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Thermo-acoustic oscillations can damage gas turbines. Numerical predictions guide the combustor
design to prevent the occurrence of this hazardous resonance phenomenon. Uncertainties, such as incom-
plete knowledge of boundary conditions, challenge this strategy. For the appropriate estimation of com-
bustor inlet boundary conditions, we develop a model mimicking the reflection characteristics of an axial
compressor. The non-compact formulation relies on individual blade rows’ performance data and allows
thereby estimating the phase delay information. The evolution of the reflection coefficients is analysed
for different operating conditions and related to the slope of the compressor characteristics. We find that
the impedance at the compressor discharge varies significantly with frequency, resulting in wave inter-
actions with all blade rows. Only towards compressor choke, high flow velocities at the compressor dis-
charge restrict the penetration depth of incident waves resulting in reflection coefficients with minor
frequency dependence. That even small phase components of the reflection coefficient are crucial for
thermo-acoustic stability prediction is demonstrated in an example.

� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The resonance of acoustic waves with unsteady heat release
emitted by flames can severely damage gas turbines and, therefore,
restricts the application of lean-burn combustion [1]. By predicting
such thermo-acoustic instabilities, numerical simulations assist
combustor design to reduce the oscillations to tolerable ampli-
tudes. Prediction realism and uncertainty limit the design quality.
Lamarque et al. [2], Bothien et al. [3], and Motheau et al. [4]
demonstrated that boundary conditions can alter the thermo-
acoustic characteristics of combustors. Hence, accurate models
mimicking the acoustic characteristics of the combustor bound-
aries realistically are required for thermo-acoustic analysis.

Compressors embody the component upstream of the combus-
tor in gas turbines condensing the working fluid. Their perfor-
mance quantities are commonly displayed on maps as ratios to
inflow and operating conditions, which are shown in Fig. 1 (a) for
an axial compressor with six stages. The pressurisation response
on a mass-flow rate alteration at the discharge can be read off in
the quasi-steady limit. Hence, its acoustic reflection properties
can be estimated accordingly to the slope of the compressor char-
acteristic. The compressor characteristics at constant rotational
speed become steep, especially at high rotational speeds. Thus,
pressure oscillations, e.g. incident acoustic waves, entering at the
compressor discharge cause only an insignificant mass-flow rate
change at such operating conditions. Choked flowwith a weak nor-
mal shock exhibits similar properties (corresponding to an infinite
steepness), which is commonly assumed as an appropriate inflow
boundary condition for the perturbation quantities. Choked inlet
flow through a compact nozzle provides a defined acoustic bound-
ary condition at minimal assumptions and is, therefore, also popu-
lar in laboratory experiments. Marble et al. [5] derived the
reflection coefficient analytically for a compact choked nozzle
while noting the importance of the phase shift of the reflected with
respect to the incident wave in the second part of their work. Stow
et al. [6] determined by an asymptotic analysis a higher-order cor-
rection of the reflection coefficient phase in the low-frequency
limit. Duran et al. [7] found the reflection coefficients for any noz-
zle geometry using flow invariants. Despite the effort to establish
boundary conditions for nozzle throats, handling the inlet bound-
ary as choked nozzle flow might not be a suitable representation
of an actual compressor. The flow is not necessarily choked there,
and the waves might penetrate deep into the turbomachinery.

Boundary conditions mimicking the compressor need to be
computationally efficient because numerous calculations are
required at the combustor design stage. Acoustic boundary condi-
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Fig. 1. Left: The performance of an axial high-pressure compressor is illustrated, where the contours indicate the isentropic efficiency. Right: Pressure reflection coefficient
for incident waves at the compressor discharge as function of the operating condition.
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tions for real combustors are challenging to measure experimen-
tally because realistic operating conditions are hard to replicate.
Lohse et al. [8] demonstrated that three-dimensional aeroacoustic
simulations could calculate the acoustic reflection and transmis-
sion properties of a single compressor stage. However, the acoustic
characterisation of several stages and frequencies by this method-
ology remains challenging due to limited computational resources.
Moreover, the compressor might not be entirely designed yet,
when the acoustic boundary conditions are required for combustor
stability calculations. Silva et al. [9] developed a compact compres-
sor boundary condition for thermo-acoustic limit cycle predictions
solely based on the steepness of the pressure ratio performance
map data at a constant rotational speed. An extended estimation
procedure of the reflection coefficient, including the compressor
temperature characteristics and the influence of the speed line
derivatives, is described in Appendix A1. The pressure reflection
coefficient for wave excitation at the compressor discharge thus
obtained is shown in Fig. 1 (b). As a gas turbine component, com-
pressors are operated along so-called running lines, which lay close
to their optimal efficiency (provided adequate matching has been
obtained). The variation range of reflection coefficients within such
operating conditions is of interest because it determines the diver-
sity of resonant modes.

The drawbacks of modelling the reflection properties with per-
formance map data are that these relations are only valid in the
quasi-steady limit (at zero frequency) and that the compressor is
assumed to respond as a whole. Acoustic resonance phenomena
[11] occurring between blade rows cannot be predicted with such
methods. Axial, multistage compressors are not short compared to
the incident acoustic wave. Therefore, propagation effects along
blades need to be considered allowing phase shift evaluation.

With this work, a non-compact boundary condition formulation
for axial compressors is presented, which is based on overall blade
row performance data. The individual treatment of blade rows
enables accurate phase shift determination at different frequen-
cies. We investigate the reflection behaviour of an axial compres-
sor, see Fig. 1, under different operating conditions and highlight
the importance of the speed line derivative for the reflection coef-
ficient. The impact of this boundary condition is demonstrated in a
thermo-acoustic stability prediction with an acoustic network
model. Within this example, we further illustrate the shortcomings
of the choked flow inlet condition and the importance of the
boundary condition phase on the modal growth rate.
1 The effect of temperature gradients on the acoustic impedance has been revealed
by Yeddula et al. [10].

2

2. Axial compressor boundary condition

Fast calculation procedures for boundary conditions are desired
to enable efficient numerical simulations. Therefore, a low-order
representation of an axial compressor, as suggested by Hynes
[12], is employed. The simplifying assumptions are as follows;
the hub to tip ratio is high such that radial fluctuations are negligi-
ble, the treatment of the blade flow as inclined channel flow with
the stagger angle, cs, is adequate for the slightly curved passages,
viscosity, and thermal conductivity do not influence the perturba-
tion dynamics in a control volume, disturbances are sufficiently
small to be represented by the linearised equations of fluid motion,
which allows separate computation of mean and perturbation
quantities.

