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Abstract
A backward Monte Carlo method for the numerical solution of the semiconductor Boltzmann equation is presented. The
method is particularly suited to simulate rare events. The general theory of the backward Monte Carlo method is described,
and several estimators for the contact current are derived from that theory. The transition probabilities for the construction
of the backward trajectories are chosen so as to satisfy the principle of detailed balance. This property guarantees stability
of the numerical method and allows for a clear physical interpretation of the estimators. A symmetric sampling method
which generates wave vectors always in pairs symmetric to the origin can be shown to yield zero current exactly as thermal
equilibrium is approached. The properties of the different estimators are evaluated by simulation of an n-channel MOSFET.
Quantities varying over many orders of magnitude can be resolved with ease. Such quantities are the drain current in the
sub-threshold region, the high-energy tail of the carrier distribution function, and the so-called acceleration integral which
varies over 30 orders in the example shown.

Keywords Backward Monte Carlo method · Semiconductor Boltzmann equation · Device simulation · Electron distribution
function · MOSFET · Rare events

1 Introduction

TheBoltzmannEquation (BE) describes themotionof charge
carriers in a semiconductor as semi-classical and can be used
to model the electrical properties of semiconductor devices.
The BE can be solved by means of the Monte Carlo method
[1,2] for realistic device structures and for realistic scattering
and band structure models. The physically transparent and
commonly used forward Monte Carlo (FMC) method, how-
ever, shows severe drawbacks in terms of computation time
and statistical error when statistically rare events are to be
simulated. A solution method that overcomes this drawback
is the backward Monte Carlo (BMC) method. This method
was introduced in the field of semi-classical transport at the
end of the 1980s [3,4]. These early algorithms turned out to
be numerically unstable, as the carrier energy tends to grow
indefinitely on a trajectory that is followed back in time.
A numerically stable algorithm was proposed in 2003 [5].
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Since the backward transition rates are chosen to obey the
principle of detailed balance, a runaway of the carrier energy
along a backward trajectory is avoided. Fromapractical point
of view, this means that the scattering rates of the forward
method can be used in the backward method as well [5].

The principle of the BMC method for the solution of a
boundary value problem is to choose a set of states in phase
space and trace trajectories from these states back in time
until a contact is reached. The value of the given distribution
function (DF) at the contact determines the statistical weight
of the backward trajectory and consequently its contribution
to the estimator of interest. To calculate a current which is
controlled by an energy barrier, one would typically choose
states at the top of the barrier and estimate the current from
these states, see Fig. 1. If the barrier is high, a forward trajec-
tory is very unlikely to reach the top of the barrier, whereas
in the backward method only these unlikely states are con-
sidered, and no computation time is wasted with the vast
majority of trajectories that do not overcome the barrier.

It is also possible to combine the backward and the forward
MCmethod. Once a backward trajectory with an initial state
(k0, r0) is calculated and the statistical weight of that state
is determined, a forward trajectory can be started from the
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Fig. 1 Principle of the BFMC method for a MOSFET. The injected
particle has a chosen state in r- and k-space. It is traced back in time to
its origin to calculate the weight (probability) of itself. The observables
are calculated from the weighted forward trajectory

very same state (Fig. 1). The mean values of interest are
then calculated from a set of forward trajectories in the usual
manner [6].

2 Theory of the backwardMonte Carlo
method

In semi-classical transport theory, carriers are treated as
point-like particles. Their dynamic is determinedby the equa-
tions of motion in phase space.

dk
dt

= F(r, t),
dr
dt

= v(k) (1)

The force field F takes into account electric and magnetic
fields. If only the electric field E is present, the force field
is given by F(r, t) = (q/h̄)E(r, t), where q is the charge
of the carrier. The carrier’s group velocity v is related to
the band energy E(k) by v = h̄−1∇E(k). A phase space
trajectory satisfying the initial conditions K0(t0) = k0 and
R0(t0) = r0 can be obtained by formal integration of the
equations of motion.

K0(t) = k0 +
∫ t

t0
F(R0(τ ), τ ) dτ (2)

R0(t) = r0 +
∫ t

t0
v(K0(τ )) dτ (3)

The BE describes the dynamics of an ensemble of semi-
classical carriers in a semiconductor. The BE for the time-
and position-dependent transport problem reads

(
∂

∂t
+ v(k) · ∇r + F(r, t) · ∇k

)
f (k, r, t)

= Q[ f ](k, r, t), r ∈ D. (4)

This equation is posed in the simulation domain D and
has to be supplemented by boundary and initial condi-
tions. The distribution function is commonly normalized as∫
D d3r

∫
d3k f (k, r, t) = 4π3ND(t),with ND denoting the

number of carriers contained in the semiconductor domain
D. The scattering operator Q = Qg − Ql consists of a gain
and a loss term, respectively.

For the purpose of outlining the theory of the Backward
MC method we neglect many-body effects for the moment.
In this case, the scattering operator will be a linear integral
operator.

