user interface via dependency injection. These
widgets get the information from the debug session, which in turn gets all the information
from the debug adapter. This allowed us to manipulate the flow of information so that
information about graphical modeling languages can also be displayed in the debug
windows of the Theia-debug extension graphical user interface.

5.1.2 InversifyJS
The open-source framework InversifyJS9 is a lightweight inversion of control (IoC)
container for TypeScript and JavaScript applications. Inversify injects the different
dependencies into the component at creation time. Listing 5.1 shows how Inversify allows
a class to have a direct dependency on other classes. In the example, this can be seen
in the classes Katana, Shurikan, and Ninja. Each class that needs to be injected must
be annotated with the @injectable decorator. Through the constructor, the two classes
Katana and Shuriken are injected into the Ninja class, and subsequently, the methods
of the injected classes are accessed from the Ninja class. In Line 25 of the example, a
container is created. The container API provides some helpers to resolve multi-injections
and ambiguous bindings.

Furthermore, there are additional decorators like @inject and @postConstruct. The
@inject decorator marks the classes to be injected within the constructor or variable
declaration. However, this is only necessary for interfaces, since an identifier must be
defined for them. On the other hand, classes work without this identifier because the
TypeScript compiler generates the metadata for it. The @postConstruct decorator can
be used to annotate class methods. These methods are then executed after an object
has been instantiated, but before any activation handler has been executed. This is
useful if initialization logic should be performed after the constructor was called, but
the component has not yet been initialized. Besides, other useful features provided by
Inversify are used in the course of Eclipse Theia. It is advantageous to familiarize yourself
with the basic features of InversifyJS before using Eclipse Theia.

9https://github.com/inversify/InversifyJS

68

5.2. Implementation Details

1 import { Container , i n j e c t a b l e , i n j e c t } from " i n v e r s i f y " ;
2 @ i n j e c t a b l e ()
3 class Katana {
4 public h i t () {
5 return " cut ! " ;
6 }
7 }
8 @ i n j e c t a b l e ()
9 class Shuriken {

10 public throw () {
11 return " h i t ! " ;
12 }
13 }
14 @ i n j e c t a b l e ()
15 class Ninja implements Ninja {
16 private _katana : Katana ;
17 private _shuriken : Shuriken ;
18 public c o n s t r u c t o r (katana : Katana , s hur iken : Shuriken) {
19 this . _katana = katana ;
20 this . _shuriken = s hur iken ;
21 }
22 public f i g h t () { return this . _katana . h i t () ; } ;
23 public sneak () { return this . _shuriken . throw () ; } ;
24 }
25 var c o n t a i n e r = new Container () ;
26 c o n t a i n e r . bind<Ninja >(Ninja) . to (Ninja) ;
27 c o n t a i n e r . bind<Katana>(Katana) . to (Katana) ;
28 c o n t a i n e r . bind<Shuriken >(Shuriken) . to (Shuriken) ;

Listing 5.1: InversifyJS example using dependency injection for classes [56].

5.2 Implementation Details
This section provides implementation details about the practical part of this thesis. It
demonstrates how the client framework of the GLS platform can be extended to add the
graphical requirements derived in the previous chapter. Furthermore, we present the
contribution points to implement new debuggers in Theia for further graphical modeling
languages.

5.2.1 GLSP Extensions for Breakpoints
The client framework of the GLS platform offers contribution points to extend the
existing functionalities with further actions. For the implementation of the graphical
representation of the debug features, it was necessary to introduce new actions. Lines
1-5 in Listing 5.2 shows the structure of the AddBreakpoint action, which is triggered as
soon as the user sets a new breakpoint on an element. The elements selected by the user
are passed to the constructor of the action. In Lines 6-27, the corresponding AddBreak-
pointCommand is listed. Command injections are created via dependency injection and
should take the respective action as an injected constructor parameter. Commands must
define a static constant KIND, which is used to map an action kind. Commands further
consist of the methods execute, undo, and redo. The AddBreakpointCommand extends
the abstract class SystemCommand, which is a special subtype of the Command class.
There are other subtypes like the ResetCommand, PopupCommand, HiddenCommand,
and MergableCommand. Compared to the other commands, the SystemCommand is not

69

5. Architecture and Implementation

placed on the command stack. This means that SystemCommands cannot be influenced
by redo and undo operations.

1 export class AddBreakpointAction implements Action {
2 s t a t i c readonly KIND = ’ addBreakpoint ’ ;
3 kind = AddBreakpointAction .KIND;
4 c o n s t r u c t o r (readonly s e l e c t e d E l e m e n t s : SModelElement []) { }
5 }
6 @ i n j e c t a b l e ()
7 export class AddBreakpointCommand extends SystemCommand {
8 s t a t i c readonly KIND = AddBreakpointAction .KIND;
9 c o n s t r u c t o r (@ i n j e c t (TYPES. Action) public a c t i o n : AddBreakpointAction) {super () ; }

10
11 execute (context : CommandExecutionContext) : CommandReturn {
12 const index = context . r o o t . index ;
13 for (const s e l e c t e d E l e m e n t o f this . a c t i o n . s e l e c t e d E l e m e n t s) {
14 const element = index . getById (s e l e c t e d El em e n t . i d) ;
15 i f (element && hasBreakpointFeature (element)) {
16 element . breakpo int = true ;
17 }
18 }
19 return context . r o o t ;
20 }
21 undo (context : CommandExecutionContext) : CommandReturn {
22 . . .
23 }
24 redo (context : CommandExecutionContext) : CommandReturn {
25 . . .
26 }
27 }

Listing 5.2: The action and the corresponding command for adding breakpoints to model
elements.

The execute method in Line 11 receives a parameter of the type CommandExecu-
tionContext. The CommandExecutionContext stores the model root through which the
model elements can be accessed using the ID. Furthermore, the context contains the
ModelFactory, which converts the serializable model schema into the model representation.
Within the execute method, one can iterate over the selected elements and subsequently
check whether the model element is an element that supports the breakpoint feature or
not. Listing 5.3 shows the BreakpointElement that extends the SModelExtension to add
additional properties to the model element. Regarding this work, we added a breakpoint
flag to identify a model element as a breakpoint. Using the hasBreakpointFeature func-
tion presented in Listing 5.3, the model element is verified for whether it supports the
breakpoint feature. If this is the case, the function returns a BreakpointElement where
the breakpoint flag can be set or removed in the execute method. After the action is
finished, the model root is returned.

70

5.2. Implementation Details

1 export const breakpointFeature = Symbol (’ breakpo intFeature ’) ;
2
3 export interface BreakpointElement extends SModelExtension {
4 breakpo int : boolean ;
5 }
6
7 export f u n c t i o n hasBreakpointFeature (element : SModelElement) : e lement
8 i s SParentElement & BreakpointElement {
9 return element instanceof SParentElement && element . hasFeature (breakpointFeature) ;

10 }

Listing 5.3: Model element extension for the breakpoint feature.

Furthermore, we implemented the following actions and their corresponding com-
mands:

• RemoveBreakpointAction and RemoveBreakpointCommand: Responsible for remov-
ing an active breakpoint.

• AnnotateStackAction and AnnotateStackCommand: Responsible for annotating a
model element as current stack frame.

• ClearStackAnnotationAction and ClearStackAnnotationCommand: Responsible for
removing the annotation of the current stack frame from a model element.

• DisableBreakpointAction and DisableBreakpointCommand: Responsible for remov-
ing the graphical representation of an existing breakpoint. The breakpoint is not
deleted from the breakpoint view.

• EnableBreakpointAction and EnableBreakpointCommand: Responsible for restoring
the graphical representation of an existing breakpoint after the breakpoint was
disabled.

Finally, we needed a stackFrameFeature, which can be supported by model elements.
For this, we expanded the model element by a current flag. The AnnotateStackCommand,
ClearStackAnnotationCommand, and the StackFrameDecorater check whether the model
element supports the stackFrameFeature and can be represented as a current stack frame.

5.2.2 Graphical Representations
After a breakpoint has been set, it should be recognizable by a change in the graphical
representation. The responsible class BreakpointDecorator is shown in Listing 5.4. This
class implements the IVNodePostprocessor interface to manipulate an existing node. The
decorate method checks whether the element is a breakpoint and sets the model element’s
CSS class breakpoint. The modified VNode will be returned, the model rendered, and the
graphical change is made visible to the user.

71

5. Architecture and Implementation

1 @ i n j e c t a b l e ()
2 export class BreakpointDecorator implements IVNodePostprocessor {
3
4 d e c o r a t e (vnode : VNode , element : SModelElement) : VNode {
5 i f (hasBreakpointFeature (element) && element . breakpo int) {
6 s e t C l a s s (vnode , ’ breakpoint ’ , true) ;
7 }
8 return vnode ;
9 }

10
11 postUpdate () : void {}
12 }

Listing 5.4: The BreakpointDecorator class to modify the CSS style of a model element
annotated with a breakpoint.

Furthermore, we implemented the StackFrameDecorator to highlight a model element
as the current stack frame in the graphical representation. With the StackFrameDecorater,
the class current is set to true instead of the class breakpoint, as in the BreakpointDecorator.

5.2.3 GLSP Debug Module

Listing 5.5 shows the glspDebugModule to which the commands and the decorators for the
graphical modification of the model are added. For this purpose, a new dependency in-
jection container is created which can be injected into the language-specific diagram editor.

1 const glspDebugModule = new ContainerModule ((bind , _unbind , isBound) => {
2 configureCommand ({ bind , isBound } , AnnotateStackCommand) ;
3 configureCommand ({ bind , isBound } , ClearStackAnnotationCommand) ;
4 configureCommand ({ bind , isBound } , AddBreakpointCommand) ;
5 configureCommand ({ bind , isBound } , RemoveBreakpointCommand) ;
6 configureCommand ({ bind , isBound } , EnableBreakpointCommand) ;
7 configureCommand ({ bind , isBound } , DisableBreakpointCommand) ;
8 bind (TYPES. IVNodePostprocessor) . to (StackFrameDecorator) . i n S i n g l e t o n S c o p e () ;
9 bind (TYPES. IVNodePostprocessor) . to (BreakpointDecorator) . i n S i n g l e t o n S c o p e () ;

10 }) ;
11
12 export default glspDebugModule ;

Listing 5.5: The glspDebugModule, to integrate the GLSP actions into the client infras-
tructure.

5.2.4 Debug Adapter Contribution

The Theia-debug extension provides contribution points to add a new debug adapter
to the web-based IDE easily. To connect the WFML debug adapter to the Theia-
debug extension the class AbstractVSCodeDebugAdapterContribution is used that inherits
from DebugAdapterContribution. In Section 5.1, we have already discussed contribution
points within the Eclipse Theia framework. The DebugAdapterContribution serves as a
contribution point to connect the WFML debug adapter extension with the Theia-debug
extension. The debug-adapter is integrated into the back-end process of the Theia-debug
extension and communicates through WebSockets with the front-end.

72

5.2. Implementation Details

For the implementation of the debug adapter, we used the existing npm-modules
vscode-debugadapter10 and vscode-debugprotocol11, which simplifies the development
of new debug adapters. In order to contribute to the debug-related contribution points,
a debug adapter extension requires a package.json, which contains the contributions
specific to debug extensions. Like any other extension, the package.json declares the
fundamental properties like name and version of the extension, as can be seen in Listing
5.6. In the debuggers section of the contributes section the debugger for the WFML is
defined with the attribute type as "workflow-debug". The user can take the debug type as
a reference in launch configurations. The optional attribute label can be used to give the
debug type a proper name when showing it in the user interface. The program attribute
defines the relative path to the debug adapter that implements the debug protocol. If
the path to the debug adapter is not executable, the optional attribute runtime provides
an appropriate runtime [57].

