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Kurzfassung

Ein wichtiges Problem, dass bei vielen Anwendungen in großen Netzwerken auftritt,
ist beobachtete Daten zu verwenden, um auf die Interaktionen (z.B. Kanten) zwischen
Individuen, welche zu einem komplexem gemeinsamen Verhalten führen, zu schließen.
In unserer Arbeit spezialisieren wir uns auf sich zeitlich-entwickelnde Netzwerke, auf
die grundlegende Annahmen über die Form oder Größe der zugrunde liegenden Netz-
werktopologie nicht zutreffen. Mit zunehmender Notwendigkeit von Verfügbarkeit und
Bedeutung zeitlicher Interaktionsdaten - wie der E-Mail-Kommunikation - wird es immer
wichtiger, nicht nur ihre Datenstruktur zu analysieren, sondern auch ein Modell zur
Erfassung ihrer Eigenschaften zu generieren. Bei der Analyse dieser Art von Netzwerken
beobachten wir Interaktionen zwischen einer Reihe von Entitäten und möchten informati-
ve Darstellungen extrahieren, die nützlich sind, um Vorhersagen über die Entitäten und
ihre Beziehungen zu treffen. Anschließend entwickeln wir generische Modelle, die durch
Wahrscheinlichkeitsverteilungen erklärt werden, welche von den dynamischen Netzwerke
beschrieben werden, passen solche Modelle an echte Netzwerke an und generieren daraus
realistische Graphen.

Ein zentraler Schwerpunkt dieser Arbeit liegt auf Anwendungen, bei denen die Kanten
ihres dynamischen Netzwerks möglicherweise nicht beschreiben sind. Stattdessen können
wir die Dynamik von stochastischen kaskadierenden Prozessen (z. B. Informationstrübung,
Virusausbreitung) beobachten, die über den nicht beschriebenen Teil des Netzwerkes
auftreten. Weiters nehmen wir an, dass die abgeleiteten Kanten einen Multigraph kon-
struieren - in einem Multigraph kann es mehrere Kanten zwischen zwei Entitäten geben.
Wir generieren ein Wahrscheinlichkeitsmodell für solche Daten, in dem eine Baum-
Konstruktionsphase vorgeschlagen wird, um die wahrscheinlichsten Kanten des Netzwerks
zu extrahieren. Die Verwendung eines solchen Modells ermöglicht es uns, das Netzwerk
anhand der Beobachtungen aus dem stochastischen kaskadierenden Prozess abzuleiten.

Ein weiterer wichtiger Aspekt unserer Forschung ist die Untersuchung von dünnbesetzten
realen Netzwerken. Die meisten realen Multigraphen, wie z. B. E-Mail Konversationsda-
tensätze, sind in der Praxis normalerweise schwachbesetzt und weisen einen modularen
Aufbau mit den Verteilungen auf, die sich im Laufe der Zeit entwickeln. Wir nutzen den
Vorteil von nichtparametrischen Modellen für Interaktions-Multigraphen, um die Dünnbe-
setzung von Kanten-austauschbaren Multigraphen mit den dynamischen Clustermustern,
die dazu neigen die jüngsten Verhaltensmuster zu verstärken, zu kombinieren.
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Abschließend wird das Problem der Identifizierung von zentralen Entitäten unter dem
Gesichtspunkt der Information in einem Netzwerk behandelt, indem ein bekanntes
Zentralitätsmaß in den Netzwerken berücksichtigt wird. Zusätzlich zu Algorithmen und
theoretischen Analysen präsentieren wir eine umfangreiche empirische Bewertung unserer
Ansätze anhand mehrerer synthetischer und realer Graphen.
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Abstract

An important problem that arises in many applications of large networks is using
observational data to infer the interactions (i.e., edges) between individuals (or vertices)
which leads to complex collective behaviour. In our work, we focus on time-evolving
networks where basic assumptions about the shape or size of the underlying network
topology do not hold. As the availability and importance of temporal interaction
data—such as email communication—increases, it becomes increasingly important to not
only analyze their data structure but also to generate a model to capture their properties.
When analyzing these kinds of networks, we observe interactions between a set of entities
and we wish to extract informative representations that are useful for making predictions
about the entities and their relationships. We then develop generative models that explain
the probabilistic distributions governing the dynamic networks, fit such models to real
networks, and use them to generate realistic graphs.

A central focus of this thesis is on applications where the edges of their dynamic network
might not be observed, but instead we can observe the dynamics of stochastic cascading
processes (e.g., information diffusion, virus propagation) occurring over the unobserved
network. Further, we assume that the inferred edges construct a multigraph–there might
be multiple edges between two entities in a multigraph. We generate a probabilistic
model for such data, where a tree construction phase is proposed to extract the most
probable edges of the network. Using such a model allows us to infer the network given
observations from the stochastic cascading process.

Another important aspect of our research is the study of sparse real networks. most real-
world multigraphs, such as email interaction datasets, are typically sparse in practice and
they exhibit a modular structure with the distributions that evolve over time. We take
the advantage of nonparametric models for interaction multigraphs which combines the
sparsity of edge-exchangeable multigraphs coupled with the dynamic clustering patterns
that tend to reinforce recent behavioral patterns.

Finally, the problem of identifying central entities from the information point of view in
a network is addressed by considering a prominent centrality measure in the networks. In
addition to providing algorithms and theoretical analyses, we present extensive empirical
evaluation of our approaches on several synthetic and real-world graphs.
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CHAPTER 1
Introduction

1.1 Motivation

Many real-world systems can be structured and modeled by means of networks (or

graphs), where entities of the system can act as vertices (or nodes), and the relations

between these entities are demonstrated by links (or edges). The well-known examples of

such networks include large communication systems (e.g., Internet, telephone network,

world wide web), technological and transportation infrastructures (e.g., railroad and

airline routes), biological systems (e.g., gene and/or protein interactions), information

systems (e.g., network of citations between academic papers), and a variety of social

interaction structures (e.g., online social networks) [SG05, KAS+13]. An important

challenge in these systems is to understand and analyze the underlying structure that

underpins these interactions.

Our main goal is to search for interesting measures that help us characterize and

understand the underlying graph structure and the processes spreading over the networks.

To this end, we develop models and algorithms that benefit from the identified structural

network properties. The most interesting properties of large real-world networks are:

community structure, sparsity, heterogeneity and dynamicity. Community1 structure

is commonly revealed in real-world networks, which implies the appearance of densely

connected groups of vertices, with only sparser connections between these groups (e.g.,

based on user’s work entitles, sport activities, etc.). In particular, entities are more likely

1In this thesis, community, group, cluster and module are used interchangeably.

1
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1.1. Motivation

to interact with the entities sharing the same interests than to entities affiliated with

different communities. Such structural behaviour provides evidence for a modular view

of the network’s dynamics, with different clusters of interactions performing different

functions with some degree of independence [HHJ03]. Another distinguishing property

of networks is their degree of sparsity. Sparse networks only display interaction between

a small fraction of vertex pairs, while dense networks have a number of interactions

that is linear in the number of vertex pairs (or quadratic in the number of vertices).

Moreover, the interactions in the networks typically express a type of heterogeneity, which

we call asymmetric degree heterogeneity, meaning that some entities establish a large

number of interactions to other entities, whereas they receive very few [New10]. Since

many applications, ranging from neurological connectivity patterns [MHS+14] to financial

markets [NSRJ11] and social network analysis [ML10, AX09], contain massive sequences

of multivariate time-stamped observations, analyzing time-dependent observations and

modelling their underlying graph structure are essential. Extensively, in most applications,

we observe that most real-world graphs exhibit dynamic processes that evolve over time,

i.e., the number of vetrices and edges are growing (or shrinking) over time leading

to structural changes in the graph [ARSM17]. Since dynamic network inference and

modeling is a computationally expensive task, it is necessary to understand how the

structure of these systems changes over a period of interest.

Development of generative probabilistic models has a rich history, and there exist several

models that can generate models based on a priori assumption on the network structure

[New18]. In order to capture the temporal dynamics of a graph structured data in the

models, it is essential to understand the relationships between different entities and how

these relationships evolve over time. Modelling complex distributions over dynamic graphs

and then efficiently sampling from these distributions is challenging due to non-unique,

high-dimensional nature of graphs and the complex, non-local dependencies that exists

between edges in a given graph. Nonparametric models constitute an approach to model

selection and adaptation, where the size of the models is allowed to grow as the data set

grows. This is as opposed to parametric models where the number of parameters is fixed.

Most existing models over dynamic networks aim to model a fully observed network

[HLL83, SN97, Wil16, CCB16] but in many real-world problems, the underlying network

structure is not known. What is often known are partial observations of a stochastic

cascading process that is spreading over the network. Consider for example modeling

the spread of disease. We observe times at which vertices report infection by various

2
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1.1. Motivation

contagions; however not all vertices will report their infection. A fundamental problem,

therefore, is to infer the underlying network structure from these partial observations.

In recent years, there has been a body of research on inferring diffusion networks from

vertex infection times. However, these efforts are mostly limited to inferring the set

of most likely edges between infected vertices (assuming a fixed transmission model

(see Section 3.3)), by formulating the problem as a submodular or convex optimization

[ML10, GrS11, GRLK10, RS12]. More recently, there have been attempts to predict the

transmission probabilities from infection times, either by learning vertex representations

[BLG16], or by learning diffusion representations using the underlying network structure

[BLG16, WZLC17, LMGM17]. However, it remains an open problem to provide a

generative probabilistic model for the underlying network from partial observations.

Thus, the following question becomes crucially important:

Can evolving networks with an unbounded number of vertices be inferred and

modeled without directly observing the interactions among their vertices?

We address this problem by providing a nonparametric dynamic network model—based

on a mixture of coupled hierarchical Dirichlet processes–that can learn model structure

based on partial observations (see Chapter 3).

Furthermore, many forms of interactions in real-world networks can be represented in

terms of a multigraph—i.e., a graph where there can be multiple edges between two

vertices. For example, vertices might correspond to individuals, with each edge represent-

ing an email between two individuals. In large-scale applications, such multigraphs are

typically sparse, with the number of edges being small relative to the number of uncon-

nected pairs of vertices. Edge-exchangeable models [CCB16, CD18] have been proposed

as models for sparse multigraphs, and clustering-based edge-exchangeable models can

capture the community structures of underlying graphs [Wil16]. Such models assume

that we will see more edges and vertices in future, that makes them appropriate for

time-evolving graphs. However, they assume that complex distributions over graphs are

stationary; this assumption results in generation of graph models that are invariant to

reordering the arrival times of edges. This is in contrast to the fact that most real-world

multigraphs are dynamic, with the underlying distribution dynamically evolving. To this

end, we wish to address the following question:

Can we develop a generative model that can directly learn from graph-

3
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1.1. Motivation

structural data, take the important properties of real networks (such as

sparsity, heterogeneity, dynamicity and community structure) into account,

and then paves a way to be useful in various applications, such as discovering

new graph structures and completing evolving graphs?

We propose a dynamic nonparametric model for interaction multigraphs that combines

the sparsity of edge-exchangeable multigraphs with dynamic clustering patterns that

tend to reinforce recent behavioral patterns (see Chapter 4).

Lastly, we target the very important task of identifying important vertices of networks in

many applications such as finding influencers in a social network [LRG13], and locating

bottlenecked junctions/routers in a transportation network/the Internet [SG05]. This task

can be tackled by analyzing the underlying network’s behaviour using centrality measures

[XW17, LZZS16, BK14]. Centrality refers to the identifiers that indicate the most

important individuals (or vertices) in a network, and centrality measures quantify the role

of vertices from different points of view. This concept has been around for decades and

different kinds of measuring centrality have been proposed for a long time to quantitatively

evaluate a vertex’s importance from different perspectives [CRTVB07, Fre77, Sab66].

Some of them give consideration to local properties of the underlying network, while

others, e.g., betweenness centrality and closeness centrality, reflect information about

the global network structure. A good measure should usually include information from

both global properties and local neighborhood, however many researchers consider these

indicators together as a new one to identify central vertices in networks [CS09, HYL12].

In many cases, we are only interested in the k-highest centrality vertices rather than the

centralities of all vertices in a network. This is reasonable since a vertex with a higher

centrality is viewed as a more important vertex than a vertex with lower centrality. We

will address the following question:

How can we efficiently and accurately identify the top-k central vertices of a

network without full knowledge of the network topological structure?

We tried to efficiently and accurately identify the top-k central vertices [KAS+13] by

transforming this task to a sparse recovery problem and taking advantage of important

centrality measures, i.e., betweenness centrality (see Chapter 5) .

4
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1.2. Main contributions

1.2 Main contributions

In this thesis, we present a family of novel graph models and associated inference

techniques, that allow us to model graphs that are sparse, have temporal variation and

community structure, and may be partially observed. We also present a novel approach

to identify important network components.

1.2.1 Dynamic network model from partial observations

This work, described in detail in Chapter 3, targets networks evolving in discrete time

in which both vertices and edges can appear and disappear over time, such as dynamic

networks of social interactions. Most existing dynamic network models assume a snapshot

of the network at any particular time is conditionally independent from all previous

snapshots given the current network states. Such an approach greatly simplifies the model

and allows for tractable inference, but it may not be flexible enough to replicate certain

observations from real network data, such as time durations’ of edges, which are often

inaccurately reproduced by models with hidden Markov dynamics. However, often times

we can only observe the information diffusion over the network. While there have been

efforts to infer networks based on such data, providing a generative probabilistic model

that is able to identify the underlying time-varying network remains an open question.

Here we propose a novel online dynamic network inference framework, Dyference, for

providing non-parametric edge-exchangeable network models from partial observations.

We build upon the non-parametric network model of [Wil16], namely MDND, that assumes

that the network clusters into groups and then places a mixture of Dirichlet processes

over the outgoing and incoming edges in each cluster while coupling the network using a

shared discrete base measure. However, our framework is easily extended to arbitrary

generative models replacing the MDND with other choices of latent representations,

such as network models presented in [CCB16, CD16, HSM16]. Given a set of cascades

spreading over the network, we process observations in time intervals. For each time

interval we first find a probability distribution over the cascade diffusion trees that may

have been involved in each cascade. We then calculate the marginal probabilities for

all the edges involved in the diffusion trees. Finally, we sample a set of edges from this

distribution and provide the sampled edges to a Gibbs sampler to update the model

variables. In the next iteration, we use the updated edge probabilities provided by the

model to update the probability distributions over edges supported by each cascade.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1.2. Main contributions

We continue the above iterative process until the model does not change considerably.

Extensive experiments on synthetic and real-world networks show that Dyference is

able to track changes in the structure of dynamic networks and provides accurate online

estimates of the time-varying edge probabilities for different network topologies. We also

apply Dyference for diffusion prediction and predicting the most influential vertices

in Twitter and MemeTracker datasets, as well as bankruptcy prediction in a financial

transaction network.

1.2.2 Bayesian nonparametric model for sparse temporal multigraphs

Many forms of social interaction can be represented in terms of a multigraph, where each

individual interaction corresponds to an edge in the graph, and repeated interactions

may occur between two individuals. For example, we might have multigraphs where

the value of an edge corresponds to the number of emails between two individuals,

or the number of packages sent between two computers. Recently, the class of edge

exchangeable graphs [CCB16, CD18, Wil16] have been proposed for modeling networks

as exchangeable sequences of edges. These models are able to capture many properties of

large-scale social networks, such as sparsity, community structure, and power-law degree

distribution. Being explicit models for sequences of edges, the edge-exchangeable models

are appropriate for networks that grow over time: we can add more edges by expanding the

sequence, and their nonparametric nature means that we expect to introduce previously

unseen vertices as the network expands. However, their exchangeable nature precludes

graphs whose properties change over time. In practice, the dynamics of social interactions

tend to vary over time. In particular, in models that aim to capture community dynamics,

the popularity of a given community can wax and wane over time.

We propose a new model for dynamic multigraphs, the Dynamic Nonparametric Net-

work Distribution (DNND). The DNND uses a hierarchical clustering mechanism to

capture interaction patterns within the multigraph, and uses distance-dependent Chinese

Restaurant Processes (ddCRP) [BF11] to incorporate temporal dynamics by preferentially

assigning edges to clusters and vertices that have been recently active. This dynamic

mechanism, in combination with a Pitman-Yor process-distributed base measure, ensures

that our model is appropriate for both sparse and dense multigraphs, with the degree of

sparsity controlled by a single parameter. The increased flexibility allowed by our model

leads to improved performance over both its exchangeable counterpart and a range of

state-of-the-art dynamic network models.
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1.2. Main contributions

1.2.3 Compressive sensing framework for sparse recovery in networks

In network analysis and mining, detection of important vertices from an information flow

point of view has been a challenging problem in analysis of structural organization of

networks [XW17, LZZS16, BK14]. Betweenness centrality [Fre77] is one of the prominent

centrality measures expressing importance of a vertex within a network, in terms of the

fraction of shortest paths passing through that vertex. Vertices with high betweenness

centrality have significant impacts on the spread of influence and idea in social networks,

the user activity in mobile phone networks, the contagion process in biological networks,

and the congestion in communication networks. Closeness centrality [SGI17] is another

fundamental measure for evaluating a vertex’s importance and influence within a given

network, based on its accessibility in the network. In many cases, we are only interested

in the k-highest centrality vertices rather than the centralities of all vertices in a network.

This is reasonable since a vertex with a higher centrality is viewed as a more important

vertex than a vertex with lower centrality, and we are only interested in the most important

vertices in many applications such as finding influencers in a social network [LRG13], and

locating bottlenecked junctions/routers in a transportation network/the Internet [SG05].

In addition, community detection as one of the most well-known applications of the

network centrality, utilizes the highest centrality vertices only [LCC16]. Suri [SN08] has

defined the problem of finding top-k central vertices as; “for any given positive integer k,

the top-k vertices in a network, based on a certain measure appropriate for the network”.

First, we introduce ego-centric (local) metrics with very low computational complexity,

that correlate well with the global centrality measures (i.e. betweenness and closeness

centralities). Then, we propose a compressive sensing (CS) framework that can accurately

and efficiently recover top-k central vertices in the network using the proposed local

metrics. Computations of our ego-centric metric and the aggregation procedure are both

carried out effectively in a distributed manner, using only local interactions between

neighboring vertices.

The performance of the proposed method is evaluated by extensive simulations under

several configurations on various types of synthetic and real-world networks. The

experimental results demonstrate that the proposed local metrics correlate well with the

global centrality measures and our CS-based framework outperforms the state-of-the-art

methods for sparse recovery of every notion of centrality, with notable improvements.
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1.3. Summary of key contributions

1.3 Summary of key contributions

Inferring dynamic graphs is challenging primarily because it is not obvious how to

simultaneously estimate both the underlying graph itself and the change in its structure

over time. We first consider the case where we do not observe the underlying structure

of the graphs (i.e., the edges connecting the vertices) and proposed a framework to

iteratively extract the observations and generate a probabilistic model for the underlying

network structure. Second, we focus on the fact that in most applications we are faced

with time-dependent sequences of interactions. We propose a model for those interactions

which construct a multigraph and are typically sparse, and then use the generative model

of the corresponding temporal sparse multigraph for prediction tasks. Finally, we identify

the top-k central vertices in a network enforcing the problem of network centrality where

via sparse recovery solutions (i.e., compressive sensing).

1.4 Organization of this dissertation

In Chapter (1), we will first present an introduction of the thesis and summarize our

main contributions related to this thesis. We will then briefly discuss the relevant

terminologies as well as a comprehensive review of existing works on graphs models,

diffusion network inference and network centrality (Chapter 2). In Section 2.6, we discuss

concrete applications of proposed models. Later, the main contributions are widely

described in parts (3), (4), and (5). Finally Chapter 6 summarizes the main results of

the thesis and discusses future work.

1.5 Publications

Publications Covered in this Dissertation This dissertation covers material primar-

ily from the following publications.

• Elahe Ghalebi, Hamidreza Mahyar, Radu Grosu, Graham W. Taylor, Sinead A.

Williamson, “A Nonparametric Bayesian Model for Sparse Temporal Multigraphs”,

submitted to NeurIPS 2020.

• Elahe Ghalebi, Hamidreza Mahyar, Radu Grosu, Graham W. Taylor, Sinead

A. Williamson. “Sequential Edge-Clustering in Temporal Multigraphs”, Graph

Representation Workshop of NeurIPS 2019, Vancouver, Canada.
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1.5. Publications

• Elahe Ghalebi, Baharan Mirzasoleiman, Radu Grosu, Jure Leskovec, “Dynamic net-

work model from partial observations”, Advances in Neural Information Processing

Systems, 9862-9872, NeurIPS 2018, Montreal, Canada.

• Hamidreza Mahyar, Rouzbeh Hasheminezhad, Elahe Ghalebi, Radu Grosu, H E.

Stanley, “A Compressive Sensing Framework for Distributed Detection of High

Closeness Centrality vertices in Networks”, International Conference on Complex

Networks and their Applications, 91-103, 2018.

• Hamidreza Mahyar, Rouzbeh Hasheminezhad, Elahe Ghalebi, Ali Nazemian, Radu

Grosu, Ali Movaghar, Hamid R. Rabiee, “Compressive sensing of high between-

ness centrality vertices in networks”, Physica A: Statistical Mechanics and its

Applications 497, 166-184, 2018.

• Elahe Ghalebi, Hamidreza Mahyar, Radu Grosu, Hamid R. Rabiee, “Compres-

sive sampling for sparse recovery in networks”, Proc of the 23rd ACM SIGKDD

conference on Knowledge Discovery and Data mining (KDD), 13th International

Workshop on Mining and Learning with Graphs, Halifax, Nova Scotia, Canada,

2017.
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CHAPTER 2
Background and Survey

In this chapter, we provide background on nonparametric Bayesian learning, as well as

latent class/feature models of nonparametric priors and the terminology used in this

thesis. We also review related work that is relevant to each part of this thesis. We also

discuss potential applications of analyzing and modelling graphs.

2.1 Nonparametric Bayesian models

To draw inferences about unobserved properties of the underlying network structure

given some observations, it is beneficial to introduce probabilities into the model. The

advantage of using probabilistic models in machine learning is to prevent overfitting

and provide uncertainty estimates. Probabilistic modeling offers a simple and coherent

framework which can be used as a basis to build general purpose tools for modelling and

inference over graphs.

2.1.1 Bayesian modeling

Bayesian learning is a popular framework in statistics and machine learning due to its par-

ticular ability to embrace uncertainty, encode prior knowledge, and endow interpretability.

Bayesian approaches have distinct advantages over non-Bayesian approaches, such as:

(1) embracing uncertainty by explicitly representing, manipulating and mitigating it

based on a solid theoretical foundation–probability–which makes it more robust facing

real-world systems [Jor10], (2) encoding the prior knowledge of a problem while learn-
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2.1. Nonparametric Bayesian models

ing from observations, which makes it immune to overfitting–priors can be treated as

regularization of the observed data–, and (3) admitting clear interpretability because of

its clear and meaningful probabilistic structure. In particular, Bayesian nonparametric

learning (BNL) has become known due to its modelling flexibility and representation

power. The data in parametric models is assumed to be represented by a fixed, finite

number of parameters and the parameters can not grow with sample size. Conversely,

the number of parameters in a nonparametric model is a random variable which can grow

with the sample size.

Definition 1. (Bayesian nonparametric model [OT10]) A Bayesian nonparametric model

(BNP) is a Bayesian model parameterized by an infinite number of parameters.

In the context of this thesis, we consider Bayesian nonparametric models with a countable

infinity of parameters. Such models can be characterized in terms of discrete measures

on some parameter space.