Qg[ f ](k, r, t) =
∫

f (k′, r, t)S(k′,k, r) d3k′ (5)

Ql[ f ](k, r, t) = λ(k, r) f (k, r, t) (6)

Here S(k′,k, r) d3k denotes the scattering rate from a state
k′ to states in d3k around k, and λ(k, r) = ∫

S(k,k′, r) d3k′
is the total scattering rate. Some scattering mechanisms such
as ionized impurity scattering are position-dependent. In the
following, however, explicit writing of the r-dependence of
the scattering rate is omitted for the sake of brevity.

If many-body effects such as carrier–carrier scattering and
degeneracy are to be considered, one has to resort to the
established approximations [7].

2.1 Integral form of the Boltzmann equation

The BE (4) can be formally integrated over a phase space
trajectory. Details can be found in [8].

f (k0, r0, t0)

=
∫ t0

0
dt1

∫
d3k1 K (k0, t0,k1, t1) f (k1,R(t1), t1)

+ f0(k0, r0, t0) (7)

The resulting integral equation (7) represents the general-
ization of Chamber’s path integral [9]. The source term f0
contains the initial distribution in case of an initial value prob-
lem [10], or the boundary distribution in case of a boundary
value problem [8]. The integral kernel is of the form

K (k0, t0,k1, t1) = S(k1,K0(t1)) exp

(
−
∫ t0

t1
λ(K0(τ ))dτ

)

(8)

The trajectory K0(τ ) passes through k0 at time t0. From a
physical point of view, the kernel (8) describes a transition
from (k1, t1) to (k0, t0).
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2.2 Probability density functions

The components of the kernel (8) are used to construct prob-
ability density functions (PDF). From the scattering rate S,
one can define a PDF of the after-scattering states ka .

pk(ka |kb) = S(kb,ka)
λ(kb)

(9)

The total scattering rate λ(kb) = ∫
S(kb,ka) d3ka serves as

a normalization factor. Conversely, the PDF of the before-
scattering states kb is defined as

p∗
k (kb|ka) = S(kb,ka)

λ∗(ka)
. (10)

The normalization factor is given by the backward scattering
rate, λ∗(ka) = ∫

S(kb,ka) d3kb.
The path integral in (8) is related to the PDF of the back-

ward free-flight time t1. The PDF is denoted by p∗
t .

p∗
t (t1|t0;k0)
= λ(K0(t1)) exp

(
−

∫ t0

t1
λ(K0(τ )) dτ

)
, t1 < t0 (11)

The PDF is normalized as follows:

∫ t0

−∞
p∗
t (t1|t0) dt1 = 1 (12)

It can be easily shown that the equations of motion (1) are
form-invariant under the transformation t∗ = −t , k∗ = −k,
and v∗ = −v:

dk∗

dt∗
= F(r, t),

dr
dt∗

= v∗ (13)

Increasing t∗ means a further progression into the past. Note
that the position vector r and the force field F need not be
inverted. Under the transformation τ ∗ = −τ , the integration
boundaries in (11) get interchanged, and the PDF takes on
the form of a forward flight-time distribution.

pt
(
t∗1 |t∗0 ;k∗

0

)

= λ
(
K∗

0

(
t∗1

))
exp

(
−

∫ t∗1

t∗0
λ(K∗

0(τ
∗)) dτ ∗

)
, t∗1 > t∗0

(14)

The PDF satisfies the normalization

∫ ∞

t∗0
pt

(
t∗1 |t∗0

)
dt∗1 = 1. (15)

2.3 The backwardMCmethod

The integral equation can be solved bymeans of theMarkov-
chainMonte Carlo method [3,4]. Starting from (7)will result
in a backward Monte Carlo method, which means that the
time instants ti , when in the simulation scattering events
occur, form a descending sequence: t0 > t1 > t2 > · · · .

Conversely, the more familiar forward Monte Carlo
method is based on the adjoint equation of (7), see [8]. In
the course of the simulation, an ascending sequence of time
instants, t0 < t1 < t2 < · · · , will be generated.

In the BMCmethod, the distribution function f in a given
phase space point k0, r0 is estimated by the following sample
mean:

f (k0, r0, t0) � 1

N

N∑
s=1

μ(n(s))
s (k0, r0, t0) (16)

here N denotes the number of trajectories, and n(s) is the
order of the s-th numerical trajectory, which is the number
of scattering events occurring in the interval [0, t0]. In this
work, we discuss two specific choices of the estimator μ(n).

2.4 Transition rate derived frommathematical
considerations

In the original works [3] and [4], S(kb,ka) is interpreted as
the unnormalized distribution of the before-scattering states
kb, and consequently the normalized PDF (10) is employed.
Using the transition density,

P(k1, t1|k0, t0) = p∗
k (k1|K0(t1)) pt (t1|t0;k) (17)

the estimator in (16) becomes

μ(n)(k0, r0, t0)

= λ∗(K0(t1))

λ(K0(t1))
. . .

