
Pruning External Minimality Checking for ASP
Using Semantic Dependencies?

Thomas Eiter and Tobias Kaminski

Institute of Logic and Computation, TU Wien, Vienna, Austria
{eiter,kaminski}@kr.tuwien.ac.at

Abstract. hex-programs integrate external computations in ASP. For
hex-evaluation, an external (e)-minimality check is required to prevent
cyclic justifications via external sources. As the check is a bottleneck
in practice, syntactic information about atom dependencies has been
used previously to detect when the check can be avoided. However, the
approach largely overapproximates the real dependencies due to the black-
box nature of external sources. We show how the dependencies can be
approximated more closely by exploiting semantic information, which
significantly increases pruning of e-minimality checking. Moreover, we
analyze checking and optimization of semantic dependency information.
An empirical evaluation exhibits a clear benefit of this approach.

1 Introduction

Answer Set Programming (ASP) [10] is a popular approach for declarative problem
solving. The hex-formalism [5] extends ASP to address the increasing need for
integrating external computation sources. It enables a bidirectional exchange with
arbitrary sources via so-called external atoms, and has been employed in many
areas ranging from Semantic Web applications to robot planning [5]. For instance,
an external atom &concat[X,Y](Z) can be used to concatenate strings in a rule
fullname(X)← &concat[X,Y](Z), firstname(X), lastname(Y). External atoms
may also have predicate input, e.g. in the rule closeCity(X)← &closeTo[city](X),
location(X), where the external atom outputs all cities located close to cities in
the extension of the predicate city .

For hex-evaluation, advanced reasoning algorithms are required since external
atoms must be considered in all solving phases. A notable difference to ordinary
ASP is that an external (e-)minimality check is needed to avoid unfounded
support by external atoms. For example, if the locations for the above rule are
osaka, kobe, bratislava and vienna, and the rule city(X)← closeCity(X) as well
as the fact city(osaka) are added, only the atom city(kobe) should be contained
in an answer set in addition. Even though Bratislava and Vienna are located close
to each other, the atoms city(bratislava) and city(vienna) can only cyclically

? This research has been supported by the FWF-projects P27730 and W1255-N23. The
final authenticated publication is available online at https://doi.org/10.1007/978-3-
030-20528-7 24.

2 T. Eiter and T. Kaminski

support each other via the two rules and the external atom. The e-minimality
check of hex eliminates spurious answer sets containing the latter two atoms.

On the one hand, performing the e-minimality check efficiently is highly non-
trivial as it is co-NP-complete already for ground Horn programs with polynomial
external atoms [4]. On the other hand, if the rule city(X)← closeCity(X) is not
added above, cyclic support via the external atom can be ruled out independent
from the external semantics. Based on this observation, a syntactic criterion was
presented in [4] for deciding whether the e-minimality check can be skipped for a
program, which often results in significant speedups.

Alternatively, if the external atom &closeWest[city](X) is used in the example
(only retrieving cities close to the west of input cities), cyclic support can also
be excluded. This cannot be detected by a syntactic criterion, such that the
e-minimality check needs to be performed in any case by the previous approach.
Moreover, applying a semantic criterion is challenging, as before, external atoms
have largely been considered as black-boxes that conceal semantic dependencies.

Skipping e-minimality checks in more cases is of special interest as it can
often result in drastic speedups. For this reason, we develop a new approach for
pruning e-minimality checking that also exploits semantic dependencies. It relies
on additional information about input-output (io-)dependencies of external atoms,
which may be provided by a user, or even generated automatically. Hidden io-
dependencies are common in applications involving recursive processing, e.g. over
external graphs or Semantic Web data. At this, supplied dependency information
can be incomplete and added flexibly. The overall goal is to increase the efficiency
of ASP programs with external atoms to promote their practical applicability.

After preliminaries in Section 2, we present our contributions as follows:

• In Section 3.1, we provide a novel formalization of io-dependencies that encode
semantic dependency information, and we show under which condition they
can safely be used for pruning the e-minimality check.

• In Section 3.2, we state theoretical properties crucial for checking and opti-
mizing io-dependencies, and show when the associated costs can be reduced.

• In Section 4, we present an experimental evaluation using illustrative bench-
mark problems that confirms the advantage of exploiting io-dependencies.

Our new approach not only applies to hex, but may also be employed
analogously for other approaches that integrate external sources into ASP, such
as clingo [8], if external cyclic support is not desired. Proofs and benchmark data
can be found at www.kr.tuwien.ac.at/research/projects/inthex/dep-pruning.

2 Preliminaries

We assume disjoint sets P , C, X and V of predicates, constants, external predicates
(prefixed with ‘&’) and variables, respectively. Each p ∈ P has fixed arity
ar(p), and each &g ∈ X has fixed input and output arity arI(&g) and arO(&g),
respectively. An atom is of the form p(~t), where p ∈ P, ~t= t1, . . . , t` ∈ C ∪ V.
A (signed) literal is a positive or a negative ground atom Tp(~c) or Fp(~c). An

Pruning External Minimality Checking for ASP 3

assignment A over a set A of ground atoms is a set of literals s.t. for each a ∈ A,
either Ta ∈ A or Fa ∈ A, where A(a) = T if Ta ∈ A, and A(a) = F otherwise.