The configurationAttributes attribute section contains the schema for launch configu-
ration arguments specific to the debugger. This schema is used to validate the launch.json
and support IntelliSense and tool tip when editing the launch configuration. The user is
instructed to specify the absolute path to the diagram to be debugged. One can specify
whether the debugger should stop the session before executing the first model element [57].

1 {
2 "name": "theia-workflow-debug",
3 "version": "0.1.0",
4 ...
5 "contributes": {
6 "debuggers": [{
7 "type": "workflow-debug",
8 "label": "Theia Worflow Debug",
9 "program": "./out/workflow-debug.js",

10 "runtime": "node"
11 "configurationAttributes": {
12 "launch": {
13 "required": [
14 "program"
15],
16 "properties": {
17 "program": {
18 "type": "string",
19 "description": "Absolute path to a diagram.",
20 "default": "${workspaceFolder}/${file}"
21 },
22 "stopOnEntry": {
23 "type": "boolean",
24 "description": "Automatically stop after launch.",
25 "default": true
26 },
27 },
28 },
29 },
30 ...
31 }]
32 }
33 }

Listing 5.6: package.json file of the WFML debug adapter

10https://npmjs.com/package/vscode-debugadapter
11https://npmjs.com/package/vscode-debugprotocol

73

5. Architecture and Implementation

Please note that the detailed specification of the package.json is partly removed due
to space limitations. It can be found in the code repository12.

Figure 5.2 shows the launch configuration for the WFML example introduced in
Section 4.1. The launch configuration is stored in the settings.json file. The configurations
section shows parts of the attributes mentioned earlier. The requested debug adapter
has the type "workflow-debug" and is used to launch the debugging process. The
"stopOnEntry" flag is set to true to halt the execution before the first element of the model.
The program attribute shows the path to the model to debug, namely "example1.wf".

Figure 5.2: The launch configuration of the WFML example.

5.2.5 Communication between the Actors

In Figure 5.3 the communication between the user, development tool, WFML debug
adapter, and WFML debugger is shown. Before starting the debugging process the user
sets a breakpoint on the model element with the ID "task1". After the user invokes the
debugging process the debug adapter gets started and the initialize phase between the
development tool and the WFML debug adapter begins. During the initialize phase
the capabilities are exchanged. Afterward, the configuration phase starts, in which the
development tool sends the GLSPBreakpoints to the WFML debug adapter. When the
configuration phase has finished the launch request starts the debugging of the model.
The WFML debug adapter connects to the external WFML debugger and sends the path
of the diagram to debug. Furthermore, the WFML debug adapter sends the breakpoint
with the ID "task1" and the associated path of the diagram to the WFML debugger.

12https://github.com/EderH/workflow-example-debug-adapter

74

5.2. Implementation Details

Figure 5.3: A user invokes the DAP-based communication between the development tool,
WFML debug adapter, and WFML debugger during the debugging of a WFML diagram.

In a further use case, the user invokes a step on the GUI of the development tool,
which in turn sends the next request to the WFML debug adapter. The WFML debug
adapter informs the WFML debugger about the request by sending a step command.
The WFML debugger performs a step and responds with the next model element in
the diagram. The response includes the diagram path and the ID of the next model
element. Furthermore, the variables of the model element are included in the response.

75

5. Architecture and Implementation

In this use case, the model element has a local (i.e. "0" for local and "1" for global)
variable "duration" that is an Integer data type with the value "20". The last row of the
response shows the stack trace. The stack trace in the example consists of one stack
frame, namely "task0". When the WFML debug adapter receives the response a stopped
event gets emitted for "thread 1" and the reason "step". As a result, the development tool
requests all available information for the mentioned thread. This includes information
about the stack trace and the variables. The development tool then displays the received
information in the appropriate windows of the GUI.

In the last use case, the user invokes a continue request sent from the development
tool to the WFML debug adapter. The WFML debug adapter forwards the request to
the WFML debugger by sending the continue command. The WFML debugger continues
the execution till the end of the model and sends the end command back to the WFML
debug adapter. The WFML debug adapter emits a terminated event to inform the
development tool that the debugging process has finished. Finally, the WFML debug
adapter emits an exited event and exits from the running development tool.

5.3 Challenges
In this section, we discuss some of the challenges of implementing the WFML debugger.
The challenges were identified while working with the different frameworks for textual
and graphical languages used in the practical part. The concepts we have developed to
solve these issues apply not only to the WFML but also to the debugging framework for
graphical modeling languages in general.

Text Editor vs. Diagram Editor

The combination of the DAP developed for textual languages with the GLSP developed
for graphical modeling languages presented us with various challenges during develop-
ment. To be able to write or view source code at all, each IDE requires a so-called
text editor. The editor provides one with various actions to edit the source code. The
Theia-debug-extension, used for the implementation of the framework was developed
for use in connection with textual languages. As a result, a text editor is used to open
and edit source code files within this component. The text editor used is the so-called
Monaco Editor13, which was created by Microsoft in the course of the development of
VSCode and which is not suitable for editing graphical modeling languages.

In contrast, the GLS platform provides an extendable diagram editor for creating,
displaying, and editing models, which must be extended for a specific modeling language.
In the course of the development of the WFML debugger, we had to think of a concept
that would allow us to integrate the Diagram Editor of the GLS platform into the debug
session component of the Theia-debug extension and thus replace the Monaco Editor.

13https://microsoft.github.io/monaco-editor

76

5.3. Challenges

In the following, we present one solution: In the first step, we found out that the
Monaco Editor is firmly anchored in the default implementation of the debug session
component, which is why this component became unusable for us. If the debug session’s
default behavior is not sufficient, the Theia-debug extension provides a contribution
point to integrate a custom implementation of the debug session. This contribution
point is called DebugSessionContribution and consists of the debug type for which the
debug session is created and a DebugSessionFactory, which creates the specific debug
session. Using this contribution point, it was possible in a further step to create a custom
GLSPDebugSession. Instead of the Monaco Editor we integrated the GLSPDiagramEditor
via dependency injection into the custom GLSPDebugSession. Through this solution, the
model to debug will be opened at the start of the debug session via the newly integrated
diagram editor and can thus be animated during the debug session.

Consistency between Diagram Editor and Breakpoint View Window

Synchronizing the diagram editor and the breakpoints view was another challenge we
faced when managing GLSPBreakpoints. On the one hand, it should be possible to
add and remove breakpoints via the diagram editor while ensuring the correct listing of
breakpoints within the breakpoints view. On the other hand, the commands to enable,
disable, and remove breakpoints are available to the user via the breakpoints view. Due
to the graphical representation of the breakpoint in the form of the red-colored frame,
it was necessary to inform the diagram editor about the commands executed via the
breakpoint view. This required a two-way communication between the components of
the Theia-debug extension and the client framework of the GLS platform.

In the Monaco editor for textual languages, the editor responds to an editor mouse
event and then transmits the position of the breakpoint to the BreakpointManager
of the Theia-debug extension. The interface IEditorMouseEvent14 is used to listen to
the mouse event. Whenever a breakpoint is removed from the breakpoint view, the
Theia-debug extension calls the editor to remove the breakpoint decoration. To change
the decoration the interface IModelDeltaDecoration15 is used. We were not able to reuse
any of these components required for the communication between the Monaco Editor and
the Theia-debug extension, since we use the diagram editor provided by the GLS platform.
In the following, we present the solution for adding interaction behavior between the
diagram editor and the breakpoints view.

The first direction - from the diagram editor to the breakpoint view component - can
be managed using the GLSPTheiaSprottyConnector. The GLSPTheiaSprottyConnector
bridges the gap between GLSP dependency injection containers and a specific connection
client from the Theia dependency injection container. Thus, the GLSPBreakpointManager
can be injected into the GLSPDiagramManager to extend the default BreakpointManager

14https://microsoft.github.io/monaco-editor/api/interfaces/monaco.editor.
ieditormouseevent.html

15https://microsoft.github.io/monaco-editor/api/interfaces/monaco.editor.
imodeldeltadecoration.html

77

5. Architecture and Implementation

implementation of the Theia-debug extension. The GLSPDiagramManager is responsible
for controlling and managing the diagram editor. Via the connector, the methods of
the GLSPBreakpointManager can be accessed within the client framework container of
the GLS platform, and thus, breakpoints can be added or removed in the diagram. The
GLSPBreakpointManager is then responsible for listing the available breakpoints in the
breakpoints view.

The second direction - from the breakpoints view component to the diagram editor -
can be simply accomplished using the new breakpoint actions described in Section 4.2. In
order to use these actions within the breakpoint components of the developed framework,
access to the action dispatcher of the GLS platform is required. We were able to solve
this issue by filtering all existing diagram widgets from the application shell containing
an action dispatcher. Finally, the breakpoint actions can be triggered via the action
dispatcher of the individual diagram widgets. The actions, in turn, modify the model
and thus change the graphical representation of the breakpoint.

Model Interpretation

In Section 2.1, we presented the model interpretation approach used in the course of
model-driven development. This approach aims to interpret the individual model ele-
ments and to execute the task or process that the model element represents. A DSML
consists of different abstract syntax elements that have different execution behavior.
Therefore, we needed to develop a concept that would allow the debugger to execute
these different types of model elements. Besides, we had to make sure that the behavior
of the model elements could change in the future, or additional elements are added to the
DSML. In the following, we would like to present the solution to the issue described above.

In the course of the literature research concerning interpreters, we came across the
visitor pattern [58], which belongs to the behavioral design patterns [59, 60]. The visitor
design pattern shows how to separate the structure of an object hierarchy from the
behavior of traversals over that hierarchy. Figure 5.4 shows the conceptional architecture
of the visitor pattern. The visitor pattern consists of the following concepts.

• Visitor. The visitor interface or abstract class defines a set of visiting methods
in which concrete elements of an object structure are passed as arguments. If the
language in which the program was written supports method overloading, these
visiting methods have the same name, but the type of parameter that is passed
differs.

• Concrete Visitor. Every concrete visitor must implement all visit methods
declared in the abstract visitor. Each visitor is responsible for different operations.

• Element. The interface element declares a method to accept a visitor. This
method should have only one parameter, which has the visitor interface as the
type.

78

5.3. Challenges

• Concrete Element. The concrete element must implement the accept method.
The task of this method is to redirect the call to the visitor’s method corresponding
to the current element class.

• Client. The client is the consumer of the classes of the visitor pattern. It usually
represents a collection or other complex objects. The client can access elements
and instruct them to accept a visitor to execute the associated operation.

Figure 5.4: Architecture of the visitor pattern [61].

The visitor pattern applied to the running example of this thesis is shown in Figure 5.5.
The client is the specific WFML debugger that we implemented. The WFML debugger
has a parser that reads the model from a JSON object and stores it in corresponding
data structures (e.g. TaskNode, ActivityNode, Edge). Subsequently, the model elements
are executed based on their connections to each other. The current model element to
be executed by the debugger accepts the WorkflowInterpreter. The WorklfowInterpreter
represents a concrete visitor and implements the visitor interface. The visitor interface
declares its own visit methods for task nodes, activity nodes, and edges. In the Work-
flowInterpreter class, these visit methods are overwritten, and the concrete operations
are implemented. The classes used to parse and store the model are extended by the
accept method.

79

5. Architecture and Implementation

Figure 5.5: The visitor pattern applied to the running WFML example.

This solution for the model interpretation approach allows easy adaption to the
behavior of individual model elements in the future by rewriting the visit method of
the element. Besides, adding new types of model elements to the DSML and its debug-
ger can be done without much effort. The only extensions necessary are creating new
concrete elements and adding the corresponding visit methods to the WorkflowInterpreter.