λ∗(Kn−1(tn))

λ(Kn−1(tn))
fin(Kn(0),Rn(0)). (18)

Here fin denotes the initial distribution. The sketch of a k-
space trajectory of second order (n = 2) is shown in Fig. 2

Although theMC algorithm based on the estimator (18) is
consistently derived from the integral form of the BE, com-
puter experiments reveal a stability problem. The particle
energy becomes very high when the trajectory is followed
backward in time. The initial distribution takes on very small
values at high energies, so that many realizations of the esti-
mator will be very small. With small probability, the particle
energy will stay low, where the initial distribution is large.
These rare events give large contributions to the estimator,
resulting in a large variance. The computer experiments show
that the variance increases rapidly with time. However, for a
given time t the variance of the estimator is finite.
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Fig. 2 Sketch of a backward trajectory starting at time t and reaching
time 0 after three free flights. The symbols used in (18) are shown

2.5 Transition rate derived from physical
considerations

The time evolution of the particle energy can be understood
from a property of the scattering rate known as the principle
of detailed balance. This property ensures that in any system
particles scatter preferably to lower energies. If the backward
transition rate (10) is employed for trajectory construction,
in the simulation the principle of detailed balance is inverted,
and scattering to higher energies is preferred.

The principle of detailed balance is reflected by the fol-
lowing symmetry property of the scattering rate:

S(ki ,k j ) = S(k j ,ki ) e βD(E(ki )−E(k j )), (19)

where βD = (kBTD)−1 with TD being the device temper-
ature, and E(k) denoting the carrier energy. The stability
problem can be solved by using the forward scattering rate
also for the construction of the backward trajectory and
changing the estimator accordingly. In the transition density,
the forward PDF (9) is employed.

P(k1, t1|k0, t0) = pk(k1|K0(t1)) pt (t1|t0;k0) (20)

The estimator in (16) becomes

μ(n)(k, r, t) = e βDΔE1 · · · e βDΔEn fin(Kn(0),Rn(0)). (21)

Here the difference in carrier energy induced by the l-th scat-
tering event is denoted by ΔEl .

The result obtained for the initial value problem can be
reformulated straightforward for the stationary boundary
value problem. We define the total electron energy as

H(k, r) = E(k) + EC (r) (22)

where EC (r) is the conduction band edge. In the following,
we shall consistently label the starting point of a backward
trajectory as (k0, r0), and the endpoint at a Dirichlet bound-
ary as (kb, rb), see Fig. 1. A Dirichlet boundary is imposed
by an ohmic contact, where an equilibrium distribution can
be assumed. The boundary distribution at a contact will be
referred to as fb. Inelastic scattering events cause a differ-
ence in the total energy along a trajectory. Using the energy
balance equation

H(kb, rb) − H(k0, r0) =
∑
l

ΔEl (23)

the estimator (21) for the distribution function at a given point
(k0, r0) becomes

f (k0, r0) = 1

M

M∑
i=1

fb(kb,i , rb.i ) e βD(H(kb,i ,rb,i )−H(k0,r0)).

(24)

Here M is the number of backward trajectories started from
the point (k0, r0). Note that the backward trajectory is con-
structed in the very same manner as a forward trajectory.
Using the forward PDF (14) to generate the free-flight time
means that we have inverted the time axis and are progressing
along the negative time axis. The selection of the scattering
mechanism and the calculation of the after-scattering state
are also identical to the forward algorithm.

3 Current estimators

We start with the general definition of current density,

J = 2

(2π)3
q

∫

BZ

v(k) f (k, r) d3k, (25)

where f (k, r) is the unknown solution of the BE. The current
through an area of size ym × W in the yz-plane located at
x = x0 is obtained by integration.

I =
ym∫

0

W∫

z=0

J · dA (26)

Substituting the surface element dA = ex W dy0 and the
current density (25), and assuming the distribution function
to be uniform in the z-direction, the current becomes

I = q

4π3 W

ym∫

0

∫

BZ

vx (k0) f (k0, x0, y0) d3k0 dy0, (27)
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where W is the device width. In principle, the integral in
(27) could be evaluated by numerical integration, whereby
the values of the distribution function at the discrete points
(k0, r0) are estimated by (24).However, it ismore convenient
to employ Monte Carlo integration instead. For this purpose,
the current has to be expressed as an expectation value. This
is accomplished by introducing a PDF p0(k0, y0) which can
be chosen freely, and reformulating (27) as:

I = qW

ym∫

0

∫

BZ

μ(k0, y0; x0) p0(k0, y0) d3k0 dy0 ≡ qW E{μ}

with

μ(k0, y0; x0) = vx (k0) f (k0, x0, y0)
4π3 p0(k0, y0)

(28)

In a Monte Carlo simulation, the expectation value is esti-
mated by a sample mean [11].

I = qW E{μ} ≈ q W
1

N

N∑
i=1

μ(k0,i , y0,i ; x0) (29)

Here N is the number of sampling points. In the next step, the
unknown distribution function f in (28) is expressed through
the estimator (24). This would in general convert (29) into a
double sum of N × M elements. However, it is sufficient to
start only one backward trajectory from each sampling point
(k0,i , y0,i ), so that one can set M = 1 in (24). With this
assumption the estimator μ in (28) becomes:

μ(k0, y0; x0) = vx (k0) fb(kb, rb)
4π3 p0(k0, y0)

e βD(H(kb,rb)−H(k0,r0))

(30)

This is the basic equation fromwhich various current estima-
tors can be derived. In the following sections, we will discuss
different choices of the injection PDF p0 and the properties
of the resulting current estimators. In (30), k0 and y0 are
random variables, whereas x0 is a given parameter. In the
following, x0 is often omitted from the argument list for the
sake of brevity.