HEX-Programs. hex-programs extend answer set programs with external
atoms in rule bodies (cf. [5] for more details).

Syntax. An external atom is of form &g [~X](~Y), where &g ∈ X , ~X = X1, . . . , Xk,
with k = arI(&g), are input parameters (variables or predicates w.l.o.g.) and
~Y = Y1, . . . , Yl, with l = arO(&g), are output terms. An external atom is ground

if ~X = X1, . . . , Xk are predicates and ~Y = Y1, . . . , Yl are constants. Given a
ground external atom &g [~X](~Y), we call &g [~X] a ground external (ge-)predicate.

Definition 1 (HEX-Program). A hex-program Π is a set of rules of the form
a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn, where each ai, 1 ≤ i ≤ k, is an
atom and each bj, 1 ≤ j ≤ n, is either an ordinary atom or an external atom.

Given a rule r, H(r) = {a1, . . . , ak} is its head, B(r) = {b1, . . . , bm,not bm+1, . . . ,
not bn} its body, and B+(r) = {b1, . . . , bm} resp. B−(r) = {bm+1, . . . , bn}.

Semantics. As safety conditions allow to compute equivalent finite groundings
of hex-programs, in the following we assume assignments are over the set A(Π)
of atoms that occur in a ground program Π at hand. Moreover, definitions are
implicitly parameterized with the according finite vocabulary. Following [6], the
semantics of a ground external atom &g [~p](~c), wrt. an assignment A, is given by
a 1+arI(&g)+arO(&g)-ary two-valued (Boolean) oracle function f&g defined for
all possible values of A, ~p and ~c s.t. &g [~p](~c) is true (informally, ~c is an output
of &g for input ~p) relative to A iff f&g(A, ~p,~c) = T. As usual, we assume that
f&g(A, ~p,~c) depends only on the restriction of A to ~p. Satisfaction of ASP rules
and programs [10] is extended to hex-rules and programs in the obvious way.

The answer sets of a hex-program Π are defined as follows. Let the FLP-
reduct [7] of Π wrt. an assignment A be the set fΠA = {r ∈ Π | A |=
b, for all b ∈ B(r)} of all rules whose body is satisfied by A, and let for assign-
ments A1, A2 denote A1 ≤ A2 that {Ta ∈ A1} ⊆ {Ta ∈ A2}. Then:

Definition 2 (Answer Set). An assignment A is an answer set of a hex-
program Π, if A is a ≤-minimal model of fΠA.

Example 1. Consider Π = {p ← &id [p]()}, where &id [p]() is true iff p is true.
Then, Π has the answer set A1 = ∅; indeed it is a ≤-minimal model of fΠA1 = ∅.

Evaluation. A hex-program Π can be transformed to an ordinary program by
replacing each external atom &g [~p](~c) in Π by an ordinary replacement atom
e&g[~p](~c), and by adding a rule e&g[~p](~c)∨ne&g[~p](~c)← that guesses its evaluation.
An ordinary ASP solver can then be employed to compute the answer sets of the
resulting guessing program Π̂, where each answer set Â is a candidate model. If
all truth values for atoms e&g[~p](~c) correspond to f&g(Â, ~p,~c), Â is a compatible

set. Still, the projection A of a compatible set Â to A(Π) is not always an answer
set due to the possibility of cyclic support via external atoms.

4 T. Eiter and T. Kaminski

Example 2 (cont’d). The guessing program Π̂={p← e&id[p](); e&id[p]∨ne&id[p]←}
has the answer sets Â1 = ∅ and Â2 = {Tp,Te&id[p]}. Here, A1 is a ≤-minimal
model of fΠA1 = ∅, but A2 not of fΠA2 = Π since ∅ ≤ A2 is a smaller model.

Consequently, an e-minimality check wrt. fΠA is needed for finding answer
sets of hex-programs. A direct way to ensure minimality of the projection A
of a compatible set Â for a hex-program Π wrt. fΠA consists in explicitly
constructing fΠA and checking that it has no model A′ s.t. A′ ≤ A.

3 Pruning the External Minimality Check

Since an answer set Â of a guessing program Π̂ must be a minimal model

of the FLP-reduct fΠ̂Â, an e-minimality check is under certain conditions
redundant. The criterion in [4] for deciding its necessity relies on an atom
dependency graph induced by the hex-program. Informally, an e-minimality
check is only needed for programs that allow cyclic support via external atoms,
which can be checked efficiently. For instance, the program Π1 = { p← &id [p]() }
allows cyclic support for the atom p via &id [p](), while this is not the case
for Π2 = { p ← &id [q](); q ← r; r ← q }, where the truth value of &id [q]() is
independent of the value of p. If cyclic support via external atoms can be ruled
out as for Π2, the e-minimality check can be skipped for a program, potentially
avoiding to invest many resources into a redundant check. Note, however, that a
minimality check is still needed for computing the answer sets of Π̂.

In this section, we introduce a new technique for skipping the e-minimality
check wrt. a wider class of programs than previous approaches. More precisely,
given Π, we present a new sufficient1 criterion for deciding if every projection A
of a compatible set Â for Π̂ is an answer set of Π. The criterion exploits that
output values of external atoms often do not depend on the complete extensions
of their input predicates, which can be determined given additional information
concerning dependencies between the inputs and outputs of external atoms.