80

CHAPTER 6
Evaluation

The debugger for graphical modeling languages described in chapters 4 and 5 was
developed based on the existing WFML. This chapter introduces the second DSML used,
from which, in addition to the existing requirements, we derive new ones and evaluate the
implemented framework to see whether it can be applied to this newly defined language.
With this, we want to ensure the reusability of the framework for other languages and
domains.

6.1 State Machine Modeling Language
The State Machine Modeling Language (SMML) is an executable/interpretable language
based on the concepts of finite-state machines. A state machine is a finite machine when
it can be assumed that the number of states is finite. The SMML consists of the following
language constructs: states, state transitions, and actions.

A state is a description of the system’s status that is waiting to execute a transition.
In the context of the SMML, we defined three different kinds of states. Simple State
models a situation during which some invariant condition holds. The notation of a simple
state is represented as a rectangle with rounded corners and the state’s name inside
the rectangle. The other two kinds of states are so-called pseudostates. The Initial
Pseudostate is the starting point of a state machine and the source of a single transition
to a simple state. There can be at most one initial state within a diagram. An initial
state is represented as a small solid filled circle. The Final Pseudostate is a state in a
sub-state machine that signifies that the execution of the sub-state machine has been
completed. A sub-state machine is a decomposition mechanism that allows factoring
of common behaviors and their reuse. A state of a sub-state machine inherits all the
behavior actions and transitions of the composite state. A final state is represented as a
circle surrounding a small solid filled circle.

81

6. Evaluation

A state transition is a transition between two states. This transition is executed when
the defined logical conditions, events, or inputs are fulfilled.

Actions determine the output of a finite-state machine, which takes place in a certain
situation. The SMML only supports actions that are triggered through an transition
event and are performed during a state transition.

Similar to the WFML, we use the EMF to define the abstract syntax of the SMML.
The generated Java classes are integrated into the server framework of the GLS platform.
Figure 6.1 shows the metamodel of the SMML. As with the WFML, the SMML metamodel
extends the GLSP metamodel1 integrated into the GLS platform. In the SMML, the
GEdge class is extended by the Transition class having the properties event and action.
The State class extends the GNode class and has the properties name and kind. The
kind property specifies the type of state. The SMML distinguishes between initialState,
simpleState, and finalState.

Figure 6.1: The SMML metamodel extending the GLSP metamodel.

Furthermore, we use the client framework of the GLS platform and the underlying
diagram framework Sprotty to define the concrete syntax of the SMML. The GLSP
diagram editor will be extended to fit the requirements for the SMML. Figure 6.2 shows

1https://github.com/eclipse-glsp/glsp-server/blob/master/plugins/org.
eclipse.glsp.graph/model/glsp-graph.ecore

82

6.1. State Machine Modeling Language

the result of integrating the newly defined SMML into the GLS platform. The tool palette
in the diagram editor consists of three nodes: simple state, initial state, and final state.
A transition can be used to connect the states. The shown example model constructed
with the SMML illustrates a Bank Automated Teller Machine (ATM) top-level machine.
Based on the transition conditions, the state machine changes between states. The
Bank ATM is initially turned off. After the machine is turned on, the ATM performs
a startup action and enters the Self Test state. If the test fails, the ATM goes into
OutOfService state, otherwise, there is a triggerless transition to the Idle state. In this
state, the ATM waits for customer interaction. The ATM state changes from Idle state to
ServingCustomer state when the customer inserts a banking card in the ATM card reader.
The transition from ServingCustomer state back to the Idle state could be triggered
by a cancel event as the customer could cancel the transaction at any time. The same
applies to the transition from ServingCustomer state to the OutOfService state that
is triggered by the failure event. When the ATM requires maintenance the transition
from the Idle state to the Maintenance state could be triggered by the service event.
If the maintenance fails the ATM state changes in the OutOfService state, otherwise
another triggerless transition leads the ATM into the Self Test state. Finally, the turn
off event can be triggered in the Idle state and the OutOfService state to shut down
the ATM and change to the Off state. The ServingCustomer state is a composite state
with the sub-state machine shown in Figure 6.3. The sub-state machine consists of the
sequential states CustomerAuthentication, SelectingTransaction, and Transaction. Those
states have a triggerless transition to change into the next state. After the transaction is
finished another triggerless transition changes the ATM state back to the Idle state.

Figure 6.2: The SMML diagram editor integrated into the Eclipse Theia framework.

83

6. Evaluation

Figure 6.3: The SMML sub-state machine for the ServingCustomer state.

6.1.1 Requirements for Debugging the State Machine Language
In Section 4.2, we derived the requirements for a DSML debugger based on the debugging
concepts we discussed in Section 2.3 and implemented the WFML debugger. In a further
step, we take a look at how the developed framework can be reused from the WFML
debugger, to implement another debugger for the SMML.

Before we derive the requirements for debugging the SMML, we would like to discuss
the main differences between the WFML and the SMML. The WFML differs from the
SMML mainly because the transition from one element to the next is not done through
simple edges, but by event-driven transitions. To control these transitions, the debugger
GUI needs an input field to interact with the user. The further execution of the SMML
debugger then takes place via the event control of the user. Furthermore, the states of
the SMML are unique within the diagram, and multiple usages, as known from the task
nodes of the WFML, are no longer possible. However, this does not affect the debugger,
since we use the ID of the model element and the path to the diagram in which the
model element is located for the unique identification. Finally, compared to the WFML,
the SMML has a single initial state within a state machine, which is intended as the
starting point for the execution.This means that the debugger does not have to look for
the model element that does not have an incoming edge, but can use the state of the
type "initialState". The final state means an endpoint within a sub-state machine. The
debugger no longer has to check whether the state has an outgoing edge, but knows from
the state type that it is a "finalState".

84

6.1. State Machine Modeling Language

Similar to the WFML debugger, we also want to provide the user of the SMML with
a debugger that has the basic features of a modern debugger. Therefore, we discuss the
defined requirements introduced for the WFML debugger in Chapter 4 and consider
how the SMML affects these requirements. In the following, we analyze the existing
components of the WFML debugger, whether they can be reused and how the new
requirements can be implemented.

Execution Modes

The user needs functionalities to start, pause, and stop the execution of the model.
Therefore, the user requires a graphical user interface that can be used to operate the
individual debugging features and to output relevant information to the user. By defining
another language, we do not expect any modifications of the generic graphical user
interface provided by the Theia-debug extension. However, a separate debug adapter for
the SMML is required, but the existing logic of the WFML debug adapter can be reused.
The SMML debugger must be able to parse, execute, and interpret the new language
constructs accordingly. In the following, we analyze how the developed components for
the execution modes in the WFML debugger can be applied to the SMML.

Applying the WFML debugger to the SMML: Like the WFML debugger,
the debug session is started in the development tool, which in turn, sends the file
path of the model source via the debug adapter to the SMML debugger. The only
difference between the WFML and the SMML is the different file extension of the
model source. Since the protocol transfers the path to the file in a String data
format, the only thing to deal with is the changed file format at the debugger-
side. To pause or stop the debugger, the protocol, and the components of the
Theia-debug extension, use the thread ID of the debug session. Thus, an entirely
language-independent concept for starting a debug session is available.

Steps

The user should be able to step through the model and execute one model element at a
time. The WFML uses simple connections between model elements whereas a state in the
SMML has several transitions that are triggered through transition events. During the
debugging process, the user wants to trigger these events by manually selecting them to
determine the further course of the execution. Thus, the user requires a dialog input field
that lists the events available for the current state and further allows the user to select
one of the listed events. During the transition from one state to another state, actions
might be executed. Hierarchy structures are also supported by the SMML, which must
be handled by the SMML debugger. Finally, the user wants to be informed about the
course of all transitions that were already performed. For this purpose, the debug window
should be extended by another view where the current event flow (e.g. turn on event
triggering the transition from the Idle state to the Self Test state) is displayed. In the
following, we discuss the steps necessary for implementing the requirements mentioned
above.

85

6. Evaluation

1. Language-specific debug request data: The DAP does not provide any existing
requests that can be used to transfer the available state events between the debug
adapter and the development tool. However, as with the GLSPBreakpoints, new
custom requests and events between the Theia-debug extension and the debug
adapter can be introduced. It is necessary to introduce a new protocol event that
transmits all transitions available for the current state to the development tool.
Before this, the model execution must be interrupted using a stop event. After
receiving the information, the development tool is in charge of opening the input
field, presenting the received transition events, and waiting for the user to select
one of them. As soon as the user confirms the input, a request which sets the event
should be sent from the development tool to the debug adapter and further forward
the selected event to the SMML debugger. Using the obtained information, the
SMML debugger should continue the execution and send back the new event flow
to the development tool’s event window.

2. Integration of an event window into the Theia-debug extension: For the
implementation of the transition events, new components must be integrated into
the existing debugging framework. A component is required, where information
about the events possible for the next transition received from the SMML debugger
can be stored, and that can be used to list the events in the input dialog window.
For this, a class GLSPEvent should be implemented, which consists of attributes
to store a unique ID, the model element for which the event is available, the event
name, and the path to the diagram source. Furthermore, the Theia-debug extension
must be extended to integrate the event window. Using dependency injection,
additional views can be injected into the existing debug view window. Thus, the
event flow of the current debug session received from the SMML debugger can be
listed.

Breakpoints

Like textual languages, where breakpoints can be set in the source code, the user should
also be able to set a breakpoint on a specific element in the SMML diagram editor. We
expect no differences concerning breakpoints between the two languages WFML and
SMML since breakpoints are stored language-independent based on the ID of the model
elements. In the following, we analyze how the developed components for breakpoints in
the WFML debugger can be applied to the SMML.

Applying the WFML debugger to the SMML: The GLSPBreakpoints were
defined independently of the language in use since only the ID of the model
element is stored. The components for managing, displaying, and transmitting
the breakpoints to the debug adapter were also implemented independently of
the language in use. The request for transferring the GLSPBreakpoints from the
development tool to the debug adapter only stores the model element’s ID and
the path to the diagram file. The actions and commands defined within the client

86

6.1. State Machine Modeling Language

framework of the GLS platform execute the operations based on the ID of the model
element. The graphical animation of the breakpoint within the diagram is based
on the implemented breakpoint feature. Any model element in a new language
can support this feature. To describe the style of the model elements and the
representation of the breakpoint we use CSS. In case the graphical representations
of a new language do not have frames, breakpoints can still be easily integrated.
Therefore, it makes no difference how the syntax of the element was defined.

Stack Trace

The user wants to view the procedure calls that are currently on the stack. Therefore,
a call stack window is required that shows the order in which the nodes (e.g. states,
transitions) of the SMML are getting called. Both WFML and SMML support hierarchy
structures that can be displayed via the call stack view. In the following, we analyze how
the components for stack traces in the WFML debugger can be applied to the SMML.

Applying the WFML debugger to the SMML: The representation of the
current stack frame in the call stack view also takes place via a String data type.
The SMML debugger determines the current stack frame and transmits the ID of
the model element as a String data type to the debug adapter. The debug adapter
forwards the received information via the DAP to the development tool. Thus,
using a String data type to display and transfer the stack frame we are independent
of the language in use.

Runtime Variable I/O

When the model’s execution is paused, the user requires a view, where the variable values
of the current stack frame are shown. The model elements of the SMML have different
variables than the model elements of the WFML. Thus, a transition has the two variables
event and action, which must be represented accordingly. In the following, we analyze
how the developed components for variables in the WFML debugger can be applied to
the SMML.