The domain, representing the axial compressor geometry, is
subdivided into propagation-alike segments. All control volumes
start or terminate at a tip or trailing edge of a blade, which is illus-
trated in Fig. 2. (This treatment of blade rows as single control vol-
umes implies that the mean flow quantities are thought to be
constant in each of these control volumes.) The alternating
arrangements of rotors and stators are represented by individual
blade row control volumes, which inhibit circumferential flow
between blade passages. In these, only propagation in the
curved-linear coordinate system n (see Fig. 2 (b)) is considered.
The interspace between blade rows is represented by bridging
gap control volumes. In these, azimuthal flow is permitted and
hence, an additional degree of freedom is considered. Actuator
disks at the leading and trailing edges of blade rows form the inter-
face between control volumes. These are computed based on con-
servation equations and empirical blade performance models,
estimating the flow angle deviation and the pressure loss over a
blade row. Thus, the calculation of the solution through the com-
pressor is decomposed into propagation within control volumes
and the modelling of interface conditions. Individual perturbation
transmission matrices are formed from the gap volumes to the
trailing edge of the consecutive blade row and combined to repre-
sent the entire compressor. The wave amplitudes are marched
from the inlet through the whole domain and scaled appropriately
to the imposed boundary conditions. At the compressor exit, the
reflection coefficients are calculated and used as boundary condi-
tion in the thermo-acoustic simulations (See Fig. 3).

In Appendix B, a verification of the present implementation
with data by Kaji et al. [13] is documented. Hynes [12] showed that
the present low-order model is capable to predict compressor per-
formance and stability. A comparison of the predicted transfer
function with this model and experimental data has been pre-
sented by Knobloch et al. [14]. Worthwhile to note is that this



Fig. 2. Schematics of the numerical approach. Figure (a) illustrates the arrangement of control volumes of the rotor/stator assembly in an axial compressor and (b) shows a
stage in detail.

Fig. 3. Flow chart of the compressor model calculation procedure.
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impedance boundary condition formulation can be also used in the
time-domain when combined with the works by Rienstra [15] or
Fung et al. [16]. Thus, the developed impedance boundary condi-
tion can also be used for Helmholtz solver or large eddy
simulations.

2.1. Gap control volumes representing the space between rotor and
stator rows

The governing equations are formulated in the cylindrical coor-
dinate system x; r; hð Þ due to the annular shape of the gaps and the
possibility of azimuthal propagation. The four linearised conserva-
tion equations governing the behaviour of the primary perturba-
tion quantities (indicated by primes), i.e. axial velocity v 0

a,
azimuthal velocity v 0

h, pressure p0, and density q0, in the gap control
volumes can be written as,

q
@v 0

a

@t
þ qva

@v 0
a

@x
þ q

vh

r
@v 0

a

@h
¼ � @p0
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ð1Þ

for the axial momentum perturbation,

q
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3

for the circumferential momentum perturbation,

@q0
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for the mass conservation, and

@s0

@t
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@s0

@x
þ vh

r
@s0

@h
¼ 0

for the entropy perturbation s0. Using the expression

s0 ¼ cv p0=p� c q0=qð Þ;
with cv being the specific heat capacity at constant volume, valid for
a perfect gas, the equation can be transformed to

@p0

@t
þ va

@p0
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@p0

@h
¼ a2

@q0

@t
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� �
; ð4Þ

where a is the speed of sound. The density fluctuations q0 are
related to pressure fluctuations by p0 ¼ a2q0. This system of four dif-
ferential equations describes the evolution of the primary distur-
bance variables. Since the mean flow quantities and the
geometrical constrains are known, solutions for the disturbance
variables can be found by Fourier superposition. Therefore, we first
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differentiate Eq. (1) with respect to x and Eq. (2) with respect to h,
which gives

q
@
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þ qva

@
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þ q
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r
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@v 0

a
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; ð5Þ

and
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h
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r
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: ð6Þ

Dividing Eq. (6) by r and adding Eq. (5) gives,
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ð7Þ

The term, @v 0
a

@x þ 1
r

@v 0
h

@h , can be replaced using the mass conserva-
tion Eq. (3) leading to
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þ 1
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@t
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where va=a is the axial Mach number,Ma, and vh=a is the azimuthal
Mach number, Mh. The solution to this equation can be found by
separation of variables. A Fourier superposition of solutions of the
form p0 ¼ f xð Þ exp ixt þ inhð Þ is substituted in the Eq. (8),

1�M2
a

� � d2f xð Þ
dx2

� 2iMa
x
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r
Mh

� � df xð Þ
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þ x
a
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� �
f xð Þ ¼ 0:

ð9Þ
The angular frequency is x and n is the circumferential har-

monic of distortion. The solutions to this equation are proportional
to exp ibx=rð Þ. The complex axial wavenumbers are,

b1;2 ¼ Ma
xr
a þ nMh

� �
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�
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With complex coefficients, i.e. Bn;Cn, the evolution of the pres-
sure fluctuations can be obtained,

p0

p
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þ b1Ma þ nMh

� �
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The exponential factors are,

u ¼ xt þ nhþ b1
x
r

and w ¼ xt þ nhþ b2
x
r
: ð12Þ

These complex coefficients are to be determined with the inlet
and outlet boundary conditions of the compressor.

An additional solution for density fluctuations q0 arises, which
corresponds to entropy waves. These solutions satisfy the
condition,
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q0 ¼ 0: ð13Þ

The multiplication with r=a reveals that the solutions to Eq. (13)
are proportional to

e�i xr
a þnMhð Þ=Ma �x=r:

Hence, the density fluctuations are given by,
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4

with an additional complex coefficient, En, where

v ¼ xt þ nh�
xr
a þ nMh

Ma

x
r
: ð15Þ

In order to obtain solutions for va and vh, the solutions for p0

and q0 are substituted into the Eqs. (1)–(3). Additional solutions
can be found for p0 ¼ 0 and q0 ¼ 0 corresponding to pure vorticity
waves. The axial velocity normalised by the speed of sound a is,

v 0
a

a
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� � ð16Þ

and the azimuthal velocity normalised by the speed of sound is,

v 0
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where Dn is another complex coefficient.
The solutions for the total pressure,

p0 ¼ p 1þ c� 1
2
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;

and total temperature,
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2
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;

can be written as,
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and
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The solution for the flow angle, as, is derived from the Kutta
condition and can be written as,

tan asð Þ0
tan asð Þ ¼

X1
n¼0

b1
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� n
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Bnei/ þ b2
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2.2. Blade-row control volumes

The blades outline curved channels and thereby inhibit circum-
ferential flow. Hence, only three linearised conservation equations
govern the perturbation behaviour in the blade row volumes,
which can be written in curved-linear coordinate system n as,

q
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þ qw
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¼ � @p0

@n
; ð21Þ

for the flow momentum,
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for the mass conservation equation, and as
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for the energy or entropy conservation equation. The solutions to
this equation system can be written as,

p0

p
¼ c

X1
n¼0

fBnei
eu þfCnei
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; ð24Þ

for the pressure fluctuation,
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q0
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for the density fluctuation, and
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a
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for the velocity perturbation. The solutions for the total pressure
and total temperature can be written as,
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The exponential factors are

eu ¼ xþ nXð Þt þ xþ nXð Þr
1�Mnð Þa

n
r
; ð29Þ

ew ¼ xþ nXð Þt � xþ nXð Þr
1þMnð Þa

n
r
; ð30Þ

ev ¼ xþ nXð Þt � xþ nXð Þr
Mnð Þa

n
r
; ð31Þ

where X is the rotational speed of the engine. For the stator rows, X
is zero and vanishes from the equations above.