2.1.2 Stochastic processes

Bayesian nonparametric processes use priors that take the form of stochastic processes.

A stochastic process is a set of random indexed variables, where indices are derived from

an index/parameter space and the variables are derived from a state space [XLZ19]. In

this section, we review some important stochastic process priors used in this thesis.

Dirichlet process (DP)

The Dirichlet process (DP) [Fer73, Teh10] is the pioneer and foundation of BNL. The

DP is a distribution over infinite-dimensional probability measures, which can in turn

be used as priors in mixture models. The DP can be described first by introducing the

Dirichlet distribution.

Definition 2. (Dirichlet distribution) The Dirichlet distribution is a distribution over

the (K ≠ 1)-dimensional simplex, i.e., it is a distribution over the relative values of K

components, with the constraint that the components should be positive and that they

sum up to 1, which is parameterized by a K-dimensional vector (–1, . . . , –K) such that

–k Ø 0, ’k and
q

k –k > 0,

fi = (fi1, . . . , fiK) ≥ Dir(–1, . . . , –K) ≥

rK
k=1 Γ(–k)

Γ

3

qK
k=1 –k

4

K
Ÿ

k=1

fi
–k≠1
k (2.1)
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2.1. Nonparametric Bayesian models

where fik Ø 0 for all k and
qK

k=1 fik = 1. The expectation of this distribution is as follows:

E[(fi1, . . . , fiK)] =
(–1, . . . , –K)

q

k –k
(2.2)

The Dirichlet distribution is conjugate to the multinomial distribution. Thus, if fi ≥

Dir(–1, . . . , –K) and xn are iid samples from fi, the posterior distribution becomes

p(fi|x1, . . . , xn) Ã p(x1, . . . , xn|fi)p(fi)

=

A

rK
k=1 Γ(–k)

Γ
!

qK
k=1 –k

"

B

3

n!
m1! . . . mK !

fim1
1 . . . fi

mK
1

4

≥ Dir(–1 + m1, . . . , –K + mK)

(2.3)

where mk is the counts of instances of xn = k in the data set. A sample from a Gaussian

is a real-valued number whereas a sample from a Dirichlet distribution is a probability

vector.

In a clustering model, we can use the Dirichlet distribution as part of a mixture model

with K components (clusters). We say that a distribution f is a mixture of K component

distributions f1, . . . , fK , if

f(x) =
K

ÿ

k=1

⁄kfk(x) (2.4)

where ⁄k are the mixing weights and ⁄k > 0,
q

k ⁄k = 1. The density function for a

K-component finite mixture is given by

f(y|x; ◊1, . . . , ◊K ; fi1, . . . , fiK) =
K

ÿ

k=1

fikfk(y|x; ◊k) (2.5)

where 0 < fik < 1 and
qK

k=1 fik = 1. Here, fk(y|x; ◊k) is a likelihood distribution–for

example, a Gaussian. However, in most real-world applications, K is usually not known

a priori and thus we want an infinite number of clusters a priori, i.e., DP. A DP mixture

model can either assign the data points to a previously seen cluster, or can start a new

cluster with the number of clusters being a random variable.

Now, let Ω denote the set of parameters of the likelihood model and let FΩ be a ‡-algebra

(i.e. set of events) on that set. If A œ FΩ, A is a set of parameters. Let ”◊ : FΩ æ {0, 1}

denote a Dirac delta, defined as follows:

”◊ =

Y

_

]

_

[

1 ◊ œ A

0 o.w.
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2.1. Nonparametric Bayesian models

According to Komolmogorov consistency theorem, in order to guarantee the existence of

a stochastic process on a probability space (Ω, F(Ω)), it is enough to provide a consistent

definition of what the marginals of this stochastic process are. As the name suggest, in

the case of a Dirichlet process, the marginals are Dirichlet distributions. The constructive

definition, known as the stick breaking or GEM process goes as follows:

Definition 3. (Stick-breaking construction [Set94]) Let —k ≥ Beta(1, –0) be independent.

Define the stick lengths fi ≥ GEM(–0) as:

G =
Œ

ÿ

k=1

fik”◊k

fi1 = —1

fik := —k

Ÿ

j<k

(1 ≠ —j)

fi can be viewed as a partition of the interval [0, 1] into countably many pieces, just as

the Dirichlet distribution can be thought of a partition of the interval into finitely many

pieces. The GEM(–) distribution can be viewed as a recursive stick-breaking procedure.

The first break point —1 ≥ Beta(1, –) is drawn and we have fi1 = —1. We then break

off a piece of proportion —1 from our stick of length 1, and keep the remaining piece of

length 1 ≠ —1. Then, we can draw —2 ≥ Beta(1, –) and break off a —2 proportion of the

remaining stick which results in fi2 = —2(1 ≠ —1).

If we generate independently an infinite list of stick locations ◊k ≥ G0, then we will

have a Dirichlet process, G, that obeys the definition of the stick-breaking process

[Set94]. We say that G : FΩÕ æ (FΩ æ {0, 1}) is distributed according to the Dirichlet

process distribution, denoted by G ≥ DP(–0, G0), if for all measurable partitions of

Ω, (A1, . . . , AK)(this means that Ak are events, AK œ F , that they are disjoint, and that

their union is equal to Ω) [BM73], we have:

(G(A1), G(A2), . . . , G(AK)) ≥ Dir(–0G0(A1), –0G0(A2), . . . , –0G0(AK)) (2.6)

Extending the DP to groups of clustering problems, we want to know how the clusters

should be shared among the groups, that is, if we have grouped data, we want each group

to be clustered but we want parameters to be shared across groups. This problem can be

resolved by taking a hierarchical Bayesian approach.
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2.1. Nonparametric Bayesian models

Hierarchical Dirichlet process (HDP). Given the problem of clustering data points

within each group, we consider a set of random measures Gj , one for each group j, where

Gj is distributed according to a group-specific Dirichlet process DP(–0j , G0j). To have a

link between the set of clusters of multiple groups, we link the group-specific DPs via a

shared measure H. Integrating over this shared measure H induces dependencies among

the DPs. Although clusters arise within each group via the discreteness of draws from a

DP, if H is a continuous measure then the atoms associated with the different groups are

different and there is no sharing of clusters between groups.

To incorporate shared clusters, consider a nonparametric hierarchical model in which H

is itself a draw from a Dirichlet process DP(–, Θ). Note that while Θ can be continuous

or discrete, H is always a discrete measure, which ensures that the Gj have common

support. We define the hierarchical model by:

H|–, Θ ≥ DP(–, Θ)

Gj |·, H ≥ DP(·, H), for each j,
(2.7)

This model is known as a hierarchical Dirichlet process [TJBB05]. Dirichlet process

models are not ideal for modeling graphs, as they do not capture the power-law behavior

often found in graph structured data.

Since we are concerned with large scale graphs that exhibit heavy tailed degree distribution,

in chapter 4, we will take advantage of the Pitman-Yor process (PYP), described next.

PYP is a two-parameter extension to the DP that allows heavier-tailed distributions over

partitions.

Pitman-Yor process (PYP)

An interesting extension of DP is the Pitman-Yor process (PYP) [PY+97]. This two-

parameter generalization of the DP can also be nested within a hierarchical structure

[Teh06] and allows for very flexible control of the clustering behaviour [DBFL+13].

Definition 4. (Pitman-Yor process [PY+97]) The Pitman-Yor process is defined by

PYP(d, –, G0) which is a distribution over discrete probability measures, having two

parameters d and –, where d is called a discount parameter–also known as a concentration

parameter–and – is called a strength parameter. The strength parameter – > ≠d controls

the degree to which the new draw is assigned to among those which are not appeared in

the past, while a discount parameter 0 Æ d < 1 specifies the degrees to which the new
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2.1. Nonparametric Bayesian models

draw resembles the base distribution G0.

G =
Œ

ÿ

k=1

fik”◊k

„k = fik

k≠1
Ÿ

j=1

(1 ≠ fij)

fij ≥ Beta(1 ≠ d, – + jd)

(2.8)

When 0 < d < 1, the PYP exhibits power-law behaviour. When d = 0, we recover the

stick-breaking construction for the Dirichlet process given in Equation 4. The more data

points have been assigned to a draw from G0, the more likely subsequent data points

will be assigned to the draw (the richer-gets-richer property), while the more we draw

from G0, the more likely a new data point will be assigned to a new draw from G0. As

the discount parameter increases, we get increasingly heavy-tailed distributions over the

atom sizes in the resulting probability measure.

2.1.3 Latent class models

In the latent class models, each data point xn belongs to a latent class cn = k, k = 1, . . . , K,

where K is the number of possible classes. If K = Œ, the model has an infinite number

of classes and thus has an infinite number of parameters, or in other words the model is

nonparametric. Such class models are interested on a distribution, G, with parameter µú
k

over class assignments.

One main property of real-world networks separates the observations into groups, and

yet allow the groups to remain linked. To consider problems involving groups of data,

we say each observation within a group is a draw from a mixture model, and we

put shared mixture components between the groups. To achieve so, we consider a

hierarchical modeling where parameters are shared among groups and the randomness of

the parameters induces dependencies among the groups. Within each group we wish to

capture latent structure in the data such as clustering. The number of mixture components

and the clusters within them are unknown and are to be inferred from the data. We

model a set of observations {x1, . . . , xn} using a set of latent parameters {◊1, . . . , ◊n}.
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2.1. Nonparametric Bayesian models

Each ◊i is drawn i.i.d. from G, while each xi has distribution F (◊i) parameterized by ◊i:

xi|◊i ≥ F (◊i)

◊i|G ≥ G

G|–, H ≥ DP(–, H)

(2.9)

Because G is discrete, multiple ◊i’s can take on the same value simultaneously, and the

above model can be seen as a mixture model, where xi’s with the same value of ◊i belong

to the same cluster. The mixture perspective can be made more in agreement with the

usual representation of mixture models using the stick-breaking construction. Let zi be a

cluster assignment variable, which takes on value k with probability fik. Then Equation

2.9 can be equivalently expressed as

fi|– ≥ GEM(–) „k|H ≥ H

zi|fi ≥ Multinomial(fi) xi|zi, {„k} ≥ F („zi)

with G =
qŒ

k=1 fik”„k
and ◊i = „zi . In mixture modeling terminology, fi is the mixing

proportion, „k are the cluster parameters, F („k) is the distribution over data in cluster

k, and H the prior over cluster parameters. The CRP describes (up to a reordering) the

distribution over clustering, if the DP is marginalized out [BM73].

Chinese restaurant process (CRP)

The CRP is a stochastic process that generates an exchangeable (see Section 2.3) partition

of data points, and can be described using a metaphor of a Chinese restaurant with an

unbounded number of tables. Due to its flexibility and extendability, CRP is widely

used in DP-based models. In other words, CRP is a distribution on partitions of data

points, that can be described in terms of a process by which N customers sit down in a

Chinese restaurant with an infinite number of tables each with infinite capacity. The

first customer sits at the first table. The n-th customer sits at a table drawn from the

following distribution

p(cn = k|c1:n≠1) Ã

Y

_

]

_

[

mk if k is previous occupied

– if k is a new table
(2.10)

where mk is the number of previous customers sitting at table k and – is a positive scalar.

Each table is endowed with a parameter vector ◊ drawn from a base measure G0. Each
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2.1. Nonparametric Bayesian models

customer is associated with the parameter vector at the table at which she sits,

◊i|◊1:i≠1, G0, – ≥
ÿ

k

mk

i ≠ 1 + –
”(„k) +

–

i ≠ 1 + –
G0 (2.11)

where „k is the parameter of the dish served at table k. The resulting distribution on a

sequences of parameter values is referred to as Pólya urn model [Spr78]. If the parameters

of the table refer to a family of probability distributions (e.g., multivariate Gaussian),

the Pólya urn distribution can induce a probabilistic clustering on the generating data,

since customers sitting around each table share the same parameter vector. Although

the customers are described as entering the restaurant one by one in order, any permuta-

tion of their ordering has the same joint probability distribution which points out the

exchangeability property of CRP mixture model (see Section 2.3).

Distance dependent Chinese restaurant process (ddCRP)

Distance-based methods leverage upon a distance metric between data points and do not

in general require a generative probability model of the data, while model-based methods

rely on discrete mixture models, which model the data in different clusters as arising

from kernels having different parameter values. To introduce dependency among random

variables, an extension mixture model of CRP was introduced called Distance Dependent

Chinese Restaurant Process (ddCRP) [BF11]. In the ddCRP, the partitions formed by

assigning the customers to tables in the CRP, are replaced with the relationships between

one customer and other customers. Similarly to the metaphor of CRP, in the ddCRP

model, each customer decides who she/he wants to sit with among the already seated

customers in the restaurant. Given the relations among the customers, inferring which

customers will sit at the same table is easy where the tables are a byproduct of the

customer assignments. Let f denote the decay function, di,j the distance measure between

two data points (customers) i and j, – the scaling parameter and ci the assignment of

i-th customer. ci denoted that i-th customer selects the customer ci to sit with,

p(ci = j) Ã

Y

_

]

_

[

f(di,j) i ”= j

– i = j
(2.12)

where the distance measure di,j evaluates the difference between the two observations

i and j and the decay function f(.) mediates how the distance affects the probability

of the relation between two customers. Therefore, the farther the distance, the smaller

their relationship probability. The traditional CRP can be induced by considering the

decay function to be a constant, i.e., f(di,j) = 1.
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2.1. Nonparametric Bayesian models

2.1.4 Inference

The stochastic part of a Bayesian nonparametric model, such as the DP, has infinite

number of dimensions where computing the posterior using a Bayes’ equation is not

feasible; the discrete, infinite-dimensional models do not admit a density. Instead, we

can make use of conjugacy that allows practical inference. Conjugate posterior refers

to the fact that the posterior belongs to the same model family as the prior, and the

posterior parameters can be computed as a function of the prior hyperparameters and

the observed data.

As an example of conjugacy in a parametric model, consider a Dirichlet distribution prior

and a multinomial likelihood. The Dirichlet multinomial can be in the following form,

p1, . . . , pK ≥ Dirichlet(–1, . . . , –K) (2.13)

◊1, . . . , ◊K ≥ Multinomial(p1, . . . , pK) (2.14)

We see that the posterior distribution over ◊ is a Dirichlet distribution with updated

parameters. This relationship means we can evaluate the posterior distribution and the

posterior predictive without explicitly using Bayes Law. If we want to infer a new data

point y with the distribution f(y|◊), the posterior predictive can be defined as:

f(y|X) =
⁄

f(y, ◊|X)d◊ =
⁄

f(y|◊)f(◊|X)d◊ (2.15)

where

f(◊|X) =
f(◊, X)
f(X)

Ã f(◊, X)

= f(p1, . . . , pK |–1, . . . , –K)
Ÿ

yiœX

f(yi|p1, . . . , pK)

Ã
K
Ÿ

j=1

p
–j≠1
j

Ÿ

yiœX

K
Ÿ

j=1

p
y

(j)
i

j

=
K
Ÿ

j=1

p
–j≠1+

q

y
(j)
i

j

We can make use of this conjugacy in the Dirichlet process, even though Bayes’ Law does

not apply. Referring to Equation 2.6, if we see an observation in the J-th partition, then

(G(A1), . . . , G(Aj), . . . , G(AK)|Θ1 œ Aj) ≥ Dir(–0G0(A1), . . . , –0G0(Aj)+1, . . . , –0G0(AK))

(2.16)
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2.1. Nonparametric Bayesian models

Since this must be true for all possible partitions, this is only possible if the posterior for

G is given by:

G|Θ1 = ◊ ≥ DP(– + 1,
–0G0 + ”◊

–0 + 1
) (2.17)

Thus in general, if G ≥ DP(–, H), the posterior of G under observations ◊1, . . . , ◊n is

again a Dirichlet process, DP(– + n, 1
–+n(–H +

ÿ

”◊i
)).

The Dirichlet process is therefore conjugate to the multinomial, which makes inference in

the Dirichlet/multinomial model easy.

MCMC sampling

In practice, nonparametric Bayesian models are too complicated to directly obtain the

posterior. Monte Carlo methods consist of a wide variety of algorithms that enable us to

sample from complicated probability distribution functions without explicitly generating

the probabilistic density function.

The high-dimensional probability distribution f(X) makes this integral hard to compute.

Markov chain Monte Carlo (MCMC) methods [ADFDJ03] provide a class of algorithms

that produce estimates of this integral based on iterative sampling, combining Monte

Carlo integration with samples from a specially constructed Markov chain. MCMC

algorithms use f(◊|X) for proposal distribution, instead of f(X). This process therefore

generates a Markov chain from samples ◊1, ◊2, . . ..

To construct the Markov chain, we use Gibbs sampling. Gibbs sampling samples

sequentially from the conditional distributions of each parameter. If our component

distributions are conjugate, then we can do this easily. Each random variable ◊i is

sampled given the rest of random variables denoted by ◊≠i:

1. Picks an index i œ {1, . . . , m} either via round-robin or uniformly at random

2. Sets ◊
(t+1)
j = ◊

(t)
j , for j ”= k, i.e., ◊

(t+1)
≠i = ◊

(t)
≠i

3. Generates ◊
(t+1)
≠i ≥ f(◊i|◊

(t)
≠i)

where only one component of ◊ is updated at a time.
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2.2. Statistical graph (network) models

2.2 Statistical graph (network) models

Our primary focus is on multigraph models, but our model construction implicitly covers

directed/undirected graphs. By forming an undirected edge in the directed multigraph

where any directed edge between two vertices exist, the undirected graph is produced.

2.2.1 Directed multigraphs

Let V = (◊1, ◊2, . . .) be a (countably) infinite set of vertices where ◊i œ R+. The directed

multigraph can be indicated using an atomic measure on R
2
+

D =
Œ

ÿ

i=1

Œ
ÿ

j=1

mi,j”◊i,◊j
(2.18)

where mi,j is the number of directed edges from vertex ◊i to vertex ◊j . To model D,

each vertex is associated with a sociability parameter wi > 0 that can be defined via the

atomic random measure

W =
Œ

ÿ

i=1

wi”◊i
(2.19)

which can be distributed according to any stochastic process defined in Section 2.1.2.

2.2.2 Undirected graphs

Correspondingly, an undirected graph is defined as:

Z =
Œ

ÿ

i=1

Œ
ÿ

j=1

zi,j”◊i,◊j
(2.20)

where zi,j = zj,i œ {0, 1}. In the graph, zi,j = zj,i = 1 indicated an undirected edge

between vertices ◊i and ◊j . Given the directed multigraph, we can transform to an

undirected graph by setting zi,j = zj,i = 1 if mi,j + mj,i > 0 and zi,j = zj,i = 0 otherwise.

In other words, an undirected edge is placed between vertices ◊i and ◊j if and only if

there is at least one directed edge between them.

2.2.3 Bipartite graphs

Our construction of the graph models can be extended to bipartite graphs. Let V =

(◊1, ◊2, . . .) and V Õ = (◊Õ
1, ◊Õ

2, . . .) be two (countably) infinite set of vertices where ◊i, ◊Õ
i œ

R+. In bipartite graphs, the interactions are only allowed between different set of vertices.
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2.3. Exchangeability

The directed bipartite multigraph can be represented as:

D =
Œ

ÿ

i=1

Œ
ÿ

j=1

mi,j”◊i,◊Õ

j
(2.21)

where mi,j is the number of directed edges from vertex ◊i to vertex ◊Õ
j . Similarly, the

bipartite graph is represented by:

Z =
Œ

ÿ

i=1

Œ
ÿ

j=1

zi,j”◊i,◊Õ

j
(2.22)

where zi,j = 1 if there is a connection from vertex ◊i to vertex ◊Õ
j .

2.3 Exchangeability

Since in many scenarios, the order in which the data points are observed is insignificant

[BC09, Hof09], the assumption of a notion of exchangeability becomes inevitable. The

intuition behind this notion is when the order of observing the data is not important, we

can benefit from such distributions where a model whose distribution depends on the

order in which we see our data is not justified.

Definition 5. Exchangeable sequence. We call a finite sequence (X1, . . . , XN ) exchange-

able, if its distribution is invariant under any permutation ‡ of {1, . . . , N}, meaning

X1, . . . , XN
d= X‡(1), . . . , X‡(N)

An infinite sequence X1, X2, . . . is identified as infinitely exchangeable if all of its finite

subsequences are exchangeable.

Consider the array of random variables (Xi,j), 1 Æ i, j < Œ, such that permutations of

rows or of columns do not alter the distribution of the array. Let Ri denote the i-th

row, that is, Ri = (Xi,j ; j Ø 1). X is row-exchangeable if the sequence (Ri)iØ1 of random

vectors is exchangeable. Let Cj = (Xi,j ; i Ø 1) denote the j-th column, X is called

column-exchangeable if (Cj)jØ1 is exchangeable. In this case, a statistical model is a

family P = {P◊|◊ œ T} on distributions on X, indexed by elements ◊ of some parameter

space T. If the sequence X is exchangeable, de Finetti’s theorem tells us that there is

some model P and some distribution ‹ on T such that the joint distribution of X is

P(X œ .) =
⁄

T

P Œ
◊ (.)‹(d◊) (2.23)
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2.3. Exchangeability

Which implies that the sequence can be generated by first generating a random parameter

value Θ ≥ ‹, and then sampling X1, X2, . . . |Θ ≥iid PΘ. In particular, the elements of the

sequence are conditionally iid given Θ.

Theorem 2.3.1. (de Finetti)[OR14]. Let (X1, X2, . . .) be an infinite sequence of random

variables with values in a space X. The sequence X1, X2, . . . is exchangeable if and only

if there is a random probability measure Θ on X such that the Xi are conditionally iid

given Θ and

P(X1 œ A1, X2 œ A2, . . .) =
⁄

M(X)

Œ
Ÿ

i=1

◊(Ai)‹(d◊) (2.24)

where ‹ is the distribution of Θ.

2.3.1 Exchangeability in networks

We call a random (infinite) directed graph G on Ω, vertex exchangeable if its joint

distribution is invariant under all permutations fi of the vertices,

(Gij)i,jœΩ

d= (Gfi(i)fi(j))i,jœΩ (2.25)

We call this G separately exchangeable, when the distribution is preserved under permu-

tation of each index separately, for instance (Gij) d= (Gfi(i)‡(j))i,jœΩ for any permutation

fi and ‡ which arises for adjacency matrices of bipartite graphs.

The Aldous-Hoover theorem [Ald81] proves that these graphs are either dense or empty

with probability one [OR14]. It follows from this theorem that any vertex-exchangeable

graph is a mixture of sampling procedures from graphons. A graphon is a symmetric,

measurable function W : [0, 1]2 æ [0, 1] [DHJ08]. Given a graphon W , we can define

an adjacency matrix (Gij)i,jœN, where G = (N, W ) is a countably infinite exchangeable

graph associated to W ,

Ui
iid
≥ Uniform[0, 1] for i œ N

Gi,j |Ui, Uj
ind
≥ Bernoulli(W (Ui, Uj)) for i < j.