Applying the WFML debugger to the SMML: The components for variables
window were developed independently of the language used and can be reused
for the SMML debugger. The variable attributes (e. g. name, value, type) are
transferred between the debug adapter and the development tool as a String data
type and are therefore kept very generic. This makes the exchange independent
of the language used. The debugger is responsible for storing the variables of the
elements in the corresponding data types during parsing. Whenever a variable
request is executed, the debugger converts the attributes for the respective variable
into Strings and transmits all existing variables to the debug adapter. The debug
adapter then redirects the variables to the development tool.

87

6. Evaluation

Exceptions

The user wants to be informed if an exception occurs during the execution of the model
and to what cause this is due. These must be presented to the user, who usually only
has knowledge of the modeling language in an understandable form. In the following, we
analyze how the developed components for exceptions in the WFML debugger can be
applied to the SMML.

Applying the WFML debugger to the SMML: The implementation of the
Theia-debug extension as well as the WFML debug adapter implementation can be
reused for the SMML. Exceptions that occur during execution must be adapted
to the SMML so that users who are only familiar with this modeling language
understand the information received from the debugger. Therefore, new exception
handlers must be implemented at the SMML debugger to handle errors specific to
the SMML language.

Requirements Overview

Table 6.1 gives an overview of the requirements for debugging the SMML. The cells
colored in green represent the existing components we can reuse, whereas the cells colored
in red represent the components we have to implement/adapt. The shortcut "NA" stands
for "No Action", i.e., no implementation or adaption is required. In the first column, the
requirements mentioned above are listed. The second column shows which components we
can reuse from the Theia-debug extension. In this table, we already expected to reuse the
components developed for the WFML, and therefore some requirements are highlighted
in green. The third column shows the requests and events that can be used from the DAP.
The fourth column represents the modification using the GLSP to integrate graphical
animations. The fifth column shows the implementations necessary for the SMML debug
adapter. We expect to reuse the components developed for the WFML debugger. The
last column lists all requirements for the debugger implementation. Since the language
constructs of the SMML are different from the WFML, this part requires significant
adaption and is the most affordable.

88

6.1. State Machine Modeling Language

Requirement Theia-debug ex-
tension (GUI)

DAP GLSP Debug Adapter
(WFML debug-
ger)

Debugger

Start command view launch request open diagram connect to
debugger, send
model

parse, execute,
and interpret
model

Pause command view pause request NA forward pause
request

pause execution

Stop command view disconnect request NA forward stop
request

stop execution

Step command view next request NA forward step
request

get next el-
ement, send
element

Step In command view stepIn request open child
diagram

forward stepIn
request

step into child
model

Step Out command view stepOut request open parent
diagram

forward stepOut
request

step out of child
model

Breakpoints Extending the
breakpoint view
for GLSPBreak-
points

setGLSPBreakpoints
request

add/remove &
enable/disable
breakpoints

send GLSP-
Breakpoints

stop execution
on breakpoint

Events Adding event
view for
GLSPEvents,
dialog input
field

setGLSPEvent
request, eventFlow
request,
GLSPEvents event

NA send
GLSPEvent,
response
GLSPEvents,
response event
flow

stop execution
on event

Stack Trace call stack view stackTrace request highlight
current stack
frame

response stack
trace

send stack trace

Variable variable view variables request NA response
variables

send variables

Exceptions debug console output event NA response
exception

handle excep-
tion

Table 6.1: Requirements for Debugging the SMML.

6.1.2 Implementation

We implemented the SMML debugger based on the requirements described previously. In
the following, we shortly describe the SMML debugger features by showing illustrations
of the debugging process within the web-based development environment.

The example diagram in Figure 6.4 shows the BankATM model introduced in the
previous section. The debug session is already started and paused on the Self Test state
marked through the green frame of the state’s representation. On the left side of the
development tool, the debug view is displayed, where the views and commands known
from the WFML debugger are reused. Again, the thread view shows the current status
of the execution. The call stack view displays the current stack frame, and the variables
view shows the state variables and the corresponding values. Additionally, the debug
view shows the newly developed events view on the bottom, where the steps taken so
far are represented. From the initial state, the debugger went on through the default
event to the next state Off. Afterwards, the turn on event triggered the transition to the
current state Self Test.

From this point, the user can click on the step command, and a new dialog window
appears. The opened dialog window shown in Figure 6.5, asks the user to select one of
the listed events to trigger the next transition. As long as the window is opened, the

89

6. Evaluation

Figure 6.4: The SMML debugger is paused at the state Self Test and presents the current
stack frame information.

Figure 6.5: The SMML debugger is paused at the Self Test state, waiting for the user to
select a trigger event for the next transition.

execution is paused as represented through the threads view. When the user confirms
the selected event, the execution is continued, and the SMML debugger moves on to the
next state. In Figure 6.6, the thread is paused at the state Idle, and within the events
view, the last selected event default.

90

6.1. State Machine Modeling Language

Figure 6.6: The SMML debugger is paused at the Idle state after executing the default
transition from the state SelfTest.

Like the WFML, the SMML also supports hierarchical structures where the user
can step into sub-state machines. To demonstrate this use case, the ServingCustomer
state represents a composite state. When the debugging process is paused at the
ServingCustomer state, the user can use the step-in command to open the corresponding
sub-state machine. The sub-state machine for the ServingCustomer state consists of one
initial state, one final state, and several simple states in-between. In Figure 6.7, the
SMML debugger opened the diagram for the ServingCustomer state machine, and the
execution is paused at the CustomerAuthentication state. In the debug view, the changed
call stack is shown, where the CustomerAuthentication lies on top of the ServingCustomer
frame. The user can jump between the diagrams by clicking on the diagram source within
the call stack view. In the events view, the steps taken within the sub-state machine,
including the new source, are illustrated.

An important point to consider with hierarchical structures in the context of the
SMML is the inheritance of the transitions from the composite state to the sub-state
machine. The inheritance in case of the ServingCustomer composite state is shown in
Figure 6.8. In addition to the default event to go from the CustomerAuthentication state
to the SelectingTransition state within the sub-state machine, both the cancel event and
the failure event of the ServingCustomer state are listed in the input dialog window.
This inheritance affects all state transitions of the sub-state machine.

To get back to the parent state machine, the user can either use the step-out command
or step to the end of the sub-state machine until the final state has been reached. Using
another step command, the user gets back into the parent state machine.

91

6. Evaluation

Figure 6.7: The step in command forces the SMML debugger to step into the sub-state
machine.

Figure 6.8: An SMML sub-state machine inherits the transitions of the calling composite
state.

92

6.1. State Machine Modeling Language

As described in the previous section’s requirements, GLSPBreakpoints can also be set
using the SMML debugger. Figure 6.9 shows three breakpoints within the BankATM
diagram. Again, in the breakpoints view on the left, all breakpoints within the project
are listed. The known features from the WFML debugger to enable, disable, and remove
breakpoints are also available with the SMML debugger.

Figure 6.9: SMML states are marked as breakpoints and listed in the breakpoint window.

Finally, Figure 6.10 shows a use case where an exception is thrown during the runtime.
In this case, the target ID of the transition triggered through the turn off event was
changed. This could be caused by a model transformation error or a parsing error. When
the SMML debugger tries to execute the transition, the target element with the ID
ThrowException cannot be found. The corresponding exception is displayed in the debug
console in a form the modeler can understand. In the debug view, the thread is paused
due to an exception, and all necessary information like the current stack frame, the
variables, and the event flow is shown. The implementation of the SMML debug-adapter2

and the SMML debugger3 is available on GitHub.

2https://github.com/EderH/graphicalLSP
3https://github.com/EderH/gml-interpreter

93

6. Evaluation

Figure 6.10: The SMML debugger is paused due to an exception and presents the
information about the current stack frame and the thrown exception.

6.2 Open Problems
This section discusses the problems we faced during this thesis and that have not been
solved. First, the extension of the DAP regarding the newly defined protocol messages
and second the communication between the debug adapter and the debugger.

6.2.1 Extension of the DAP
As a result of the implementation of the GLSPBreakpoints and the GLSPEvents, we
defined custom requests to send the breakpoints and events from the development tool to
the debug adapter. However, the data transmission does not take place based on a defined
standard, as known from other DAP messages. In this work, however, we were only able
to identify the request for setting GLSPBreakpoints as a language-independent request.
Both the WFML and the SMML can use this request. The request for GLSPEvents is
not usable in the context of the WFML but could be reused in other languages because
we do not use language-specific attributes. Graphical modeling languages that require
some form of user-interaction could use this request and control the further execution.
An example of this would be a language for a game where the user interacts with a game
character and instructs the character in which direction to move. Nevertheless, most of
the DAP protocol messages can be used to implement a modern debugger for graphical
modeling languages. From our point of view, it makes no sense at this stage to define
a new protocol to standardize the exchange of GLSPBreakpoints. However, one might
consider whether to make the DAP more generic regarding breakpoints. An interface
could be defined which uses optional attributes. The different types of breakpoints
then only use the attributes that they need to transmit the breakpoints between the

94

6.3. Interpretation of the Results

development tool and the debug adapter. It should be noted, however, that this solution
still provides a well-structured overview of the individual breakpoint types.

Future experiments should implement further graphical modeling languages as well as
additional debugging features (e.g. multiple threads, modify variable). If further custom
requests had to be defined during the work, a new evaluation of the DAP should take
place and, if necessary, it should be discussed whether a separate protocol for debugging
graphical modeling languages should be defined.

6.2.2 Communication between Debug Adapter and Debugger Server
In this work, we have implemented a custom debugger for both WFML and SMML.
When starting the debug session, the debug adapter connects to the debugger and starts
exchanging messages. This exchange between the debug adapter and the DSML debugger
does not take place according to a standardized schema. This is because the graphical
modeling languages in use are self-defined and therefore do not have a generally known
standard as a basis. For the purposes of this work, however, it was not necessary to
establish a separate protocol for exchanging messages between the debug adapter and
the debugger. The focus of this work was mainly on the communication between the
development tool and debug adapter via the DAP and the generic graphical user interfaces
of the development tool.

If the graphical modeling languages and the debuggers implemented are made acces-
sible to a broader community, one can consider whether a separate protocol between the
debug adapter and the debugger should be defined.

6.3 Interpretation of the Results
In this section the research questions posed in Section 1.3 are answered based on the
evaluation results presented in Section 6.1.

RQ1: What should a debug adapter protocol (DAP) look like to meet the require-
ments of graphical modeling languages?

To answer this research questions, we performed the following analysis steps: we
translated the debugging concepts for debugging textual languages into the context of
debugging graphical modeling languages. Furthermore, we derived the requirements for
debugging the two case study DSMLs and thus gained an understanding of how the DAP
should look like to support graphical languages. The main requirements for a debug
protocol for graphical modeling languages are the following:

• Configuration Process. Before the debug session is started, protocol messages
must be exchanged for the launch configuration, which contains debug adapter
specific, and hence language-specific, information. The exchanged information
is independent of the representation of the language i.e. whether it is a textual
language or graphical modeling language.

95

6. Evaluation

• Execution Modes. The DAP should provide messages to start, pause, and stop
the execution of the model. These commands are responsible for controlling the
debugging process in the language-specific debugger. After the start command is
executed, the source code or model is parsed via the debugger. For the DAP, it is
not relevant whether source code or a model is read in. The pausing and stopping
of the debugging process are done based on the currently executed thread. The
thread has an ID that is transferred between the development tool and the debug
adapter to identify the running debugging process.