The solutions are presented in the rotating reference frame.
Hence, a coordinate transformation needs be performed to inter-
face the equation systems for the blade row and gap control
volumes,

n cos csð Þ ¼ x and n sin csð Þ ¼ r h�Xtð Þ: ð32Þ
Eliminating Xt and n from Eqs. (29)–(31), the exponential fac-

tors become,

eu ¼ xt þ nh� n tan csð Þ x
r
þ xþ nXð Þr

1�Mnð Þa
x
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ev ¼ xt þ nh� n tan csð Þ x
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� xþ nXð Þr

Mxð Þa
x
r
: ð35Þ

Again, the complex coefficients, i.e. eBn; eCn, and eEn, need to be
determined such that the boundary conditions are satisfied.

2.3. Actuator disks interfacing gap and blade-row control volumes

Interface conditions for wave amplitudes need to be fulfilled
while being transported from one control volume into the next.
At the leading edge of blade rows (which has been marked in red
colour in Fig. 2 (b)), the mass flux, total pressure and total temper-
ature perturbations need to be conserved between the upstream, 1,
and downstream, 2, volume,

q0
1

q1
þ v 0

1

v1
¼ q0

2

q2
þw0

2

w2
ð36Þ

T 0
0;1 ¼ T 0

0;2 ð37Þ
p0
0;1 ¼ p0

0;2: ð38Þ
5

At the trailing edge of blade rows (marked in orange colour in
Fig. 2 (b)), an additional condition is required for the four conser-
vation equations in the gap control volume. The mass flux and total
enthalpy perturbations are conserved also at this trailing edge
interface,

q0
1

q1
þw0

1

w1
¼ q0

2

q2
þ v 0

2

v2
ð39Þ

T 0
0;1 ¼ T 0

0;2: ð40Þ
Total pressure losses manifest over blade rows and hence, the

total pressure perturbation amplitudes are not conserved. An
empirical formulation suggested by Emmons et al. [17] is used to
model the blade row performance with the blade row loss coeffi-
cient eL as a function of inflow quantities, i.e. the Mach number
at the leading edge, M1, and flow incidence angle, as1,

eL tan as1ð Þ;M1ð Þ ¼ p0;1 � p0;2

p0;1 � p1
¼ A1 1þ A2

as1 � aopt;1

�opt

� �2
 !

; ð41Þ

where A1 and A2 are modelling coefficients, aopt;1 is the mid-radius
incidence angle at minimum loss and �opt is the optimum deflection.
The amplitude of the total pressure perturbation at the tailing edge
can computed by the perturbations inserted in Eq. (41), i.e.

p0
0;1 � p0

0;1 � p0
1

� �
eL, plus the contribution of the inflow quantity per-

turbations, i.e. the Mach number at the leading edge, M0
1, and flow

incidence angle, tan as1ð Þ0, changing the loss coefficient, eL. Emmons
et al. [17] showed that the time delay of the total pressure pertur-
bation over a blade row is influenced by the boundary layer devel-
opment on the blades. The effect of a generated eddy on the
boundary layer is delayed by the time s due to the convection with
the mean flow in the blade passage and the time dependence is rep-
resented as the phase delay (i.e. 1þ i xþ nXð Þs) of the total pres-
sure perturbation at the trailing edge. For an exponential time
dependence, representing the unsteady nature of a small distur-
bance propagation, this leads to the formulation [18],

p0
0;2 ¼ p0

0;1 �
1

1þ i xþ nXð Þs p0
0;1 � p0

1

� �
eL þ p0;1 � p1

� � @eL
@ tan as1ð Þ tan as1ð Þ0 þ @eL

@M1
M0

1

� �� �
ð42Þ

As similarly suggested by Lieblein [19], the influence of the flow
incidence angle as1 on the flow deflection angle as2 is modelled by,

as2 ¼ A3 � as1 � aopt;1
� �þ aopt;2; ð43Þ

where A3 is the deviation factor, and aopt;2 is the flow angle at min-
imum loss measured at the mid-radius exit. The modelling coeffi-
cients, A1;A2, and A3, can be obtained from textbooks for certain
blade profiles or are calibrated with experimental mean flow data
such that a compressor performance map can be reproduced. There-
fore, these coefficients represent scaling parameters to match the
compressor characteristics.

The flow deflection angle amplitude at the trailing edge can be
derived by calculating its derivative with respect to the inflow
quantities, i.e. the Mach number at the leading edge, M1, and flow
incidence angle, tan as1ð Þ, and multiplying with the corresponding
inflow perturbations. The propagation nature of the flow deflection
angle over the blade row can be modelled as phase delay by the
time s due to the convection with the mean flow in the blade pas-
sage, as shown by Emmons et al. [17]. Thus, the relation describing
the convection of flow angle perturbations over a blade row can be
derived from the steady-state leaving angle relation,



Table 1
Interpretation of the terms associated with complex coefficients.

Physical interpretation of the terms Gap Blade row

Upstream decaying potential modes Bn eBn

Downstream growing potential modes Cn eCn

Vorticity modes Dn -
Entropy modes En eEn
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tan as2ð Þ0 ¼ 1
1þ i xþ nXð Þs �

@ tan as2ð Þ
@ tan as1ð Þ tan as1ð Þ0 þ @ tan as2ð Þ

@M1
M0

1

� �
:

ð44Þ
Ma and Mh are the axial and the circumferential Mach-numbers

based on the mean flow velocity components, respectively. This
implies that

M0
a ¼ v 0

a=aþMa=2 q0=q� p0=pð Þ:
2 Models for the loss and deviation factors are constantly improving (e.g. König
et al. [20], Banjac et al. [21], or Ferrer et al. [22]), where the best representation should
be applied to obtain the most accurate results.
2.4. Solving the equation system describing the compressor

The equation system defined by the three interface conditions
at the leading edge of a blade row, i.e. Eqs. (36)–(38), can be writ-
ten as,

b1;1 b1;2 b1;3 b1;4

b2;1 b2;2 b2;3 b2;4

b3;1 b3;2 b3;3 b3;4

0B@
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Bneu
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Dnev

Enev

0BBB@
1CCCA

j

¼
c1;1 c1;2 c1;3
c2;1 c2;2 c2;3
c3;1 c3;2 c3;3

0B@
1CA eBneCneEn

0B@
1CA

jþ1

;