(2.26)

with Gij = Gji for i < j and Gii = 0. As a result, any graph sampled from a graphon

is almost surely dense or empty [OR14]. Most real-world networks however tend to be

sparse. Many popular network models (see, e.g., Lloyd et al. [LOGR12] for an extensive

list) share the undesirable scaling property that they yield dense sequences of graphs

with probability one. Thus, vertex-exchangeable random graph models are misspecified

models for sparse network datasets, as they generate dense graphs.
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2.4. Graph modeling

Edge exchangeability was first introduced by Crane and Dempsey [CD15a, CD15b], and

Williamson [Wil16]. edge-exchangeability uses a single infinite latent set of vertices to

generate a finite but growing set of vertices [CCB16, Jan18]. Any graph in an edge-

exchangeable graph sequence is invariant to the arrival order of edges–rather than the

order of the vertices. Crane and Dempsey [CD15a] established a similar notion of edge

exchangeability in the context of a larger statistical modeling framework. Crane and

Dempsey [CD15a, CD15b] provided sparsity and power law results for the case where the

weights (wi)i are generated from a Pitman-Yor process and power law degree distribution

simulations. Williamson [Wil16] described a similar notion of edge exchangeability and

developed an edge-exchangeable model where the weights (wi)i are generated from a DP,

a mixture model extension, and an efficient Bayesian inference procedure. Crane and

Dempsey [CD16] re-examined edge exchangeability, provided a representation theorem,

and studied sparsity and power laws for the same model based on Pitman-Yor weights.

2.4 Graph modeling

Learning with graph structured data, such as molecules, social, biological, and financial

networks, requires effective modeling of their underlying structure, peculiarly where the

data evolves over time. Nonparametric Bayesian models present an attractive opportunity

to model the stationary and dynamic evolution of entities and interactions, where the

number of entities can be unbounded. However, modelling explicitly the future trajectory

of the entities in the underlying graph has not been completely covered by existing

dynamic methods. In this section, we first shortly introduce the statistical network

models, and then review the previous models for sparse graphs, dynamic graphs and

multigraphs.

2.4.1 Bayesian models for multigraphs

Bayesian networks are a combination of graph theory and probability theory. While

learning the probability distributions one also needs to learn the network topology in a

Learning algorithm over Bayesian networks. Bayesian models for multigraphs can loosely

be divided into three camps. Most common are models where the value of an edge between

vertices u and v is a random variable parameterized by the value of some function ◊u,v

which might be a Poisson distribution. The resulting multigraphs is referred as jointly

vertex-exchangeable [Ald81, Hoo79, OR14], since the distribution over the adjacency
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2.4. Graph modeling

matrix is invariant to jointly permuting the row and column indices. For data represented

by exchangeable sequences, Bayesian nonparametrics has developed into a flexible model.

Its modeling primitives—Dirichlet processes, Gaussian processes, etc.—are widely applied

and well-understood, and can be used as components in hierarchical models or dependent

models to address a wide variety of data analysis problems.

This class includes the stochastic blockmodel (SB) [SN97, KN11] which is a generative

model for blocks, groups, or communities in networks. The simplest SB assigns each

vertex to one of K groups, and undirected edges are placed independently between

vertex pairs with probabilities that are a function only of the group memberships of the

vertices. Define a K ◊ K matrix Â of probabilities such that the matrix element Âgigj is

the independent probability of an edge between vertices i and j. In this work, a minor

extension of the classic SB, heterogeneity in the degrees of vertices is incorporated which

results in a better model in practice, giving significantly improved fits to network data.

The infinite relational model (IRM) [KTG+06] focuses on different types of relations

between pairs and try to partition each type into clusters. For instance, there are several

social relations defined on domain people◊people: likes(., .), admires(., .), respects(., .),

and hates(., .). With the IRM, the relationships between pairs can be predicted by their

cluster assignments. For example, if demographic attributes for the people is included,

the clustering, social relationship prediction, and the demographic attributes can be done

simultaneously. Suppose the observed data are m relations involving n types, and let Ri

be the i-th relation, T j be the j-th type and zj be a vector of cluster assignments of T j .

To infer the cluster assignments, the posterior distribution P (z1, . . . , zn|R1, . . . , Rm) is

estimated via a generative model for relations and cluster assignments:

P (R1, . . . , Rm, z1, . . . , zn) =
m
Ÿ

i=1

P (Ri|z1, . . . , zn)
n

Ÿ

j=1

P (zj) (2.27)

where the relations are conditionally independent given their cluster assignments. The

prior P (zj) assigns some probability mass to all possible partitions of type T which is a

CRP. IRM starts with a single cluster containing a single object, then adds objects until

all the objects belong to clusters. Under the CRP, assignment to a cluster is proportion

to the cluster’s size,

P (zi = a|z1:i≠1) =

Y

_

]

_

[

na
i≠1+–

na > 0

–
i≠1+–

a is new cluster
(2.28)
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2.4. Graph modeling

where na is the number of objects in cluster a and – is a concentration parameter that

controls the number of clusters. Here, the distribution on z induced by the CRP is

exchangeable, therefore the order of assigning objects to clusters can be permuted without

changing the resulting clustering distribution. To generate relations from cluster, IRM

assumes that the relations R are binary:

z|– ≥ CRP(–)

÷a,b|— ≥ Beta(—, —)

Ri,j |z, ÷ ≥ Bernoulli(÷zi,zj )

(2.29)

where a, b œ N . The parameter ÷a,b identifies the probability that an edge exists between

any given pair (i, j) where i belongs to cluster a and j belongs to cluster b.

The mixed-membership stochastic blockmodel (MMSB) [ABFX08] combines global

parameters that instantiate dense patches of connectivity (SB) with local parameters

that instantiate vertex-specific variability in the relations (mixed membership). The

MMSB assigns each observation to multiple clusters rather than one cluster and defines a

probability-like vector. This relates to the fact that each object can have multiple latent

roles or cluster-memberships that influence their relationships to others. For instance,

what a protein or a social actor interacts with different partners, different functional

or social contexts applies and thus the protein or the actor may play different latent

roles. The MMSB also relaxes the assumption of independency of relations given their

cluster-memberships. Let G(N, Y ) be a graph of observed relational data, Y (u, v) maps

pairs of vertices to values, edge weights, and let fii,g be the probability of relation i

belonging to group g. The probabilities of interactions between different groups are

defined by a matrix of Bernoulli rates B(K◊K), where B(g, h) represents the probability

of a link between from group g to group h. The graph is drawn from a generative model,

fiu ≥ Dirichlet(–)

zuæv ≥ Multinomial(fiu)

zvæu ≥ Multinomial(fiv)

Y (u, v) ≥ Bernoulli(zvæuBzuæv)

(2.30)

The MMSB also considers the sparsity of relational data, by introducing a parameter

fl œ [0, 1] in the model to characterize the source of non-interactions. Then, instead of

sampling a relation Y (u, v) from Bernoulli with parameter, the probability of successful

interaction down-weight to (1≠fl)zvæuBzuæv. As larger as the fl value be, the interactions

in the matrix will have higher weighted more than non-interactions.
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2.4. Graph modeling

All of these three cluster-based representations struggle with the issue of determining

how many latent clusters there are for a given problem. IRM tackle this issue with

allowing the number of clusters to be determined at inference time. MMSB does the

same as well as considering each entities to be belonging to more than one clusters. The

Nonparametric Latent Feature Relational Model (NRM) [MJG09] infers the number

of latent features there are simultaneously with inferring what features each entity has

and how those features influence the observations. Given the directed relational links

between a set of N entities, let YN◊N be the binary matrix containing these links, where

yij = Y (i, j) equals to 1 if there is link from entity i to entity j, and 0 otherwise. The

goal is predict unobserved links from the observed links. If there are K features, and

Z is the N ◊ K binary matrix of features where Zik © Z(i, k) = 1 if the i-th entry has

feature k and zi,k = 0 otherwise. Let WK◊K be the real-valued weight matrix of links,

then wkḱ is the weight that affects the probability of link from entity i to entity j if both

entity i has feature k and entity j has feature ḱ. Given the feature matrix Z and weight

matrix W , the probability of being a link from i to j is

P (yij = 1|Z, W ) = ‡

3

ZiWZT
j

4

‡

A

ÿ

k,ḱ

zikzjḱwkḱ

B

(2.31)

where ‡(.) is a function which transforms values on (≠Œ, Œ) to (0, 1) such that sigmoid

function ‡(x) = 1
1+exp (≠x) . Using an IBP prior on Z, the generative latent feature

relational model become

Z ≥ IBP(–)

wkḱ ≥ N(0, ‡2
w) for all k, ḱ for which features k and ḱ are non-zero

yij ≥ ‡

3

ZiWZT
j

4

for each observation

(2.32)

While these models are able to capture interesting community structure, the resulting

graphs are dense almost surely, [Ald81, Hoo79]. This makes them a poor choice for large

real-world multigraphs, which are typically sparse. Further, they assume zero-valued

edges are explicitly observed, making them poorly suited for many prediction tasks.

Second, we have multigraphs where the edges are distributed according to a Poisson

process (PP) on the space of potential edges. A canonical example of such a model is

the sparse exchangeable multigraph of [CF17], where the edges are sampled according to

a PP whose rate measure is distributed according to a generalized gamma process. In

order to leverage some properties of generative exchangeable modeling while producing
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2.4. Graph modeling

sparse graphs, the exchangeablity of a continuous-space representation of networks base

on a point process on R2
+ is considered,

Z =
ÿ

i,j

zij”(◊i,◊j) (2.33)

where zij = 1 if there is a link between vertices ◊i and ◊j , and is 0 otherwise. So, the

jointly exchangeable random measure theorem [Kal06] is used. Such a model has been

extended to have community structure [LJCC18] on inhomogeneous random graphs,

where a class of sparse graph models with overlapping community structure and well-

specified asymptotic degree distributions is proposed. Let (Gn)nØ1 be a sequence of

simple random graphs of size n, the probability of being a link between vertices i and j

in the graph Gn is given by

p
(n)
ij = 1 ≠ exp

3

≠
wiwj

s(n)

4

(2.34)

where s(n) =
qn

i=1 wi and wi is a positive parameter for degree heterogeneity in the graph

(sociability of vertex i), and is iid sample from some distribution F with E(w1) < Œ.

The larger this parameter, the more likely vertex i is to connect to other vertices.

These models yield sparse graphs with power-law degree distributions, properties that

are common in large social networks. However, like the vertex-exchangeable graphs, they

assume a fully observed graph where no new edges will be seen between existing vertices,

making them poorly suited to prediction tasks.

Third, we have multigraphs constructed using an exchangeable sequence of edges [CCB16,

CD18, Wil16]. Here, we assume the edges are generated by sequentially sampling pairs

of vertices. Unlike the vertex-exchangeable and Poisson process based models, edge

exchangeable multigraphs can grow over time by adding new edges, either between new

or previously seen vertices. For this reason, we focus on edge-exchangeable graphs in our

model development. These pairs of vertices are iid given some nonparametric prior. This

prior could be a Dirichlet process, such ad MDND model [Wil16] which is described in

detail in section 3.1.

[CCB16] considers a normalized generalized gamma process as the prior. They propose

an alternative notion of exchangeability, edge-exchangeability, which means that the

distribution of a graph sequence is invariant to the order of the edges. Such models

are stationary across steps of the graph sequence and can produce sparse graphs. Let
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2.4. Graph modeling

W be a Poisson process on [0, 1] with a nonatomic, ‡-finite rate measure ‹ such that

‹([0, 1]) = Œ,
s 1

0 w‹(dw) < Œ.

W :=
ÿ

{i,j}:i,jœN

w{i,j}”◊{i,j}
(2.35)

where (w{i,j}) are the edge rates (or frequencies) in W. To construct edge-exchangeable

graphs one can apply single edge per step or multiple edges per step approach. To use

single-edge-per-step approach the rates need to be normalized,
q

{i,j}:i,jœN w{i,j} = 1, in

which (w{i,j}) is a distribution over all possible pairs. At each step, an edge e’s values

is drawn from W and the edge set is recursively constructed, En+1 = En fi {e}. Since

the edge at every step is drawn iid from W, the result graph is edge-exchangeable. The

multiple-edges-per-step approach does not consider the rates to be normalized, and

defines a distribution over non-negative integers m given some rate w œ R, f(m|w). Start

from F = ÿ at the n-th step. For every possible edge e = {i, j} draw the multiplicity of

the edge ein this step as me
ind
≥ f(.|we) and add me copies of edge e to F , and then set

En+1 = En fi F . The graph after n steps is given by

W ≥ PPP(‹) M{i,j}
ind
≥ Binom(n, wi, wj) for i < j œ N (2.36)

where M{i,j}, the multiplicity of edge e = {i, j} after n steps has a binomial distribution.

There is another model where a PYP (see Section 2.1.2) is considered as a prior [CD18].

Under certain conditions on this prior, the resulting multigraphs will be sparse, [CCB16,

CD18].

2.4.2 Models for dynamic graphs

There has been significant research attention on dynamic network modelling. A common

approach relies on the extensions of stationary network models to a dynamic framework.

These models can be categorized into Bayesian models and extensions of non-Bayesian

models. We start this section by first reviewing briefly Bayesian models, and then

discussing other non-Bayesian models for dynamic graphs.

Most dynamic Bayesian networks such as the exponential random graph model [GHFX07]

and matrix and tensor factorization-based methods [DKA11] extend jointly vertex-

exchangeable graphs. For example, [XH14] extends the stochastic blockmodel using an

extended Kalman filter based algorithm; [DD14] allows parameters to evolve according to

stochastic processes; and [Xu15] relaxes a hidden Markov assumption on the edge-level
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2.4. Graph modeling

dynamics, allowing the presence or absence of edges to directly influence future edge

probabilities. Several methods have also been used to incorporate temporal dynamics

into the mixed membership stochastic blockmodel framework [FSX09, XFS+10, HSX11],

the infinite relational model [NS17] and the latent feature relational model [FDA+11,

HG13, KL13].

Most recently, several models have extended Poisson factor analysis. The dynamic

gamma process Poisson factorization (DGPPF) [AGZ15] introduces dependency by

incorporating a Markov chain of marginally gamma random variables into the latent

representation. The dynamic Poisson gamma model (DPGM) [YK18b] extends a bilinear

form of Poisson factor analysis [Zho15] in a similar manner. The dynamic relational

gamma process model (DRGPM) [YK18a] also incorporates a temporally dependent

thinning process.

Much less work has been carried out on dynamic extensions of the sparse graphs generated

using Poisson processes or via a sequence of exchangeable edges. In the Poisson process-

based space, [PCT16] uses a time-dependent base measure, and assume edges have a

geometric lifespan. In the edge exchangeable case, [NS17] incorporates temporal dynamics

into the MDND by introducing a latent Gaussian Markov chain, and a Poisson vertex

birth mechanism. [GMGL18] extends the MDND to partially observed data and uses a

temporally informed inference algorithm, but the underlying model is stationary.

One group of graph models, try to learn latent representations of vertices in a network.

These representations encode interactions in a continuous vector space, which can be

simply exploited by statistical models. DeepWalk Transforms a graph structure into a

sample collection of linear sequences consisting of vertices using uniform sampling. These

simulation random walks can be used to learn d-dimensional feature representations,

local neighborhood of vertices. The sampling strategy can be also inferred by using

vertex2vec and setting p = 1 and q = 1. Although empirically effective, it lacks a clear

objective function to articulate how to preserve the network structure. It is prone to

preserving only the second-order proximity. DeepWalk works well in language modeling

and unsupervised feature learning from sequences of words to graphs. The learned

social representations, meaning latent features of the vertices that capture neighborhood

similarity and community membership, encode social relations in a continuous vector

space with a relatively small number of dimensions. DeepWalk evaluates its performance

on multi-label classification tasks. They also demonstrate the scalability of DeepWalk

by building representations of web-scale graphs (i.e., YouTube) using a parallel imple-
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2.4. Graph modeling

mentation. Given a partially labeled social network GL = (V, E, X, Y ), with attributes

X œ R
|V |◊S , where S is the size of the feature space for each attribute vector, and

Y œ R
|V |◊|Y|, Y is the set of labels. The goal is to learn XE œ R

|V |◊d, where d is small

number of latent dimensions. Each dimension contributes to a subset of social concepts

expressed by the space and each social phenomena is expressed by a subset of dimensions.

For relational classification problem (or the collective classification problem), DeepWalk

proposes an unsupervised method to capture the network topology by learning features

that capture the graph structure independent of the labels’ distribution instead of using

iterative approximate inference algorithm (such as iterative classification algorithm,

Gibbs Sampling, or label relaxation). Therefore, this separation between structural

representation and the labeling task avoids cascading errors of iterative methods. While

learning social representations, DeepWalk seeks 4 important characteristics of real-world

data; (1) Adaptability: in order to capture evolving networks, and not requiring repeating

the learning process all over again. (2) Community aware: the distance between latent

dimensions represent a metric for evaluating social similarity. (3) Low dimensional:

low-dimensional models generalize well when labeled data is scarce and makes them

converge faster. (4) Continuous: to model partial community memberships in a continuous

space, a continuous representation is required with smooth decision boundaries between

communities.

When applied to language modeling, DeepWalk considers a set of short truncated random

walks its own corpus, and the graph vertices as its own vocabulary (V = V ). Therefor,

DeepWalk algorithm consists of two main parts: random walk generator, and update

procedure. The random walk generator takes a graph and samples uniformly a random

vertex vi as the root of random walk Wvi . Then, a walk samples uniformly from the

neighbors of the last vertex visited until the maximum fixed length is reached. The

results shows no privilege of using restart walks. To update the representations using

these walks, SkipGram iterates over all possible collocations in random walk that appear

within the window Ê. Each vertex vi is mapped to its current representation vector

Φ(vi) œ R
d to maximize the probability of its neighbors in the walk.

2.4.3 Models for sparse graphs

Many real-world structural networks are sparse, where the number of non-zero entities

grows as O(M), where M is the number of entities. Since the number of interactions an

entity makes does not grow with the size of the network, the adjacency matrices encoding
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2.4. Graph modeling

pairwise interactions are often sparse, and they contain many zeros or non-interactions

(i.e., they may be the result of the pairs that rarely interact in general, or they are due

to the fact that the pair of relevant groups rarely interact). In applications of social

networks, for instance, vertices may represent people and groups of people may represent

social communities. We expect that a large portion of the non-interactions in this example

is because of limited opportunities of contact between people rather than the structure

of the underlying graph. It is shown that several real-world networks have a very high

probability of exhibiting this form of sparsity [CF17].

A lot of recent models tried to achieve sparsity by changing the fundamental model

of vertex exchangeability. One type of these models employ an additional parameter

to uniformly decrease the probabilities of edges as the network grows (e.g., Bollobás

et al.[BJR07], Borgs et al. [BCCG15], Wolfe and Olhede [WO13]). However, these

models generate non-projective graph sequences, since there is not any strict subgraph

relationship between earlier graphs and later graphs in the sequence. The pioneers on

modeling sparse, projective graph sequences are Caron and Fox [CF17] who consider a

notion of graph exchangeablity called Kallenberg-style exchangeability. The generative

mechanism in this idea allows a new countable infinity of latent vertices at every step

in the graph sequence which is suitable for non-stationary domain and is bounded with

continuous-valued labels of the vertices. Whereas, we are interested in the models in which

the model complexity grows with the size of dataset and analyzing the graph sequences

based solely on its topology. Some models combine classic Bayesian nonparametric

models–e.g., the Chinese restaurant process (CRP) and Indian buffet process (IBP)–with

hidden Markov models or other explicit non-stationary mechanisms to generate a finite

but growing set of vertices.

In contrary to vertex exchangeability, edge exchangeability admits sparsity in random

graph sequences. There is a class of sparse, edge-exchangeable multigraph sequences

introduced by [CCB16] in which W is a Poisson point process (PPP). It is said that

(wi)i is distributed according to a Poisson point process parameterized by rate measure

‹, (wi)i ≥ PPP(‹), if (a) {i : wi œ A} ≥ Poisson(‹(A)) for any set A with finite measure

‹(A) and (b) {i : wi œ A} are independent random variables across any finite collection

of disjoint sets (Aj)J
j=1. Let W be a PP on [0, 1] with a nonatomic, ‡-finite rate measure

‹ satisfying two conditions ‹[0, 1] = Œ and
s 1

0 w‹(dw) < Œ, which guarantees that W

be a countably infinite set of rates in [0, 1] and that ΣwœWw < Œ almost surely. To

construct a set of rates, if i ”= j, w{i,j} = wiwj , and w{i,j} = 0 which avoids self-loops.
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2.4. Graph modeling

For the multiple-edges-per step setting, let f(.|w) ≥ Bernoulli(w). Each edge {i, j} is

added in each step with probability wiwj , which makes its multiplicty M{i,j} become a

binomial distribution after n step with parameters n, wiwj . Therefore, the graph after n

steps is described by:

W ≥ PPP(‹) Mi,j
ind
≥ Binomial(n, wiwj) for i < j œ N. (2.37)

This generative model yields edge-exchangeable graph, with the number of vertices and

edges defined as:

|V̄n| = |Vn| =
ÿ

i

1

Q

a

ÿ

j ”=i

M{i,j} > 0

R

b , |En| =
1
2

ÿ

i”=j

M{i,j}, |Ēn| =
1
2

ÿ

i”=j

1(M{i,j} > 0).

(2.38)

and the expected number of vertices and edges are,

E(|V̄n|) = E(Vn) =
⁄

C

1 ≠ exp

A

≠

⁄

(1 ≠ (1 ≠ wv)n)‹(dv)

BD

‹(dw), (2.39)

E(|En|) =
n

2

⁄ ⁄

wv‹(dw)‹(dv), (2.40)

E(|Ēn|) =
1
2

⁄ ⁄

(1 ≠ (1 ≠ wv)n)‹(dv)‹(dv). (2.41)

2.4.4 Diffusion network inference

There is a body of work on inferring diffusion network from partial observations. In

order to study network diffusion, we should address two fundamental challenges; 1)

tracking cascading processes taking place in a network, and 2) identifying to trace the

contagion as it is diffusing through the network. NetInf [GRLK10] and MultiTree

[RS12] formulate the problem as submodular optimization. They show that the algorithm

recovers the structure of simulated data and it appears to work well with real data. News

topics and “memes” can be also be tracked on the web to characterize a news cycle.

NetInf addresses the aforementioned challenges by inferring the underlying unknown

network over which contagions are propagating. They assume the underlying network is

static and does not change over time with the diffusion ocurring at equal rates across

different edges. For each contagion, the vertices and their infection times are observed.

Given these various contagions, the edges of the underlying network are inferred. On a

fixed hypothetical network, there may be many possible ways of the directed tree that a

contagion has been propagated on. By considering only the most likely propagation tree,
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2.4. Graph modeling

the computations are reduced to cubic time. Then, they proposed a method to find G

that maximizes:

Gú = arg max
|G|Æk

FC(G) (2.42)

where the maximization is over all graphs G of at most k edges, and FC(G) is the

most likely propagation tree of contagion C. MultiTree finds a solution with provable

sub-optimality guarantees by exploiting a natural diminishing returns property of the

network inference problem: submodularity.

NetRate [GrS11] and CoNNIe [ML10] further infer the transmission rates using convex

optimization.Later, [GrS11] modeled diffusion process as a continuous temporal process

occurring at different rates, and proposed NetRate to infer the time-varying transmission

rates via stochastic convex optimization. CoNNIe includes a l1-like penalty term that

controls sparsity while NetRate provides a unique sparse solution by allowing different

transmission rates across edges. Consider edge (i, j), CoNNIe infers a prior probability

—i,j but NetRate infers a transmission rate –i,j . These methods are more expensive

computationally than NetInf.