3.1 Dependency Graph Pruning

We start by defining so-called io-dependencies, which specify that certain outputs
of external atoms only depend on specific argument values of their inputs. For
instance, whether a city c is in the output of &closeWest [city](X) from Section 1
only depends on cities c′ that are located close to the east of c. Hence, the truth
value of &closeWest [city](kobe) clearly only depends on the atom city(osaka),
and we want to encode that kobe as first output of &closeWest [city](X) only
depends on the element osaka as first argument of the first input predicate city .

Definition 3 (Io-Dependency). An io-dependency for a ge-predicate &g [~p]
is a tuple δ = 〈i, j : J, k : e〉 where 1 ≤ i ≤ arI(&g), 1 ≤ j ≤ ar(pi), 1 ≤ k ≤
arO(&g), J ⊆ C and e ∈ C. The set of all δ for &g [~p] is denoted by dep(&g [~p]).

1 Deciding the sufficient and necessary criterion is Πp
2 -complete for polynomial-time

decidable external atoms and thus ill-suited for our aim to improve performance.

Pruning External Minimality Checking for ASP 5

In the sequel, io-dependencies will be used to constrain the possible depen-
dencies between inputs and outputs of external atoms &g [~p](~c). Intuitively, an
io-dependency 〈i, j : J, k : e〉 states that if constant e occurs as the kth output
of &g [~p](~c), then only those input predicates at position i are relevant for its
evaluation where the jth argument matches some e′ ∈ J . Thus, the io-dependency
δ = 〈1, 1 : {osaka}, 1 : kobe〉 could be specified for the example above. Io-
dependencies induce atom sets relevant for evaluating respective external atoms:

Definition 4 (Compliant Atoms). A ground ordinary atom pi(~d), with ~d =
d1, ..., dl, is compliant with a set D ⊆ dep(&g [~p]) of io-dependencies for a ground
external atom &g [~p](~c) if dj ∈ J for all 〈i, j : J, k : e〉 ∈ D with e = ck. The set
of all atoms compliant with D for &g [~p](~c) is denoted by comp(D,&g [~p](~c)).

For our example, we obtain comp({δ},&closeWest [city](kobe))={city(osaka)}.
The semantics of external atoms is related to io-dependencies as follows.

Definition 5 (Faithfulness). A set D ⊆ dep(&g [~p]) is faithful if for any as-

signments A,A′ and ground external atom &g [~p](~c), either A(pi(~d)) 6= A′(pi(~d))

for some pi(~d) ∈ comp(D,&g [~p](~c)) or f&g(A, ~p,~c) = f&g(A
′, ~p,~c).

Thus, io-dependencies D ⊆ dep(&g [~p]) constrain the set of atoms that poten-
tially impact the evaluation of &g [~p](~c), i.e. if D is faithful, changing only truth

values of atoms pi(~d) 6∈ comp(D,&g [~p](~c)) has no effect on the value of &g [~p](~c).
In the following, we denote by D(&g [~p]) ⊆ dep(&g [~p]) a set of io-dependencies

specified for &g [~p]. By default, we assume that D(&g [~p]) is empty, but it can be
utilized to supply additional dependency information. To ensure correctness of
an algorithm that skips e-minimality checks based on D(&g [~p]), it is important
that D(&g [~p]) is faithful; and we assume in the following that this is the case.
Simultaneously, the goal is to approximate the real dependencies between atoms
as close as possible for maximal performance gains. Note that while an extensional
specification of D(&g [~p]) might be very verbose, they can often also be specified
more concisely in an intensional manner, as in the following example.

Example 3. Consider &setDiff [dom, set](c), which is true for c ∈ C and assign-
ment A iff {Tdom(c),Fset(c)} ⊆ A. Thus, the presence of an output value c
only depends on atoms with predicate dom or set that have c as first argument.
Hence, D(&setDiff [dom, set]) = {〈1, 1:{c}, 1:c〉, 〈2, 1:{c}, 1:c〉 | c ∈ C} is faithful.

We now introduce a notion of atom dependency in hex-programs that accounts
for io-dependencies and generalizes the corresponding notion from [4].

Definition 6 (Atom Dependency). Given a ground hex-program Π, a set

D(&g [~p]) for each &g [~p] in Π, and ordinary ground atoms p(~d) and q(~e), we say

– q(~e) depends on p(~d), denoted q(~e)→d p(~d) if for some rule r ∈ Π it holds

that q(~e) ∈ H(r) and p(~d) ∈ B+(r); and

– q(~e) depends externally on p(~d), denoted q(~e) →e p(~d) if some rule r ∈ Π
and some external atom &g [~p](~c) ∈ B+(r) ∪B−(r) with p ∈ ~p exist such that

q(~e) ∈ H(r) and p(~d) ∈ comp(D(&g [~p]),&g [~p](~c)).

6 T. Eiter and T. Kaminski

Note that Definition 6 generalizes the corresponding one from [4] in that an
external dependency is only added if the specified io-dependencies are satisfied.
The definitions coincide if D(&g [~p]) = ∅ for all ge-predicates &g [~p] in Π.