ð45Þ
where the left and right hand side represents the perturbation

amplitudes of the waves (four in the jth control volume) just

upstream and (three in the jth þ 1 control volume) downstream of
the leading edge, respectively. The matrices entries are determined
by the constants preceding the individual complex coefficients in
Eqs. (14), (16), (18) and (19) for the left hand side and Eqs. (25)–
(28) for the right hand side. On the left hand side, the convection
delay in the gap in between blade rows is accounted for by expo-
nential factors. The corresponding equation system for the trailing
edge can be formed by the four conditions, i.e. Eqs. (39), (40),
(42), and (43)

c1;1 c1;2 c1;3
c2;1 c2;2 c2;3
c3;1 c3;2 c3;3
0 0 0
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eBneeueCne
eweEneev
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0 0 0 0
0 0 0 0
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Dnev

Enev
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j

¼

d1;1 d1;2 d1;3 d1;4

d2;1 d2;2 d2;3 d2;4

d3;1 d3;2 d3;3 d3;4

d4;1 d4;2 d4;3 d4;4

0BBB@
1CCCA

Bn

Cn

Dn

En

0BBB@
1CCCA

jþ2

;

ð46Þ

where the first term on the left and the right hand side represent
the perturbation amplitudes right upstream and downstream of
the trailing edge, respectively. The second term on the left hand side
accounts for the total pressure losses Dpi (see Eq. (42)) and trans-
ferred flow angle perturbations Das;i (see Eq. (44)), which is formu-
lated in terms of the perturbation amplitudes of the preceding gap
control volume. Again, the matrix entries correspond to the con-
stants preceding the individual complex coefficients in Eqs. (25)–
(28) for the left hand side and Eqs. (14), (16), (18), (19), and (20)
for the right hand side. Elimination of the blade row perturbation
amplitudes by combining the equation systems 45 and 46, a four
by four transmission matrix can be obtained relating the complex
coefficients in the present with the consecutive gap control volume.

This equation system describing the transmission and reflection
properties of the perturbation amplitudes always takes this corre-
sponding matrix form in blade row and gap control volumes. These
matrices can be built for each blade row and stored. Combining the
transfer matrices for all blade rows, the transmission and the
reflection behaviour of the compressor is defined. The boundary
conditions are that no pressure, vorticity and entropy waves enter
the domain through the inlet, while a pressure wave enters at the
compressor exit. All other wave amplitudes are to be determined.
6

An initial guess is propagated from the inlet through all blade rows
of the compressor accounting for the boundary conditions of par-
ticular wave amplitudes. Generally, the result at the outlet bound-
ary will not satisfy the outlet boundary conditions, but the wave
amplitudes can be scaled correspondingly due to the linearity of
the problem.

Terms associated with particular complex coefficients can be
related to physical propagation phenomena and are listed in
Table 1. Contributions with the complex coefficients Bn and Cn

are potential modes representing upstream and downstream prop-
agation, respectively. Due to the nature of the Eqs. (11) and (24),
these modes are often considered as pressure modes. The upstream
wave propagation terms are crucial, because only these can cause
coupling of compressor segments. The terms involving complex
coefficients Dn can be regarded as vorticity waves and terms with
complex coefficients En can be seen as entropy waves. Vorticity
waves are not transported through blade rows, since only three
degrees of freedom are considered.
2.5. Application of the compressor model

Firstly, the geometry of the compressor has to be specified,
which consists for each blade row of the axial coordinates of the
blade’s leading and tailing edges, the hub and casing radius at
the exit, the blockage factor, the mid-radius stagger angle, the
mid-radius inlet and outlet angle at minimum loss, the optimum
deflection angle, and the minimum value of the loss coefficient.
The modelling coefficients, A1;A2, and A3, are fitted for each blade
row to match empirical correlations for the profiles, which can
be obtained experimentally or from literature.2 The aforemen-
tioned procedure is best suited during the design stage of the com-
pressor. The modelling coefficients can be matched to represent
the compressor performance map if the compressor exists.

The total pressure and total temperature are set at the inlet as
mean flow boundary conditions. The compressor operating map is
calculated with a given rotational design speed, Xd, and design
mass-flow rate, _md, for a range of rotational speeds. With the deter-
mined mean flow, the exponential factors, representing the mode
decay with axial distance, and the perturbation multipliers can be
evaluated. The matrices, i.e. representing the interface conditions,
can be formed and inverted to explicitly solve the set of equations.

The complex coefficients are set at the inflow accordingly to the
present perturbations. For the remainder of the investigation, it is
assumed that no perturbations enter the compressor, but upstream
propagating acoustic waves leave the compressor inlet. Hence, the
initial conditions at the compressor inlet are Bn ¼ 1 and
Cn ¼ Dn ¼ En ¼ 0. This inlet condition for the complex coefficients
is propagated downstream by solving the system of equations.
The initial result will generally not fulfil the boundary condition
at the compressor outlet. Because of the problem linearity, the
wave amplitudes can be scaled appropriately, e.g. the forcing
amplitudes obtained by a thermo-acoustic simulation.
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3. Results

Firstly, an individual blade row is investigated to demonstrate
the modelling implications on the wave transmission and reflec-
tion properties. The acoustic energy flux rates for an upstream
travelling pressure wave can be analysed in terms of acoustic
energy coefficients;

R� ¼ p̂þ
2

p̂�
2
¼ 1þM2
� �2
1�M2
� �2 C0;2

B0;2

				 				2 ð47Þ
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1
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A2
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q1a1

1�M1
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xr
a þ b1Ma
� �

1

p2
xr
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� �

2

B0;1

B0;2

					
					
2

; ð48Þ

where R� is the reflected and T� is the transmitted acoustic energy
coefficient through the cascade, the hat on the pressure indicates
that only the acoustic pressure is considered, A is the cross-
sectional area, and the indices 1 and 2 indicate the upstream and
downstream location, respectively.

Given that no vorticity and entropy waves are imposed at the
compressor inlet, it is worthwhile to note that no vorticity or
entropywaves are generatedwhen A1 and A3 are set to zero because
the total pressure losses Dpi and transferred flow angle perturba-
tions Das;i in Eq. (46) vanish. With these modelling coefficients
being zero, the blades act simply as guide vanes, and the acoustic
energy flux is conserved (as shown in Fig. 4 (a), which shows the
magnitudes of the acoustic energy reflection and transmission coef-
ficient). The rotor rotation is ideal and alters the mean flow quanti-
ties without losses. The larger the rotational speed of the blade row,
the larger are the changes in the mean flow quantities, which cause
the reflection of the injected waves at the blade row.