InfoPath [GRLS13] considers inferring varying transmission rates in an online manner

using stochastic convex optimization. The above methods assume that diffusion rates

are derived from a predefined parametric probability distribution, such as Exponential,

Power-law, or Rayleigh. This method can infer temporally heterogeneous interactions

within a network and formulates the inference into a MLE problem and utilize a stochastic

gradient method to solve it. Despite successful aspects of InfoPath, their method is

constrained by specific contagion transmission models. EmbeddedIC [BLG16] embeds

vertices in a latent space based on Independent Cascade model, and infer diffusion

probabilities based on the relative vertex positions in the latent space. EmbeddedIC

considers each inactive (not infected) vertex to be activated by the active vertices. It

differentiates two kinds of roles for the vertices; an active vertex as a sender, and an

inactive vertex as a receiver. For each of these roles, a vector of vertex’s embedding is

learned. An activation at time stamp t is enabled between an inactive vertex and all

the existing active vertices by t, regardless of the network structure. Then an activation

based on the closeness between an inactive vertex’s receiver embedding vector and the

active vertices’ sender embedding vectors is modeled. Note that the embedding of each

sender (i.e., active vertex) is learned without the diffusion topologies.

More recently, there have been tries to predict the transmission probabilities from
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2.5. Network centrality

infection times, either by learning vertex representations [BLG16], or by learning diffusion

representations using the underlying network structure [BLG16, WZLC17, LMGM17].

DeepCas [LMGM17] and TopoLSTM [WZLC17] use the network structure to learn

diffusion representations and predict diffusion probabilities. DeepCas predicts the future

cascade size by modelling the cascade at each time step t with an induced subgraph over

the active vertices. The model decomposes the subgraph into some random walks, and

uses Gated Recurrent Unit (GRU) [GL16] to learn an embedding vector of the subgraph.

Then, it predicts the cascade size based on this subgraph embedding vector. However,

the resulting embedding is only partially aware of the graph structure because first the

induced subgraph at each time step does not capture how the diffusion spreads and

secondly each subgraph is further decomposed into paths and embedded independently.

TopoLSTM proposes a diffusion model, which can estimate the activation probability

for an inactive vertex in a cascade. They have the same approach as EmbeddedIC

with this difference that their model considers the dynamicity of cascades. Cascades can

grow over time, and this makes the embedding vectors of active vertices to change over

time. However, since the inactive vertices have not participated in the cascade so far, the

embedding approach over receiver vertices (inactive vertices as a receiver) remains the

same. TopoLSTM takes the dynamic DAGs (directed acyclic graphs) of each diffusion

as inputs and generates a topology-aware embedding for each vertex in the DAGs as

outputs. The embeddings of each active vertex is learned by taking all embeddings and

the path of diffusion into account.

2.5 Network centrality

The problem of detecting central vertices (or vertices) in networks is addressed in this

thesis. In this section, we first review the previous work on exact and approximate

computation of several centrality measures. Then, we investigate the work on detection

of central vertices (instead of computing all centralities) in a distributed way without

requiring knowledge of the full network topology.

2.5.1 Network centrality measures

The idea that the structural position of a vertex in a network may be correlated with the

relative influence or importance of that vertex was first postulated by Bavelas [Bav50].

Since then, many notions of what it means to be important or central in a network have
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2.5. Network centrality

been proposed and applied with great success in a variety of different contexts.

degree centrality refers to the problem of identifying the k vertices with the largest

degree in the undirected graph G = (V, E) with N vertices and |E| edges. The problem

may seem trivial if one assume that the network structure and the relation between

entities are known. However, even then finding the top-k vertices in the graph G takes

O(N) time which is not tractable for very large networks. Furthermore, the data of many

networks (e.g. social networks) is typically available only to managers of the networks.

There exist many sampling approaches that use random walk (RW) to tackle this problem.

In [CRS12], Weighted random walk method (WRW) is used to detect high degree vertices.

For each edge (u, v) œ E, WRW sets a positive weight wu,v = (deg(u)deg(v))—, which

indicates that at each step a walk needs to obtain degrees of current sampled vertex’s

neighbors. Expansion sampling (XS) is proposed in [MBW10] to detect high degree

vertices via modifying the random walk to select the next vertex relative to the number of

neighbors. Currently, there is a rapidly growing interest in algorithms that only use local

information about the degree of a vertex and its neighbors to give a good approximation

[CRS12, ALST14, BK10, KLMT08]. In [ALST14], a random walk containing restart

that uses only the information on the degree of a currently visited vertex was suggested.

A local algorithm for power law networks is proposed in [BK10] that finds a vertex with

degree smaller than the maximum value of factor c. Another algorithm for efficiently

discovering the correct set of web pages with largest incoming degrees in a fixed network

(specially world wide web) is proposed in [KLMT08].

Between centrality measures the portion of shortest paths in the network that go

through a specific vertex and can be defined as [KAS+13]:

CB(u) =
ÿ

v,w,v ”=w

‡vw(u)
‡vw

(2.43)

where ‡vw is the total number of shortest paths between every v, w µ V, v ”= w and ‡vw(u)

is the number of such paths that pass through vertex u. The computation of betweenness

centrality can be accordingly by exact [Bra01] or approximate algorithms [BP07]. The

former explores the network using well-known algorithms (i.e., BFS, Dijkstra) and then

efficiently aggregates the discovered paths circumventing the high complexity of the

involved all-pairs shortest-path problem. The later seek to provide accurate sampling

methods that approximate the betweenness of each vertex based on number of the single

source shortest paths originating from certain reference vertices or even restrict the

considered vertex pairs to those that lie at most k hops away from each other [BE06]. On
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2.5. Network centrality

the contraty, methods that rely on locally available information are increasingly desirable

as they are better suited to the fact that network topology is not accessible. Besides, the

distributed-fashion approaches that leverage random walk strategies to reveal vertices

with high betweenness centrality [LMR+11, New05] or central vertices in a more general

sense [KLMST11], do not qualify for the task because they require information gathering

from the whole or part of the network topology, respectively. [KAS+13] introduces k-path

betweenness centrality that considers simple random walks which are not necessarily

shortest paths. A generalization of betweenness centrality is presented in [DEP10] by

considering routing policies in the network. A new distance function between vertex

pairs is also proposed that penalizes paths with the high number of hops in weighted

networks [OAS10]. All of these algorithms are not efficient for large online social networks.

The fastest known exact algorithm to compute the betweenness centrality of vertices

in a network is Brandes [Bra01] that requires O(N + |E|) space and a running time of

O(N |E|) on unweighted and O(N |E| + N2 log(N)) on weighted networks. This method

computes the shortest path to every other vertex for each vertex u and then traverses

these paths backwards to efficiently compute the contribution of the shortest paths

from u to the betweenness to other vertices. Moreover, Random sampling is a natural

approach to speed up the computation of betweenness [Wan06, JKL+05, BP07], where

the contributions of some vertices are sampled uniformly at random instead of computing

the contribution of all vertices to the betweenness of the others.

Closeness centrality measures how close a vertex is to all other vertices in the network,

and can be defined as [OCL08]:

CC(u) =
N ≠ 1

q

u ”=vœV d(u, v)
(2.44)

where d(u, v) is the shortest distance between vertices u and v. Locating public facilities

over a transportation network such that they are easily accessible to everyone, or identify-

ing people with ideal social network location for the purpose of information dissemination

or network influence can be mentioned as scenarios in which identifying high closeness

centralities is of great interest. The simple way to compute this centrality measure is

solving all-pairs shortest-paths problem that can be computed in O(N |E|+N2 log(N)) or

O(N3) in worst case. Faster specialized algorithms are proposed for special graphs, such

as interval graphs [ACL95], and chordal graphs [HSS97]. [ACIM99] proposed an algo-

rithm with computation time O(N2.5


log(N)) with an additive error of 2 for unweighted

graphs. [Wan06] developed an approximation algorithm with O( log(N)
‘2 (N log(N) + |E|))

time. These centrality measures that have been developed to evaluate the importance of
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2.5. Network centrality

a vertex are still costly in large real-world networks. Therefore, it is important to propose

a new approach to efficiently identify the top-k central vertices with high precision, low

computational cost, and without full knowledge of the network topological structure.

2.5.2 Detection of central vertices in networks

There exist several previous methods to assess network centrality in a distributed way

without requiring knowledge of the full network topology. The sampling-based methods

[LMR+11, MBW10] are among them, which require two different steps: (1) sampling

a subset of vertices in the network, (2) estimating the characteristics of interesting

vertices in the induced sub-graph containing the sampled vertices. [LK04] proposed

a framework to compute shortest-path based centralities (such as betweenness and

closeness centralities) in a decentralized way, but their method is still computationally

expensive for real networks. A new centrality metric, called Localized bridging centrality

(LBC), was introduced in [NK08] to provide a specialized centrality which is targeted

at locating bridges (i.e., edges whose removal disconnects the network). Second order

centrality (SOC) was introduced in [KLMST11] to assess network centrality without full

knowledge of the network topology by perpetual random walk which not only requires

a potentially long and undetermined convergence time, but also has a high message

passing complexity. Principal component centrality (PCC) [ISLR13] was proposed only

for friendship graphs. DANCE method [WGZ11] assigns a volume-based centrality to

each vertex, using beyond-localized information with relatively high message passing.

A deterministic algorithm for computation of centrality measures in directed graphs

is proposed in [YTQ16] that converges in finite time but its usage is only limited to

oriented tree graphs. [BBC+19] presented a new algorithm for computing the top-k

vertices ranking based on the closeness centrality in unweighted networks by reducing

the number of traversed links in breadth-first search. [ALN+10] introduced a Monte

Carlo method and [LMR+11] presented a parsimonious sampling method to estimate

the k most central vertices in a network. [KAS+13] introduced a new metric, called

k-path centrality, and a randomized algorithm for estimating it. Two major drawbacks of

these methods are that they require beyond-local-scope information about the network

topological structure, and they also need direct measurement of each individual vertex in

the network, which restrict their applicability in large real-world networks.
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2.6. Applications

2.6 Applications

2.6.1 Link prediction

Since the availability and importance of relational data has been significantly increased

in recent years, it becomes a crucial task to have good models for such data. For this

task, what we observed are the interactions between a set of entities and what we want

to achieve is to extract informative representations that are useful for making predictions

about the entities and their relations. One basic challenge is then link prediction, where

we observe the interactions (or in case of partially observable datasets, we extract the

interactions) between some pairs of entities in a graph (or network) and we try to predict

unobserved interactions (considering unseen entities). For instance, in a social network,

we might only know some subset of people are friends and some are not, and seek to

predict which other people are likely to get along.

The kinds of latent structure that have been proposed to use in link prediction in such

networks have been very limited. Particularly, the machine learning community has

focused on latent class models, adapting Bayesian nonparametric methods to jointly infer

the latent classes while learning which entities belong to each class. Our main goal is

to improve the expressiveness and performance of generative models based on latent

structure extraction that represents the properties of individuals from the observations.

We pursue the Bayesian nonparametric approach with a richer kind of latent features to

simultaneously infer the features at the same time we learn which interactions have each

feature. Our model combines these inferred features with known covariates (e.g., time)

in order to perform link prediction.

2.6.2 Influence maximization

Social networks–such as Linkedin and Twitter–has brought together small and discon-

nected relations between people which made them becoming a huge marketing platform.

These platforms allow information and ideas (posts) to affect a large population in a

short period of time. One challenging problem in viral marketing is to effectively find a

set of influential users. By activating this set of users, and sending advertising messages

to this set, one can reach out the largest area of the network. Online social networks

are appropriate choices to achieve this goal. A question therefore arises here that is how

to effectively identify the most influential users to place them into the seed set. This

problem is known as influence maximization problem, where given a graph, the objective
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2.6. Applications

of the influence maximization problem is to identify a small set of k seed vertices, which

when activated, will likely result in the activation of the maximum number of vertices

in the input graph, based on a given diffusion model for influence. Therefore, finding

the top influential entities in a large-scale social network becomes a very promising task.

It is known that the influence of a vertex is highly dependent on the network structure

and its location in the network, but how to calculate the real centrality of a vertex is

nontrivial. By analysing social networks, and then modelling their latent structure, we

can identify top k influential users in both stationary and dynamic networks.

2.6.3 Diffusion prediction

Models of contagion dynamics have proven relevant to the study of information, news,

and opinions in online social systems. Modelling the latent structure over which the

diffusion processes propagate, and predicting viral information cascades are important

problems in the graph modelling. Therefore, the problem of diffusion prediction can be

resolved by estimating the probability of an inactive vertex to be activated next in a

cascade. The information diffusion has many applications, such as helping to predict

which user is an opinion leader [WLY+14], how much a cascade will grow [CAD+14],

who are the diffusion sources [GRLK10], and so on. Given a graph G = (V, E), and a set

of cascade sequences over V , C = {(v1, t1), . . . , (v|C|, t|C|)}, we wish to predict a vertex

to activate next.
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CHAPTER 3
Dynamic Graph Model under

Partial Observations

In many applications, the underlying network over which contagions spread is unknown,

and we only observe the adoption of pieces of information, or spread of infections in

the network. Many real-world interacting networks, such as information propagation

[KLR17], social networks [KKT03], viral marketing [AW12], and epidemiology [HBG04],

can be observed in terms of signals propagating over their underlying graph structure.

Uncovering and inferring the structure of such network is possible by using the propagation

processes. These propagation processes appear as a contagion at some vertex of a network

and then spread like an epidemic from vertex to vertex over the edges of the network. For

instance, a contagion can correspond to a type of behavior or action, e.g., purchasing a

new product, or the propagation of a contagion disease over social network of individuals.

Epidemiologists can observe when a person becomes ill but they cannot tell who infected

her or how many exposures and how much time was necessary for the infection to take

hold. In information propagation, we observe when a blog mentions a piece of information.

However if, as is often the case, the blogger does not link to her source, we do not know

where she acquired the information or how long it took her to post it.

For the problem of inferring diffusion networks, instead of acquiring the whole structure

of the underlying network (access to the vertices and edges of its corresponding graph),

we only observe the contagions over the network, i.e., tracking the times when vertices

reproduce a piece of information, get infected by a virus, or buy a product. In all of these
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scenarios, we observe where and when but not how or why information propagates through

the underlying network. The problem of dynamically inferring the underlying network

structure given a set of cascades (partial observations) can be defined by considering

a hidden directed dynamic network where vertices and edges may appear or disappear

over time. At each time step t, the network Gt = (V t, Et) consists of a set of vertices

V t, and a set of edges Et. We assume that V 1 ™ V 2 · · · ™ V . However, we consider a

vertex as disappeared if it doesn’t have any edges. A set C of s contagions spread over

edges of the network from infected to non-infected vertices. For each contagion c œ C, we

observe a cascade tc := (tc
1, · · · , tc

|V |), recording the times when each vertex got infected

by the contagion c. If a vertex u is not infected by the contagion c, we set tc
u = Œ. For

each cascade, we only observe the time tc
u when a vertex u got infected, but not who

infected the vertex. Our goal is to infer a model Mt to capture the latent structure of the

dynamic network Gt over which cascades propagated, using partial observations. Such a

model, in particular, can provide us with the probabilities of the M t = |V t|2 potential

edges between all vertices u, v œ V t.

While there have been efforts to infer the edges over which information propagated

from infection times, providing a Bayesian-inspired dynamic algorithm which is able to

reproduce the underlying time-varying network has remains an open question. This allows

us, for instance, to estimate the time constants of network evolution or infer community

structure from temporal network data using cues embedded both in the probabilities over

time that vertex pairs are connected by edges and in the characteristic dynamics of edge

appearance and disappearance. Here, we consider the problem of developing a dynamic

network inference from partial observations, i.e. vertex infection times. In particular, we

propose a novel framework for providing a nonparametric network model—based on a

mixture of coupled hierarchical Dirichlet processes—from diffusion data. This allows us,

for instance, to infer the evolving community structure, or to obtain an explicit predictive

distribution over the edges—including those that were not involved in transmission of

any contagion, or are likely to appear in the future. We show the effectiveness of our

approach using extensive experiments on synthetic as well as real-world networks.

To this end, we propose a novel online network inference framework, Dyference, for

providing nonparametric edge-exchangeable network models from partial observations.

We build upon the nonparametric network model of [Wil16], namely MDND, that assumes

that the network clusters into groups and then places a mixture of Dirichlet processes

over the outgoing and incoming edges in each cluster while coupling the network using
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3.1. Nonparametric edge-exchangeable network model

a shared discrete base measure (see Section 3.2.4). However, our framework is easily

extended to arbitrary generative models replacing the MDND with other choices of latent

representations, such as network models presented in [CCB16, CD16, HSM16]. Given

a set of cascades spreading over the network, we process observations in time intervals.

For each time interval we first find a probability distribution over the cascade diffusion

trees that may have been involved in each cascade. We then calculate the marginal

probabilities for all the edges involved in the diffusion trees. Finally, we sample a set

of edges from this distribution and provide the sampled edges to a Gibbs sampler to

update the model variables. In the next iteration, we use the updated edge probabilities

provided by the model to update the probability distributions over edges supported by

each cascade. We continue the above iterative process until the model does not change

considerably. Extensive experiments on synthetic and real-world networks show that

Dyference is able to track changes in the structure of dynamic networks and provides

accurate online estimates of the time-varying edge probabilities for different network

topologies. We also apply Dyference for diffusion prediction and predicting the most

influential vertices in Twitter and MemeTracker datasets, as well as bankruptcy prediction

in a financial transaction network.

3.1 Nonparametric edge-exchangeable network model

In order to have a flexible model that allows the network to grow over time, we adopt

the Bayesian nonparametrics model of [Wil16]. Here, the network is modeled as an

exchangeable sequence of directed binary links. More specifically, each community in

the network is modeled by a mixture of Dirichlet network distributions (MDND). For

every community k, two Dirichlet distribution Ak, and Bk are associated to the outlinks

and inlinks in community k. To allow links between the communities associated with

each mixture component, the network is coupled using a shared, discrete base measure
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3.2. Dynamic network inference model

H. The model M can be described as:

D := (dk, k œ N) ≥ GEM(–) cuv ≥ D u, v œ V (3.1)

H :=
Œ

ÿ

i=1

hi”i ≥ GEM(“) u ≥ Acuv

Ak :=
Œ

ÿ

i=1

ak,i”i ≥ DP(·, H) v ≥ Bcuv

Bk :=
Œ

ÿ

i=1

bk,i”i ≥ DP(·, H) zij =
ÿ

u,vœV

I(u = i, v = j)

where GEM(–) is a distribution over the real-valued integers, with weights assigned

according to the stick-breaking construction of a Dirichlet process with concentration

parameter – that controls the number of clusters. The concentration parameter · controls

the overlap between clusters, and “ controls the total number of vertices in the network.

3.2 Dynamic network inference model

In this section, we describe our algorithm, Dyference, for inferring the latent structure

of the underlying dynamic network from diffusion data. We assume that contagion

proceeds according to latent edges which are generated according to a MDND model.

A vertex v becomes infected when it forms an edge with an infected vertex u, with

probability proportional to a function of the time that has elapsed since that vertex

became infected f(∆c
uv). Concretely,

P (et
uv|∆c

uv, ◊, M) Ã P (e|M, ◊) f(∆c
uv), for u, v œ V t (3.2)

Where P (e|M, ◊) is the edge probability under the MDND, and ◊ are the parameters

associated with that model, and

f(∆) = 1 + exp(≠∆) (3.3)

Our task is to infer the underlying network using the probability distribution over the

edges that can be formed by the contagion. The space of all possible contagion networks

grows exponentially with the number of vertices, making the inference challenging. For

this reason, rather than performing a full Bayesian analysis and sampling over networks,

we use an approximate inference strategy. Dyference works based on the following

iterative idea:
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3.2. Dynamic network inference model

1. At each time step t, we first find the set of all possible edges in each cascade ci,

denoted by Et
ci

= {euv|tci
u < tci

v < Œ}. Then, we select the set of edges with highest

probability, conditioned on the latent parameters ◊ and infection time differences

∆c. This set of edges for cascade ci have to construct a tree. This constraint allows

to perform inference in a scalable manner.

2. We then provide the set of edges associated with the most probable trees as

observations to a Gibbs sampler that updates the posterior distribution of the

latent variables ◊ of our nonparametric network model M.

3. Using MCMC generative model, we get updated probabilities, say duv, for every

possible edge euv in the network.

4. We update the probability distribution over edges of each Eci using updated duvs.

5. We update the latent variables with the new set of edges.

In the following, we describe these steps in more detail.

3.2.1 Modeling observations from diffusion data

Without loss of generality, we assume that every infected vertex in a cascade c gets

infected through one of its neighbors, and therefore the diffusion process propagates as

a directed tree T . For a cascade c, each possible way in which a diffusion process can

spread over the underlying network G creates a tree. Evidently, it is possible to have

multiple infection sources, and once it’s infected by the first source, it might not be

affected by other former sources. However, considering multiple sources —and allowing

non-tree contagion networks—may improve modeling performance. We did not explore

this here for computational reasons. For any cascade c, the probability of the cascade

given a diffusion tree T in a network model M with parameter vector ◊ can be written

as:

p(tc|T, ◊, M) Ã
Ÿ

euvœET

p(euv|◊, M), (3.4)

where ET is the set of edges in tree T . Note that for a given cascade, all diffusion trees

have the same |ET | = |VT | ≠ 1 number of edges, where |VT | is the number of infected

vertices in the cascade.

Initially, without any prior knowledge about the structure of the underlying network, we

define ∆c
uv = tc

v ≠ tc
u for all tc

u < tc
v < Œ, a function f(∆), and initialize p(euv|◊, M) Ã
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3.2. Dynamic network inference model

Algorithm 1 Collect_Observations

Input: Set of infection times {tc1 , · · · , tcs}.
Output: List of observations X.

1: X Ω {}
2: for c œ C do
3: Tc Ω {}
4: for all 0 < tc < Œ do
5: u = {arg maxi:tc

i <tc
v<Œp(eiv|◊, M)}

6: Tc Ω Tc fi {euv}
7: end for
8: X Ω {X, T c}
9: end for

q

cœC f(∆c
uv) for all the potential edges between infected vertices in different cascades.

For the rest of the edges euv, for which tc
u = Œ or tc

v = Œ, in all cascades, we initialize

p(euv|◊, M) = 0.

To build our list of observations, we only consider the most probable directed tree T̂c

supported by every cascade c œ C, i.e.,

T̂c = arg maxT œTc
p(tc|T, ◊, M), (3.5)

where Tc is the set of all the diffusion trees supported by cascade c. Our final observation

list X consists of all the edges in the most probable trees supported by the set of cascades

c œ C.

X = {ET̂c1
, · · · , ET̂cs

} (3.6)

Note that each edge can be observed multiple times. The number of observations nuv

correspond to euv is the number of the most probable trees containing edge euv, i.e.,

nuv =
ÿ

cœC

I[euv œ T̂c] (3.7)

The pseudocode for collecting the list observations from diffusion cascades is shown in

Algorithm 1.

3.2.2 Updating latent model variables

To update the posterior distribution of the latent model variables conditioned on the

observations, we need to resort to approximate inference. Here, we use a collapsed Gibbs

sampler [TJBB05]–a Markov chain Monte Carlo (MCMC) algorithm–to approximate
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3.2. Dynamic network inference model

Algorithm 2 Update_Network_Model

Input: Parameter vector c1:M , p1:M , —1:N , Set of infection times {tc1 , · · · , tcs}.
Output: Updated parameter vector c1:M , p1:M , —1:N

1: for i = 1, 2, · · · until convergence do
2: X Ω Collect_Observations({tc1 , · · · , tcs})
3: for j = 1, 2, · · · until convergence do
4: Select euv randomly from X
5: Sample c from the conditional distribution p(cuv = k|u, v, c¬euv

1:M , —1:N ) Û

Equation 3.8
6: Sample e from the conditional distribution p(euv = eij |c1:M , e¬euv

1:M , —1:N ) Û

Equation 3.9
7: Sample fl from the conditional distribution p(fl(k)

u. = fl|c1:M , fl
(k)¬euv
u. , —1:N ) Û

Equation 3.10
8: Sample (—1, · · · , —|V |, —u) ≥ Dir(fl(.)