Example 4. Consider &suc[node](n), which evaluates to true wrt. an assignment
A and an external directed graph G = (V,E) iff n′ → n ∈ E for some node n′

s.t. Tnode(n) ∈ A. It is utilized in the following hex-program Π:

node(a). node(X)← &suc[node](X).

Intuitively, the program computes all nodes reachable from node a via the edges in
G. If the external graph has nodes V = {a, b, c, d} and directed edges E = {a→ b,
a→ c, c→ d, e→ d}, the grounding of Π produced by the grounding algorithm
of the hex-program solver dlvhex contains the following rules (omitting facts):

node(b)← &suc[node](b). node(c)← &suc[node](c). node(d)← &suc[node](d).

Without specifying io-dependencies for &suc[node], it holds, e.g., that node(a)
→e node(b) and node(b) →e node(a). However, we can specify D(&suc[node])
=
{
〈1, 1 : {c1 | c1 → c2 ∈ E}, 1 : c2〉 | c2 ∈ C

}
, exploiting that the presence of

output nodes only depends on input nodes to which they are successors. In this
case, node(a)→e node(b) does not hold according to Definition 6 as b→ a 6∈ E.

We are now ready to introduce the atom dependency graph for a given program
Π. From this graph, a property of Π can be derived which is subsequently
employed to decide the necessity of the e-minimality check wrt. Π.

Definition 7 (Dependency Graph). Given a ground hex-program Π, the

dependency graph GdepΠ = (V,E) has the vertices V = A(Π) and directed edges

E =→d ∪ →e; Π has an e-cycle, if GdepΠ has a cycle with an edge →e.

While the inverse of →d was additionally included in GdepΠ by Eiter et al. [4],
we improve their results by showing that our more general definition suffices.
Moreover, the following result differs from the previous result for e-minimality
check skipping [4] in that it is based on our generalized definition of external
dependencies. Consequently, it can be applied to a larger class of hex-programs.

Theorem 1. If a ground hex-program Π contains no e-cycle, then every pro-
jection A of a compatible set Â for Π̂ is an answer set of Π.

Example 5 (cont’d). Figure 1 shows the dependency graphs forΠ from Example 4,
with and without specified io-dependencies. The full dependency graph has an
e-cycle, but the pruned graph does not. Hence, Π does not require e-minimality
checks (cf. Theorem 1), but this can only be detected using the pruned graph.

As a result, we obtain a flexible means for increasing the efficiency of evaluating
a class of hex-programs where the e-minimality check is performed due to an
overapproximation of the real dependencies between atoms.

Pruning External Minimality Checking for ASP 7

node(a) node(b)

node(c) node(d)

node(a) node(b)

node(c) node(d)

Fig. 1. Full and pruned dependency graph for Π from Example 4 (all arrows are “→e”).

3.2 Properties of Faithful IO-Dependencies

We now consider checking, generating and optimizing io-dependencies.
Informally, given D1, D2 ⊆ dep(&g [~p]), D1 is better than D2 if it induces

less compliant atoms. We thus say that D1 tightens D2, denoted D1 ≤ D2, if
comp(D1,&g [~p](~c)) ⊆ comp(D2,&g [~p](~c)) holds for all tuples ~c. We call D1 tight
if no D2 strictly tightens D1, i.e., D2 ≤ D1 but D1 6≤ D2; furthermore D1 and
D2 are equally tight, denoted D1 ≡ D2, if D1 ≤ D2 and D2 ≤ D1. We then have:

Proposition 1. Suppose D1, D2 ⊆ dep(&g [~p]) are such that D1 ≤ D2. If D1 is
faithful, then D2 is also faithful.

As a consequence, faithfulness is anti-monotonic wrt. set-inclusion, and it
is monotonic wrt. adding subsumed io-dependencies, where δ = 〈i, j : J, k : e〉
subsumes δ′ = 〈i, j : J ′, k : e〉, if J ⊆ J ′ holds.

Corollary 1. If D⊆ dep(&g [~p]) is faithful, then (i) each D′⊆D is faithful and
(ii) each D′=D ∪D′′ where each δ′′ ∈ D′′ is subsumed by some δ ∈ D is faithful.

Consequently, we can tighten a faithful set D by sequentially dropping con-
stants c from io-dependencies δ = 〈i, j : J, k : e〉 in D, i.e., check whether D ∪ δ′
for δ′ = 〈i, j : J \ {c}, k : e〉 is faithful and if so, replace D with (D \ {δ}) ∪ {δ′}.

We can simplify D by exploiting the following equivalences; let δ∗(i, j, k:e) =
〈i, j : C, k : e〉 for any possible i, j, and k : e.

Proposition 2. For D ⊆ dep(&g [~p]) and 〈i, j : J, k : e〉 ∈ dep(&g [~p]), we have
(i) D ≡ D∪{δ∗(i, j, k:e)} ≡ D \{δ∗(i, j, k:e)}, and (ii) for any δ = 〈i, j : J, k : e〉,
δ′ = 〈i, j : J ′, k : e〉 ∈ D that D ≡ D ∪ {〈i, j : J ∩ J ′, k : e〉}.