A realistic blade row causes losses and induces, thereby, vortic-
ity and entropy waves. With their formation, the acoustic energy
flux is no longer conserved over a blade row, as shown in Figs. 4
(b) and (c) illustrating that jT�j þ jR�j is not strictly one. The coef-
ficient A1 determines the pressure loss over a blade row and the
deviation factor, A3, adjusts the Kutta condition. The Eqs. (42)
and (44) define the scaling relations of these coefficients, A1 and
A3, and the amplitudes of entropy and vorticity waves, respec-
tively. These two equations distinguish each other essentially by
a zero-order term and the sign. First-order derivative terms, repre-
senting the impact of a flow incidence angle or Mach number
change, define intricately the proportion of wave amplitudes gen-
erated. Both essential quantities, the flow deflection angle, as2, and
the blade row loss coefficient, eL, scale with the difference (or the
quadratic difference) of the actual as1 and optimal flow incidence
aopt;1 angles. The relative flow incident angle as1 changes with the
rotational speed, whereas the blade design parameters aopt;1 and
aopt;2 remain fixed. Depending on the particular blade design and
the rotational speed, the sign of Eq. (43) and hence, Eq. (44) can
change. This can cause a saddle point of the vorticity wave ampli-
tude in a variation of the rotational speed, which can be noted in
the response of the acoustic energy transmission coefficient mag-
nitude in Fig. 4. For entropy waves, the difference enters quadrat-
ically in Eq. (41) and hence, the sign is positive. This implies that
the sign of the derivative terms in the Eqs. (42) and (44) is equal
for some flow incidence angles. Therefore, a similar perturbation
transmission behaviour (but at a different scale) is expected under
certain inflow angles.3

Without vorticity and entropy waves, the acoustic energy trans-
port characteristics remain approximately constant in the fre-
3 For perturbations passing a stator with pressure loss, the term, p00;1 � p01
� �

eL , in
Eq. (44) governs the amplitude change. In contrast, the derivative terms become
dominant for high rotational speeds.
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quency range of interest (with typical blade dimensions of high-
pressure compressors in gas turbines). Vorticity can be present in
the mean flow. Contrary, entropy waves are not present in the
mean flow; therefore, their wave amplitudes vanish in the zero-
frequency limit. The generation of vorticity and entropy waves
augments the frequency-dependency of the reflection characteris-
tics due to the frequency-dependency of the delayed convection of
total pressure (Eq. (42)) and flow angle perturbations (Eq. (44))
along blade passages. With the generation of vorticity waves, the,
p1

xr
a þ b1Ma
� �

1C0;1=p2
xr
a þ b1Ma
� �

2C0;2, remain smaller than unity
throughout the investigated frequency range. These pressure wave
amplitude ratios exhibit similar values compared to those without
vorticity waves. The transmission coefficient magnitude of the
acoustic energy flux (with vorticity waves) can become larger than
unity only with the multiplication of the mean flow contribution.
The blade row loss coefficient has a more severe impact on the
acoustic energy flux, leading to a significant increase in the acous-
tic energy transmission coefficient. Nonetheless, the delayed con-
vection time plays an essential role for the acoustic energy flux
resonance.
3.1. Axial compressor

In this section, the reflection characteristics are investigated
with upstream excitation in a realistic application, i.e. an axial
compressor with six stages. Its overall performance has been pre-
sented in Fig. 1. For all blade rows, the modelling coefficients A1

and A3 are set to 0:066 and 0:4, respectively, except when specified
differently. The reflection and transmission coefficients are stated
in this section as the ratio of the corresponding wave component
to the incident upstream propagating wave at the compressor exit.
3.1.1. Effect of operating conditions on the reflection coefficients
The mean flow, the flow angles, and the pressure losses are dif-

ferent and, thereby, define the operating condition. Thus, the pres-
sure reflection properties change for incident pressure waves at the
compressor discharge, as illustrated in Fig. 5 for particular operat-
ing conditions defined in Fig. 1. The axial compressor model pre-
dicts approximately constant reflection coefficient amplitudes for
the investigated frequency range at operating conditions near
compressor choke (depicted by the orange lines). The estimated
pressure reflection coefficients reveal significant frequency depen-
dencies toward low mass-flow rate operating conditions.

The pressure reflection coefficient magnitudes obtained from an
equivalent choked flow boundary condition (see C) are indicated
by dotted lines and represent quantitatively reasonable estimates
for operating conditions near compressor choke. However, these
magnitudes do not strictly represent the upper bound (covering
the worst-case scenario). For lower mass-flow rate operating con-
ditions, the approximation of the reflection coefficient with the
equivalent choked flow boundary condition is questionable
because of the significant variations predicted with the present
compressor model (e.g. the red or black lines). Moreover, the for-
mulation of this compact choked flow boundary condition does
not permit the prediction of a phase delay. Further, it was assumed
that mass-flow rate and stagnation enthalpy perturbations vanish
at the compressor discharge. However, the computed values for
mass-flow rate and stagnation enthalpy perturbations with the
compressor model normalised by their mean-flow value reach
maximal values of approximately 15% and 40%, respectively.
(Noteworthy is that the present model does not account for
entropy dissipation effects.) Stow et al. [6] predicted a significant
entropy wave generation at the inlet boundary with an effective
length for the phase correction of the choked flow boundary
condition.



Fig. 4. Acoustic energy transmission (top row) and reflection (lower row) coefficient magnitudes are compared for different configurations of a single, 12� inclined blade row
subjected to planar upstream excitation, where the cord length is 20 mm and the Mach number straight incoming flow is 0:3. The optimal incidence angle, aopt;1, is 38� and the
optimal discharge angle, aopt;2, is 0� . The colours indicate the rotational speeds, which are varied from 0 to 20 krpm.

Fig. 5. The pressure reflection coefficient (n ¼ 0) calculated at the compressor outlet is presented. The orange, red, and black coloured graphs correspond to the operating
conditions near compressor choke, optimal operating conditions, and near surge, respectively. The symbols �;�, and H indicate the 80%;95% and 105% speed line of the
compressor, respectively. The corresponding operating conditions are indicated on the compressor map shown in Fig. 1. The magnitudes obtained with the equivalent choked
flow boundary condition are indicated as dotted lines in the corresponding colour code. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 6 shows the sequence of the complex coefficients, i.e. Bn and
Cn, and illustrates where waves are transmitted and reflected at
each stage in the compressor. The wave propagation pattern
evolves distinct for near compressor choke operating conditions.4

The wave amplitudes entering the compressor discharge decay
rapidly within a few stages and cannot penetrate deep into the com-
pressor. Reflection occurs primarily at the last blade rows, where the
Mach number becomes high for such operating conditions. Fig. 5
shows that the Mach number increases even over stators near com-
pressor choke since the flow incidence angles in these passages
become extremely steep. The thereby induced stall cells inhibit the
conversion of kinetic into pressure energy. After a certain penetra-
tion length, the reflection causes the approximately frequency-
independent pressure reflection coefficients described in the
previous paragraphs.