3.1 The boundary distribution

The distribution function is close to thermal equilibrium at
ohmic contacts. Therefore, suitable choices for the boundary
distribution fb are a Maxwell–Boltzmann or a Fermi–Dirac
distribution. Throughout this work, we assume an equilib-
rium Boltzmann distribution:

fb(k, r) = C(r) e−βD E(k) (31)

Two normalization integrals will be needed in the following.
The first one is the partition function Z(T ) defined as [12]:

Z(T ) =
∫

BZ

e−β(T )E(k) d3k (32)

The second integral is defined as

V (T ) =
∫

BZ

|vx (k0)| e−β(T )E(k0) d3k. (33)

The integrations over the Brillouin zone (BZ) are carried out
numerically. From these two quantities, the injection velocity
is obtained:

vinj(T ) = V (T )

Z(T )
(34)

The definition of the electron concentration

n(r) = 1

4π3

∫

BZ

fb(k, r) d3k (35)

is used to determine the normalization constant C in (31).

C(r) = 4π3n(r)
Z(TD)

(36)

3.2 Injection from an equilibriumMaxwellian

The PDF p0 from which the starting points of the backward
trajectories are generated can be expressed as a product of
two independent PDFs:

p0(k0, y0) = f0(k0) py(y0) (37)

The PDF of the injection coordinate y0 is assumed to be
proportional to the electron concentration.

py(y0) = n(x0, y0)∫ ym
0 n(x0, y) dy

(38)

The first choice of the injection distribution f0 we consider is
a normalized Boltzmann distribution at device temperature
TD.

f0(k0) = 1

Z(TD)
e−βD E(k0) (39)

Inserting the boundary distribution (31) and the injection dis-
tribution (39) in (30) gives the following current estimator:

μ = vx (k0)
eβD (EC(rb)−EC(r0))

py(y0)
n(rb) (40)
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Note that both theBoltzmann factors e−βD E(k0) and e−βDE(kb)

are canceled out of this expression. To generate wave vec-
tors from the equilibrium distribution (39), one can perform
a single-particle simulation at zero electric field and sample
the trajectory at equidistant time steps.

3.3 Injection from a velocity-weightedMaxwellian

The second choice for f0 we consider is a velocity-weighted
Maxwellian at equilibrium temperature TD.

f0(k0) = 1

V (TD)
|vx (k0)| e−βD E(k0) (41)

This choice is motivated by the fact that in (30) a term
vx (k0) e−βD E(k0) occurs in the numerator. Division by (41)
will essentially cancel out this term. This reduces the k0-
dependence of the estimator which is expected to reduce its
variance. Inserting the boundary distribution (31) and the
injection distribution (41) in (30) yields

μ = sign(vx (k0)) vinj(TD)
e βD (EC(rb)−EC(r0))

py(y0)
n(rb). (42)

In this equation, sign(vx ) denotes the sign of the velocity
component vx , and vinj is the injection velocity defined by
(34).

3.4 Injection from a non-equilibriumMaxwellian

For some applications, it can be useful to generate the initial
points k0 from a Maxwellian at a temperature T0 different
from the device temperature TD. Especially when calculating
quantities depending on the high-energy tail of the distribu-
tion, an injection temperature T0 > TD will be beneficial as
it enhances the number of initial points at higher energies.
We consider a non-equilibrium Maxwellian of the form

f0(k0) = 1

Z(T0)
e−β0 E(k0) (43)

Inserting this injection distribution in (30) gives an estimator
which will be denoted by η:

η(k0, y0) = Z(T0)

Z(TD)
vx (k0)

e βD (EC(rb)−EC(r0))

py(y0)

× e(β0−βD)E(k0) n(rb) (44)

It will be shown below that the sample mean of η,

I = qW
1

N

N∑
i=1

η(k0,i , y0,i ), (45)

can be reformulated as a weighted average of the form:

I = qW

∑N
i=1 μ(k0,i , y0,i ) w(k0,i )∑N

i=1 w(k0,i )
(46)

Here μ is given by (40) and the weight factor w is defined as

w(k0) = e(β0−βD)E(k0). (47)

The derivation of (46) is not obvious. With (40) and (47),
expression (44) can be rewritten as

η(k0, y0) = Z(T0)

Z(TD)
μ(k0, y0) w(k0). (48)

A drawback of this formulation is that the normalization
factor Z(T0) has to be recalculated for each T0. The numer-
ical integration over the Brillouin zone, however, can be
avoided by a proper application of Monte Carlo integration.
We express the integral in (32) as an expectation value which
in turn will be estimated by a sample mean.