• Steps. Besides, we require a feature to run the model stepwise, which makes an
identification of the current execution position necessary. Compared to textual
languages, where the line and column identify the position, the current position in
graphical modeling languages is identified by the model elements, which are usually
identified by IDs. In case the DSML supports hierarchical structures, facilities
to step into the child model or step back out into the parent model are required.
The commands step in and step out force the debugging process to change to
another hierachy level. However, the debug adapter only needs the thread ID of the
current debugging process and forwards it to the debugger. The language-specific
debugger is responsible for further execution based on the hierarchy structures of
the language used, be it a textual language or a graphical modeling language.

• Breakpoints. The protocol should have messages to exchange the breakpoints
using the model element ID and the path to the model for which the breakpoint
was set. The DAP has different types of breakpoints (e. g. SourceBreakpoint,
FunctionBreakpoint, DataBreakpoint, ExceptionBreakpoint), which have been defined
for the requirements of textual languages. In graphical modeling languages, we
identify a breakpoint using the ID and diagram location of the model element.
None of the existing breakpoint types of the DAP have the necessary attributes
to transmit the above information. That’s why we defined a new breakpoint type
with the GLSPBreakpoint.

• Stack Trace. While the execution of the model is paused, the stack trace should
be transferred over the protocol to the development tool. For the stack trace, the
individual stack frames are transmitted to the development tool. However, the stack
frames are not independent of whether a text language or a graphical modeling
language is used. The reason for this is the use of the line and column to identify
a stack frame within the source code. The two attributes are not optional and
therefore a value must be assigned. For graphical modeling languages, we only need
the corresponding ID to identify a model element. Therefore, we cannot assign
specific values to these two attributes. However, if a stack frame has no source (i.e.
path to a source file) in text languages, value "0" is assigned to these two attributes.
The development tool recognizes this and ignores the line and column of a stack
frame.

96

6.3. Interpretation of the Results

• Runtime Variable I/O. While the execution of the model is paused, the variables
should be transferred over the protocol to the development tool. For the transfer
of variables we did not identified any difference between textual languages and
graphical modeling languages. The information about the variable is converted
into a String data type by the debugger. The response of the variables to the
development tool is very generic in that the name, the value, and the type of the
variable is transmitted as a String data type. The representation in the variable
view is also done as a String data type.

• Exceptions. If an error occurs during the execution of the model, the DAP requires
messages to transfer the program’s status and the appropriate error information
to the development tool. Since the exception is transferred using the DAP as a
String data type and is also represented as a String in the debug console it does
not matter if we use a textual language or a graphical modeling language.

RQ2: Can the DAP for textual languages be applied to graphical model debugging, and
if not, what needs to be extended or changed?

For the implementation of the WFML and the SMML debugger, we used the standard-
ized DAP features4 to communicate the debugging data between the development tool
and the debug adapter. We were able to meet a large part of the debugger requirements
with the DAP as is. However, there were individual situations where an extension of the
DAP was necessary. First, we could not use the existing requests to transfer breakpoints
between the development tool and the debug adapter due to missing attributes. We had
to define a custom request to transfer the GLSPBreakpoints to the debug adapter. The
two most important attributes of the GLSPBreakpoints are the model element ID stored
as a String data type and the path to the model. We could not find this composition in
any of the existing requests. Second, analyzing the requirements for the SMML, we were
not able to transmit the transition events available for a state to the development tool
with the existing protocol messages of the DAP. In the context of textual languages, there
is no comparable debugging concept that presents the user with a selection of available
input events, from which the user must select an event for further execution. Thus, we
defined a new DAP event for the transmission of the GLSPEvents to the user interface.
Third, there was no request available to send the selected event back to the debug adapter.
Therefore, we defined another custom request to transfer the selected GLSPEvent. In
summary, we conclude that the DAP can be used for graphical modeling languages with
a few modifications. Nevertheless, we do not consider it useful to introduce a separate
protocol for graphical modeling languages for these two requests. When conducting
further work on this topic, such as reusing the developed debugging framework for other
languages and debugger features, it has to be re-evaluated whether the definition of a
new protocol should be forced.

4https://microsoft.github.io/debug-adapter-protocol/specification

97

6. Evaluation

RQ3: What generic client-frameworks and user interface/debug adapter client compo-
nents exist for such a debug protocol that can be reused across debugging use cases for
multiple graphical domain-specific languages?

The debugger’s implementation showed that the existing Theia-debug extension,
which supports the DAP, could be reused and extended to fit the requirements of
debugging graphical modeling languages. Therefore, we were able to reuse the graphical
user interface components of the theia-debug extension like the debug view, threads view,
call stack view, breakpoints view, and the variables view. Concerning the breakpoints
view, we were able to inject the GLSPBreakpoints as a further data source. Besides,
the Theia-debug extension offers various contribution points to adapt the debugger user
interface to the custom requirements. This allowed us to integrate custom components
for managing the debug session and breakpoints. Furthermore, we were able to integrate
an additional view for displaying the event flows of state machines into the user interface.
Besides, the Theia-debug extension allows easy integration of the debug adapters we have
implemented for the two languages WFML and SMML. For the implementation of the
debug adapter, we were able to use the existing npm-modules vscode-debugprotocol and
vscode-debugadapter. The latter served as the basis for the debug adapter implementation
and was extended to meet the requirements of graphical modeling languages. On the
one hand, the debug adapter had to be able to handle setGLSPBreakpoints requests
and setGLSPEvent requests. On the other hand, a new event was introduced, which
transmits the transition events to the development tool. Moreover, the debug adapter
had to be extended to connect to the external DSML debugger and thus be able to
exchange messages between them. Furthermore, we used the GLS platform to create
custom DSMLs and the corresponding diagram editors. We used the client framework of
the GLS platform for the graphical manipulation of the model. On the one hand, we
were able to define language-independent actions to visualize the current stack frame
within the diagram and, on the other hand, to establish further actions that allow the
setting of breakpoints within the diagram. Besides, we were able to define actions to
highlight the model elements as breakpoints. Finally, we can say that the developed
debugger can be reused to integrate multiple graphical modeling language debuggers
into the same IDE due to the debugger framework’s language independence. With the
frameworks used, we were able to implement all of our previously defined requirements.
The Theia-debug extension has been developed quite specifically for textual languages.
However, we were able to add custom implementations via the contribution points and
thus solve this discrepancy.

98

CHAPTER 7
Related Work

A lot of related work deals with the debugging of DMSLs that have a textual concrete
syntax or with models that are first transformed into GPL code and then debugged using
existing GPL debuggers. Furthermore, the GLSP was only recently introduced, and the
DAP became more accessible to a broader audience in the course of VSCode in 2015. At
the time of writing, we could not find any literature on the exact topic of developing a
model debugger using client-server architecture for graphical modeling languages. In the
following, we introduce some of the relevant work in the area of model execution and
debugging.

7.1 Debugging Domain-Specific Models
Tezel and Kardas presented two debugging approaches [2] for Multi-Agent System (MAS)
DSMLs [62,63]. MASs include multiple interacting software agents within an environment,
where each agent performs a task. MAS DSMLs support both the static and the dynamic
aspects of agent software. Furthermore, they reflect the agents’ internal behavior model,
interaction with other agents, and the use of other environment entities. The DSMLs
provide appropriate IDEs in which both modeling and code generation can be performed.
The first approach uses mapping information from the link between the source language
(DSML) and the target language (GPL). The designed model is transformed into GPL
code through model-to-text transformation. The generated code is checked using a GPL
debugger that sends back the debugging results to the DSML debugging perspective.

The second approach allows to interpret the runtime state directly at the model level.
This requires additional runtime states and transitions in the metamodel. Furthermore,
a model interpreter and debugger must be implemented to interpret and check the model
entities. The model is then debugged via a model-to-model transformation in which the
transitions serve as steps between the elements. The runtime states are used to indicate
whether an element is defined as a breakpoint.

99

7. Related Work

The first approach differs from our work in that the generated model is first trans-
formed into GPL code and then checked for correctness with existing GPL debuggers.
The debugger, we developed debugs the generated model already on the model level.
However, the work does not provide any clues on how the debugging results are sent back
to the IDE. Like our work, the second approach aims to interpret the model elements
already at the model level. This makes it possible to implement a generic debugger and
thus minimize the effort for integrating other languages into the IDE. As with the first
approach, it is unclear how the communication between debugger and IDE should be
implemented.

Wu et al. presented a DSL debugger framework [64] for textual languages reusing
existing, tried, and familiar debugging facilities (e.g. breakpoints, step, stack trace).
The approach defined by Wu et al. enables the hidden and automatic construction
of a detailed mapping between model entities and synthesized code. The developed
debugger framework uses Eclipse’s built-in debugging facilities. Eclipse serves as a tool
integration platform that provides numerous extension points for customization through
a plug-in architecture. The Eclipse debugging perspective is a framework for building
an integrating debuggers. The debugging perspective defines a set of user interfaces
that define debugging functionalities (e.g. breakpoints, threads, and variables). The
debugger perspective does not provide a concrete debugger implementation, but it offers
a basic debugger interface that can be extended and adapted to a particular language’s
requirements. The user interface listens to debug events from the debug model interface
and updates the user interface to show the debugged program’s current state. Most
debug event listeners are implemented as interfaces that can be extended and adapted
to correspond to each debugger’s specific behavior. The framework has a debugger
re-interpreter that obtains a sequence of debugging commands from the specific debug
model interface and queries the underlying command-line debugger.

Using this framework, a tool implementer does not have to implement a new debugger
from scratch since the Eclipse debugging perspective is independent of the GPL and
can be used with every existing GPL debugger. Using different GPL debuggers, the
re-interpreter must be adapted due to the different APIs of the debuggers. For different
types of DSLs, the specific part of the framework is the variable mapping component,
which is represented as additional semantics in the DSL grammar. The framework’s
architecture, the step algorithm, and the mapping knowledge base are generic parts
and can be reused across different tools and DSLs. However, the current version of the
approach can only be used for textual languages and assumes that the generated artifact
is code.

The GEMOC Studio1 was invented by the GEMOC Initiative, an open and interna-
tional community, which focuses on the coordinated usage of various modeling languages.
GEMOC develops frameworks and environments to create, integrate, and automate the
processing of modeling languages. The GEMOC Studio [65–68] provides functionalities

1http://gemoc.org/studio

100

7.1. Debugging Domain-Specific Models

for language designers and domain experts to build and compose new executable DSMLs.
Furthermore, GEMOC Studio offers a mode to create and execute models confirming
to such executable DSMLs. Like the GLS platform, the abstract syntax of the model
is generated with the Ecore Modeling Framework and integrated into the GEMOC
Studio. Using the Sirius Designer2 for the graphical syntax and Xtext for the textual
syntax, editing support for DSMLs is developed. In order to make the DSML executable
GEMOC using any Java-based language, such as Java, Xtend3 or Kermeta4 [69,70]. The
assembling of the DSML concerns is made consistent utilizing the language workbench
Melange5 [71, 72] to define the execution semantics.

The GEMOC Studio [73] comes with an integrated model debugger to help the DSML
designer during the model creation phase. Figure 7.1 illustrates the GEMOC model
debugger highlighting the current stack frame of a finite-state machine model. The
figure further shows the graphical editor on the left side, where the current state S2 is
highlighted and marked with a green arrow. Additionally, the example further includes
a textual notation of the model on the right side next to the graphical representation.
Furthermore, on top of the editor’s views, the illustration shows the call stack view,
variables view, and breakpoints view.

Figure 7.1: Model debugger of the GEMOC Studio [74].