Lower flow velocities permit pressure waves to penetrate fur-
ther into and even throughout the compressor. When interacting
with blade rows, upstream travelling waves cause downstream
propagating perturbations. Especially for low mass-flow rate con-
ditions at high rotational speed, local wave amplitude intensifica-
tions, forming standing wave patterns, can be observed in the
interior of the compressor. Noteworthy is that waves propagate
less deep into the compressor at higher frequencies (> 600 Hz).
3.1.2. Effect of the compressor characteristic slope on the reflection
coefficients

Three compressor characteristics are generated by adapting the
deviation factor, A3, (for all blade rows) to investigate the impact of
their steepness on the acoustic reflection behaviour beyond the
zero-frequency limit. This modelling coefficient governs the pro-
portionality of the flow deviation angle at the trailing edge with
respect to the flow incidence angle and affects, thereby, the vortic-
ity generation. Fig. 7 shows in the left column the predicted com-
pressor performance for a variation of deviation factors at the 95%
speed line. Lower deviation factors lead to steeper decreasing char-
acteristics as compared with higher values. To focus solely on the
slope (at a fixed speed line), an operating point is selected (marked
by a black square) at which the three characteristics exhibit the
same pressure ratio and efficiency. (The compressor efficiency
remains unchanged for this operating point because the total pres-
sure loss factor, A1, is equal for all three generated compressor
characteristics.) The changes of reflection coefficient magnitudes,
shown in Fig. 7, can be mainly observed at low frequencies
(< 500 Hz), whereas phase delay alterations occur primarily in
the mid-frequency range.

The cause for the different reflection coefficients can be found
by inspecting Fig. 8, showing the complex coefficient distributions
over the compressor stages. Vorticity waves are generated when
upstream and downstream propagating waves at the trailing edge
do not satisfy the Kutta condition. The flow deflection angle, deter-
mining the Kutta condition, is set proportionally by the deviation
factor to the incidence angle. Fig. 8 shows clearly that the deviation
factor scales the vorticity wave amplitudes, which evolve differ-
ently for the variation of deviation factor values. The alternating
rotor and stator blade inclinations induce vorticity waves with
opposite signs. The vorticity wave amplitudes can reach values
close to zero downstream of stators for large flow angle perturba-
tion damping, i.e. low deviation factors.
4 The complex coefficient contours shown in Fig. 6 have been scaled by the forcing
amplitude, i.e. the upstream propagating wave entering at the compressor discharge.
Thus, the penetration depth of the upstream propagating wave can be determined by
the magnitude decay of the complex coefficient over the gap and blade control
volumes towards the compressor inlet. The standing wave patterns can be noted as
amplifications of the complex coefficients larger than one and hence, larger than the
forcing amplitude.
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Higher deviation factors propagate more flow angle perturba-
tions downstream. The change in the flow deflection angle can
cause an intensification of upstream travelling waves by impairing
the Kutta condition. Thereby, the higher deviation factors propa-
gate the upstream travelling waves further into and even through-
out the compressor, whereas the upstream wave propagation
decays faster with a low deviation factor. The deterioration of the
Kutta condition generates further amplified downstream propagat-
ing waves (by reflections) and entropy waves generated when vor-
ticity waves do not balance the mismatch of upstream and
downstream propagating waves at the trailing edge condition.
Hence, the vorticity wave amplitudes remain high also down-
stream of stators in such scenarios.

Noteworthy are the similarities in the distribution of complex
coefficients with altered deviation factors and near-optimal oper-
ating conditions at different speed lines. Figs. 6 and 8 show that
a high deviation factor leads to similar complex coefficient distri-
butions as a near-optimal operating condition on a higher speed
line and vice versa.5 However, the compressor characteristics are
steeper on higher than on lower speed lines, which would suggest
the opposite correlation. A comparison of the loss coefficient, shown
in Fig. 9 as a function of the compressor stages, for three deviation
factors and higher and lower speed lines reveals trends explaining
the similarities of the constant coefficients. Clearly, an operating
point on a higher or lower speed line has a similar loss coefficient
distribution among the blade rows as a higher or lower deviation
factor, respectively. The blade row pressure loss coefficient is related
to the incident flow angle and thereby connected to the deviation
factor of the preceding blade row. A low deviation factor (acting as
a damper for flow angle disturbances) decreases the loss coefficient
at the following blade row, while a high deviation factor increases
the loss coefficient. Therefore, the observed relation of the complex
coefficients is not unexpected. The leaving angle and pressure loss
fluctuations relate to incident flow angle changes similar but oppo-
site signs in the present model. This demonstrates that the reflection
behaviour of the compressor depends not only on the partial deriva-
tive of the corrected mass-flow rate but also on the partial derivative
of the rotational speed (as demonstrated in A). As applied in the pre-
sent example, the variation of the deviation factor represents the
partial derivative of the corrected mass-flow rate. Neglecting the
partial derivative of the rotational speed can therefore lead to wrong
reflection coefficient estimations.

Generally, changes of A1, governing the total pressure loss coef-
ficient magnitude, impact the wave transmission and reflection
characteristics as changes in the deviation factor. Moreover, the
impact of a deviation factor change at an individual blade row on
the pressure reflection coefficient can be expected to scale with
the provoked alteration of the loss coefficient amplitude at the
consecutive blade row. Loss coefficient amplitudes are less affected
at blade rows where the actual flow incidence angle is close to the
optimal flow incidence angle. The occurrence of such scenarios (at
particular stages) depends on the compressor operating conditions.
Under surge operating conditions, the leading stages are mostly
stalled, whereas the rearmost stages are commonly stalled close
to compressor choke. Therefore, general statements for individual
blade row importance can hardly be made.

Fig. 9 shows operating points for which a minimal loss coeffi-
cient (and hence, the least actual to optimal flow incidence angle
difference) is reached at the second and third stages. Deviation fac-
tor changes at these individual blade rows generally have a less
5 The complex coefficients shown in Fig. 8 for a deviation factor of 0:4 correspond
to the complex coefficients shown in Fig. 6 for the speed line 95% at the near-optimal
efficiency operating condition. The complex coefficients representing the upstream
and downstream propagation can be compared for other speed lines and deviation
factors.



Fig. 6. The evolution of the complex coefficients Bn and Cn corresponding respectively to upstream and downstream propagation are shown for each gap and blade row
control volume as function of speed line and operating condition accordingly to Fig. 1. (All complex coefficients are scaled such that the incident upstream propagating wave
is unity at the compressor discharge. Dashed contour lines at amplitude intervals of 0:25 indicate complex coefficient amplitudes larger than unity.)

Fig. 7. Left column: Speed lines with three deviation factors, i.e. 0:25 (orange), 0:4 (red), and 0:55 (black). Middle and right column: Pressure reflection coefficients in terms of
magnitude and phase for variations of deviation factors. The top row represents an initial state of a deviation factor of 0:55 over all blade rows, while altering successively the
deviation factor for entire stages to 0:25 starting from the compressor discharge towards the inlet. The lower row shows the same procedure starting with a deviation factor of
0:25 altered successively to a deviation factor of 0:55. The colour code indicates the number of stages altered. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 8. The propagation properties of the compressor model with different deviation factors, i.e. 0:25;0:4, and 0:55, (on the 95% speed line) are illustrated in terms of the
complex coefficients. The amplitude scale shown in red corresponds only to the entropy waves.
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significant impact on the pressure reflection coefficient. Further,
the stator row at the compressor exit cannot affect any consecutive
blade rows, and hence, the reflection coefficients are unaffected by
alterations of the deviation factor of this last blade row.