Z(TD) =
∫

BZ

e−βD E(k0)

f0(k0)
f0(k0) d3k0 (49)

Inserting (43) yields

Z(TD) = Z(T0)
∫

BZ

w(k0) f0(k0) d3k0 ≡ Z(T0) E{w} (50)

From this equation, we obtain the ratio of the normalization
factors as

Z(TD)

Z(T0)
= E{w} ≈ 1

N

N∑
i=1

w(k0,i ). (51)

Substituting this ratio in (48) represents the final step in the
reformulation of the sample mean to arrive at (46).

In the case of a velocity-weighted Maxwellian with T0 
=
TD,

f0(k0) = 1

V (T0)
|vx (k0)| e−β0 E(k0)

a similar procedure can be applied. In the weighted average
(46) the estimator (42) and the very same weight (47) have
to be used.

3.5 Injection from the equilibrium concentration

All estimators discussed so far depend on the injection coor-
dinate y0 through the term e βDEC(r0)/py(y0). However, this
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dependence is weak and can even be eliminated from the
estimator by choosing the injection distribution as

p0(k0, y0; x0) = 1

A(TD)
|vx (k0)|e−βDH(k0,x0,y0) (52)

Inserting (22) in (52) again yields a product of two indepen-
dent PDFs.

p0(k0, y0) = f0(k0) p̃y(y0) (53)

Here f0 is given by (41), and p̃y is defined as

p̃y(y0) = ñ(x0, y0)

B(TD)
(54)

with ñ(x0, y0) = e−βDEC (x0,y0). This quantity is up to a con-
stant, the equilibrium concentration, determined by the band
edge energy EC . On the other hand, n in (38) represents the
actual carrier concentration as obtained from a device sim-
ulation. With the normalization integral in (54) defined as

B(TD) =
∫ ym

0
ñ(x0, y) dy, (55)

the total normalization factor A in (52) becomes

A(TD) = V (TD) B(TD). (56)

Using the boundary distribution (31) and the injection distri-
bution (52), the current estimator (30) can be reformulated
as:

μ = sign(vx (k0)) vinj(TD) B(TD) n(rb) e βDEC (rb) (57)

Other than the estimators discussed above, this estimator is
independent of the injection coordinate y0. A more trans-
parent physical interpretation is achieved by expressing the
equilibrium concentration n(rb) as a function of the local
quasi-Fermi level Fn .

n(rb) = NC (TD) e βD(Fn(rb)−EC (rb) (58)

Here the effective density of states NC is related to the parti-
tion function Z by NC = Z/(4π3). Also, the normalization
factor B will be expressed through an energy ĒC defined as

ĒC = −kBTDln

(
B

ym

)
. (59)

ĒC has the meaning of an average of the band edge energy
over the injection coordinate y0:

e−βD ĒC (x0) = 1

ym

ym∫

0

e−βDEC (x0,y0) dy0 (60)

Expressing the estimator (57) in terms of the parameters Fn
and ĒC gives

μ = ymNC (TD) vinj(TD) sign(vx (k0)) e βD(Fn(rb)−ĒC ). (61)

This equation states that a backward trajectory represents an
elementary particle flux NC vinj. This flux is multiplied by
a statistical weight given by the e-function. The higher the
energy of the starting point (ĒC ) with respect to the Fermi
level at the trajectory end point (Fn), the lower is the statisti-
cal weight. If a constantΔE were added to ĒC , the estimator
μ and subsequently also the current I would be scaled by
the factor e−βDΔE . In other words, increasing the barrier
height by some energy incrementwill result in an exponential
decrease in current. This means that the exponential depen-
dence of the thermionic current on the barrier height can be
directly deduced from the current estimator (61).

3.6 Symmetric sampling

In thermodynamic equilibrium, the current will vanish due
to the symmetry of the distribution function. Estimating the
current in equilibrium by the BMCmethod will result in pos-
itive values of the estimator for nearly half of the backward
trajectories, and in negative values for the other half. In the
sample mean, these positive and negative values will cancel
to a large extent, and the currentwill be nearly zero.However,
the current will not be exactly zero because we have to work
with finite sample sizes. This type of statistical error, how-
ever, can be easily eliminated by always generating positive
and negative values of the estimator in pairs. When start-
ing a backward trajectory from a state (k0, y0), we also start
another one from the opposite momentum state (−k0, y0).
Aswewill showbelow, this procedurewill give I = 0 exactly
in thermal equilibrium without statistical error. One can also
expect that this procedure will reduce the statistical error in
situations close to thermal equilibrium.

Every estimator described above can be used to define a
new estimator by taking the algebraic mean value:

μsymm(k0, y0) = μ(k0, y0) + μ(−k0, y0)
2

(62)

Using (61) the new estimator will be of the form:

μsymm = ymNC (TD) vinj(TD)

2(
e βD F+

n (rb) − e βD F−
n (rb)

)
e−βD ĒC (63)

In the following, we refer to the trajectorywith vx (k0) > 0 as
the plus-trajectory, and to that with vx (k0) < 0 as the minus-
trajectory. In (63), F+

n denotes the quasi-Fermi level of the
contact where the plus-trajectory has terminated, whereas
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F−
n is the quasi-Fermi level of the contact where the minus-

trajectory has terminated.
In thermal equilibrium, the Fermi level EF is constant

throughout the device. Regardless of at which contact a back-
ward trajectory ends, the Fermi level encounteredwill always
be Fn = EF. The estimator (63) will identically vanish, and
so will the current.