1 , · · · , fl
(.)
|V |, “) Û Equation 3.11

9: end for
10: end for

the posterior distribution of the latent variable in our hierarchical mixture model (see

Section 2.1.4).

Sampling ccc. Following [Wil16], we model the posterior probability for an edge euv to

belong to cluster k as a function of the importance of the cluster in the network, and the

importance of u as a source and v as a destination in cluster k, as well as the importance

of u, v in the network. To this end, we measure the importance of a cluster by the total

number of its edges, i.e., ÷k =
q

u,vœV [Icuv = k]. Similarly, the importance of u as a

source, and the importance of v as a destication in cluster k is measured by the number

of outlinks of u associated with cluster k, i.e. l
(k)
u. , as well as inlinks of v associated with

cluster k, i.e. l
(k)
.v . Finally, the importance of a vertex i in the network is determined

by the probability mass of the edges associated with it, i.e. —i =
q

hi. +
q

h.i. The

distribution over the cluster assignment cuv of an edge euv, given the end vertices u, v,

the cluster assignments for all other edges, and — is given by:

p(cuv = k|u, v, c¬euv
1:M , —1:N ) Ã

Y

_

]

_

[

÷¬euv
k (l(k)¬euv

u. + ·—u)(l(k)¬euv
.,v + ·—v) if ÷¬euv

k > 0

–·2—u—v if ÷¬euv
k = 0

(3.8)

where ¬euv is used to exclude the current observation. As discussed in Section 3.2, –, · ,

and “ controls the number of clusters, cluster overlaps, and the number of vertices in the

network. Moreover, N, M are the number of vertices and edges in the network.
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3.2. Dynamic network inference model

Sampling eee. Due to the edge-exchangeability, we can treat euv as the last variable

being sampled. The conditional posterior for euv given the rest of the variables can be

calculated as:

p(euv = eij |c1:M ,e¬euv
1:M , —1:N ) =

Y

_

_

_

_

_

_

_

]

_

_

_

_

_

_

_

[

qK+
k=1

÷k
M+–

l
(k)¬euv
u. +·—u

÷k+·

l
(k)¬euv
.,v +·—v

÷k+·
+ –

M+–
—u—v if i, j œ V

qK+
k=1

÷k
M+–

l
(k)¬euv
u. +·—u

÷k+·
—n + –

M+–
—u—n if i œ V, j /œ V

qK+
k=1

÷k
M+–

l
(k)¬euv
.,v +·—u

÷k+·
—n + –

M+–
—n—v if i /œ V, j œ V

—2
n if i, j /œ V

(3.9)

where —n =
qŒ

i=N+1 hi is the probability mass for all the edges that may appear in the

network in the future. We observe that an edge may appear between existing vertices

in the network, or because one or two vertices has appeared in the network. Note that

the predictive distribution for a new link to appear in the network can be calculated

similarly using Equation 3.9.

Sampling fl.fl.fl. The probability mass on the outlinks and inlinks of a vertex i associated

with cluster k are modeled by variables fl
(k)
i. and fl

(k)
.i . The posterior distribution of fl

(k)
u.

(similarly fl
(k)
.v ), can be calculated using:

p(fl(k)
u. = fl|c1:M , fl(k)¬euv

u. , —1:N ) =
Γ(·—u)

Γ(·—u + l
(k)
u. )

s(l(k)
u. , fl)(·—u)fl, (3.10)

where s(l(k)
u. , fl) are unsigned Stirling numbers of the first kind. I.e., s(0, 0) = s(1, 1) =

1, s(n, 0) = 0 for n > 0 and s(n, m) = 0 for m > n. Other entries can be computed as

s(n + 1, m) = s(n, m ≠ 1) + ns(n, m). However, for large l
(k)
u. , it is often more efficient to

sample flk,i by simulating the table assignments of the Chinese restaurant according to

Equation 3.9.

Sampling ———. Finally, the distribution of edges of the vertices in the network is modeled

by a Dirichlet distribution, i.e.,

(—1, · · · , —N , —n) ≥ Dir(fl(.)
1 , · · · , fl

(.)
N , “), (3.11)

where fl
(.)
i =

q

k fl
(k)
i. + fl

(k)
.i .

The pseudocode for inferring the latent network variables from diffusion data is given in

Algorithm 4.
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3.2. Dynamic network inference model

Algorithm 3 Dynamic_Network_Inference (Dyference)

Input: Set of infection times {tc1 , · · · , tcs}, interval length w.
Output: Updated network model Mt at any time t = iw.

1: t = w, initialize M0 randomly.
2: while t < last infection time do
3: for all c œ C do
4: tcw Ω tc

u œ [t ≠ w, t)
5: Y t Ω {Y t, tcw}
6: end for
7: Mt Ω Update_Network_Model(Mt≠w, Y t)
8: t = t + w.
9: end while

3.2.3 On-line dynamic network inference

In order to capture the dynamics of the underlying network and keep the model updated

over time, we consider time intervals of length w. For the i-th interval, we only consider

the infection times tc œ [(i ≠ 1)w, iw) for all c œ C, and update the model conditioned on

the observations in the current time interval. There is a trade-off between the speed of

tracking changes in the underlying network structure, and the accuracy of our algorithm.

For smaller intervals, we incorporate new observations more rapidly, and therefore we

are able to track changes faster. On the other hand, for larger intervals we have a higher

number of observations from each cascade. Hence, the most probable tree supported by

each cascade is larger, and can provide more information about the network structure.

Note that we don’t infer a new model for the network based on infection times in each

time interval. Instead, we use new observations to update the latent variables from the

previous time interval. Updating the model with observations in the current interval

results in a higher probability for the observed edges, and a lower probability for the edges

that have not been observed and the size of their neighborhood –in terms of the degree

of the two end vertices– hasn’t been increased. Therefore, we don’t need to consider an

aging factor to take into account the older cascades. The pseudocode of our dynamic

inference method is given in Algorithm 3.

3.2.4 Modeling choices

We note that our proposed framework is not restricted to MDND and can be used along

with any non-parametric network model to capture the underlying dynamic network

structure from partial observations. A weakness of our modeling approach is that the
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3.3. Experiments

MDND does not guarantee trees. Effectively, we are using the MDND as a prior on

contagion networks, but assigning zero likelihood to networks that are not trees. The

state-of-the-art methods treat contagions variously. NetInf [GRLK10] considers only

the most propagation tree to achieve high efficiency. MulTtree [GRLS13] considers all

propagation trees supported by each cascade. NETRATE [GrS11] and CONNIE [ML10]

also consider all possible directed trees supported by each cascade. In practice, we found

the MDND-based approach worked well, despite not being a tree-based prior.

Infections tend to spread through communities [LSK06], since members of communities

interact frequently, motivating the choice of MDND, which models the network in terms

of community structure. Communities happen in many networked systems such as social,

biological, information, and technological systems. Detecting communities and their

boundaries in networks is an essential task to understand the structure, function and

evolution in various areas for complex networks specifically social networks. Vertices

in the same community commonly share similar properties and/or play similar roles

throughout the network.

Our proposed model is not identifiable, which certainly limits the ability to interpret

the latent structure; however the lack of identifiability should not impact predictive

performance.

3.3 Experiments

In this section, we address the following questions: (1) What is the predictive performance

of Dyference in static and dynamic networks and how does it compare to the existing

network inference algorithms? (2) How does predictive performance of Dyference

change with the number of cascades? (3) How does running time of Dyference compare

to the baselines? And, (4) How does Dyference perform for the task of predicting

diffusion and influential vertices?

Baselines. We compare the performance of Dyference to NetInf [GRLK10], Ne-

tRate [GrS11], TopoLSTM [BLG16], DeepCas [LMGM17], EmbeddedIC [BLG16]

and InfoPath [GRLS13]. InfoPath is the only method able to infer dynamic networks,

hence we can only compare the performance of Dyference on dynamic networks with

InfoPath (see Section 3.2.1 for the description of the baselines).

Evaluation Metrics. For performance comparison, we use Precision, Recall, F1 score,
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3.3. Experiments

Map@k and Hit@k. Precision is the fraction of edges in the inferred network present

in the true network, Recall is the fraction of edges of the true network present in the

inferred network, and F1 score is 2◊(precision◊recall)/(precision+recall). MAP@k is

the classical mean average precision measure and Hits@k is the rate of the top-k ranked

vertices containing the next infected vertex.

In all the experiments we use a sample size of q = |Ec| ≠ 1 for all the cascades c œ C.

We further consider a window of length w = 1 day in our dynamic network inference

experiments in Fig 3.1 and w = 2-years in Table 3.3.

Synthetic Experiments. We generated synthetic networks consist of 1024 vertices

and about 2500 edges using Kronecker graph model [LCK+10]: core-periphery network

(CP) (parameters [0.9,0.5;0.5,0.3]), hierarchical community network (HC) (parameters

[0.9,0.1;0.1,0.9]), and the Forest Fire model [LKF07]: with forward and backward burning

probability 0.2 and 0.17.

To simulate several cascades over synthetic networks in static settings, we use the

generative approach of [GrS11]. In this method one can generate a cascade set based

on three transmission models (i.e. Exponential, Power-law, or Rayleigh). There are two

parameters in the cascade setting. – is the transmission rate of a transmission model, and

— controls the cascade length. We use the same setting as [GrS11] and set – = [0.01, 2]

and —=0.4 (for core-periphery —=0.1). We pick the starting vertices uniformly at random

and generate 500 cascades for each network. In the experiment in which we want to show

the effect of number of edges on the accuracy of the model, we generate as many cascades

as needed to cover 95% of the edges in the underlying network. In dynamic settings, we

generate 500 cascades per time slot and considering one type of edge transmission rate for

each network that we are generating the cascades over. For dynamic networks, we assign

a pattern to each edge uniformly at random from a set of five edge evolution patterns:

Slab, and Hump (to model outlinks of vertices that temporarily become popular), Square,

and Chainsaw (to model inlinks of vertices that update periodically), and Constant (to

model long term interactions) [GRLS13]. Transmission rates are generated for each edge

according to its evolution pattern for 100 time steps. We then generate 500 cascades per

time step (1 day) on the network with a random initiator [GrS11].

Figures 3.1a, and 3.1b compare precision, recall and F1 score of Dyference to InfoPath

for online dynamic network inference on CP-Kronecker network with exponential edge

transmission model, and HC-Kronecker network with Rayleigh edge transmission model.
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3.3. Experiments

It can be seen that Dyference outperforms InfoPath in terms of F1 score as well

as precision and recall on different network topologies in different transmission models.

Figures 3.1c, 3.1d, 3.1e compare F1 score of Dyference compared to InfoPath and

NetRate for static network inference for varying number of cascades over CP-Kronecker

network with Rayleigh and Exponential edge transmission model, and Forest Fire network

with Power-law edge transmission model. We observe that Dyference consistently

outperforms the baselines in terms of accuracy and is robust to varying number of

cascades. This setting ensures that NetInf performs its best. As depicted in the figure,

the NPNM method yields a very good results for accurately inferring the diffusion network

for all types of network which emphasizes on its non-parametric nature. NetInf performs

better than the other competing methods, while InfoPath is the worst one in terms

of accuracy of estimating the static diffusion network. NetRate works well for the

networks with the power-law transmission model, however its accuracy degrades in the

networks with the exponential transmission model. As we expected, NetInf as the

best greedy algorithm performs well, but the interesting point is that the NPNM as a

non-parametric model can infer the diffusion network with similar accuracy.

Now, we evaluate the performance of the proposed method against dynamic diffusion

data. Since InfoPath is the only method among the baselines that can estimate dynamic

networks, we compare the NPNM with this method in terms of Precision-Recall and

accuracy in Figure 3.1. As illustrated in the figure, the proposed method almost always

performs better than InfoPath in different time slots. In Figure 3.1(a,b), the NPNM as

a non-parametric network model has almost constant Precision-Recall for different time

slots and also for different network models with different transmission rates. However,

the Precision-Recall of InfoPath in HC Kronecker network with Rayleigh transmission

model is higher than that of CP Kronecker network with Exponential transmission model.

This observation is similar for Figure 3.1(c,d) in which the accuracy of NPNM is around

0.7 for both network models with different transmission rates, however the accuracy of

InfoPath in HC network is higher than that of CP network. Moreover, the accuracy of

InfoPath has a decreasing trend over time.

Real-world Experiments. Figure 3.1(g-j) shows the Accuracy, Precision and Recall

over time for the dynamic network for April 2011. We set the transmission model of

the edges to exponential in sake of InfoPath setting. We observe daily periodicity and

the overall encouraging performance of around 0.4 for all three performance metrics.

The results show that NPNM is more accurate than InfoPath. Moreover, our model

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.3. Experiments

Table 3.1: Performance of Dyference for diffusion prediction compared to DeepCas,
TopoLSTM,and EmbeddedIC on Twitter and Memes datasets (TopoLSTM requires
the underlying network).

Twitter Memes

MAP@k @10 @50 @100 @10 @50 @100

DeepCas 9.3 9.8 9.8 18.2 19.4 19.6
TopoLstm 20.5 20.8 20.8 29.0 29.9 30.0

Embedded-IC 12.0 12.4 12.5 18.3 19.3 19.4
Dyference 20.6 20.8 20.9 29.4 31.5 32.4

Hits@k @10 @50 @100 @10 @50 @100

DeepCas 25.7 31.1 33.2 43.9 60.5 70.0
TopoLstm 28.3 33.1 34.9 50.8 69.5 76.8

EmbeddedIC 25.1 33.5 36.6 35.1 56.0 65.0
Dyference 30.0 34.3 36.7 47.4 71.0 84.0

Table 3.2: Top 10 predicted influential websites of Memes (Linkedin) on 30-06-2011. The
correct predictions are indicated in bold.

Dyference InfoPath

pressrelated.com podrobnosti.ua
arsipberita.com scribd.com

news.yahoo.com derstandard.at
in.news.yahoo.com heraldonline.com

podrobnosti.ua startribune.com
article.wn.com canadaeast.com

ctv.ca news.yahoo.com
fair-news.de proceso.com.mx
fanfiction.net article.wn.com

bbc.co.uk prnewswire.com

performs similar in all these topics because of its non-parametric nature. Furthermore,

InfoPath has higher Precision but a very low recall. Nevertheless, our method has

almost similar Precision and Recall. Overall, one can find that NPNM has a better

performance in comparison with InfoPath to infer the real diffusion network.

We applied Dyference to three real wold datasets, (1) Twitter [HL14] contains the

diffusion of URLs on Twitter during 2010 and the follower graph of users. The network

consists of 6,126 vertices and 12,045 edges with 5106 cascades of length of 17 on average,
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3.3. Experiments

Table 3.3: Performance of Dyference for dynamic bankruptcy prediction compared to
InfoPath on financial transaction network from 2010 to 2016. In 2010, a financial crisis
hit the network.

2012 2014 2016

MAP@k @10 @20 @30 @10 @20 @30 @10 @20 @30

InfoPath 4.0 5.3 6.6 35.0 34.5 30.0 54.7 65.0 65.0
Dyference 17.6 19.1 20.6 62.0 51.9 38.1 69.6 85.7 85.7

Hits@k @10 @20 @30 @10 @20 @30 @10 @20 @30

InfoPath 20.0 25.0 26.6 50.0 55.0 50.0 80.0 65.0 65.0
Dyference 40.0 45.0 46.6 70.0 65.0 50.0 80.0 70.0 70.0

(2) Memes [LBK09] contains the diffusion of memes from March 2011 to February 2012

over online news websites; The real diffusion network is constructed by the temporal

dynamics of hyperlinks created between news sites. The network consists of 5,000 vertices

and 313,669 edges with 54,847 cascades of length of 14 on average, and (3) a European

county’s financial transaction network. The data is collected from the entire country’s

transaction log for all transactions larger than 50K Euros over 10 years from 2007 to

2017, and includes 1,197,116 transactions between 103,497 companies. 2,765 companies

are labeled as bankrupted with corresponding timestamps. In 2010, a financial crisis

hit the network. For every 2 years from 2010, we built a diffusion of bankruptcy with

average length of 85 between 200 bankrupted vertices that had the highest amount of

transactions each year.

Figures 3.1g, 3.1h, 3.1i, 3.1j compare the F1 score of Dyference to InfoPath for online

dynamic network inference on the time-varying hyperlink network with four different

topics over time from March 2011 to July 2011. As we observe, Dyference outperforms

InfoPath in terms of the prediction accuracy in all the networks. Figure 3.1f compares

the running time of Dyference to that of InfoPath. We can see that Dyference

has a running time that is comparable to InfoPath, while consistently outperforms it in

terms of the prediction accuracy.

Diffusion Prediction. Table 3.1 compares Map@k and Hits@k for Dyference vs.

TopoLSTM, DeepCas, and EmbeddedIC. We use the infection times in the first 80%

of the total time interval for training, and the remaining 20% for the test. It can be seen

that Dyference has a very good performance for the task of diffusion prediction. Note

that TopoLSTM needs complete information about the underlying network structure

for predicting transmission probabilities, and InfoPath relies on predefined parametric
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3.4. Conclusion

probability distributions for transmission rates. On the other hand, Dyference does

not need any information about network structure or transmission rates.

Table 3.3 compares Map@k and Hits@k for Dyference vs. InfoPath for dynamic

bankruptcy prediction on the financial transaction network since the crisis hit the network

at 2010. We used windows of length w = 2 years to build cascades between bankrupted

vertices and predict the companies among the neighbors of the bankrupted vertices that

are going to get bankrupted the next year. It can be seen that Dyference significantly

outperforms InfoPath for bankruptcy prediction.

Influence Prediction. Table 3.2 shows the set of influential websites found based on

the predicted dynamic Memes network by Dyference vs Infopath. The dynamic

Memes network for Linkedin is predicted till 30-06-2011, and the influential websites are

found using the method of [KKT03]. We observe that using the predicted network by

Dyference we could predict the influential vertices with a good accuracy.

3.4 Conclusion

We considered the problem of developing generative dynamic network models from partial

observations, i.e. diffusion data. We proposed a novel framework, Dyference, for

providing a nonparametric edge-exchangeable network model based on a mixture of

coupled hierarchical Dirichlet processes (MDND). However, our proposed framework is

not restricted to MDND and can be used along with any generative network models to

capture the underlying dynamic network structure from partial observations. Dyference

provides online time-varying estimates of probabilities for all the potential edges in the

underlying network, and track the evolution of the underlying community structure

over time. We showed the effectiveness of our approach using extensive experiments on

synthetic as well as real-world networks.
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3.4. Conclusion

(a) CP - Exp (b) HC - Ray

(c) HC - Ray (d) CP - Exp (e) FF - Pwl (f) Memes

(g) Occupy (h) Linkedin (i) NBA (j) News

Figure 3.1: Precision, Recall and F1 score of Dyference. (a) Compared to InfoPath for
dynamic network inference over time on Core-Periphery (CP) Kronecker network with exponential
transmission model, and (b) Hierarchical (HC) Kronecker network with Rayleigh transmission
model. (c) accuracy of Dyference compared to InfoPath and NetRate for static network
inference for varying number of cascades over CP-Kronecker network with Rayleigh, and (d)
Exponential transmission model, and (e) on Forest Fire network with Power-law transmission
model. (f) compares the running time of Dyference with InfoPath for online dynamic network
inference on the time-varying hyperlink network with four different topics Occupy with 1,875
sites and 655,183 memes, Linkedin with 1,035 sites and 155,755 memes, NBA with 1,875 sites
and 655,183 memes, and News with 1,035 sites and 101,836 memes. (g), (h), (i), (j) compare
the accuracy of Dyference to InfoPath for online dynamic network inference on the same
dataset and four topics from March 2011 to July 2011.
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CHAPTER 4
Nonparametric Model for Sparse

Temporal Multigraphs

Many forms of social interaction can be represented in terms of a multigraph—i.e. a

graph where there can be multiple edges between two vertices. For example, vertices

might correspond to individuals, with each edge representing an email between two

individuals. In a networking context, vertices might correspond to hosts on a network,

with edges representing packets of data sent or the number of packets sent between them.

In large-scale applications, such multigraphs are typically sparse, with the number of

edges being small relative to the number of unconnected pairs of vertices.

Edge-exchangeable models [CCB16, CD18] have been proposed as models for sparse

multigraphs, and clustering-based edge-exchangeable models allow the incorporation of

community-type structure, [Wil16]. Such models assume that we will see more edges and

vertices in future, making them appropriate for growing graphs. However they assume

that the distribution is stationary, and that the resulting multigraph is invariant to

reordering the arrival times of the edges. In practice, most real-world multigraphs will

be dynamic, with the underlying distribution dynamically evolving. For example, topics

of communication may wax and wane in popularity, and the set of individuals interested

in a given topic may evolve over time.

We propose a new model for dynamic multigraphs, the Dynamic Nonparametric Network

Distribution (DNND). The DNND uses a hierarchical clustering mechanism to capture

interaction patterns within the multigraph, and uses distance-dependent Chinese Restau-
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4.1. Mixture of Dirichlet Network Distributions

rant Processes (ddCRPs) [BF11] to incorporate temporal dynamics by preferentially

assigning edges to clusters and vertices that have been recently active. This dynamic

mechanism, in combination with a Pitman-Yor process-distributed base measure ensures

our model is appropriate for both sparse and dense multigraphs, with the degree of

sparsity controlled by a single parameter. The increased flexibility allowed by our model

leads to improved performance over both its exchangeable counterpart and a range of

state-of-the-art dynamic network models.

Although this model is previously described in Section 3.1, we review this model in next

Section in more detail.

4.1 Mixture of Dirichlet Network Distributions

While edge-exchangeable models based on a single distribution have desirable sparsity

and degree distribution properties, and are appropriate for growing graphs, they lack

community-type structure. The mixture of Dirichlet network distributions (MDND)

[Wil16] uses a mixture of edge-exchangeable models, with shared infinite-dimensional

support. Each edge i is associated with a cluster zi, governing which edge-exchangeable

model it is generated from. The zi are distributed according to a Chinese restaurant

process (CRP), which describes the distribution over partitions in a DP mixture model,

allowing an unbounded number of clusters.

Within the k-th cluster, each edge is associated with two “tables”, b
(s)
i and b

(r)
i , sampled

from two separate CRPs.1 These tables are associated with the sender and recipient of

the edge, respectively. Each table b
(s)
i (or b

(r)
i ) in cluster k is linked with a vertex „

(s)
k,bi

(or „
(r)
k,bi

, so that, for example, all edges i where zi = k and b
(s)
i = c have the same sender

„
(s)
k,c. To ensure that the cluster-specific multigraphs have common support, the vertices

for each table are sampled from a global, DP-distributed probability measure H, that is

shared across all clusters. The overall distribution over the ith directed edge (si, ri) can

1While the original MDND paper describes this distribution in terms of Dirichlet processes, we will
provide an equivalent construction in terms of CRPs, to provide consistency with later contributions.
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4.2. Distance-dependent Chinese restaurant process

be written as
H ≥ DP(“, Θ)

P (zi = k|z<i) Ã

Y

_

]

_

[

mk k Æ K+

– k = K+ + 1

P (b(s)
i = c|zi = k, b

(s)
<i ) Ã

Y

_

]

_

[

fl
(s)
k,c c Æ C

(s)
k+

· k = C
(s)
k+ + 1

P (b(r)
i = c|zi = k, b

(r)
<i ) Ã

Y

_

]

_

[

fl
(r)
k,c c Æ C

(r)
k+

· k = C
(r)
k+ + 1

„
(s)
k,c ≥ H si = „

(s)
zi,bi

„
(r)
k,c ≥ H ri = „

(r)
zi,bi

(4.1)

where mk is the number of times we have seen cluster k; z<i = (z1, . . . , zi≠1); si(ri) is

the sender(recipient) of edge i; fl
(s)
k,c is the number of senders sat at table c in cluster k

(with fl
(r)
k,c defined analogously); K+ is the number of previously seen clusters; and C

(s)
k+

and C
(r)
k+ are the number of previously seen sender and recipient tables, respectively, in

cluster k. Here, – > 0 controls the number of clusters, “ > 0 controls the overall number

of vertices, · controls similarity between clusters, and Θ is some diffuse measure on the

space of vertices.