Worthwhile to note is that the pressure reflection coefficient
phase changes significantly depending on the particular arrange-
ment of deviation factors, as shown in Fig. 7. Decreasing consecu-
tively of the deviation factor causes a flat phase development,
whereas a successive increase results in large phase variations.
Fig. 9. The loss coefficient is compared for three deviation factors, i.e. 0:25;0:4, and
0:55, on the 95% speed line to higher and lower speed lines.
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These variations can outreach the reflection coefficients obtained
with uniform deviation factors. Hence, the reflection coefficients
obtained with uniform deviation factor distributions do not repre-
sent strict bounds.

3.2. Thermo-acoustic stability prediction

We show the impact of the compressor boundary condition in
an applied thermo-acoustic stability calculation. The annular labo-
ratory burner designed and described by Worth et al. [23] is inves-
tigated with an acoustic network approach. A schematic of the
annular burner representation is illustrated in Fig. 10 (a), which
shows that the combustor consists of an upstream plenum, 18 cir-
cumferentially equidistant distributed supply pipes, 18 flames, and
a downstream plenum. A total pressure loss coefficient,
f ¼ p0;1 � p0;2

� �
= 1=2 � .u2

a

� �
, corresponding to the experimental

setup is applied at the flame holder.6 In the experiment, a choked
flow inlet condition applies. We illustrate how the potential pres-
ence of a compressor upstream of the combustor affects thermo-
acoustic stability.

The focus of the present work is on the formulation of the axial
compressor model to represent the upstream acoustic boundary
condition of a combustor. Therefore, only the fundamental charac-
teristics of the utilised acoustic network approach for thermo-
acoustic stability prediction are described; more details have been
provided by Stow et al. [24]. An investigated geometry is divided
6 The validity of the general conclusions has been confirmed for values of the total
pressure loss coefficients over 40.



Fig. 10. The acoustic network model for the laboratory combustor developed by Worth et al. [23] is shown on the top. The grey shaded elements represent wave propagation
blocks, the arrows are interface conditions, and the boundary conditions are stated at the sides. The shapes of the pressure perturbation generated by the two dominant
circumferential modes (p0 ¼ f xð Þ eixtþinh where n ¼ 1) are illustrated on the below, where a three-dimensional visualisation is shown above the normalised one-dimensional
pressure perturbation.
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into one- or two-dimensional (acoustic) propagation-alike seg-
ments. Jump conditions join the segments of a network. For the
low-order representation, the cross-sectional extensions of the
combustor in the radial direction are assumed to be small com-
pared to the perturbation wavelength. All primary variables are
decomposed into time-averaged mean and fluctuating contribu-
tions. The mean flow quantities are calculated first with the inlet
and outlet conditions known at the domain boundaries. The per-
turbations are then superimposed onto the mean flow. The trans-
mission of the fluctuations, i.e. a vorticity wave, an entropy
wave, and two acoustic waves, is governed by the cross-sectional
area, radius, and length of the segment. Using the conservation
equations, i.e. mass, momentum, and energy, the transformations
to the perturbation amplitude of the fluxes can be obtained, which
are used to apply appropriate expansion and contraction jump
conditions. Linearised equations govern the propagation of pertur-
bations except at the flame, which represents the essential
non-linearity of the combustor system. For clarity, the simplistic
n� s model for the heat release response of the flame is utilised
in the present calculations.

With the network approach, waves with frequencies and
growth rates in certain ranges of interest are propagated from
the inlet to the outlet. When the state of the wave matches the
12
specified conditions imposed at the outlet, the error at this bound-
ary vanishes, and a modal solution is found.

Worth et al. [23] focused on the most prominent circumferen-
tial resonant mode and reported its frequency at approximately
1:7 kHz, which increased with elevated equivalence ratio. Other
amplified fluctuations have been identified in the range of 600 to
800 Hz and 1900 to 2000 Hz. With the acoustic network model
for this configuration and a choked flow boundary condition at
the inlet, the most unstable circumferential mode is predicted at
a frequency of 1704 Hz. The second circumferential mode is mar-
ginally stable at 650 Hz.

The shape of the resonant modes, shown in Fig. 10 (b) and (c),
clarifies their sensitivity to boundary conditions. An open exit
boundary condition is employed at the combustor exit, i.e. p0 ¼ 0.
The mode at a frequency of 1704 Hz has high fluctuation ampli-
tudes in the supply pipes, the burner and the downstream plenum.
The one-dimensional pressure perturbation plotted in Fig. 10 (c)
shows clearly that the fluctuation amplitudes remain insignificant
in the upstream plenum. Therefore, the inlet reflection coefficient
has a minor effect on the growth rate of this mode.

On the contrary, the resonant mode at approximately 650 Hz
exhibits high-pressure fluctuation magnitudes from the burner ori-
fice to the inlet boundary, as shown in Fig. 10 (b). Therefore, the



Fig. 11. Obtained growth rates of the mode at approximately 650 Hz for a variation
of refection coefficients. In transparent areas, no mode solution is found. The
symbols indicate reflection coefficients obtained for the compressor boundary
condition model at different operating conditions (the white (105%) to grey (80%)
colour indicates the speed line). At the ends, the squares and stars mark the near
surge and compressor choke operating conditions, respectively.

B. Semlitsch Applied Acoustics 204 (2023) 109236
growth rates of this mode are susceptible to changes of the reflec-
tion properties assigned at the inlet, which is more elaborately
shown as a function of reflection coefficient magnitude and phase
in Fig. 11. It can be observed that the growth rates are negative for
this mode when the phase of the reflection coefficient is positive,
while growth rates become positive for negative phase values.
The mode shape changes slightly for different growth rates (see
Fig. 10), and the frequency adjusts.

The obtained reflection coefficients with the compressor model
are indicated in Fig. 11 for different operating conditions by white
and grey symbols. Compressor choke can be identified as an oper-
ating condition prone to cause the unstable mode. Further, it may
be noted that the path of predicted reflection coefficients along
speed lines does not follow a straightforward trend, which might
be predictable with a few samples. Worthwhile to note is that
the growth rates do not significantly change for reflection coeffi-
cients with zero phase components. Therefore, the equivalent
choked flow boundary condition will lead to a prediction of a mar-
ginally stable growth rate independently of its reflection coeffi-
cient amplitude. Although the reflection coefficient magnitudes
were found to be similar for the equivalent choked flow and com-
pressor choke reflection coefficients, the impact of the phase on the
thermo-acoustic stability is decisive.