The existing runtime services and model execution tools of the GEMOC Studio can
be used for interpreted and compiled DSLs. Therefore, the GEMOC Studio offers a
generic execution framework that provides various generic runtime services, such as
graphical animation, omniscient debugging, and trace managers. Furthermore, the use of
generic tools within GEMOC Studio is supported through the introduction of behavioral

2https://obeodesigner.com/en/product/sirius
3http://eclipse.org/xtend
4http://diverse-project.github.io/k3
5http://melange.inria.fr

101

7. Related Work

interfaces. A behavioral interface defines a set of events specifying how external tools
can interact with models that conform to executable DSLs implementing the interface.
This allows the definition of abstract events that can be implemented by similar DSLs,
enabling the use of generic tools over DSLs confirming to the same metalanguage. This
approach is equivalent to the one we use in our work with the DAP, which consists
of different interfaces to standardize the individual requests, events, and responses for
debugging. The approach proposed by the GEMOC initiative allows using a reflective
event injection GUI in conjugation with the generic debugger already provided by the
GEMOC Studio. The extended debugger offers various debugging facilities (e.g. pause
execution, use stepping operations, and set breakpoints) [75]. This corresponds to the
generic debugger user interface we use in the course of our work. Figure 7.2 gives an
overview of the proposed approach by the GEMOC initiative and shows the interaction
between the individual entities.

Figure 7.2: Overview of the proposed approach [75].

Furthermore, the approach used by GEMOC Studio includes an event manager. The
event manager is responsible for dispatching event occurrences between relationships
based on the behavioral interfaces referenced by the relationship. This implementation
relationship describes how the xDSL provides the interaction capabilities that are ex-
pected a language typed by the behavioral interface. The implementation relationships
are realized through Event-Condition-Action (ECA) rules. These rules are triggered
when events from one side of the relationship satisfy their associated conditions. The
events are then translated into new event occurrences belonging to the other side of the
relationship. Finally, an integration façade for the event manager is introduced to act
as an intermediary between the execution engine and the event manager. Furthermore,
the integration façade is used to define the operational semantics of the xDSL [75].
This is similar to the debug adapter used in our work, which adapts the debugger’s
domain-specific logic to the generic DAP.

102

7.2. Web-based DSML Environments

In the following, we would like to mention further work on existing debugging
approaches for other languages: Ladybird debugging tool [76–78] for the DSML Sequencer
[79], debugging for the Unified Modeling Language (UML) [80–84], debugging for the
parallel DEVS DSL [85], generic standard debugging for executable DSLs [86–88], and
domain-specific debugger definition approaches [89–91].

7.2 Web-based DSML Environments
The cloud-based modeling environments AToMPM [92], GenMyModel [93], and We-
bGME [94] provide client-server architecture via a communication protocol. These
applications send an update to the server after each modification of the model. This
makes it easier to keep the model consistent across all clients collaborating on the
same model. Different DSMLs are integrated via plug-ins into the editor. Additionally,
AToMPM offers a release mode and debug mode. In release mode, the input model is
sent to a transformation engine lying on a dedicated server. The model is transformed
completely on the server, and the resulting model is sent back to the client and then
displayed on the canvas. The transformation is animated at the client’s canvas and can be
executed continuously or step-by-step in debug mode. Furthermore, breakpoints can be
set to halt the execution at a specific point in the control flow. The model transformation
execution is deployed as a plug-in and can be integrated into the AToMPM framework.
It is unclear how the communication between the client and the server is implemented
and whether a protocol similar to the DAP is used.

Several stand-alone web-based modeling environments (e.g., [95], [96], [97], [98]) were
introduced. These modeling tools provide full editing functionalities for certain domain-
specific languages in a monolithic environment. The graphical editor and its modeling
operations can be used to design models from graphical modeling languages. All the
logic to create or edit the models lies at the client-side, only the latest version of the
model is stored on a database server and updated at the end of a session. In contrast,
editors based on the GLSP provide only a user interface to execute model edit operations
at the client, the logic to create and edit the model is hosted by the server. Hence, only
server-side adaption is required to add the language logic to the environment.

7.3 Other Related Work
There already exist several implementations6 of the Debug Adapter Protocol for textual
languages within a client-server architecture. Among them are popular languages like
Java, Python, Node, and C/C++, etc. These implementations provide valuable insights
into the communication between the development tool and the language-specific debugger.
Components such as the npm-modules for the debug-adapter and the debug-adapter
protocol that are independent of the concrete syntax can be reused in this work.

6https://microsoft.github.io/debug-adapter-protocol/implementors/adapters

103

CHAPTER 8
Summary and Conclusion

In this chapter, we first summarize our work on this thesis, and secondly present the main
results. Furthermore, we compare our work with the related work presented in Chapter
7. Finally, we discuss the limitations of this work and list some remaining challenges that
can be addressed in future work.

8.1 Summary
This thesis aimed at investigating the existing concepts of the DAP defined for debugging
textual languages and how these concepts can be transferred to debugging graphical
modeling languages implemented based on the GLSP. We analyzed the potential of using
existing frameworks and components to reduce the effort of integrating new debuggers
for graphical modeling languages into IDEs. For this, we analyzed the debugging process
as well as the debugging concepts available in modern code debuggers. Afterward, we
translated the concepts for debugging textual languages into the context of graphical
modeling languages. Using the existing standardizes protocols GLSP, which is inspired
by LSP, and DAP, as well as the web-based frameworks Theia and Sprotty, we developed
debuggers for two different graphical modeling languages. The LSP separates the language-
specific logic of a textual language from the integration into an editor. Like the LSP,
the GLSP follows a similar approach but applies it to graphical modeling languages.
Therefore, the GLS platform comes with a client and server framework to build web-based
diagram editors. Using the DAP allows implementing one generic debugger interface for
a development tool that can communicate with different language debuggers via so-called
debug adapters. The debug adapters can be reused across multiple development tools,
which significantly reduces the effort to support a new debugger in different tools. From
the existing WFML, a graphical modeling language for designing workflows, we derived
the requirements to investigate if the DAP fits. Based on the information we gained at
analyzing the DAP, we implemented a debugger to ease the integration of debugging
support for new graphical modeling languages.

105

8. Summary and Conclusion

The following steps were taken to implement the debugger: First, we created a custom
web-based IDE using the Eclipse Theia framework. In addition to the basic components
of Theia, which are necessary for a basic IDE, we integrated the GLS platform as well as
the Theia-debug extension. The GLS platform offers a diagram editor and a graphical
language server with which we are able to create and edit WFML diagrams. The Theia-
debug extension provides a generic debugger GUI, the logic to manage the individual
debugging features, and allows the exchange of DAP messages between a development tool
and a debug adapter. Second, we replaced the components of the Theia-debug extension
that were not suitable for graphical modeling languages with custom implementations.
Third, we implemented a custom debug adapter for the WFML. For this purpose, we
used the existing vscode-debugadapter module, which includes a basic implementation
of a debug adapter. We extended this debug adapter to meet the requirements of the
WFML. Furthermore, the debug adapter connects to a remote server where the WFML
debugger is located. Fourth, we developed a debugger for the WFML, which parses the
model, is aware of the individual debugging features (e.g. breakpoints, steps, variables),
executes the model, and interprets the individual model elements accordingly. Finally,
we applied the DAP to the GLSP, in which we implemented custom GLSP actions and
graphical representations to enable, among other things, setting a breakpoint in the
diagram and highlighting the current stack frame.

The second DSML was defined to investigate the reusability of the developed debugger
to integrate new graphical modeling language debuggers into web-based diagram editors.
We can conclude that by using the DAP developed for textual languages a language-
independent implementation for a large part of the requirements for graphical modeling
languages is possible. We have managed to use the generic debugger GUI as well as the
custom implementations developed for the WFML also for the newly defined SMML. For
the requirements that we could not serve with the DAP, we used custom requests and
events. These custom protocol messages (e.g. GLSPBreakpoint), which are additionally
defined for graphical modeling languages, are recognized by the Theia-debug extension
and the custom debug adapters. Furthermore, we were able to use the GLS platform
to introduce language-independent GLSP actions to enable graphical animations in the
diagram. These actions can be used by both the WFML and the SMML. The GLSP
features (e.g. breakpointFeature) we have developed can be integrated into the individual
model elements. Finally, it can be said that the components implemented in this work
can be used as a starting point for the implementation of further graphical modeling
languages and their associated tools (e.g. debugger, interpreter).

Furthermore, we discussed open problems and future work on the developed debugger.

8.2 Comparison with Related Work
As mentioned in Chapter 7, we could not find any literature on the exact topic of using
a protocol for standardizing the communication between development tools and real
debuggers to supports the debugging of graphical modeling languages. Therefore, the
main difference between the related work and the work at hand is that related work

106

8.3. Limitations and Future Work

addresses debuggers deeply integrated into the IDE. At the same time, this thesis follows
a generic way of integrating debuggers. Furthermore, most of the related work requires a
local installation of the tools. However, this thesis focuses on a client-server architecture
to provide a web-based modeling tool, including modern debugging facilities. The few
related tools available in a web-based environment offer either no debug mode or deal
with the debugging of model transformation. In this work, however, we deal with model
interpretation and model debugging.

8.3 Limitations and Future Work

In this section, we discuss limitations of the current approach and present suggestions
for future work on the developed debugger. This comprises further debugging features
integrated into the existing debugger and extensions to the language constructs of the
DSMLs in use.

8.3.1 Extending the Debugger Facilities

In the following, we present features that could be implemented to extend the current
debugger.

Support of Multiple Threads. The implemented debuggers currently only support
the execution of a single thread. Therefore, models that support parallelism cannot be
executed correctly. The WFML used as the running example offers a language structure
that supports parallelism in models. For the parallel execution of processes, the two activ-
ity nodes fork node and join node were defined in the WFML. Future work could analyze
whether the WFML debugger can be extended to support parallel execution of models.
For this, the DAP protocol messages for the execution of multiple threads should be used
in connection with graphical modeling languages. Furthermore, it has to be analyzed
to what extent the client framework of the GLS platform has to be adapted/extended
to ensure the correct functioning of the graphical animations during the parallel execution.

Set Variables. Another important point for future work on this topic is the modifi-
cation of variables during the model’s execution. In addition to the variable request to
receive the variables, the DAP also supports a set variable request to modify variable
values when the execution is paused. It should be noted that a change of the variable
value should be reflected appropriately at every level of abstraction, to ensure continued
overall consistency. This affects the variable view within the debug view, the model
source, and the graphical representation in the form of the diagram.

Graphical Animations. Finally, the framework developed can be extended by
further graphical animations. The Sprotty framework underlying the GLS platform offers
several additional features (e.g. visual transition) that can be used to implement the

107

8. Summary and Conclusion

debugging concepts. The graphical representations implemented so far only show a small
part of what the Sprotty framework would offer in terms of animations.

8.3.2 Utilizing Tools and Frameworks
Concerning RQ3, we used existing tools and frameworks (e.g. Theia, GLS platform,
Sprotty, DAP) to implement the debugger. These tools and frameworks were themselves
still in the development phase. It might come to compatible issues when upgrading the
frameworks to their current version. Further work should, therefore, consider the latest
versions of the components used.

8.3.3 Extending the DSMLs
Concerning the results for the RQ1 and RQ2, we would like to point out that we have
created only two DSMLs in the course of this work and presented the results based
on these two. The results could be theoretically different if we implemented further
modeling languages. In the course of future work, further languages and domains should
be implemented, and the existing framework, including the DAP, should be analyzed for
its reusability. These further experiments should also provide information as to whether
other languages also need further protocol messages. It can then be discussed whether a
new protocol for graphical modeling languages should be defined.

Besides, defining new DSMLs, the two case study DSMLs used in this thesis can
be extended by additional language constructs. In the WFML, instead of using the
probability of weighted edges, the activity nodes could also use statements as guards
(e.g. [Temperature ok?]: Yes | No). The SMML, in its current version, is an abstraction
of what one knows from state chart diagrams [99]. For example, the SMML could be
extended by the following actions:

• Entry action: This action is executed while entering a new state, regardless of
the state transition through which the new state has been reached.