That is, δ∗(i, j, k:e) is like a tautology, and we can replace all dependencies
for i, j and k : e in D by one which contains the intersection of all their J-sets.
We thus can normalize D into nf(D) such that for each i, j, and k : e exactly
one io-dependency occurs, and then start tightening. We then obtain:

Proposition 3. Given a faithful D ⊆ dep(&g [~p]), exhaustive tightening of nf(D)
results in a tight faithful D′.

The set D= ∅ is trivially faithful, and nf(∅) consists of all δ∗(i, j, k:c); thus
even without user input, a tight faithful set D′ for &g [~p] is constructible. Moreover,
semantically faithful sets of compliant atoms have the intersection property.

8 T. Eiter and T. Kaminski

Proposition 4. If D1, D2⊆ dep(&g [~p]) are faithful, then D1∪D2 is faithful, and
for every ~c, comp(D1 ∪D2,&g [~p](~c)) = comp(D1,&g [~p](~c)) ∩ comp(D2,&g [~p](~c)).

Consequently, every ge-predicate has a semantically unique tight set of faithful
io-dependencies. However, syntactically, different tight faithful sets may exist.

Example 6. Consider a ge-predicate &g [p] which is true for output (a, b) wrt.
an assignment A iff Tp(c) ∈ A, and false for all other output tuples. Then
{〈1, 1 : {c}, 1 : a〉} and {〈1, 1 : {c}, 2 : b〉} are faithful, and both are tight.

To check faithfulness of a set D ⊆ dep(&g [~p]), formally the oracle function
f&g(A, ~p,~c) must be evaluated for all evaluations of predicates p ∈ ~p and output
tuples ~c, which naively is often not feasible in practice.

Example 7. Reconsider &suc[node](X) from Example 3. To check faithfulness
of the specified io-dependencies wrt. output a, the oracle function needs to be
evaluated under all possible assignments to atoms with predicate node.

In the worst case, this cannot be avoided by the following result, where we assume
that &g [~p](~c) is decidable in polynomial time.

Proposition 5. Checking faithfulness of a given set D ⊆ dep(&g [~p]) is co-NEXP-
complete in general, and co-NP-complete for fixed predicate arities.

When certain properties of external sources are known, less external calls are
needed for faithfulness checking, e.g. for monotonic functions. An input pi ∈ ~p
of a ge-predicate &g [~p] is monotonic, if for any assignment A and output ~c,

f&g(A, ~p,~c) = T implies f&g(A
′, ~p,~c) = T for every A′ ≥ A s.t. A(pj(~d)) =

A′(pj(~d)) for all predicates pj ∈ ~p with pj 6= pi (cf. [6]). Based on monotonicity,
the number of assignments to consider in a faithfulness check can be decreased.

Proposition 6. If pi ∈ ~p for &g [~p] is monotonic, a set D ⊆ dep(&g [~p]) is faithful

for &g [~p] iff for any assignments A, A′ s.t. Tpi(~d) ∈ A and Fpi(~d) ∈ A′ for

every pi(~d) 6∈ comp(D,&g [~p](~c)) and A(pi(~d)) = A′(pi(~d)) for every pi(~d) ∈
comp(D,&g [~p](~c)), it holds that f&g(A, ~p,~c) = f&g(A

′, ~p,~c).

Example 8 (cont’d). As node is a monotonic input parameter of &suc[node], for
checking faithfulness wrt. a it suffices to evaluate f&suc(A, node, a) under two
assignments At and Af , s.t. At ⊆ {Tnode(a),Tnode(b),Tnode(c), Tnode(d)}
and Af ⊆ {Fnode(a),Fnode(b),Fnode(c),Fnode(d)}.

Under additional conditions, we obtain tractability:

Corollary 2. If all pi ∈ ~p for &g [~p] are monotonic and |comp(D,&g [~p](~c))| is
bounded, then checking faithfulness is polynomial for fixed predicate arities.

The same holds for computing a tight faithful set D for &g [~p]. In practice,
this applies to Example 3, if the external graph has bounded degree.

Relativized io-dependencies. So far, the context of a given hex-program has
not been exploited for specifying respective io-dependencies. However, without

Pruning External Minimality Checking for ASP 9

considering how dependencies in an external source may be affected by input
parameters, all io-dependencies that may hold under any possible extension of
input predicates must be respected. This is illustrated by the following example.

Example 9. Consider &suc[edge, node](X), where edges from edge are inserted
into G before successor nodes are output. If it is unknown which edges can be
added, io-dependencies must account for the complete graph (all edges), which is
a maximal overapproximation. Now, consider the following hex-program.

edge(b, c) ∨ n edge(b, c). node(a). node(b)← &suc[edge, node](b).

As edge(b, c) is the only atom with predicate edge that can potentially be true
in the input of &suc[edge, node](b) in any answer set, it suffices to specify io-
dependencies wrt. the graph G′ = (V,E ∪ {b→ c}) to ensure e-minimality.

To account for the inputs to external sources that are possible in answer sets,
we define faithfulness wrt. a hex-program Π. Let env(Π) denote the set of all
atoms for Π that are true in some compatible set of Π.

Definition 8 (Relativized Faithfulness). A set D ⊆ dep(&g [~p]) is faithful
wrt. a hex-program Π, if for any assignments A, A′ s.t. {a | Ta ∈ A ∪A′} ⊆
env(Π), and for any output tuple ~c for &g [~p], either A(pi(~d)) 6= A′(pi(~d)) for

some atom pi(~d) ∈ comp(D,&g [~p](~c)) or f&g(A, ~p,~c) = f&g(A
′, ~p,~c).