Amplification due to positive interference can only occur if the
unsteady heat release rate and the acoustic perturbations are in
phase. The importance of the phase criterion for the prediction of
thermo-acoustic stability is shown in Fig. 11. Its relevance has been
demonstrated by Bothien et al. [3], who studied the effect of inlet
boundary conditions on thermo-acoustic instabilities in lean-
premixed swirl burner. It could be shown that thermo-acoustic
oscillations can be reduced through feedback control actuating
the inlet impedance. Further, Silva et al. [9] (although employing
a compact assumption for the individual centrifugal compressor
stages) found with their thermo-acoustic stability calculations that
the phase shift is the most influential factor while the reflection
coefficient magnitude is of secondary importance.
4. Conclusions

To improve the representation of the real application in
thermo-acoustic simulations, we developed a non-compact
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boundary condition mimicking the axial compressors by a
low-order model. Control volumes represent each blade row
and each gap between blade rows. The interface conditions
are based on conservation equations and performance mod-
elling. With the initial outset of the compressor, the required
input is available to set up the boundary condition. The formu-
lation allows fast and accurate phase shift evaluation accounting
for convective time scales of the perturbation transmission in
the blade passages.

Varying the performance of the axial compressor within the
limits of operating conditions, i.e. near surge to near compressor
choke, the obtained reflection coefficients vary significantly and
exhibited strong frequency dependencies. The analysis of wave
transmission and reflection properties in the compressor interior
revealed that the upstream travelling waves penetrate far into or
even throughout the geometry. Further, wave reflections can cause
internal resonance. Thus, the compressor impedance at its dis-
charge is governed by wave interactions at all stages, which a com-
pact nozzle flow boundary condition cannot represent.

The importance of the reflection coefficient phase on the
thermo-acoustic stability prediction was demonstrated for an
acoustic network simulation of an annular combustor. The analysis
illustrated for which conditions the growth rate of a resonant mode
is sensitive to boundary condition variations. Negative phase shifts
lead to high growth rates, whereas positive phase shifts resulted in
neutral stability or damping. The obtained phase shifts with the
present compressor model mainly were negative for the investi-
gated resonant mode. The intricate distribution of predicted reflec-
tion coefficients suggests that many transfer functions would be
required to represent the compressor accurately.

In recent years, the boundary conditions for wave reflection at
nozzle geometries have significantly improved. Nevertheless, most
works focus on the combustor discharge guiding the perturbations
into the turbine stages. According to the particular flow, assump-
tions have been made which might not apply to the combustor
inlet. The penetration of upstream incident waves into the com-
pressor is only significantly restricted at near compressor choke
operating conditions. This behaviour could be potentially modelled
with these nozzle boundary conditions (choked flow), e.g. by an
effective length correction suggested by Stow et al. [6]. However,
a compressor is unlikely to be operated in a gas turbine at operat-
ing conditions with such low efficiency.
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Appendix A. Reflection coefficient estimation based on
performance map data

Performance maps describe the achieved quasi-steady total
pressure, p0, and total temperature, T0, rise of a compressor
between inlet and outlet (indicated with indices 1 and 2, respec-
tively), where
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state their dependencies; i.e. the inlet flow function, corrected rota-
tional speed, Reynolds number, and inlet total temperature. Tip
clearance losses scale with the inlet total temperature and turbu-
lence effects are represented by the Reynolds number. However,
both parameters cannot be simply modelled with compressor per-
formance map data and are therefore neglected for the reflection
coefficient estimation. Logarithmic differentiation of these two
equations provides conservation relations for total pressure and
total temperature fluctuations between compressor inlet and outlet,
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Additionally, the mass-flow rate fluctuations
_m0
c= _mc ¼ q0=qþ v 0=v need to be conserved over the compressor.

This leads to the equation system,
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Fig. A.12. Comparison of the transmission and reflection coefficients calculate
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The corrected mass-flow rate _mc is _m
ffiffiffiffiffi
T0

p
=p0 and the corrected

speed Nc is N=
ffiffiffiffiffi
T0

p
. The values for the derivatives can be obtained

from the data presented in Fig. 1. To obtain reflection coefficients,
the perturbation quantities are rewritten as characteristic waves.
The same decomposition procedure can be employed as described
in Section 2.2 for one-dimensional propagation of complex coeffi-
cients. This leads to the equation system for upstream (i ¼ 1) and
downstream (i ¼ 2) quantities,
_m 0
ci

_mci

p0
0i

p0i
T 00i
T0i

0BBB@
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1� 1=Mi 1þ 1=Mi 1
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Ci
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0B@
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where C ¼ 1þ c� 1ð Þ=2M2
i . The complex coefficients B;C, and E

represent the upstream and downstream propagation, and entropy
waves, respectively. Investigating solely the effect of the compres-
sor, no downstream propagating and entropy waves are present
at the compressor inlet. The ratio of complex coefficients B2=C2 is
the reflection coefficient shown in Fig. 1 for the present investigated
compressor with vanishing length.
Appendix B. Verification

To verify the present implementation, a comparison to the
investigation by Kaji et al. [13] using the actuator disk theory is
performed. Upstream excited pressure waves have been studied
in a plain mean flow (at 0� incidence) while interacting with a sta-
tic, 60� inclined blade row. The wavenumber, k, has been linked to
the cord length c by kc ¼ 2p. The transmitted and reflected wave
amplitude ratios have been investigated. The comparison shown
in Fig. A.12 demonstrates that the results by Kaji et al. [13] (see
Fig. 5 (a)) and the present implementation are identical.
d by Kaji et al. [13] (see Fig. 5 (a)) and with the present implementation.
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Appendix C. Choked flow boundary condition

For this compact inlet boundary condition, the flow is assumed
to be choked at the combustor entrance having a high velocity with
a normal shock wave present. The gap is considered to be narrow
compared to the perturbation wavelengths. With these assump-
tions, the mass-flow, total enthalpy, and vorticity perturbations
are zero at this boundary. The condition for the mass-flow fluctu-
ation _m0 can be formulated as,

_m0

_m
¼ q0

q
þ v 0

v ¼ 0 ðC:1Þ

and the condition for the total enthalpy fluctuation h0
0 using the

ideal gas law, p ¼ qRT, can be written as,

h0
0 ¼ cpT

0 þ v v 0 ¼ cpT
p0

p
� q0

q

� �
þ v v 0 ¼ 0: ðC:2Þ

The equivalent to these conditions can be computed at the com-
pressor discharge for comparison. This requires that Eqs. (C.1) and
(C.2) are satisfied at the compressor exit. This can be achieved by
inserting Eqs. (14) and (16), divided by the axial Mach number
Ma, into Eq. (C.1), and adding the condition for the total enthalpy
fluctuation h0

0,

h0
0 ¼ cp c� 1ð Þ xr

a
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� �
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ðC:3Þ

The ratio of complex coefficients for upstream and downstream
traveling waves (neglecting vorticity terms) at the compressor dis-
charge is,

Bn

Cn
¼ �

cxr
a þ b1 Ma � 1

Ma

� �
cxr
a þ b2 Ma � 1

Ma

� � : ðC:4Þ

This ratio can be inserted into Eq. (11) to calculate the equiva-
lent pressure reflection coefficient for choked flow.

Appendix D. Terms in transmission matrices

The individual terms in the transmission matrices described in
Section 2.4 are given for the leading and trailing edge;
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