The resulting model exhibits structure due to the clustering of edges. Both the distribution

over clusters, and the distribution over edges within a cluster, are exchangeable. While

the use of CRPs (as opposed to heavier-tailed distributions such as Pitman-Yor processes

and normalized generalized gamma processes) allows for straightforward inference, they

mean that the MDND does not yield sparse graphs.

4.2 Distance-dependent Chinese restaurant process

Under the MDND both the distribution over clusters, and the distributions over sender

and recipient vertices within each cluster, are exchangeable. A natural way to incorporate

temporal dependence in such a model is to replace the associated CRPs with temporally

varying clustering mechanisms. Several models add temporal dynamics to the DP

and/or CRP, e.g. [Mac00, LGF10, RDC08]. For our purposes, we choose to use the

distance-dependent CRP (ddCRP) [BF11].
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4.3. Pitman-Yor process

Under the ddCRP with concentration parameter – and non-negative, non-increasing

decay function f such that f(Œ) = 0, the probability of an observation xi joining a

cluster k is,

P (zi = k|z<i) Ã

Y

_

]

_

[

q

j:zj=k f(di,j) k Æ K+

– k = K+ + 1

where K+ is the number of previously seen clusters;

di,j =

Y

_

]

_

[

ti ≠ tj ti Ø tj

Œ otherwise
(4.2)

captures how much time has elapsed between xi and xj ; and the concentration parameter

– controls the expected number of clusters.

4.3 Pitman-Yor process

The DP distribution over H and the CRPs used to assign edges to tables do not have

sufficiently heavy tails to yield sparse multigraphs (see [CCB16] and [CD18]). The

Pitman-Yor process (see Section 2.1.2), is an alternative distribution over probability

distributions that has heavier tails than the DP. The Pitman-Yor process has previously

been used in the construction of sparse, edge-exchangeable multigraphs, albeit without

the structure of the MDND [CD18].

The exchangeable distribution over partitions implied by the Pitman-Yor process can

be described using a two-parameter CRP. With discount parameter 0 Æ ‡ < 1 and

concentration parameter “ > ≠‡, the clustering behavior of the two-parameter CRP is

given by

P (zi = k|z<i) Ã

Y

_

]

_

[

mk ≠ ‡ k Æ K+

“ + ‡K+ k = K+ + 1
(4.3)

where K+ is the number of existing clusters and mk is number of times we have seen

cluster k. If ‡ = 0, this reduces to the standard CRP with concentration parameter “; as

‡ increases, the distribution has increasingly heavy tails.
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4.4. DNND: Dynamic Nonparametric Network Distribution

4.4 DNND: Dynamic Nonparametric Network

Distribution

The MDND, described in Section 4.1, assumes that the observed edges are exchangeable—

i.e., that the probability of the graph is invariant to reordering of the edge arrival

times. This obviously limits their application to dynamically growing graphs, where the

underlying mechanism is non-stationary. Further, since it is based on DPs rather than

heavier-tailed distributions such as the normalized generalized gamma process or the

Pitman-Yor process, it does not concentrate on sparse graphs for any parameter settings.

Inspired by the MDND, we propose a new model, Dynamic Nonparametric Network Dis-

tribution (DNND), for dynamic multigraphs with community structure. DNND replaces

the Dirichlet process-distributed random measures in Equation (4.1) with distributions

that are either temporally varying, or have heavy tails. As we show in this section, the

resulting time-evolving models can capture both sparse and dense multigraphs, depending

on the hyperparameters.

Recall that the MDND uses DPs or CRPs in three parts of its construction (see Equation

(4.1)): H ≥ DP(“, Θ) controls the number of vertices, and their overall popularity within

the graph. CRPs parametrized by · determine the tables at which senders and recipients

sit, in turn controlling the cluster-specific distributions over the “sender” and “recipient”

of edges in the graph. Finally, a CRP parametrized by – governs the clustering structure

of the edges.

We replace the top-level DP with a Pitman-Yor process, which increases the probability of

adding previously unseen vertices. We replace the CRP controlling the overall clustering

with a ddCRP with decay function f1, and the CRPs controlling the cluster-specific table

allocations with ddCRPs with decay function f2.

The resulting temporal dependency means that both the cluster probabilities, and the

cluster-specific distributions over vertices, can evolve over time. The resulting generative
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4.4. DNND: Dynamic Nonparametric Network Distribution

process over directed edges (si, ri) takes the form

H :=
Œ

ÿ

i=1

hi”◊i
≥ PY(“, ‡, Θ)

P (zi = z|z<i) Ã

Y

_

_

]

_

_

[

q

j:zj=k
f1(di,j) k Æ K+ + 1

– k = K+

si|zi, s<i, H

Y

_

_

]

_

_

[

= s w.p. Ã
q

j:zj=zi,sj=s
f2(di,j)

≥ H w.p. Ã ·

ri|zi, r<i, H

Y

_

_

]

_

_

[

= r w.p. Ã
q

j:zj=zi,rj=r
f2(di,j)

≥ H w.p. Ã ·

(4.4)

where K+ is the number of previously seen clusters. The hyperparameters –, “ and ·

influence the number of clusters and components in a manner analogous to Equation 4.1;

the parameter ‡ œ [0, 1) controls the sparsity of the multigraph, as we will explore in

Section 4.4.1. To reduce the expected number of loops (edges with repeat vertices), we

specify our distance as

di,j =

Y

_

]

_

[

ti ≠ tj ti Ø tj , i ”= j

Œ otherwise,
(4.5)

4.4.1 Sparsity of the resulting graph

In this section, we show that, under mild conditions, if ‡ > 0.5 the model described by

Equation (4.4) yields sparse multigraphs. Following [CCB16], we define a multigraph

as sparse if the number of edges grows sub-quadratically with the number of vertices.

Throughout, we make the following assumption on decay functions used in ddCRP.

Assumption 1. The decay function f2 in Equation 4.4 satisfies
qj

i=1 f2(di,j) Æ D for

some D < Œ and all j.

Remark. The condition
qj

i=1 f2(di,j) Æ D is easily satisfied provided the rate of arrival

of edges is bounded. For example, if f2 is a window function of size w, then D is the

maximum number of edges arriving in a period of length w. If f2 is an exponential

function, f2(d) = e≠d/⁄, and m is the maximum number of edges arriving per unit time,
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4.4. DNND: Dynamic Nonparametric Network Distribution

then
ÿ

i<j

f2(di,j) Æ
ÿ

i<j

e≠Âdi,jÊ/⁄ Æ
Œ

ÿ

¸=0

me≠¸/⁄ =
me≠⁄

e≠⁄ ≠ 1

where the final inequality is due to the fact that there are at most m observations with

Âdi,jÊ = ¸ for ¸ = 1, . . . , Œ. If f is a logistic function, f(d) = e≠d+⁄/(1 + e≠d+⁄), then
q

i<j f(di,j) is bounded above by
qŒ

¸=0 e⁄e≠¸ = e⁄+1/(e ≠ 1).

Theorem 4.4.1. If f2 satisfies Assumption 1, and if ‡ > 0.5, the model described by

Equation (4.4) is sparse.

Before proving Theorem 4.4.1, we introduce some lemmas that are required for our main

result.

Lemma 4.4.2. If the decay function of a ddCRP satisfies Assumption 1, the number of

clusters grows linearly in the number of observations, n.

Proof. The probability of the i-th observation starting a new cluster is ·
·+

q

j<i
f(di,j)

,

therefore the expected number of clusters in n observations is

E[Kn] =
n

ÿ

i=1

·

· +
q

j<i f(di,j)
Ø

n·

· + b

Next, define a hierarchical Pitman-Yor ddCRP as a time-dependent clustering model for

grouped data. Let x1, . . . xK represent K data groups, where xk = (xk
1, . . . , xk

nk
) contains

nk observations. Associate with each observation xk
i a table indicator bk

i , and associate

with the c-th table in group k a dish „k,c, according to

H ≥PY(“, ‡, Θ)

P (bk
i = c|zk

<i, ·) Ã

Y

_

]

_

[

=
q

j:bk
j =c f2(di,j) c Æ Ck

+

· c = Ck
+ + 1

„k,c ≥H, ◊k
i = „k,bk

i
.

(4.6)

observations with the same value of ◊k
i belong to the same cluster. This formulation is a

slight variation on the spatial ddCRP of [GUSB11], with a Pitman-Yor process replacing

of the top-level DP.
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4.4. DNND: Dynamic Nonparametric Network Distribution

Figure 4.1: Relationship between the number of edges and the number of vertices in DNND
multigraphs generated according to Equation (4.4), for various values of ‡. Plots are shown on a
log-log scale. Different colors correspond to different random seeds. The blue dashed line has
a slope of 2, indicating a quadratic relationship. We see the multigraphs become increasingly
sparse as ‡ increases.

Lemma 4.4.3. If the decay function satisfies the condition in Lemma 4.4.2, then the

number of clusters in the hierarchical Pitman-Yor ddCRP grows as O(n‡).

Proof. Following Lemma 4.4.2, the number of tables associated with each group xk grows

linearly in the number nk of observations in the group, so the total number of tables

across all groups grows linearly in the total number n =
q

k nk of observations. Tables

are then assigned dishes according to a Pitman-Yor CRP (Equation (4.3)). Under this

distribution, the expected number of dishes in k is [P+02],

Γ(“ + k + ‡)Γ(“ + 1)
‡Γ(“ + k)Γ(“ + ‡)

≠
“

‡
ƒ

Γ(“ + 1)
‡Γ(“ + ‡)

k‡ .

By the law of iterated expectations, the expected number of dishes sampled by n customers

grows as O(n‡) for ‡ > 0.

Note that the above proof does not depend on how observations are assigned to groups,

and therefore the lemma holds if the groups are assigned via a ddCRP (or other clustering

mechanism).

Proof of Theorem 1. Following from Lemma 4.4.3, the expected number of distinct

vertices grows as O(n‡), where n is the number of edges. The resulting random multigraph

is therefore sparse provided ‡ > 0.5.

Empirical evaluation of sparsity

In Figure (4.1), we empirically investigate the effect of ‡ on the sparsity of multigraphs

generated according to Equation (4.4). Recall that a model is considered sparse if the
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4.5. Inference

number of edges grows subquadratically with the number of vertices. Figure (4.1) plots

the number of edges and number of vertices (on a log-log scale) for multigraphs with

– = 1, “ = 1, · = 0.2, and various values of ‡. Each dot represents a single sampled

multigraph, and the blue dashed line has slope 2—providing the boundary between sparse

and dense graphs. We see that, for ‡ > 0.5, the number of edges grows subquadratically

with the number of vertices, as expected according to Theorem 4.4.1. As we decrease ‡,

the graphs become denser. With ‡ = 0.3, the number of edges is approximately quadratic

in the number of vertices. With ‡ = 0, corresponding to a DP-distributed base measure,

the number of edges is superquadratic in the number of vertices.

4.4.2 Discussion of modeling choices

A number of dynamic extensions to the Dirichlet process have been proposed, that could

be used to introduce temporal dependency into the MDND. We choose the ddCRP for

three reasons. First, it allows us to guarantee sparsity, as described in Section 4.4.1.

Second, it captures behavior that we are likely to see in a dynamic network context:

recent communications are likely to be more influential than more distant communications.

Finally, its construction easily lends itself to an easy-to-implement sampler, as described

in Section 4.5; by contrast, many other dependent Dirichlet processes have much more

complicated inference algorithms, which would limit scalability.

A known limitation of the ddCRP is that it assumes that all data has been observed up

to the current time point; the distribution is not invariant to adding edges at previously

observed time points. This is not a concern in our setting, since we are typically able to

observe past instances of the full graph, and are interested in predicting future edges.

We note that the hierarchical structure over the cluster-specific distributions is similar to

the spatial ddCRP proposed by [GUSB11], where a collection of ddCRPs are coupled

using a shared Dirichlet process. We choose to use a Pitman-Yor process in place

of the Dirichlet process to ensure sparsity. Alternative heavy-tailed nonparametric

distributions such as the normalized generalized gamma process could be used in place

of the Pitman-Yor process; we chose the Pitman Yor process for ease of inference.

4.5 Inference

Conditioned on the hyperparameters, we can directly generate samples from the posterior

by sequentially sampling cluster assignments. Let bs
i and br

i be the table assignments
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4.5. Inference

Algorithm 4 Dynamic Nonparametric Network Distribution Inference
Input: Sequence E = (e1, e2, . . .), –0, “0, ·0, ‡0

1: Compute distances {di,j} Û Equation (4.5)
2: for epoch= 1, 2, . . . ,max_epoch do
3: for i = 1, . . . , n do
4: Sample zi|z<i, si, ri . . . Û Equation (4.7)
5: Sample bs

i |si, zi, . . . Û Equation (4.9)
6: Sample br

i |ri, zi, . . . Û Equation (4.9)
7: end for
8: Sample –, “, ·, ‡ via random walk Metropolis Hastings
9: end for

of the i-th sender and recipient, respectively. As we proceed, let K+ indicate the total

number of clusters seen so far; V+ be the total number of vertices seen so far; and flv

be the total number of tables so far associated with vertex v. We can sample the i-th

cluster assignment, given the previous assignments, as

P (zi = k|si, ri) Ã P (si|zi = k)P (ri|zi = k)P (zi = k|z<i) (4.7)

where
P (si = v|zi = k) =
Y

_

_

_

_

_

_

_

]

_

_

_

_

_

_

_

[

q

j:j<i,zj =k,sj =v
g(di,j)

·+
q

j:j<i,zj =k
g(di,j)

+ ·
·+

q

j:j<i,zj =k
g(di,j)

flv≠‡
q

v
flv+“

v Æ V+

·
·+

q

j:j<i,zj =k
g(di,j)

“+V ‡
q

v
flv+“

v = V+ + 1

P (zi = k|z<i) Ã

Y

_

]

_

[

q

j:zj=k f1(di,j) k Æ K+

– k = K+ + 1

(4.8)

and P (ri = v|zi = k) is defined analogously to P (si = v|zi = k). Conditioned on the

cluster assignment, we sample a table bs
i for the sender as

P (bs
i = c|si, zi) Ã

Y

_

_

]

_

_

[

q

j:zj =zi,

sj=si,bs
j=c

f2(di,j) existing table

·
flsi ≠‡

q

v
flv+“

new table
. (4.9)

Once we have sampled the complete set of assignments, we can sample the hyperparame-

ters using Metropolis Hastings steps (see [BF11] for details on evaluating the likelihood
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4.6. Experiments

for the ddCRP). We alternate between these two steps until convergence. The procedure

is summarized in Algorithm 4.

Sampling H Inspired by augmented representation schemes for the hierarchical Dirich-

let process [TJBB05], we represent the infinite measure H using a finite-dimensional

vector (h1, h2, . . . , hVn , hVn+1), where hi for i Æ Vn+1 is the probability associated with

node i, and hVn+1 is the probability associated with previously unseen nodes. Note that,

in practice, Vn is constant during train time. Let

÷v =
ÿ

i

I(bs
i = i) + I(br

i = i)

—note that this corresponds to the number of tables in a Chinese restaurant franchise

representation [TJBB05]. Following Corollary 20 of [Pit96], we can sample

(h1, . . . , hV , h+) ≥ Dirichlet(÷1 ≠ ‡, . . . , ÷V ≠ ‡, “ + V ‡)

Sampling bs
i and br

i Conditioned on the clusters, we can Gibbs sample bs
i (and similarly,

br
i ) based on the conditional distribution

P (bs
j |c, s, r) Ã

Y

_

_

_

_

_

_

_

]

_

_

_

_

_

_

_

[

f2(dij) zi = zj , j < i, si = sj

·hsi i = j

0 zi ”= zj

0 si ”= sj .

(4.10)

4.6 Experiments

In this section, we address the following questions: (1) How well does DNND capture the

underlying multigraph behavior to predict unseen held-out edges? and (2) How accurate is

DNND in terms of forecasting future interactions, compared to state-of-the-art dynamic

interaction graph models?

Datasets. We evaluated our model on four real-world temporal multigraphs:
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4.6. Experiments

Algorithm 5 DNND-Inference
1: initialize ci uniformly at random from {1, . . . , N} for each edge i
2: initialize linki to previous edge in its cluster for each edge i
3: compute fdij

for each edge i where j = {1, . . . , i ≠ 1} Û For the priors
4: for t œ {1, . . . , T} do
5: sample H ≥ Dir(÷1 ≠ ‡, . . . , ÷V ≠ ‡)
6: sample hyper-parameters –, “, ·, ‡ and windows of functions f1, f2

7: for i œ {1, . . . , N} do

8: sample zi Ã

I

f1(dij) ≠ ‡ j < i

– + K‡ j = i

9: P (ci) = log p(zi)
10: if zi < K then

11: sample b
(s/r)
i |zi Ã H =

Y

_

_

_

_

_

_

]

_

_

_

_

_

_

[

q

j:zj=zi

f2(dij)
q

j:zj =zi
f1(dij)+·

+
!

·
q

j:zj =zi
f1(dij)+·

t
(s/r)
i

q

l
t
(s)
l

+t
(r)
l

+“

"

t
(s/r)
i > 0

·
q

j:zj =zi
f1(dij)+·

“
q

l
t
(s)
l

+t
(r)
l

+“
t(s/r) = 0

12: else

13: sample b
(s/r)
i |zi Ã H =

Y

_

]

_

[

t
(s/r)
i

q

l
t
(s)
l

+t
(r)
l

+“
t
(s/r)
i > 0

“
q

l
t
(s)
l

+t
(r)
l

+“
t(s/r) = 0

14: end if
15: L(ci|X) = log p(b(s)

i ) + log p(b(r)
i )

16: sample linki from L and set ci = clinki

17: end for
18: end for

• CollegeMsg network 2 [POC09] records private messages in an online social multi-

graph at the University of California, Irvine, with 1, 899 vertices and 20, 296

interactions over 193 days. The average monthly sparsity3 is 0.013.

• Email-Eu-core temporal network4 [PBL17] consists of all incoming and outgoing

emails in a large European research institution. 986 individuals exchange 332, 334

separate e-mails over 803 days. We considered a subset of the first 3 months, with

49, 282 edges and 702 vertices, with an average monthly sparsity of 0.028.

• Social Evolution network (SocialEv)5 [MCM+11] tracks the everyday life of 70

2http://snap.stanford.edu/data/CollegeMsg.html
3The sparsity of a network at time slot (month) t, with Vt being its number of vertices, and Et being

its number of edges is computed as: Et

Vt(Vt≠1)
. The average monthly sparsity is then averaged of the

sparsity over time slots.
4http://snap.stanford.edu/data/email-Eu-core-temporal.html
5http://realitycommons.media.mit.edu/socialevolution.html
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4.6. Experiments

Table 4.1: Predictive log likelihood of held-out edges on four real-world datasets (mean ±
standard deviation over time slots).

MDND (CRP) DNND-Window DNND-Logistic DNND-Exponential

CollegeMsg -1084.37±18.73 -716.80±9.72 -665.45±10.78 -686.21±11.04
Email-Eu -25364.11±355.17 -15151.65±206.36 -14672.37±279.81 -14289.64±223.70

SocialEv -872.73±53.41 -577.06±42.54 -595.81±41.64 -586.57±41.97
DBLP -906.00±37.27 -559.83±23.35 -565.58±23.46 -558.53±23.21

(a) CollegeMsg (b) Email-Eu (c) SocialEv (d) DBLP

Figure 4.2: Predictive log likelihood vs. time slots. Each evaluation is the average value
over 20 samples.

students within a dormatory, based on mobile phone data. We consider Bluetooth

connections, calls and SMSs as interactions, yielding a multigraph high clustering

coefficient and about 1M events over six months. We sampled a subset of edges,

which resulted in 6, 140 edges and 323 vertices, with average monthly sparsity of

0.414.

• DBLP [APU09] contains coauthorship information for more than 800,000 computer

science publications among 958 authors over ten years (1997-2006). We consider the

324 most connected authors, yielding a multigraph with 11, 154 edges and average

annual sparsity of 0.022.

Experimental setting. For DNND, we considered three decay functions: (1) Window

decay: f(d) = 1[d < ⁄] only considers dependency with edges that are distant at most

⁄ from the current edge, (2) Exponential decay: f(d) = e≠d/⁄ decays exponentially

with time, and (3) Logistic decay: f(d) = e≠d+λ

1+e≠d+λ is a smooth version of the window

decay. We used the same decay function for f1 and f2. We explored several values for ⁄

and found that ⁄ = 5 for window decay and ⁄ = 1.5 for other decays work well on all

datasets. We ran all algorithms for 100 iterations for each dataset. We used Gamma(5, 1)

priors for –, —, and · , and a Beta(1, 1) prior for ‡.

Baselines. For the held-out edge prediction task, we compared against the (stationary)

MDND, described in Section 4.1. We implemented MDND using the inference algorithm

in Section 4.5, with ‡ = 0 and di,j = 1 for all i Ø j; we found that this algorithm gave
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4.6. Experiments

Table 4.2: MAP@k for the future interaction prediction task (mean value over time slots).

DNND MDND DRGPM DPGM DGPPF

MAP@k @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

CollegeMsg 0.466 0.504 0.516 0.267 0.295 0.321 0.118 0.091 0.085 0.037 0.071 0.067 0.052 0.085 0.065
Email-Eu 0.390 0.452 0.585 0.238 0.227 0.351 0.330 0.464 0.494 0.308 0.451 0.490 0.199 0.380 0.451
SocialEv 0.586 0.515 0.423 0.179 0.162 0.253 0.001 0.008 0.009 0.033 0.011 0.024 0.008 0.014 0.021

DBLP 0.493 0.496 0.492 0.205 0.118 0.241 0.388 0.459 0.451 0.451 0.516 0.498 0.374 0.485 0.476

(a) CollegeMsg (b) Email-Eu (c) SocialEv (d) DBLP

Figure 4.3: F1 score for future interaction prediction. Decay functions for DNND are
Window (W), Exponential (E), and Logistic (L) (averaged over time slots).

comparable results to the implementation of [Wil16].

For the graph forecasting task, we also compared against three recent Bayesian dynamic

network models, introduced in Section 2.4.2: the dynamic relational gamma process

model (DRGPM) [YK18a], the dynamic Poisson gamma model (DPGM) [YK18b], and

the dynamic gamma process Poisson factorization (DGPPF) [AGZ15]. These models are

not applicable to the held-out edge prediction task, since they assume all vertices are

observed. However, they can be used to predict the entire graph at the next time slot

over seen vertices. We modify this distribution to be appropriate to our forecasting task

by predicting the nT edges with the highest probability at time slot T .