We show that skipping e-minimality checks based on the relativized definition
of faithful io-dependencies is still safe.

Proposition 7. Theorem 1 still holds if the specified io-dependencies are faithful
wrt. to the hex-program Π at hand according to Definition 8.

The properties of above can be adjusted to this setting.

4 Empirical Evaluation

To empirically evaluate our new technique, we integrated it into the hex-solver
dlvhex 2.5.0, which uses gringo 4.4.0 and clasp 3.1.1 as backends [9], and
tested it on randomly generated instances. Io-depencendies for external atoms are
specified by plugin-methods that compute whether a dependency between given
input and output values exists. We used a Linux machine with two 12-core AMD
Opteron 6238 SE CPUs and 512 GB RAM; the timeout was 300 secs and the
memout 8 GB per instance. The average runtime of 10 instances per problem size
is reported (in secs) for computing all answer sets; timeouts are in parentheses.

Configurations. To gain insights into how dependency graph pruning and other
techniques interact, we consider the frequency of external calls as further factor.
While basic evaluation in Section 2 evaluates external atoms wrt. candidate mod-
els, we can evaluate them also wrt. partial assignments [6]. At this, investigating
how e-minimality check skipping interacts with partial evaluation is of interest as
early external evaluation can speed up model search as well as the e-minimality
check and thus, potentially influence the impact of our new technique.

10 T. Eiter and T. Kaminski

Table 1. User Access Selection Results (few cycles)

c-mod
c-mod +
io-dep

part
part +
io-dep

min-part
min-part +

io-dep
#cyclic

10 0.46 (0) 0.43 (0) 0.60 (0) 0.58 (0) 1.53 (0) 1.36 (0) 7/10
15 2.64 (0) 2.18 (0) 4.58 (0) 3.91 (0) 7.41 (0) 4.43 (0) 3/10
20 16.43 (0) 14.71 (0) 44.90 (0) 41.93 (0) 43.87 (0) 31.03 (0) 5/10
25 43.85 (0) 38.25 (0) 102.39 (1) 93.65 (1) 81.51 (0) 67.59 (0) 5/10
30 110.24 (2) 91.01 (2) 192.48 (4) 180.58 (4) 168.80 (2) 99.53 (2) 4/10
35 111.62 (1) 79.69 (1) 217.58 (4) 178.62 (2) 161.86 (2) 83.18 (1) 3/10
40 189.64 (2) 141.12 (2) 262.35 (6) 231.22 (5) 202.95 (3) 143.12 (2) 5/10
45 264.04 (5) 216.89 (4) 269.49 (6) 227.88 (5) 263.40 (5) 202.55 (4) 5/10
50 300.00 (10) 227.15 (4) 300.00 (10) 249.55 (6) 300.00 (10) 220.61 (3) 2/10

y nd(X) ∨ n nd(X)←domain(X).

nd(X)←y nd(X).

nd(X)←&hasAccess[nd](X).

←nd(X), nd f(X).

← notnd(X), nd a(X).

←#count{X:y nd(X)} > 3.

Fig. 2. User Access Selection Rules

We compared three different configurations, each with and without depen-
dency graph pruning based on specified io-dependencies (configuration io-dep):
• c-mod: external atoms are only evaluated wrt. candidate models (representing
the standard configuration of dlvhex);
• part: external atoms are evaluated wrt. partial assignments after every solver
guess during the model search; and
• min-part: external atoms are evaluated wrt. partial assignments after every
solver guess during the e-minimality check.

In the result tables, we show combinations of configurations where interactions
are expected.We predicted io-dep to decrease the runtime if e-cycles can be
removed from the dependency graph; and that the speedup is larger when io-dep
is combined with part and smaller when combined with min-part, whenever
partial evaluation is beneficial. If pruning does not skip e-minimality checks, we
expected no significant overhead in terms of runtime with io-dep.

User Access Selection (UAS). Consider a set of computer nodes C and a
set of directed connections A between nodes, where n1 → n2 ∈ A, for n1, n2 ∈ C,
iff node n1 has access to node n2. Hence, a node can be accessed directly, or
indirectly via other nodes. Now, suppose a network admin has to assign access
rights by selecting nodes C ′ ⊆ C to which some user will be granted access, s.t.
every node in a set Ca ⊆ C (required access) is accessible from some n ∈ C ′ and
no node in a set Cf ⊆ C (forbidden nodes) is accessible from any n ∈ C ′.