3.7 Estimation of the statistical error

Since all backward trajectories are statistically independent,
one can easily find expressions for the statistical error of the
simulation result.

We begin with the case that the injection states k0 are gen-
erated from an equilibrium distribution. In a Monte Carlo
simulation, a sample {μ1, μ2, . . . , μN } from a random vari-
able μ is generated. Here, μ is a function of the random
variables (k0, y0). Several such functions μ(k0, y0) have
been described in the preceding sections. The sample mean
μ̄

μ̄ = 1

N

N∑
i=1

μi (64)

gives the current, I = qW μ̄, whereas the sample variance
s2μ allows an estimate of the current’s statistical error.

s2μ = 1

N − 1

(
N∑
i=1

μ2
i − N μ̄2

)
(65)

The standard deviation of the current is estimated as

sI = qW
sμ√
N

⇒ sI
I

= 1√
N

sμ
μ̄

. (66)

The relative standard deviation sI /I will be used as ameasure
for the statistical error in the following.

If the injection states are generated fromanon-equilibrium
distribution, wemust consider the random variablew defined
by (47) and the random variable ξ defined by

ξ = μw. (67)

In the course of aMonte Carlo simulation, the samplemeans
ξ̄ and w̄ have to be calculated in order to obtain the current:

ξ̄ = 1

N

N∑
i=1

ξi , w̄ = 1

N

N∑
i=1

wi ⇒ I = qW
ξ̄

w̄
(68)

In addition, the sample variances and the sample covariance
have to be determined:

s2ξ = 1

N − 1

(
N∑
i=1

ξ2i − N ξ̄2

)
(69)

s2w = 1

N − 1

(
N∑
i=1

w2
i − N w̄2

)
(70)

s2ξw = 1

N − 1

(
N∑
i=1

ξi wi − N ξ̄ w̄

)
(71)

Using these parameters, the variance of the random variable
μ = ξ/w can be estimated as

s2μ = s2ξ − 2rs2ξw + r2s2w, (72)

where r = ξ̄ /w̄ [11]. From sμ, the standard deviation of the
current can be computed.

sI = qW
sμ√
N w̄

⇒ sI
I

= 1√
N

sμ
ξ̄

(73)

4 Multi-band semiconductors

The formalism described above assumes carrier transport in
one bandonly. The extensionof the formalism tomanybands,
however, is straightforward. The definitions of the normaliza-
tion factors (32) and (33) have to be extended by summation
over the band index n.

Z(T ) =
∑
n

∫

BZ

e−β(T )En(k) d3k (74)

V (T ) =
∑
n

∫

BZ

|v(n)
x (k0)| e−β(T )En(k0) d3k (75)

The band energy En denotes the energy of an electron with
respect to the band edge energy EC . Equation (35) defining
the electron concentration at equilibrium has to account for
a summation over the band index as well.

n(r) = 1

4π3

∑
n

∫

BZ

C(r) e−β(T )En(k) d3k (76)

The definition (36) of normalization factor C remains
unchanged.

The method of sampling an equilibrium trajectory yields
random injection states of the form (n0,k0), where n0 is the
initial band index.
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5 The combined backward-forwardMC
method

In semiconductor devices, there are various processes which
are caused by carriers with energies above a certain energy
threshold. Suchprocesses are impact ionization, carrier injec-
tion into the oxide, and the generation of interface traps due
to hot carriers. To model such processes, only carriers with
energies above the threshold need to be considered, whereas
carriers with lower energies have no effect. Therefore, a
good approximation in the modeling of such processes is
to consider only those high energetic carriers that are able
to surmount the energy barrier, and neglect the vast majority
of carriers close to thermal equilibrium that get reflected on
either side of the barrier.

This motivates the introduction of a combined backward-
forward Monte Carlo method which simulates only those
trajectories passing the energy barrier, see Fig. 1. In the first
step of this method, a backward trajectory is started from the
injection plane at x0 with a random initial state (k0, y0). The
contributionof this trajectory to the estimator (24) determines
the statistical weight of this state:

w(k0, r0) = fb(kb, rb) e βD(H(kb,rb)−H(k0,r0)) (77)

In the second step, a forward trajectory is started from the
state (−k0, y0). This trajectory is assigned the statistical
weight (77). The quantities of interest are computed as a
weighted average over an ensemble of forward trajectories.
Note that the backward trajectories are only needed to deter-
mine the weights. No averages are computed from those
trajectories.

6 Results and discussion

The BMC method has been implemented in the full-band
Monte Carlo simulator VMC [13]. Backward trajectories
are constructed in the same manner as forward trajectories.
Routines for the computation of the free flight and the after-
scattering states can be used without modification.

As a test structure for the proposed simulation method,
we use a planar n-channel MOSFET with a gate length of
LG = 65 nm, an effective oxide thickness of tox = 2.5 nm,
and a channel width of W = 1µm. Device geometry and
doping profiles have been obtained by process simulation
[14].A sketch of the device structure is shown inFig. 3.Room
temperature is assumed for all simulations (TD = 300 K).