4.6.1 Prediction of held-out edges

A common method to evaluate a Bayesian model is to infer a distribution over parameters

given an incomplete training set, and look at the probability of the unseen held-out set

given that distribution. The higher the likelihood of the held-out set values, the better

the model performance.

The held-out log likelihood allows us to evaluate whether our model is a good fit for the

data; we use this to evaluate whether incorporating time-dependence and sparsity allows

us to better capture variation in the data compared with the MDND. Estimating test set

log likelihood can be tricky in models where we have latent variables for each data point,

since the likelihood depends heavily on the assignments of those latent variables, and the

state space of assignments is too large to explore exhaustively.
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4.6. Experiments

To evaluate DNND on this task, we split each data set into time slots (one month for

CollegeMsg, Email-Eu-core, and SocialEv; one year for DBLP), and train on 85% of

interactions in each time slot. We estimate the log predictive likelihood of the remaining

interactions using a “Left-to-Right” evaluation algorithm [WMSM09].

Table (4.1) shows the predictive log likelihood computed by DNND using three different

decays (i.e. Window, Exponential and Logistic) in comparison with the CRP

decay function used in [Wil16] on four real multigraphs. We see that in each case, all

three dynamic DNND multigraphs outperform the stationary MDND. This behaviour is

expected as the theoretical results showed that considering time dependent mixture model

with a sparsity parameter, provide a better fit than the exchangeable CRP mixture. In

Figure (4.2), we illustrate the predictive log likelihood per time slot. Again, we see that

DNND outperforms the stationary MDND model across all time slots. This demonstrates

that considering important properties observed in real-world data (i.e. time dependency

and sparsity) results in a better log likelihood. On the CollegeMsg, DBLP and Email-Eu

datasets, all the decays are performing almost the same. On the SocialEv dataset, a

window decay with a window size 5 performs best.

4.6.2 Forecasting future interactions

While log likelihood allows us to compare models, it does not give us a quantitative

measure of how much better a model will perform on a concrete prediction task for future

observations. To assess this, we consider two metrics for evaluating future predictions

when we have all observations before time T , and want to predict the edges arriving at

time T . To allow comparison with vertex-exchangeable models, which predict the entire

adjacency matrix for a single time step, we set the time stamp for all test set edges to

the time of the first test set edge. We assume we know the total number, Ntest, of edges

in the test set, allowing us to return a predicted set of appropriate size, along with their

probability of appearance. For comparison methods, we selected the Ntest edges with

highest probability of appearing.

For performance comparison, we look at the F1 score and MAP@k. F1 score is

2◊(precision◊recall)/(precision+recall). Precision is the fraction of edges in the predicted

graph present in the true graph, and recall is the fraction of edges of the true graph

present in the predicted graph. MAP@k is the classical mean average precision measure.

We calculated values based on 10 posterior samples.
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4.7. Conclusion

Table (4.2) shows the MAP@k for DNND and the four comparison methods. For

space reasons, the numbers reported for DNND represent the best result of the three

decay functions. Figure (4.3) summarizes the corresponding F1 scores.The results show

that DNND performs comparably or better on both metrics across all datasets. We

hypothesize that this is due to several reasons. First, DNND is explicitly designed in

terms of a predictive distribution over edges, making it well-suited to predicting future

edges. Second, DNND is able to increase the number of vertices over time, and is likely

better able to capture natural multigraph growth. Conversely, the other methods assume

the number of vertices is fixed—and explicitly incorporate the absence of edges at earlier

time points into the likelihood. Third, unlike the other methods, DNND allows us to

capture sparsity; if the multigraph is sparse, then this should lead to a more accurate

model.

4.7 Conclusion

We have presented a new distribution for temporally varying, structured multigraphs,

that allows us to represent both sparse and dense networks. Since our model explicitly

describes a sequence of edges, it is well-suited to predict future edges. As we saw in

Section 4.6, these properties translate into impressive predictive performance compared

with state-of-the-art Bayesian models.

In this chapter, we incorporate dynamics using a ddCRP model, which encourages

edges to belong to clusters that have been recently active. An interesting avenue for

future research would be to explore alternative forms of dependency, and incorporate

mechanisms that can capture link reciprocity [BBH12].
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CHAPTER 5
Compressive Sensing Framework

for Sparse Recovery in Networks

In the last two chapters, our focus was mainly on Bayesian modeling of graphs, considering

time and sparsity as the two major properties of real-world networks. In this chapter,

we explore the use of non-Bayesian methods in a graph context. More specifically, we

address a problem in a graph, either dense or sparse, which requires analyzing sparse

data. We focus on the problem of how to distinguish the importance of each individual

vertex in the graph, which is a key question in structural analysis of real-world networks.

Centrality refers to identifiers that indicate the most important vertices in a network,

and centrality measures quantify the role of vertices from different points of view. The

most popular centrality measure from the information flow standpoint is the betweenness

centrality.

Betweenness centrality (see Section 2.5) measures the proportion of shortest paths in the

network passing through a specific vertex. This is the fraction of times that a vertex

acts as a bridge in transferring any valuable information between any pair of vertices

along their shortest paths. High betweenness centrality individuals play significant roles

in the spread of propaganda, ideologies, or gossips in social networks. As an example,

in the advertisement industry, in order to improve the effectiveness of word-of-mouth

advertising and increase the recommendation-based product adoption, companies are

interested to give away free product samples to central individuals instead of random

users. For example, CNET stated that Samsung gives iPhone users a trial run with new
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5.1. Problem definition

Galaxy smartphones [Gee17]. To this end, Samsung tried to identify dissatisfied iPhone

owners who are the most important users in terms of communicating with other users,

thus they are the most influential in spreading word-of-mouth recommendation, and then

offered free Galaxy phones to some of them.

In this chapter, we introduce CS-HiBet, a new method to efficiently detect top-k central

vertices in networks, using compressive sensing. We first formalize this problem and

introduce the notion of compressive sensing and its application in graph-structured data.

Then, we describe our proposed method for recovering the most important vertices of the

network, and analyze its complexity. Finally, we experimentally evaluate the performance

of our method compared to the state-of-the-art methods under various configurations.

5.1 Problem definition

Suppose every vertex i œ V in the network G = (V, E) has a real value xi (e.g. betweenness

centrality value over vertex i), and vector x = (x1, x2, ..., xN ) is associated with the set

V . If ÎxÎ0 = k, x is a k-sparse vector, namely x has only k non-zero elements in its

support, where Î.Î0 is the ¸0-norm of a vector. Thus, the sparsity of the vector x œ R
N is

k. When a vector has just a few large coefficients and many small coefficients, it can be

well-approximated by a k-sparse vector. It is worth noting that an N -dimensional vector

x containing the betweenness centrality of all vertices in a real-world network has the

sparsity property, because the number of top-k betweenness centrality vertices is much

smaller than the total number of all vertices in the networks (k π N). For example,

[New10] showed that the betweenness centrality follows a power law on most networks.

This power law distribution suggests that there exist a few vertices with very high

betweenness centrality in comparison with the rest of the vertices in the network, which

indeed satisfies the sparsity property. As another example, Narayanan [Nar05] investigated

several generated genome-wide protein interaction networks for many organisms including

Saccharomyces cerevisiae (baker’s yeast), Caenorhabditis elegans (worm) and Drosophila

melanogaster (fruit fly), and he observed that the distribution of the vertex betweenness

centrality in these networks tends to be a power law. Moreover, Lammer et al. [LGH06]

studied the German road network and obtained very broad distributions of betweenness

centrality with a power law exponent in the range [1.279, 1.486]. In addition, [PTT+16]

analysed a seismic data set measured in the central zone of Chile before and after the large

earthquake of Illapel 2015 considering it as a spatial complex network, and they found a
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5.1. Problem definition

power law betweenness centrality distribution in it. Furthermore, Lee [Lee06] uncovered

that the betweenness follows a power law distribution irrespective of the type of networks,

and he examined this characteristic in terms of the conditional probability distribution

of the betweenness, given the degree. The conditional distribution also exhibits a power

law behavior independent of the degree which explains partially, if not whole, the origin

of the power law distribution of the betweenness. He then validated this observation

on three real networks: the collaboration network, the protein interaction network of D.

melanogaster, and the neural network of C. elegans. Besides, the authors in [KHP+07]

showed that vertices of both fractal and non-fractal scale-free networks have power law

betweenness centrality distribution P (B) ≥ B≠”, such that for non-fractal scale-free

networks ” = 2 and for fractal scale-free networks ” = 2 ≠ 1/d, where d is the dimension

of the fractal network. They also supported these results by explicit calculations on four

real networks: pharmaceutical firms, yeast, world wide web (WWW), and a sample of

the Internet network at autonomous system (AS) level. As a result, the number of top-k

betweenness centrality vertices is much smaller than the set of all vertices in a wide range

of real-world networks. Therefore, identifying high betweenness centrality vertices in the

networks can be framed as recovering sparse high-dimensional data from a much smaller

number of measurements, widely known as the sparse signal recovery problem.

The fundamental constraint to make our problem similar to the sparse recovery problem

is the sparsity property of the desired solution set. The number of top-k betweenness

centrality nodes is much smaller than the set of all network nodes. The breakthrough

in solving the sparse signal recovery problem is compressive sensing (CS) described

in Section 5.2. One of the most restricting challenges in CS is the construction of

measurement matrix that needs to be feasible based on two fundamental constraints:

(1) A measurement matrix in networks must contain only non-negative integer elements,

which is more restrictive in comparison with random Gaussian measurement matrices

usually used in the CS literature. (2) Measurements in a network are limited by network

topological constraint; in other words, only nodes that induce a connected sub-graph can

be aggregated together in the same measurement. This is contrary to the assumption of

most existing CS results that any subset of vector entries can be aggregated together in

the same measurement.
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5.2. Compressive sensing

5.2 Compressive sensing

The breakthrough in solving the sparse signal recovery problem is compressive sens-

ing [DDEK12, Don06] which allows for efficiently acquiring and reconstructing a signal,

by finding solutions to under-determined linear systems. To be more precise, an N -

dimensional sparse signal x can be simultaneously sampled and compressed to a linear

sketch y of the original signal, through a measurement matrix A œ R
m ◊ R

N , where

m π N . Although the dimension of y œ R
m is typically much smaller than that of x œ N,

the sketch y contains plenty of useful information about the data vector x. In this case,

the sparsity property is used to uniquely identify and recover the underlying signal x

given the measurement vector y and the measurement matrix A. One can formulate this

problem by the following linear system with more unknowns than equations which is

equivalently under-determined, as:

y = A x (5.1)

In sparse signal recovery, especially compressive sensing, the set of sparse solutions to

the above system are of interest. The solutions can be obtained by solving the following

optimization problem [Don06]:

min
x

ÎxÎ0 s.t y = Ax (5.2)

It is proved that solving the above optimization problem is NP-hard. Therefore, the

sparsity inducing ¸1-regularization is considered as a convex relaxation of Equation (5.2):

min
x

ÎxÎ1 s.t y = Ax (5.3)

The above objective function is known as Basis Pursuit. Note that the strict condition

y = Ax within the Basis Pursuit formulation is very sensitive to noise, imperfect sparsity

or truncated values in the measurement matrix A, and the sketch y. The following

formulation addresses this by removing the exact constraint and penalizing its violation:

min
x

⁄ÎxÎ1 + ÎAx ≠ yÎ2
2 (5.4)

This objective function is also known as LASSO [Tib94] and is used in this part of

thesis for the optimization step. ⁄ is a tuning parameter that controls the amount of

regularization. It is noteworthy that sparse recovery over networks using compressive

sensing has a closely related field called graph constrained group testing [CKMS12].
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5.3. Compressive sensing over graphs

Group testing and compressive sensing over networks have the same requirements for

measurement matrix and the differences are only in: (1) x is a logical vector in group

testing, instead of real vector for the compressive sensing problem; (2) the operations

used in each group testing measurement are the logical “AND”and “OR”, in contrary to

the additive linear mixing of the vector x over real numbers in compressive sensing. The

authors in [WXMT12] stated that compressive sensing can perform better than group

testing based on the required number of measurements, thus, we use compressive sensing

for sparse recovery in networks.

5.3 Compressive sensing over graphs

Based on the compressive sensing framework, we would like to efficiently recover k highest

centrality vertices from m indirect end-to-end measurements, in a way that m π N . In

the linear system y = A x, let A be an m ◊ N measurement matrix, where its i-th row

corresponds to the i-th feasible measurement. For i = 1, ..., m and j = 1, ..., N , Aij = 1

if and only if vertex j is visited by the i-th measurement, otherwise Aij = 0. Let x be

an N ◊ 1 non-negative vector whose j-th entry is the value of a certain type of network

characteristic (e.g. betweenness or closeness centrality) over vertex j œ V , and y œ R
m

denotes the measurements vector whose i-th entry represents the additive aggregation

values of network vertices in the i-th row of the measurement matrix A that induces a

connected sub-graph over G.

To understand how the additive aggregation over connected induced sub-graphs is mo-

tivated for each measurement in practice, we mention an example from [WXMT12].

Consider a network where the vertices represent sensors and the edges represent commu-

nications between sensors. For the set T of active vertices within an arbitrary feasible

measurement that induce a connected sub-graph, a vertex u œ T monitors the total

values corresponding to vertices in T . Every vertex in T obtains values from its children,

if any, and aggregates them with its own value on the spanning tree rooted at u, then

sends the sum to its parent. After that, the fusion center can obtain the sum of values

corresponding to all the vertices in T by only communicating with u. The explained

paradigm in data acquisition and aggregation is highly utilized within the wireless sen-

sor network literature for applications such as air quality monitoring, volcanic activity

detection and object localization [MCN16]. Some recent work has applied a similar acqui-

sition and aggregation paradigm in network tomography [MRH13, MRHS13, GKMGR17],

community detection [MRM+15a] and identification of key actors/connections in social
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5.4. CS-HiBet: Compressive Sensing of High Betweenness Centralities

networks [Mah15, MRM+15b].

5.4 CS-HiBet: Compressive Sensing of High Betweenness

Centralities

In this section, we introduce CS-HiBet, a compressive sensing based approach for efficiently

identifying k-highest betweenness centrality vertices in a network. In CS-HiBet, we aim

to construct a measurement matrix A with m independent measurements, each of which

is a connected sub-graph over the network. Each measurement additively aggregates

values of network vertices and it tends to incorporate high betweenness centrality vertices.

In a distributed fashion, each vertex in the network calculates a local betweenness value

that can be obtained from the one-hop adjacency matrix of that vertex. The intuition

behind this local metric is that a vertex with high local betweenness acts as a bridge

in transferring any valuable information between any pair of its non-adjacent neighbors

along their geodesics of length 2 which passes through that vertex.

Calculating betweenness centrality with one-hop matrix. Since we want to

recover the top-k betweenness centrality vertices, we try to visit these vertices more

than the other vertices by our measurements. To achieve this goal, we select the best

next vertex relative to Pselection(v). This is for measuring vertex importance from an

information flow standpoint. For the computation of this score, consider vertex v in

the neighbor set N (S) as ego vertex, thus every pair of non-adjacent alters must have

a geodesic distance of length 2 which passes through ego vertex v. We only need to

consider these geodesics and geodesics of length 1 do not contribute to betweenness

centrality. Let H(v) be the one-hope adjacency matrix of ego vertex v with the dimensions

of |{v} fi N (v)| ◊ |{v} fi N (v)|, then H2
i,j(v) contains the number of walks of length 2

connecting i and j when i ”= j. Therefore, we only need to count the number of walks of

length 2 for non-adjacent alters since these will be the geodesics contributing to the local

betweenness [EB05]. It follows that
#

H2(v) (1 ≠ H(v))
$

i,j
gives the number of geodesics

of length 2 joining i to j, where 1 is a matrix of all 1’s. The sum of reciprocals of the

entries gives the local betweenness of the ego vertex v.

Our method includes 6 steps:

(i) For each vertex v œ V in the network, its one-hop ego adjacency matrix with the

dimensions of |{v} fi N (v)| ◊ |{v} fi N (v)| is constructed. Next, the sum of the
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5.4. CS-HiBet: Compressive Sensing of High Betweenness Centralities

reciprocals of the entries in H2(v) (1 ≠ H(v)) is calculated as the local score for

vertex v. Finally, the probability of selecting a specific vertex v is also computed

as Pselection(v), in lines (5)-(9). This pre-processing step can be performed in a

parallel or distributed manner by each vertex independently from the others.

(ii) The first vertex is selected randomly from the set of all vertices vfirst œ V in line

(13). The first vertex vfirst is added to the visited set S and all of its neighbors are

added to the neighbor set N (S) in lines (14)-(15).

(iii) The next vertex is selected relative to Pselection(v) for each vertex v œ N (S) in line

(17). The selected next vertex is added to the visited set S and it is removed from

the neighbor set N (S), then its neighbors are added to the neighbor set N (S), in

lines (18)-(20).

(iv) The step (iii) is fulfilled ‘l’ times which is the length of a measurement, to generate

a new row for the matrix A and the vector y in lines (16)-(21).

(v) The steps (ii)-(iv) are repeated ‘m’ times to construct a feasible measurement

matrix A with ‘m’ measurements (in parallel) and the corresponding measurement

vector y, in lines (10)-(24).

(vi) In order to find the sparse approximation x̂ of x, we optimize the LASSO objective

function subject to the linear sketch of y = Ax, in line (25), based on Equation (5.4).

The pseudo code of the proposed method is depicted in Algorithm 6.

An example. Consider the network shown in Figure 5.1a, the one-hop adjacency

matrix for the ego vertex v1 is:

H(v1) =

Q

c

c

c

c

c

c

c

c

a

v1 v2 v3 v7 v8

v1 0 1 1 1 1

v2 1 0 1 0 1

v3 1 1 0 0 1

v7 1 0 0 0 1

v8 1 1 1 1 0

R

d

d

d

d

d

d

d

d

b

(5.5)

Since the matrix is symmetric we only need to consider the zero entries above the leading

diagonal and calculates
#

H2(v) (1 ≠ H(v))
$

i,j
for those entries. These entries are shown
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5.4. CS-HiBet: Compressive Sensing of High Betweenness Centralities

Algorithm 6 The Proposed Method: CS-HiBet
Input: V, m, l
1: V : set of network vertices
2: m: number of measurements
3: l: measurement length
4: A = NULL Û Initializing measurement matrix
5: Foreach v œ V do Û In a parallel or distributed manner
6: H(v) = The one-hop adjacency matrix of ego vertex

v with the dimensions of |{v} fi N (v)|2

7: Score(v) = The sum of the reciprocals of the
entries in H2(v) (1 ≠ H(v))

8: Pselection(v) = Score(v)
q

v
Score(v)

9: end for

10: for i = 1 æ m do Û In a parallel manner
11: S = NULL Û Visited set
12: N (S) = NULL Û Neighbor set of visited vertices
13: vfirst = Select start vertex randomly from the vertex set V
14: S = {vfirst} Û Add vfirst to the visited set S
15: N (S) = {u : u œ N (vfirst)} Û Add all neighbors of vfirst to the N (S)
16: for j = 1 æ l do

17: vnext = Select next vertex relative to Pselection(v) for v œ N (S)
18: Add vnext to the visited set S
19: Remove vnext from the neighbor set N (S)
20: Add all neighbors of vnext to the neighbor set N (S)
21: end for

22: A[i, :] = Add visited vertices in S to the measurement matrix A as row
23: y[i, :] = Add the accumulative sum of vertex values in S to the vector y
24: end for

25: x̂ = min
x

ÎxÎ1 + ÎAx ≠ yÎ2
2 Û See Equation (5.4)

Output: sparse approximation x̂

by the red box and the calculation gives:

H2(v1) (1 ≠ H(v1)) =

Q

c

c

c

c

c

c

c

c

a

ú ú ú ú ú

ú ú ú 2 ú

ú ú ú 2 ú

ú ú ú ú ú

ú ú ú ú ú

R

d

d

d

d

d

d

d

d

b

(5.6)

The local betweenness of the ego vertex v1 is then simply the sum of reciprocals of

these entries, that is 1, as the Score(v1). The ego-centric betweenness metric [EB05]

is computationally more tractable than the traditional global betweenness centrality.

It can be calculated locally in a parallel or distributed manner, by letting each vertex

communicate only with its immediate neighbors. Then, the probability Pselection(v)

of selecting a specific vertex v œ V is calculated by the normalized scores, as in our
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5.4. CS-HiBet: Compressive Sensing of High Betweenness Centralities
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Figure 5.1: A network G with 8 vertices and 14 edges. (a) The ego vertex v1 has 4 vertices in
its neighbor set N (v1) = {v2, v3, v7, v8}. (b) Three measurements m1, m2, and m3 over graph G
constructed from the CS-HiBet method.

Table 5.1: Centrality measures for the sample network in Figure 5.1a. We used the iGraph
package in Python to calculate the global betweenness centrality based on Equation (2.43). The
ego-centric betweenness is calculated based on [EB05], which is described in this section.

Centrality Measure v1 v2 v3 v4 v5 v6 v7 v8

Global betweenness 1.08 0 6 3.5 1.08 1.08 0.75 1.5
Ego-centric betweenness 1 0 7 4 1 2 1 2

pre-processing step. The global and local betweenness centrality for all vertices in the

sample network in Figure 5.1a are given in Table 5.1. This table shows that vertices

v3 and v4 are central in this network because they have the largest centrality measure.

This observation is valid because the number of top-k betweenness centrality vertices is

usually much smaller than the total number of all vertices in the networks. Hence, one

may safely conclude that these vertices are the most important in the network.

We want to recover such central vertices without full knowledge of the network topological

structure via indirect aggregated measurements. To this end, CS-HiBet constructs a

feasible measurement matrix A with non-negative integer entries by using m measurements

with the step size of l. Every measurement in A goes through a connected subgraph

which guarantees the feasibility of A considering the network topological constraints. As

an example, in the sample network G in Figure 5.1a, we set the number of measurements

to 3 (m = 3) and the measurement length to 4 (l = 4) in the Algorithm 6, then

the constructed measurements m1, m2, and m3 are depicted in Figure 5.1b and the
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5.5. Complexity analysis

corresponding measurement matrix A is as follows:

A =

Q

c

c

a

v1 v2 v3 v4 v5 v6 v7 v8

m1 0 0 1 1 0 0 1 1

m2 0 0 1 1 1 1 0 0

m3 1 1 1 1 0 0 0 0

R

d

d

b

(5.7)

For the visited vertices in each measurement, the accumulative sum of their scores

(ego-centric betweenness) is added to the corresponding element of the measurement

vector y. According to the above measurement matrix A for the sample network Figure

5.1b, the constructed measurement vector is: y = [14 14 12]. To be more precise, the

first measurement m1 is started from v7 and the walker passes through vertices v4 and

v3, and it ends with v8, so the visited vertex set for m1 is S = {v3, v4, v7, v8} and its

corresponding entry in y is the sum of their scores (ego-centric values in Table 5.1) which

is y1 = 7 + 4 + 1 + 2 = 14. This is similar for m2 and m3. After generation of A and

y, we form the linear system of y = A x. Finally, we find the sparse approximation x̂

for this system by optimizing the LASSO objective function, based on Equation (5.4).

For the constructed A and y in the network Figure 5.1b, the sparse approximation

x̂ = [0.38 0.38 6.61 6.61 0.13 0.13 0.13 0.13] is the output of CS-HiBet. Thus, one

can easily conclude that CS-HiBet detected v3 and v4 as the top-2 central vertices in

the sample network, and it is completely true based on the actual global betweenness

centralities in Table 5.1. We will explore the performance of CS-HiBet via the extensive

experimental evaluations in Section 5.7.