We assume the network is not known initially, but each node can be queried
for its connections. For this, we use an external atom &hasAccess[nodes](n),
which interfaces external network information, and outputs all nodes that can
be accessed by some node in the extension of nodes. Accordingly, it evaluates to
true for an output node n2 wrt. an assignment A iff Tnodes(n1) ∈ A for some
(n1, n2) ∈ A. Moreover, we specify D(&hasAccess[nodes]) =

{
〈2, 1 : {n1 | n1 →

n2 ∈ A}, 1 : n2〉 | n2 ∈ C
}

, i.e. there is a dependency of an output on an input

Pruning External Minimality Checking for ASP 11

Table 2. User Access Selection Results (many cycles)

c-mod
c-mod +
io-dep

part
part +
io-dep

min-part
min-part +

io-dep
#cyclic

10 0.41 (0) 0.41 (0) 0.35 (0) 0.36 (0) 0.46 (0) 0.46 (0) 10/10
15 7.55 (0) 7.61 (0) 6.17 (0) 6.38 (0) 7.95 (0) 8.15 (0) 10/10
20 44.03 (1) 43.92 (1) 6.52 (0) 6.57 (0) 44.54 (1) 44.66 (1) 10/10
25 107.50 (2) 107.95 (2) 51.60 (1) 51.62 (1) 87.53 (1) 87.51 (1) 10/10
30 84.97 (0) 84.64 (0) 44.23 (0) 44.73 (0) 85.64 (0) 85.42 (0) 10/10
35 223.56 (5) 222.95 (5) 111.29 (1) 110.98 (1) 223.26 (5) 224.26 (5) 10/10
40 268.27 (7) 268.73 (7) 152.53 (1) 153.28 (1) 268.86 (7) 269.44 (7) 10/10
45 284.12 (8) 284.33 (8) 251.08 (4) 252.54 (4) 286.90 (8) 286.56 (8) 10/10
50 300.00 (10) 300.00 (10) 300.00 (10) 298.61 (9) 300.00 (10) 300.00 (10) 10/10

node whenever the latter has access to the former. The hex-program in Figure 2
with facts domain(n) for n ∈ C, facts node a(n) for n ∈ Ca, and facts node f(n)
for n ∈ Cf encodes UAS, where at most three nodes can be accessed directly.

First, we generated networks with N ∈ [10, 50] nodes, where each node has
access to another node with probability 1

2×N (cf. Table 1). This yields networks
about half of which have no cycles and thus, dependency pruning can have an
effect on the number of required e-minimality checks. Next, we increased the
access probability to 2

N (cf. Table 2). This effects that nearly all networks contain
cycles, which allowed us to investigate the effect of pruning when this does not
impact the need for an e-minimality check. The rightmost column shows the
fraction of instances where the computer network has a cycle.

Sequential Allocation of Indivisible Goods (SAIG). Next, we considered
a problem from Social Choice, namely dividing a set G of m items among
two agents a1 and a2 by allowing them to pick items in specific sequences
σ = o1o2...om ∈ {a1, a2}m [11]. Each agent ai has a linear preference order >i
over G; and the utility of g ∈ G for ai is ui(g) = |{g′ | g >i g′ ∈ G}|. We assume
that an agent always picks the remaining item with maximal utility. The goal
is to find a sequence σ resulting in an envy-free division of items, i.e. where no
agent prefers the items of the other agent over its own items.

We use an external atom to obtain the choices of the agents, while their com-
plete preferences are hidden, and a further one that checks whether an allocation
is envy-free. The atom &pick [alreadyP icked](ai, p, g) evaluates to true wrt. as-
signment A iff p ∈ [1,m] and g >i g

′ for all g′ s.t. TalreadyP icked(p−1, g) 6∈ A,
where p represents the positions in a respective sequence. Furthermore, let
G(A, i, j) =

∑
g∈{g|Tpicked(ai,p,g)∈A} uj(g). Then, the atom &envyFree[picked]()

is true iff G(A, 1, 1)<G(A, 2, 1) and G(A, 2, 2)<G(A, 1, 2). The encoding is
shown in Figure 3. Together with facts position(p) and item(g) for all p, g ∈ [1,m],
its answer sets encode all sequences that induce an envy-free allocation.

We set D(&pick [alreadyP icked]) =
{
〈1, 1:{p1}, 2:p2〉 | p1, p2 ∈ [1,m], p2 =

p1+1
}

, i.e. items already picked at a sequence position only depend on previous
positions. The io-dependencies eliminate all cyclic dependencies via external
atoms in the instances; thus e-minimality checks can always be skipped. We
tested instances with random preference orders and N ∈ [3, 10] items (cf. Table 3).

12 T. Eiter and T. Kaminski

Table 3. Sequential Allocation Results

c-mod
c-mod +
io-dep

part
part +
io-dep

min-part
min-part +

io-dep
3 0.19 (0) 0.19 (0) 0.25 (0) 0.24 (0) 0.38 (0) 0.19 (0)
4 2.74 (0) 1.73 (0) 0.74 (0) 0.64 (0) 2.54 (0) 1.72 (0)
5 300.00 (10) 78.28 (0) 152.33 (5) 2.42 (0) 141.76 (1) 78.02 (0)
6 300.00 (10) 300.00 (10) 300.00 (10) 8.22 (0) 300.00 (10) 300.00 (10)
7 300.00 (10) 300.00 (10) 300.00 (10) 26.63 (0) 300.00 (10) 300.00 (10)
8 300.00 (10) 300.00 (10) 300.00 (10) 89.97 (0) 300.00 (10) 300.00 (10)
9 300.00 (10) 300.00 (10) 300.00 (10) 284.17 (4) 300.00 (10) 300.00 (10)

10 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)

turn(a 1, P) ∨ turn(a 2, P)←position(P).

picked(A,P,G)←&pick [alreadyP icked](A,P,G), turn(A,P), item(G).

alreadyP icked(P,G)←position(P), position(P1), P1 < P, picked(, P1, G).