6.1 Transfer characteristics

The transfer characteristics have been calculated using the
classical device simulator Minimos-NT [15,16], the conven-

x

y

Source Drain
Gate

n+ n+
x0

injection plane

Fig. 3 Sketch of a MOSFET

Fig. 4 Transfer characteristics of the nMOSFET for two drain volt-
ages, simulated with Minimos-NT, the backward and the forward MC
methods

tional FMC method, and the novel BMC method. Each bias
point is calculated with 106 trajectories, both in the backward
and forward methods. The maximum of the energy barrier
determines the location of the injection plane. It is located
at x0 = 10.2 nm relative to the left edge of the gate contact.
Figure 4 shows good agreement between the classical device
simulation and theMC simulations. The BMCmethodworks
well in the entire sub-threshold region, whereas the FMC
method (without statistical enhancement) can cover only a
few orders of magnitude of the current. The barrier height in
the channel increases with decreasing gate voltage. Thus, at
some point none of the forward trajectories will be able to
surmount the barrier, giving an estimated current of I = 0.

Further, the statistical error of theBMCmethod is depicted
in Fig. 5. In a MOSFET the current component due to car-
riers injected at the source contact is nearly independent of
the drain voltage, whereas the current component of carries
originating from the drain contact depends strongly on the
drain voltage. At VDS = 2.2 V the back diffusion current
from the drain is extremely small, and the total current is
dominated by forward diffusion, which will result in a low
variance. At VDS = 50 mV, on the other hand, the back dif-
fusion current is significant, and a stronger compensation of

123



Journal of Computational Electronics (2018) 17:1492–1504 1501

Fig. 5 Relative Error (relative standard deviation) of the current for
two drain voltages. Each bias point is calculated with 106 backward
trajectories. The current estimator (40) was used

Fig. 6 Computation times by a single core of an Intel i7 processor.
The operating points of the transfer characteristics at VDS = 2.2 V are
considered. A relative standard deviation of 10−2 is assumed

the two current components takes place, which will result in
a higher variance. This explanation, using the forward time
picture also holds true in the backward time picture. There
a vast difference in the two current components is reflected
by a significant difference in the statistical weights of the
forward and backward diffusing carriers.

In Fig. 6 we compare the computation times for a given
error tolerance of 10−2. In the on-state (VGS = 2.2 V),
BMC is about five times faster than FMC. Although in this
operating point, the energy barrier in the channel is almost
completely suppressed, many electrons injected at the source
contact get reflected by the geometrical constriction at the
source-channel junction. Since the BMC method need not
simulate these reflected carriers, it shows a clear gain also in

Fig. 7 Output characteristics of the MOSFET for two gate voltages,
simulated with Minimos-NT, the forward and the backward MC meth-
ods

the on-state. The last point that could be simulated with FMC
within a reasonable time was VGS = 0.8 V. In this operating
point, BMC is about 2300 times faster than FMC as shown
in Fig. 6.

6.2 Output characteristics

Figure 7 compares the output characteristics computed by
three different methods. As shown in Fig. 8, the statistical
error decreases with increasing VDS, a trend already dis-
cussed in the previous section. The figure also shows that
the variance of the symmetric estimator (63) is lower in the
entire range of drain voltages. Especially at low VDS, where
the device is approaching thermal equilibrium, the variance
of the non-symmetric estimator tends to explode, whereas
the variance of the symmetric estimator shows only a slight
increase. In this regime, variance reduction by the symmetric
estimator is particularly effective.

Evaluation of the symmetric estimator (63) requires the
computation of two numerical trajectories. To obtain a fair
comparison of the two estimators at equal computational
cost, we compute N = 106 realizations of the non-symmetric
estimator (42) and only N = 5 · 105 realizations of the sym-
metric estimator. Despite the sample size being smaller in
the latter case, this smaller sample gives the lower statistical
error.

6.3 Injection from a non-equilibrium distribution

The injection distribution f0 can be freely chosen and does
not have any influence on the expectation value, but it does
affect the estimator’s variance. We demonstrate this fact by
generating the random states k0 from a non-equilibrium
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Fig. 8 Relative errors of the output characteristics at two gate volt-
ages. The non-symmetric and the symmetric estimator based on the
velocity-weighted Maxwellian are compared. Each bias point involves
the calculation of 106 backward trajectories

Maxwellian. The operating point is VGS = 0.6 V and
VDS = 2.2 V. The current is calculated using (46) in con-
junction with the estimators (40) and (42). Figure 9 shows
the independence of the estimated current from the injection
temperature T0.

The estimators’ relative errors are compared in Fig. 10.
Below 700 K, estimator (42) shows less statistical error than
estimator (40). For both estimators, the relative error shows a
clear minimum, which can be explained as follows; the more
the injection PDF f0 resembles the real flux density vx f ,
the lower is the current estimator’s variance. From Fig. 10
we conclude that a velocity-weighted Maxwellian at 290 K
is the best approximation of the real flux vx f at the injec-
tion plane. With increasing and decreasing T0, the difference
between f0 and the real flux vx f becomes larger and the rel-
ative error increases. For T0 > 700 K the velocity-weighted
Maxwellian is a worse approximation than the Maxwellian
to the real flux vx f and thus shows a higher error.