• Exit action: This action is executed when the current state is exited, regardless
of the state transition over which the current state is exited.

• Input action: This action is generated depending on the current state and the
input event. Several actions can be assigned to a state.

The entry and exit action do not require any modification of the debugger since it can
be handled by the interpreter. Input actions are executed when a certain event occurs
within a state. The GLSPEvents introduced by us could be used to handle the input
events. The debugger must be able to determine whether this event triggers a transition
to another state or performs the action within a state.

Regarding these extensions, it is important to analyze whether the existing compo-
nents which were developed for actions can also deal with the above-defined actions.

108

8.3. Limitations and Future Work

Subsequently, additional language constructs such as the activity nodes of the WFML
can be added to the SMML, where again, attention should be paid on reusability.

8.3.4 Debugging for Code Generation
For future work it can be considered whether, in addition to the model interpretation
approach used in this work, the introduced code generation approach described in Section
2.1, can be implemented. In Section 2.3, we briefly talked about debugging model
transformations. Debuggers for code generators could help the user fix errors in the
translation process from the model to executable code.

109

Bibliography

[1] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice: Second Edition. Morgan and Claypool Publishers, 2nd
edition, 2017.

[2] Baris Tekin Tezel and Geylani Kardas. Towards Providing Debugging in the
Domain-Specific Modeling Languages for Software Agents. In Proceedings of the
Second International Workshop on Debugging in Model-Driven Engineering (MDEbug
2018) co-located with ACM/IEEE 21st International Conference on Model Driven
Engineering Languages and Systems (MODELS 2018). CEUR Workshop Proceedings,
2018.

[3] Roberto Rodriguez-Echeverria, Javier L. C. Izquierdo, Manuel Wimmer, and Jordi
Cabot. Towards a Language Server Protocol Infrastructure for Graphical Modeling.
In Proceedings of the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS ’18, pages 370–380. ACM, 2018.

[4] Microsoft. Debug Adapter Protocol documentation. https://microsoft.
github.io/debug-adapter-protocol, Accessed: 2020-06.

[5] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. In Management Information Systems Quarterly,
volume 28, pages 75–105. Society for Information Management and The Management
Information Systems Research Center, 2004.

[6] John Venable, Jan Pries-Heje, and Richard Baskerville. A Comprehensive Framework
for Evaluation in Design Science Research. In Proceedings of the 7th International
Conference on Design Science Research in Information Systems. Advances in Theory
and Practice, pages 423–438. Springer, 2012.

[7] Ken Peffers, Marcus Rothenberger, Tuure Tuunanen, and Reza Vaezi. Design Science
Research Evaluation. In Design Science Research in Information Systems. Advances
in Theory and Practice, pages 398–410. Springer, 2012.

[8] Robert K. Yin. Case Study Research: Design and Methods (Applied Social Research
Methods). Sage Publications, 4th edition, 2008.

111

[9] Sami Beydeda, Matthias Book, and Volker Gruhn. Model-Driven Software Develop-
ment. Springer, 2005.

[10] Bran Selic. The Pragmatics of Model-Driven Development. In Software, IEEE,
volume 20, pages 19–25. IEEE Computer Society Press, 2003.

[11] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. In
Computer, volume 39, pages 25–31. IEEE Computer Society Press, 2006.

[12] M. Voelter and I. Groher. Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In 11th International Software Product Line
Conference (SPLC 2007), pages 233–242. IEEE Computer Society Press, 2007.

[13] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software
Development: Technology, Engineering, Management. John Wiley and Sons, Inc.,
2006.

[14] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats He-
lander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. DSL Engineering
- Designing, Implementing and Using Domain-Specific Languages. dslbook.org, 2013.

[15] Erwan Breton and Jean Bézivin. Towards an Understanding of Model Executability.
In Proceedings of the International Conference on Formal Ontology in Information
Systems - Volume 2001, FOIS ’01, pages 70–80. ACM, 2001.

[16] Gustavo C. M. Sousa, Fábio M. Costa, Peter J. Clarke, and Andrew A. Allen.
Model-Driven Development of DSML Execution Engines. In Proceedings of the 7th
Workshop on Models@run.Time, ser. MRT ’12, pages 10–15. ACM, 2012.

[17] K. A. Morris, J. Wei, P. J. Clarke, and F. M. Costa. Towards Adaptable Middleware
to Support Service Delivery Validation in i-DSML Execution Engines. In 2012 IEEE
14th International Symposium on High-Assurance Systems Engineering, pages 82–89.
IEEE Computer Society Press, 2012.

[18] Mark Allison, Peter J. Clarke, and Xudong He. A Generic Model of Execution for
Synthesizing Interpreted Domain-Specific Models. In Procedia Computer Science,
volume 62, pages 495–504. Elsevier Science Publishers B. V., 2015.

[19] Stefan Bucur, Johannes Kinder, and George Candea. Prototyping Symbolic Exe-
cution Engines for Interpreted Languages. In SIGARCH Comput. Archit. News,
volume 42, pages 239–254. ACM, 2014.

[20] Jack Herrington. Code Generation in Action. Manning Publications Co., 2003.

[21] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer,
Jianxin Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo. SPIRAL: Code Generation for DSP Transforms. In Proceedings of
the IEEE, volume 93, pages 232–275. IEEE Computer Society Press, 2005.

112

[22] Valentin Besnard, Matthias Brun, Philippe Dhaussy, Frédéric Jouault, David Olivier,
and Ciprian Teodorov. Towards One Model Interpreter for Both Design and De-
ployment. In Proceedings of the 3rd International Workshop on Executable Modeling
(EXE 2017) colocated at MODELS 2017. CEUR Workshop Proceedings, 2017.

[23] Tanja Mayerhofer and Philip Langer. A Runtime Model for fUML. In Proceedings of
the 7th Workshop on Models@run.time (MRT) co-located with the 15th International
Conference on Model Driven Engineering Languages and Systems (MODELS’12),
pages 53–58. ACM, 2012.

[24] Yoann Laurent, Reda Bendraou, and Marie-Pierre Gervais. Executing and Debugging
UML Models: An FUML Extension. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC ’13, pages 1095–1102. ACM, 2013.

[25] Daniel A. Sadilek and Guido Wachsmuth. Prototyping Visual Interpreters and
Debuggers for Domain-Specific Modelling Languages. In Proceedings of the 4th
European Conference on Model Driven Architecture: Foundations and Applications,
ECMDA-FA ’08, pages 63–78. Springer, 2008.

[26] Erwan Bousse, Jonathan Corley, Benoit Combemale, Jeff Gray, and Benoit Baudry.
Supporting Efficient and Advanced Omniscient Debugging for xDSMLs. In Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2015, pages 137–148. ACM, 2015.

[27] Martin Fowler. Domain Specific Languages. Addison-Wesley, 1st edition, 2010.

[28] Tomaz Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Crepinsek, Daniela Carneiro da Cruz, and Pedro Rangel Henriques. Comparing
General-Purpose and Domain-Specific Languages: An Empirical Study. In Computer
Science and Information Systems, volume 7, pages 247–264. ComSIS Consortium,
2010.

[29] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Wiley-IEEE Computer Society Press, 2008.

[30] Mark von Rosing, Stephen White, Fred Cummins, and Henk Man. Business Process
Model and Notation (BPMN), volume 1, pages 429–453. Elsevier Science Publishers
B. V. - Morgan Kaufmann, 2015.

[31] Stefano Ceri, Maristella Matera, Francesca Rizzo, and Vera Demaldé. Designing
Data-Intensive Web Applications for Content Accessibility Using Web Marts. In
Commun. ACM, volume 50, pages 55–61. ACM, 2007.

[32] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Metamodeling
Foundation. In IEEE Softw., volume 20, pages 36–41. IEEE Computer Society Press,
2003.

113

[33] Mark Strembeck and Uwe Zdun. An Approach for the Systematic Development of
Domain-Specific Languages. In Softw. Pract. Exper., volume 39, pages 1253–1292.
John Wiley and Sons, Inc., 2009.

[34] Thomas Kühne. Matters of (Meta-) Modeling. In Software and Systems Modeling,
volume 5, pages 369–385. Springer, 2006.

[35] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Lan-
guages Using Metamodels. Addison-Wesley, 2008.

[36] Business Informatics Group. Graphical Modeling Languages [Power-
Point slides]. Retrieved during the Model Engineering Course 2018.
https://tiss.tuwien.ac.at/course/educationDetails.xhtml?
courseNr=188923&semester=2018W&dswid=2551&dsrid=665, Technische
Universität Wien, Accessed: 2020-06.

[37] David A. Schmidt. Denotational Semantics: A Methodology for Language Develop-
ment. Published by Schmidt, David A., 1997.

[38] Shane Sendall and Wojtek Kozaczynski. Model Transformation: The Heart and Soul
of Model-Driven Software Development. In IEEE Softw., volume 20, pages 42–45.
IEEE Computer Society Press, 2003.

[39] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew Wood.
Transformation: The Missing Link of MDA. In Graph Transformation, pages 90–105.
Springer, 2002.

[40] Tom Mens and Pieter [Van Gorp]. A Taxonomy of Model Transformation. In
Electronic Notes in Theoretical Computer Science, volume 152, pages 125–142.
Elsevier Science Publishers B. V., 2006.

[41] K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transformation Ap-
proaches. In IBM Syst. J., volume 45, pages 621–645. IBM Corp., 2006.

[42] Raphael Mannadiar and Hans Vangheluwe. Debugging in Domain-Specific Modelling.
In Software Language Engineering, pages 276–285. Springer, 2011.

[43] Jonathan Corley, Brian P. Eddy, Eugene Syriani, and Jeff Gray. Efficient and
Scalable Omniscient Debugging for Model Transformations. In Software Quality
Journal, volume 25, pages 7–48. Kluwer Academic Publishers, 2017.

[44] Ian Sommerville. Software Engineering. Pearson, 10th edition, 2015.

[45] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann Publishers Inc., 2nd edition, 2009.

[46] Educba. Introduction to Debugging. https://www.educba.com/
what-is-debugging/, Accessed: 2020-06.

114

[47] Jack B. Dennis. Petri Nets. In Encyclopedia of Parallel Computing, pages 1525–1530.
Springer, 2011.

[48] Hendrik Bünder and Herbert Kuchen. Towards Multi-editor Support for Domain-
Specific Languages Utilizing the Language Server Protocol. In Model-Driven Engi-
neering and Software Development, pages 225–245. Springer, 2020.

[49] Hendrik Bünder. Decoupling Language and Editor - The Impact of the Language
Server Protocol on Textual Domain-Specific Languages. In Proceedings of the 7th
International Conference on Model-Driven Engineering and Software Development,
MODELSWARD 2019, pages 129–140. SCITEPRESS - Science and Technology
Publications, Lda, 2019.

[50] Sven Efftinge and Markus Völter. oAW xText: A framework for textual DSLs. In
Workshop on Modeling Symposium at Eclipse Summit, volume 32. EclipseCon, 2006.

[51] Microsoft. Language Server Protocol documentation. https://microsoft.
github.io/language-server-protocol, Accessed: 2020-06.

[52] Eclipse Source. Graphical Language Server Protocol documentation. https:
//www.eclipse.org/glsp, Accessed: 2020-06.

[53] Eclipse Sprotty. Eclipse Sprotty documentation. https://github.com/
eclipse/sprotty/wiki, Accessed: 2020-06.

[54] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley, 2nd edition, 2008.