←not&envyFree[picked]().

Fig. 3. Sequential Allocation Rules

Findings. When dependency graph pruning skips e-minimality checks, io-dep
significantly improves the runtimes for all instance sizes and independent from
the configuration it is combined with (cf. Tables 1 and 3). In many cases, we are
able to solve significantly more instances than before. In Table 2, io-dep has
only a negligible impact on the runtimes. As io-dep has no advantage for cyclic
instances, this shows that dependency pruning yields not much overhead. Partial
evaluation was only beneficial both in the model search and the e-minimality
check for SAIG. As predicted, the speedup for part+io-dep is larger than for
min-part+io-dep since min-part already reduces the runtimes required for
e-minimality checks, while part needs to invest more time in the e-minimality
check. The runtimes for c-mod+io-dep and min-part+io-dep are similar; this
is expected as min-part only applies to the e-minimality check, which is skipped
in both cases. In summary, there is no clear winner among the conditions, but
adding io-dep is suggestive as a default when io-dependencies can be specified.

5 Discussion and Conclusion

We introduced io-dependencies to formalize semantic dependencies over external
atoms that approximate the real dependencies more closely than previously
possible. Based on this, more e-minimality checks can be skipped, which proved to
be beneficial in practice. We also stated properties for checking and optimizing io-
dependencies important for automatically constructing tight faithful dependency
sets. While faithfulness checking is intractable in general, we identified cases where
the costs can be reduced for certain oracles, or where checking is polynomial.

Our approach is related to domain independence techniques in [3], where
external atoms are evaluated wrt. subsets of the domain while correct outputs are
retained. This is similar to our notions of compliant atoms and faithfulness. Yet,
io-dependencies are more general because in [3], only disjoint domain partitions

Pruning External Minimality Checking for ASP 13

for external inputs are considered, and dependencies are not used for argument
positions. Another important difference is that their approach employs depen-
dencies for program splitting as in [13], while we aim at detecting redundant
e-minimality checks. They do not analyze the costs for generating dependencies.

Apart from hex, there are several other approaches that integrate external
theories into declarative problem solving, such as clingo [8], SMT [1] and
Constraint-ASP [12]. However, to the best of our knowledge, external minimality
has not been considered there. Nevertheless, our technique could also be employed
directly by related rule-based formalisms if minimality involving external theories
is required. Moreover, cyclic support may arise from external propagators, e.g. in
the WASP -solver [2], where our approach could be applied as well.

While we only exploited semantic dependencies for e-minimality checking,
additional dependency information is also useful for other parts of hex-solving
such as grounding and External Behavior Learning [6]. By limiting oracle calls
to compliant input atoms, the number of external calls during hex-evaluation
could potentially be reduced significantly.

References

1. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
Frontiers in Artif. Intell. and Applications, vol. 185, pp. 825–885. IOS Press (2009)

2. Dodaro, C., Ricca, F., Schüller, P.: External propagators in WASP: preliminary
report. In: Bistarelli, S., Formisano, A., Maratea, M. (eds.) RCRA@AI*IA 2016.
CEUR-WS, vol. 1745, pp. 1–9. CEUR-WS.org (2016)

3. Eiter, T., Fink, M., Krennwallner, T.: Decomposition of declarative knowledge bases
with external functions. In: Boutilier, C. (ed.) IJCAI 2009. pp. 752–758 (2009)

4. Eiter, T., Fink, M., Krennwallner, T., Redl, C., Schüller, P.: Efficient HEX-program
evaluation based on unfounded sets. J. Artif. Intell. Res. 49, 269–321 (2014)

5. Eiter, T., Kaminski, T., Redl, C., Schüller, P., Weinzierl, A.: Answer set program-
ming with external source access. In: Ianni, G., Lembo, D., Bertossi, L.E., Faber,
W., Glimm, B., Gottlob, G., Staab, S. (eds.) Reasoning Web 2017, Tutorial Lectures.
LNCS, vol. 10370, pp. 204–275. Springer (2017)

6. Eiter, T., Kaminski, T., Redl, C., Weinzierl, A.: Exploiting partial assignments for
efficient evaluation of answer set programs with external source access. J. Artif.
Intell. Res. 62, 665–727 (2018)

7. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell. 175(1), 278–298 (2011)

8. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Carro, M., King, A., Saeedloei, N., Vos,
M.D. (eds.) ICLP-TC 2016. OASICS, vol. 52, pp. 2:1–2:15. Schloss Dagstuhl (2016)

9. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: The potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011)

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

11. Kalinowski, T., Narodytska, N., Walsh, T., Xia, L.: Strategic behavior when al-
locating indivisible goods sequentially. In: desJardins, M., Littman, M.L. (eds.)
AAAI 2013. AAAI Press (2013)

14 T. Eiter and T. Kaminski

12. Lierler, Y.: Relating constraint answer set programming languages and algorithms.
Artif. Intell. 207, 1–22 (2014)

13. Lifschitz, V., Turner, H.: Splitting a logic program. In: Hentenryck, P.V. (ed.) ICLP
1994. pp. 23–37. MIT Press (1994)