6.4 Energy distribution function

Figure 11 shows the energy distribution function (EDF) at
three surface points in the channel of the MOSFET. The
forward MC simulation performed with 109 trajectories can
resolve only a few orders of magnitude of the EDF. Then
again, with the backward MC method the EDF is calculated
point-wise with 104 trajectories per point using the estimator
(24). The EDF shows aMaxwellian tail. One can compute as
many orders of magnitude of the high-energy tail as needed.

Fig. 9 Temperature stability of the current estimators (40), (42) and (63)
which are based, respectively, on a Maxwellian (MW) and a velocity-
weighted Maxwellian (vel.weighted MW) injection PDF. Operating
point is VGS = 0.6 V and VDS = 2.2 V

Fig. 10 Comparison of the relative errors of the current estimators (40),
(42) and (63). Operating point is VGS = 0.6 V and VDS = 2.2 V

6.5 Hot carrier degradation

In long channel devices and high-voltage MOSFETs degra-
dation is triggered by hot carriers. It is assumed that
degradation is caused by the breaking of Si–H bonds at the
silicon-oxynitride/silicon interface [14]. The bond dissocia-
tion rates are modeled by the acceleration integral, which has
the general form [17].

IA = σ0

∞∫

Eth

(E − Eth)
p v(E) f (E) g(E) dE, (78)
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Fig. 11 Energy distribution function at three surface points in the chan-
nel. The distances from the left edge of the gate electrode are given.
Operating point is VGS = 2.2 V and VDS = 2.2 V. Solid lines: Forward
MC simulation with 109 trajectories. Dotted lines: High-energy tails
computed with the backward MC method

where Eth denotes an energy threshold, g(E) the density of
states, and v(E) the group velocity. For the purpose of MC
estimation, we convert (78) into a k-space integral.

IA=σ0

∫

BZ

Θ (E(k) − Eth) (E(k) − Eth)
p |v(k)| f (k) d3k

(79)

Here Θ is the unit step function. For the process considered
here in which one hot carrier is able to break a bond, an
exponent of p = 11 and an energy threshold of Eth = 1.5 eV
are assumed [14].

We used the combined backward/forward MC method
to evaluate the acceleration integral. The statistical aver-
age is calculated from the forward trajectories using the
before-scattering method [18]. In this simulation, 1010 scat-
tering events have been computed. To enhance the number
of numerical trajectories at high energies the injection
temperature T0 has been raised significantly (5000 and
10,000 K).

In Fig. 12 the MC results are compared to the result of
ViennaSHE, a deterministic solver for the BE based on a
spherical harmonics expansion of the distribution function
[19]. Figure 12 shows that the MC results are independent
from injection temperature. ViennaSHE predicts higher val-
ues in the first part of the channel where carrier heating is still
moderate. We attribute this difference to the band structure
model which is more approximate in ViennaSHE than it is
in VMC.

Fig. 12 Acceleration integral for a 65 nm nMOS, simulated with FMC
and BMC method at different injection temperatures

7 Conclusion

A stable backward method has been implemented in a full-
band Monte Carlo device simulator and used to study the
electrical characteristics of an n-channel MOSFET. The
method allows one to calculate the current in the entire sub-
threshold region including the leakage current in the off-state.
Symmetric current estimators are proposed which produce
less statistical error than the non-symmetric ones. This
improvement is achieved for all operating conditions and is
particularly large when thermal equilibrium is approached.

The current through a plane is calculated by Monte Carlo
integration of the current density. For this integration, one
has to assume a distribution of the sampling points which
in the present case are the initial wave vectors of the back-
ward trajectories. By assuming a Maxwellian distribution at
elevated temperature the method will generate more sam-
pling points at higher energies. This method of statistical
enhancement reduces the statistical error of quantities that
depend on the high-energy tail of the distribution function.
It is shown that the estimated current is independent of the
injection temperature, whereas the statistical error shows a
clear minimum where the injection distribution most closely
resembles the actual distribution. The proposed backward
Monte Carlo method is able to estimate the energy distribu-
tion function in a chosen point in the (r, k) phase space with
desired accuracy. The high-energy tail of the distribution can
be calculated point-wise. As an illustrative application we
have estimated the so-called acceleration integral in the chan-
nel of aMOSFET and compared to values from the literature.
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A Generation of the injection states

A single-particle MC simulation is performed with the
motion of the particle confined to a box of constant length, as
shown in Fig. 13. An equilibrium distribution is obtained by
setting the electric field to zero. Every time the particle hits
a boundary and gets reflected, its current state is used as an
initial state of for the BMC method. The distribution of the
k-values generated with this scheme is a velocity-weighted
Maxwellian [20].

f0(k) = |v⊥(k)| fM (k) (80)

Here |v⊥(k)| is the velocity component normal to the bound-
ary. The width of the Maxwellian is determined by the
temperature one uses for the calculation of the phonon scat-
tering rates.

Box Length

Scattering

Reflection

Fig. 13 Box method sampling
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