[55] Anatolii Bazko. Implementing the Debug Adapter Protocol for
Eclipse Theia and Eclipse Che. https://che.eclipse.org/
implementing-the-debug-adapter-protocol-for-eclipse-theia-d55cac38c59d,
Accessed: 2020-08.

[56] Remo H. Jansen. InversifyJS documentation. https://github.com/
inversify/InversifyJS, Accessed: 2020-06.

[57] Microsoft. Visual Studio Code Debugger Extension. https://code.
visualstudio.com/api/extension-guides/debugger-extension, Ac-
cessed: 2020-06.

[58] James H. Hill and Aniruddha S. Gokhale. Using Generative Programming to
Enhance Reuse in Visitor Pattern-based DSML Model Interpreters. In IEEE Trans.
SP. Institute for Software Integrated Systems, Vanderbilt University, 2007.

[59] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing
Co., Inc., 1995.

115

[60] Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head First Design
Patterns. O’ Reilly and Associates, Inc., 2004.

[61] Refactoring Guru. Visitor Pattern. https://refactoring.guru/
design-patterns/visitor, Accessed: 2020-06.

[62] Christian Hahn. A Domain Specific Modeling Language for Multiagent Systems. In
In Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multiagent Systems, volume 1, pages 233–240. AAMAS 2008, 2008.

[63] Federico Bergenti, Eleonora Iotti, Stefania Monica, and Agostino Poggi. Agent-
Oriented Model-Driven Development for JADE with the JADEL Programming
Language. In Computer Languages, Systems and Structures, volume 50, pages
142–158. Elsevier Science Publishers B. V., 2017.

[64] Hui Wu, Jeff Gray, and Marjan Mernik. Grammar-Driven Generation of Domain-
Specific Language Debuggers. In Softw. Pract. Exper., volume 38, pages 1073–1103.
John Wiley and Sons, Inc., 2008.

[65] B. Combemale, O. Barais, and A. Wortmann. Language Engineering with the
GEMOC Studio. In 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pages 189–191. IEEE Computer Society Press, 2017.

[66] Benoit Combemale, Julien Deantoni, Olivier Barais, Arnaud Blouin, Erwan Bousse,
Cédric Brun, Thomas Degueule, and Didier Vojtisek. A Solution to the TTC’15
Model Execution Case Using the GEMOC Studio. In 8th Transformation Tool
Contest. CEUR Workshop Proceedings, 2015.

[67] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien Dean-
toni, and Benoit Combemale. Execution Framework of the GEMOC Studio (Tool
Demo). In Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2016, pages 84–89. ACM, 2016.

[68] Dorian Leroy, Erwan Bousse, Manuel Wimmer, Benoit Combemale, and Wieland
Schwinger. Create and Play your Pac-Man Game with the GEMOC Studio (Tool
Demonstration). In Proceedings of the 3rd International Workshop on Executable
Modeling (EXE 2017) colocated at MODELS 2017, pages 1–6. CEUR Workshop
Proceedings, 2017.

[69] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Executability
into Object-Oriented Meta-languages. In Model Driven Engineering Languages and
Systems, volume 3713, pages 264–278. Springer, 2005.

[70] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Model Driven Language
Engineering with Kermeta. In Generative and Transformational Techniques in Soft-
ware Engineering III: International Summer School, GTTSE 2009, Braga, Portugal,
July 6-11, 2009. Revised Papers, volume 6491, pages 201–221. Springer, 2011.

116

[71] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean-
Marc Jézéquel. Melange: A Meta-Language for Modular and Reusable Development
of DSLs. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2015, pages 25–36. ACM, 2015.

[72] Thomas Degueule, Benoit Combemale, Arnaud Blouin, and Olivier Barais. Reusing
legacy dsls with melange. In Proceedings of the Workshop on Domain-Specific
Modeling, DSM 2015, pages 45–46. ACM, 2015.

[73] Erwan Bousse, Tanja Mayerhofer, and Manuel Wimmer. Domain-Level Debugging for
Compiled DSLs with the GEMOC Studio (Tool Demo), 1rst International Workshop
on Debugging in Model-Driven Engineering (MDEbug 2017). In Proceedings of
MODELS 2017 Satellite Event. CEUR Workshop Proceedings, 2017.

[74] GEMOC Group. GEMOC Studio Documentation. https://download.eclipse.
org/gemoc/docs, Accessed: 2020-06.

[75] Dorian Leroy, Erwan Bousse, Manuel Wimmer, Tanja Mayerhofer, Benoit Combe-
male, and Wieland Schwinger. Behavioral interfaces for executable DSLs. In Software
and Systems Modeling, volume 19, pages 1015–1043. Springer, 2020.

[76] Tomaž Kos, Marjan Mernik, and Tomaž Kosar. A Tool Support for Model-Driven
Development: An Industrial Case Study from a Measurement Domain. In Applied
Sciences, volume 9, page 4553. MDPI, 2019.

[77] Tomaž Kos, Tomaž Kosar, Marjan Mernik, and Jure Knez. Ladybird: Debugging
Support in the Sequencer. In Proceedings of the 2011 American Conference on Applied
Mathematics and the 5th WSEAS International Conference on Computer Engineering
and Applications, AMERICAN-MATH’11/CEA’11, pages 135–139. WSEAS, 2011.

[78] Tomaž Kosar, Marjan Mernik, Jeff Gray, and Tomaž Kos. Debugging Measurement
Systems using a Domain-Specific Modeling Language. In Computers in Industry,
volume 65, pages 622–635. Elsevier Science Publishers B. V., 2014.

[79] Tomaz Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik. Improving End-User
Productivity in Measurement Systems with a Domain-Specific (Modeling) Language
Sequencer. In ADBIS, volume 639, pages 61–76. CEUR Workshop Proceedings,
2010.

[80] Lidia Fuentes, Jorge Manrique, and Pablo Sánchez. PóPulo: A Tool for Debugging
UML Models. In Companion of the 30th International Conference on Software
Engineering, ICSE Companion ’08, pages 955–956. ACM, 2008.

[81] Michelle L. Crane and Juergen Dingel. Towards a UML Virtual Machine: Imple-
menting an Interpreter for UML 2 Actions and Activities. In Proceedings of the 2008
Conference of the Center for Advanced Studies on Collaborative Research: Meeting
of Minds, CASCON ’08. ACM, 2008.

117

[82] Andrei Kirshin, Dolev Dotan, and Alan Hartman. A UML Simulator Based on a
Generic Model Execution Engine. In Proceedings of the 2006 International Conference
on Models in Software Engineering, MoDELS’06, pages 324–326. Springer, 2006.

[83] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, and Nosa Omorogbe. The Ar-
chitecture of a UML Virtual Machine. In Proceedings of the 16th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’01, pages 327–341. ACM, 2001.

[84] Dolev Dotan and Andrei Kirshin. Debugging and Testing Behavioral UML Models. In
Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Programming
Systems and Applications Companion, OOPSLA ’07, pages 838–839. ACM, 2007.

[85] Simon Van Mierlo, Yentl Van Tendeloo, and Hans Vangheluwe. Debugging Parallel
DEVS. In Simulation, volume 93, pages 285–306. Society for Computer Simulation
International, 2017.

[86] Benoît Combemale, Xavier Crégut, Jean-Pierre Giacometti, Pierre Michel, and Marc
Pantel. Introducing Simulation and Model Animation in the MDE Topcased Toolkit.
European congress on Embedded Real Time Software and Systems (ERTS), 2008.

[87] I. Rath, D. Vago, and D. Varro. Design-time simulation of domain-specific models by
incremental pattern matching. In 2008 IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 219–222. IEEE Computer Society Press, 2008.

[88] Nils Bandener, Christian Soltenborn, and Gregor Engels. Extending DMM Behavior
Specifications for Visual Execution and Debugging. SLE’10, pages 357–376. Springer,
2010.

[89] Ricky T. Lindeman, Lennart C.L. Kats, and Eelco Visser. Declaratively Defining
Domain-Specific Language Debuggers. In SIGPLAN Not., volume 47, pages 127–136.
ACM, 2011.

[90] Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz. The Moldable Debugger: A Frame-
work for Developing Domain-Specific Debuggers. In Software Language Engineering,
pages 102–121. Springer, 2014.

[91] Andrei Chiş, Marcus Denker, Tudor Gîrba, and Oscar Nierstrasz. Practical Domain-
Specific Debuggers Using the Moldable Debugger Framework. In Comput. Lang.
Syst. Struct., volume 44, pages 89–113. Elsevier Science Publishers B. V., 2015.

[92] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon Van
Mierlo, and Hüseyin Ergin. AToMPM: A Web-based Modeling Environment. In
Demos/Posters/StudentResearch@MoDELS. CEUR Workshop Proceedings, 2013.

[93] Michel Dirix, Alexis Muller, and Vincent Aranega. GenMyModel : An Online UML
Case Tool. European Conference on Object-Oriented Programming, 2013.

118

[94] Miklós Maróti, Tamás Kecskés, Róbert Kereskényi, Brian Broll, Péter Völ-
gyesi, László Jurácz, Tihamer Levendovszky, and Ákos Lédeczi. Next genera-
tion (Meta)modeling: Web- and cloud-based collaborative tool infrastructure. In
MPM@MoDELS, volume 1237, pages 41–60. CEUR Workshop Proceedings, 2014.

[95] Louis M. Rose, Dimitrios S. Kolovos, and Richard F. Paige. EuGENia Live: A
Flexible Graphical Modelling Tool. In Proceedings of the 2012 Extreme Modeling
Workshop, XM ’12, pages 15–20. ACM, 2012.

[96] José P. Leal, Helder Correia, and José C. Paiva. Eshu: An Extensible Web Editor
for Diagrammatic Languages. In 5th Symposium on Languages, Applications and
Technologies (SLATE’16), volume 51 of OpenAccess Series in Informatics (OASIcs),
pages 12:1–12:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[97] Christian Thum, Michael Schwind, and Martin Schader. SLIM–A Lightweight
Environment for Synchronous Collaborative Modeling. In Proceedings of the 12th
International Conference on Model Driven Engineering Languages and Systems,
volume 5795 of MODELS ’09, pages 137–151. Springer, 2009.

[98] Shuhei Hiya, Kenji Hisazumi, Akira Fukuda, and Tsuneo Nakanishi. Clooca: Web
based tool for Domain Specific Modeling. In Proceedings of Demos/Posters/Studen-
tResearch@ MoDELS, volume 1115. CEUR Workshop Proceedings, 2013.

[99] José A. Cruz-Lemus, Ann Maes, Marcela Genero, Geert Poels, and Mario Piattini.
The Impact of Structural Complexity on the Understandability of UML Statechart
Diagrams. In Inf. Sci., volume 180, pages 2209–2220. Elsevier Science Publishers B.
V., 2010.

119

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodology
	Structure of the Work

	Background
	Model-Driven Development
	Domain-Specific Languages
	Debugging in Domain-Specific Modeling

	Web-based Modeling Tools
	Language Server Protocol
	Graphical Language Server Protocol
	Debug Adapter Protocol
	Summary

	Applying the DAP to GLSP
	Running Example: Workflow Modeling Language + Diagram Editor
	Requirements for Debugging the Workflow Modeling Language
	Workflow Modeling Language Debugger

	Architecture and Implementation
	Technological Background
	Implementation Details
	Challenges

	Evaluation
	State Machine Modeling Language
	Open Problems
	Interpretation of the Results

	Related Work
	Debugging Domain-Specific Models
	Web-based DSML Environments
	Other Related Work

	Summary and Conclusion
	Summary
	Comparison with Related Work
	Limitations and Future Work

	Bibliography