5.5 Complexity analysis

Consider the network G = (V, E) with the assumption that any arbitrary vertex v œ V

has only local view to its immediate neighbors. The CS-HiBet method can be executed

and analyzed in its three main steps according to Algorithm 6.

First, the one-hop adjacency matrix of ego vertex v, namely H(v), and also 1 ≠ H(v) can

be computed in O
!

deg(v)2"

, where deg(v) is the degree of vertex v. Using the famous

Strassen’s Algorithm, H2(v) can be obtained in O
!

deg(v)log7
2 +o(1)"

≈ O
!

deg(v)2.8074"

.

Finally, at the end of the first step, Score(v) can be locally computed for any arbitrary

vertex v œ V in O
!

deg(v)log7
2 +o(1)" time. Hence, the scores can be locally computed at

each vertex in at most O
!

∆log7
2 +o(1)

"

time, where ∆ is the largest degree of a vertex in

the network G. Afterwards, all transition probabilities at each vertex can also be locally
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5.5. Complexity analysis

obtained in at most O(∆) time.

Second, we can generate m random numbers between 1 and n in O(m) time, to choose

the seeds for starting a measurement. m is the number of measurements that correspond

to the rows of the measurement matrix A.

Third, we can begin to construct m measurements locally in a distributed manner. For

each measurement pre-calculated transition probabilities have been already obtained in

the previous steps. They are locally and independently accessible in O(1) time. In the

proposed algorithm CS-HiBet, the next vertex can be determined by using the weighted

selection algorithm relative to the probabilities Pselection(u) for every u œ N (S). The

selected vertex u is removed from the N (S) and added to the set S, then its neighbors

are added to the N (S). The accumulative search for construction of a measurement

costs at most O
!

N log(N)
"

time, by utilizing the binary search. It is noteworthy that

at step i from the l total steps corresponding to a measurement, the neighbor set N (S)

contains at most (i∆ ≠ i) vertices. In this case, each addition and deletion is taking only

O(1) time per operation in an array and overall min(l∆, N). The time complexity for

the weighted selection search will be at most O
!

N log(N)
"

which should be considered

in two different cases. One for the case that l Æ
Í

N
∆≠1

Î

and the other is for l >
Í

N
∆≠1

Î

.

The time complexity in each case is computed as follows:

Û Case when l Ø
Í

n
∆≠1

Î

then:

Search_Cost =
Â N

∆≠1 Ê
q

i=1
log

!

i∆ ≠ i
"

+
!

N ≠
Í

N
∆≠1

Î

"

log(N)

= log
!

Í

N
∆≠1

Î

!
"

+
Í

N
∆≠1

Î

log
!

∆ ≠ 1
"

+
!

N ≠
Í

N
∆≠1

Î

"

log(N)

Æ
Í

N
∆≠1

Î

log
!

Í

N
∆≠1

Î

"

+
Í

N
∆≠1

Î

log
!

∆ ≠ 1
"

+
!

N ≠
Í

N
∆≠1

Î

"

log(N)

Æ
Í

N
∆≠1

Î

!

log
!

N
∆≠1

"

+ log
!

∆ ≠ 1
""

+
!

N ≠
Í

N
∆≠1

Î

"

log(N)

= N log(N)
Û Case when l <

Í

N
∆≠1

Î

then:

Search_Cost =
l

q

i=1
log

!

i∆ ≠ i
"

= log
!

l!
"

+ l log
!

∆ ≠ 1
"

Æ l log(l) + l log(∆) Æ 2N log(N)

Therefore, the aggregated total time complexity of the CS-HiBet method will be

O
!

∆log7
2 +o(1) + N log(N) + m + min(l∆, N)

"

. As previously mentioned that m π N

and min(l∆, N) Æ N , hence by exploiting the ability of the proposed algorithm to

perform locally with only local view at each vertex, the total time complexity will be
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5.6. Extension to closeness centrality

O
!

∆log7
2 +o(1) + N log(N)

"

.

The required space storage for any arbitrary vertex v œ V is O
!

deg(v)2
"

for the ego

adjacency matrix, scores, and the transition probabilities. Thus, the local storage at

each vertex for space complexity of our method will be at most O(∆2). Moreover, the

space complexity O(m) is needed to store the randomly chosen initiative seeds and the

final measurement vector. Also at most the space min(l∆, N) is needed for the weighted

selection algorithm in each measurement.

It is worth noting that in most real-world networks, in particular social networks,

vertices are connected to a very small portion of the whole network’s vertices, which

means ∆ is very small. For example, the maximum number of connections allowed on

Twitter [Twi17b] and Facebook [Fac13] is about 5,000 which is much smaller than their

network size. Consequently, CS-HiBet can be practically scalable for efficient detection

of k-highest betweenness centrality vertices in large real networks, in terms of time and

space complexity.

5.6 Extension to closeness centrality

In this section, we introduce a new h-hop ego-centric (local) closeness centrality of vertex

v as:

egoCh(v) =
h

ÿ

·=1

|B· (v)|/· (5.8)

where B· (v) indicates the set of vertices that have an exact shortest distance of length

· from vertex v. The intuition behind this metric is that, the farther vertices from v

have lower effect in dissemination of goods (e.g. information) emerged from it. The

computation of the sets B· (v) for · Æ h, v œ V can be done by executing a breadth-first

search (BFS) process at each vertex in parallel, with exploration radius set to h. This

will require computational cost of at most O(∆h) where ∆ is the maximum degree of the

network. The required memory storage at each vertex is also O(∆h). The computed sets

can be utilized to evaluate ego closeness centrality at each vertex in a distributed and

decentralized manner, with O(1) computational and storage cost per vertex. One can

easily extend the CS-Hibet method for detection of top-k closeness centrality vertices, by

replacing step (i) of Algorithm 6 with the proposed local closeness metric as scores of

network vertices.
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5.7. Experiments

5.7 Experiments

In this section, we experimentally evaluate the performance of the CS-HiBet, in both

real and synthetic networks, under various configurations.

Datasets. We considered both synthetic and real-world networks for the evaluations. The

data from well-known real-world networks were: (1) Facebook-like social network [OP09]

with 1,899 vertices and 20,296 edges; (2) Twitter’s mentions and retweets of the twitter

network [Twi17a] with 3,656 vertices and 188,712 edges; (3) Wikipedia vote (WikiVote)

network [LHK10] with 7,115 vertices and 103,689 edges; (4) Youtube video-sharing

network [YL15] with 1,134,890 vertices and 2,987,624 edges; (5) Road network of Pennsyl-

vania (RoadNet) [LLDM09] with 1,088,092 vertices and 1,541,898 edges; (6) Pokec social

network [TZ12] with 1,632,803 vertices and 30,622,564 edges. In case of disconnected

networks, we always extracted the largest (strongly) connected component first. In

addition, we used three kinds of synthetic networks: (7) Scale-free network based on

the Barabási-Albert (BA) model [BA99] with 500 vertices and 2,979 edges, where edges

created by each new vertex were 6; (8) Random network based on the Erdös-Rényi (ER)

model [ER60] with 500 vertices, 4,000 edges, and average degree of 16; (9) Small-world

network based on the Watts-Strogatz (SW) model [WS98a] with 500 vertices and 4,466

edges, where the rewiring probability was 0.2 and the number of initial closest neighbor

was 9.

Baselines. We refer to our algorithm as CS-HiBet. The baseline methods that we

compared our performance to were: (1) DANCE: In this framework [WGZ11], an estimate

for a certain centrality metric is approximated based on the h-neighborhood of each vertex

using a local function. (2) WeightVol: This method [KY12] is a model for selecting a

set of k vertices as the initial influenced vertices so that they can effectively disseminate

the information to the rest of the network. (3) LBC: This method [NK08] proposed a

new centrality metric, called localized bridging centrality, which combines the egocentric

betweenness centrality with the locally computable bridging coefficient. (4) FastApprox:

The authors of [RK16] proposed an efficient randomized algorithm for betweenness

centrality estimation, employing the random sampling of shortest paths, which offers

probabilistic guarantees on the quality of the approximation. (5) K-Path: [KAS+13]

introduced a new centrality measure, called k-path, and a randomized algorithm for its

estimation. They showed that the vertices with high k-path centrality value have high

vertex betweenness. (6) CS-TopCent: To address the disadvantages of the sampling-
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5.7. Experiments

based approaches, [Mah15] proposed a compressive sensing approach for detection of

central vertices in networks without full knowledge of the network topology via indirect

end-to-end measurements. (7) RW: Motivated by network tomography problem, this

method [XMT11] introduced a compressive sensing (CS)-based framework to recover a

sparse unknown vector that represents certain features of the elements over the network

via collective additive measurements.

Although the choice of h is application-specific, the literature (e.g. [WGZ11, NK08])

showed that small values, typically h = 1 or h = 2, yield good results in distributively

assessing network centralities for different kinds of complex networks. So, to have a fair

comparison with our method in the experiments, we set h = 1 for the methods.

Experimental setting. To evaluate the accuracy of the proposed approach, we mea-

sured the precision and recall of the methods, and to consider both measures, we used

the F-measure metric which represents the harmonic mean of both precision and recall,

as F -measure = 2 ◊ P recision◊Recall
P recision+Recall .

The CS-HiBet, CS-TopCent, and RW methods possess a source of randomness, hence, in

each of their respective experiments we did 10 repetitions. The denoted points in the

figures represent the mean value of these repetitions. However, the other implemented

competing methods are deterministic and there is no need for repetitions.

5.7.1 Accuracy of CS-HiBet on identifying top-k central vertices

Figure 5.2 shows the accuracy evaluation of our approach in comparison with the compet-

ing methods, in terms of F-measure for varying sparsity percentage to identify k-highest

betweenness centrality vertices. Each point in the horizontal axis is proportional to the

number of top-k vertices divided by the number of all vertices in the network (i.e. k
N ).

In this experiment, for the CS-based methods (i.e. CS-HiBet, CS-TopCent, RW), we

performed a set of m = 0.2N measurements of length l = 0.4N , in each network. We

almost observed an increasing trend for F-measure as we increase the bracket size of

top-k vertices. As clearly depicted in all test cases, CS-HiBet performs better than the

competing methods in terms of having higher F-measure, even on the lower sparsity

(higher value of k
N ). For higher values of F-measure, one can observe more correlation

between the vertices lists identified by the methods and by the global betweenness

centrality. Thus, the results show that the CS-HiBet and the betweenness centrality

correlate well with regard to the number of correctly identified top-k central vertices.

One of the main reasons for the superiority of the CS-based methods in the accurate
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5.7. Experiments
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Figure 5.2: Comparison of accuracy between CS-HiBet and the baselines for the number
of correctly identified top-k betweenness centrality vertices in networks for varying sparsity
percentage.

detection of top-k betweenness centrality vertices over the h-neighborhood-based com-

peting methods is the fact that: the vertices with a similar h-neighborhood structure

will be assigned the same score in each of the latter approaches, however the former

approaches may visit those vertices with different rates based on their global positions in

the network. As an example, almost all vertices in a line graph have exactly the same

1-hop neighborhood structure resulting in the same assigned scores by each of the latter

methods. But, the vertices in the middle of the line graph, which have a higher global

betweenness centrality, will have a higher rate of being visited by the measurements

(walks) performed in the CS-based approaches. Therefore, these vertices have a higher

chance of being recovered as the top-k central vertices.

5.7.2 Accuracy of CS-HiBet on rank prediction

The evaluation described till now focuses on the number of correctly identified vertices

in top-k set assembled according to CS-HiBet and the baselines. In a more fine-grained
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Figure 5.3: Comparison of accuracy for the distance between top k ranks assigned by CS-HiBet
and the competing methods (Rk(µ)), and those determined by the global betweenness (Rk(—)).

analysis, we are also interested in quantifying the accuracy of ranks assigned by these

methods. To this end, we compute the difference between ranks assigned by CS-HiBet

and the competing methods, and those determined by the global betweenness centrality.

Furthermore, the significance of correct ranking of high-ranked vertices is more important

than low-ranked vertices. To address this goal, we consider a distance metric to compare

the relevance of two ordered lists. We denote the list of vertices with length k in

descending order of importance in the aforementioned methods by Rk(µ), and the list of

vertices with length k in descending order of the global betweenness centrality by Rk(—).

The distance is normalized in the range [0, 1], where 0 corresponds to the perfect match

between two given ordered lists, and vice-versa. The normalized weighted distance metric

d œ [0, 1] between these two ordered lists is defined as [ISLR13]:

d(Rk(µ), Rk(—)) =

q

i∈Rk(β)

C

wi

-

-

Rk(µi)−Rk(βi)
-

-

N−2i+1

D

q

i∈Rk(β) wi

(5.9)

where wi is the betweenness of user i and N is the number of vertices in the network.
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5.7. Experiments

Figure 5.3 depicts the accuracy evaluation of the proposed framework CS-HiBet in

comparison with the other methods, in terms of the distance between two ordered lists of

ranks assigned by them and the global betweenness centrality. Each point in the horizontal

axis is proportional to the sparsity level k
N . In this experiment, for the CS-based methods,

we performed a set of m = 0.2N measurements of length l = 0.4N , in each network. It is

clear that in all test cases, CS-HiBet performs better than the competing methods in

terms of having lower rank distance with the global betweenness centrality for all sparsity

percentages. In addition, we can easily observe an increasing trend for d(Rk(µ), Rk(—))

when we increase k. For all datasets at k = 20% of N , the distance d for CS-HiBet is

lower than 0.17 (d < 0.17) and also d < 0.3 at k = 40% of N . Hence, the results show

that the CS-HiBet correlates well with the regular betweenness centrality, compared to

the baselines, in terms of estimated ranks for top-k central vertices.

5.7.3 Correlation between our ego-closeness and global closeness

We experimentally analyzed the correlation between the proposed ego-centric (local)

centrality metric and the global closeness centrality over several synthetic and real-world

networks. To compare these two centrality metrics, we used Pearson product moment

correlation coefficient (fl), which in fact measures the strength of a linear association

between two variables. The Pearson coefficient fl can take a value in range [≠1, +1].

A value of 0 shows that there is not any association, a value greater than 0 indicates

a positive association, and a value less than 0 indicates a negative association. For

comparison, we considered several well-known h-neighborhood local metrics that tend to

be correlated well with the closeness centrality: (1) Dist-Exact [YTQ16], (2) DACCER

[WZ12], and (3) Weight-Vol [KY12]. It is worth noting that for h = 1, any local

metric would be the same as the degree centrality. According to problem addressed

in this part, we want to identify top-k central vertices for k π N , so the results show

that in this case choosing h = 2 is sufficient, in terms of having a good trade-off

between computational complexity and accuracy. Table 5.2 shows the Pearson correlation

coefficients between the competing local metrics and our proposed ego-centric centrality

with h = 2 versus the global closeness centrality on synthetic and real-world networks.

In this experiment, we analyze the correlation coefficients of all local metrics for high

sparsity levels k = {0.1N, 0.2N, 0.3N, 0.4N}. The results show that Dist-Exact for h = 2

has linear correlation, but negative association with the closeness centrality in networks.

One can easily observe that our proposed metric has almost always the best correlation
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5.7. Experiments

Table 5.2: Pearson correlation coefficients between the existing local metrics with h = 2 and the
global closeness centrality on various networks, where k π N .

Facebook Twitter wikiVote BA ER SW
k/N Local Metric

0.1

Dist-Exact -0.93 -0.41 -0.94 -0.94 -0.99 -0.93
DACCER 0.91 0.47 0.83 0.97 0.96 0.95
Weight-Vol 0.97 0.80 0.97 0.99 0.97 0.93
Our Metric 1.00 1.00 0.99 1.00 1.00 0.96

0.2

Dist-Exact -0.93 -0.61 -0.94 -0.93 -0.99 -0.91
DACCER 0.92 0.58 0.89 0.97 0.98 0.94
Weight-Vol 0.97 0.77 0.98 0.99 0.99 0.94
Our Metric 1.00 1.00 0.99 1.00 1.00 0.96

0.3

Dist-Exact -0.93 -0.73 -0.94 -0.92 -0.99 -0.93
DACCER 0.93 0.63 0.92 0.97 0.99 0.95
Weight-Vol 0.97 0.75 0.98 0.99 0.99 0.96

Our Metric 1.00 1.00 0.99 1.00 1.00 0.96

0.4

Dist-Exact -0.92 -0.79 -0.94 -0.91 -0.99 -0.94
DACCER 0.95 0.67 0.95 0.97 0.99 0.95
Weight-Vol 0.98 0.75 0.98 0.99 0.99 0.96

Our Metric 1.00 1.00 0.99 1.00 1.00 0.96
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Figure 5.4: Correlations between the vertices’ ranks provided by the proposed local metric and
the global closeness centrality. These two metrics correlate very well.

coefficient compared to the other metrics.

To have more analysis of the correlation between the proposed ego-centric (local) metric

and the global closeness centrality, Figure 5.4 shows the scatter plots of all vertices’

ranks provided by one versus the other, on various networks. Each point in the figure

corresponds to a vertex’s rank using these two metrics. As discussed before, we calculated

our local measure for h = 2 to have low computational complexity, yet high accuracy. One

can observe the linear correlation and positive association (as the rank with respect to

the local metric increases, so does the rank with respect to the global metric), especially

for the top-k vertices’ ranks which is the target of thesis.
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5.8. Conclusion

5.8 Conclusion

Betweenness centrality has been widely used as a fundamental metric for quantitatively

measuring the relative importance of vertices in a network. It is highly correlated to

the impact of a specific vertex on the spread of influence in social networks, the user

activity in mobile phone networks, and the contagion process in biological networks.

Thus, identification of k-highest betweenness centrality vertices is of great interest.

Although many exact and approximation schemes have been proposed for this problem,

the vast majority of these algorithms fail to scale on real-world networks because of

their high time and space complexity. On the other hand, some of them tend to assume

full knowledge of the network topological structure which is not often the case in real

networks. Another fact is that direct measurement of each individual vertex in networks

may impose remarkable overhead. To overcome these shortcomings, we proposed CS-

HiBet, a novel approach for efficiently identifying top-k central vertices in networks, using

compressive sensing with end-to-end measurements. We assumed that each vertex has

only localized information about its neighbors allowing our approach to perform as a

distributed algorithm. Extensive experimental evaluations on synthetic and real datasets

demonstrated that the CS-HiBet and global betweenness centrality correlate very well

with regard to the number of correctly identified central vertices and their estimated

rank in networks.
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CHAPTER 6
Conclusion and Future Research

Directions

To study networks in biology, engineering, and social sciences, we need to understand

how such systems work, know their structure and understand the model of the underlying

structure of the inter-connected entities of such systems. This thesis concentrates on the

fundamental task of modeling and generating graphs.

A key challenge in this area is developing methods that can capture the dynamicity of the

underlying graph. Most real-world graphs are dynamic, with the underlying distribution

dynamically evolving. For example, the edges of a network can appear and disappear over

time, and the communities of the interactions may wax and wane in popularity, and the

set of entities interested in a given topic may evolve over time. In addition, oftentimes we

do not have access to the full topology of the graphs and may not observe the all of the

sequence of the interactions. In such systems, we can only observe stochastic processes

propagating through the network.

In part 3 we described how we extracted the observations from these partially information

cascades and then how to generate a graph that can predict future interactions. Further,

part 4 takes advantage of the time-dependent interactions in a network to model a

multigraph where the sparsity property of the network is delivered by considering the

PYP on top of a hierarchical mixture model. Finally, the intuition behind the sparsity

property of the networks, inspired us to propose an algorithm for the sparse recovery

problem in order to find top-k central nodes in the network in part 5. In this chapter,
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6.1. Summary

we will summarize the contributions related to this thesis, and then thoroughly explore

potential future research directions in Section 6.2.

6.1 Summary

In this thesis, we considered the problem of developing generative dynamic network mod-

els from partial observations (i.e. diffusion data) as well as temporal observations (i.e.,

time-dependent sequence of interactions). We proposed a novel framework, Dyference,

for providing a non-parametric edge-exchangeable network model based on a generative

network model to capture the underlying dynamic network structure from partial observa-

tions. Furthermore, our Dyference algorithm provides online time-varying estimates of

probabilities for all the potential edges in the underlying network, and track the evolution

of the underlying community structure over time.

We have presented a new distribution for temporally varying, structured multigraphs,

that allows us to represent both sparse and dense networks. Since our model explicitly

describes a sequence of edges, it is well-suited to predict future edges. We showed

the effectiveness of our approaches using extensive experiments on synthetic as well as

real-world networks.

Finally, a compressive sensing based framework for identifying central nodes in social

networks was proposed that uses only O
!

k log(n
k )

"

indirect end-to-end measurements to

highly detect top-k central nodes, with provable recovery guarantees, in social networks

with n nodes. It is worth noting that in our analysis, we take the advantage of the fact

that the number of top-k central nodes of interest is sparse.

6.2 Future research directions

A tremendous amount of unstructured data is generated every second, and demand

fast analysis and efficient modelling for prediction tasks. Graphs are fundamental data

structures which concisely capture relational unstructured data in many important real-

world domains, such as knowledge graphs, physical and social interactions, language, and

chemistry. Our long-term research goal is to have a scalable model for such amount of

data, which is a trivial problem in nowadays data analysis. Building large-scale machine

learning methods for predictive as well as prescriptive analytics have many applications,
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6.2. Future research directions

including chemistry [GSR+17], medicine [KPF+17], or computer vision [SK17]. In order

to achieve this long-term goal, we define the following intermediate steps and directions:

• Developing scalable deep generative models for graphs.

• Building more efficient inference algorithm for time-evolving graphs.

To make progress on these long-term goals, we pursue the following research directions.

Developing scalable deep generative models for graphs. The ability to generate

graphs has many applications such as; a generative model of molecular graph structures

employed for drug design [GBWD+18, LZL18, LVD+18, YLY+18], graph generative

models for model architecture search [XKGH19], graph generative models in network

science [WS98b, LCK+10, AB02], and also deep graph generative models [LLS+19]. Deep

learning on graphs has very recently become a popular research topic in these applications.

Previous works concentrate on learning graph embeddings, i.e., encoding a graph into a

vector representation [LLS+19]. However, the recent development of fast-paced generative

models for image and text inspires us to model more efficient graph generators [RAY+16].

The problem of building graph generative models using neural networks has attracted

increasing attention. Compared to traditional random graph models, and statistical

graph models, these deep generative models have a greater capacity to learn structural

information from data and can model graphs with complicated topology and constrained

structural properties. However, none of these models consider the sparsity property of

networks. We aim to benefit from this feature of real-world graphs in order to reduce the

effort of considering all possible node permutations to generate larger graphs.

More recent graph generative models eschew the simple parametric form of models such

as the stochastic blockmodel, instead using neural networks to model the distribution over

edge probabilities. For example, the GraphRNN model [YYR+18] uses a recurrent neural

network to obtain the distribution over the ith row of the lower triangle of the adjacency

matrix, conditioned on the previous rows. However, despite the added modeling flexibility

provided by the neural network, such models still concentrate on dense graphs: we sample

the value for each edge from some distribution which has non-zero expectation. While

edge-exchangeable models allow us to capture graph sparsity (in addition to properties

such as power law degree distribution), the resulting graphs have limited structure. By

construction, the graphs are exchangeable, meaning that their distribution is invariant

to re-ordering the nodes. Further, all structure in the model is governed by a single
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6.2. Future research directions

distribution, meaning we do not see meaningful clustering coefficients or community

interaction. While such issues have been partially addressed by using mixture models

[Wil16] and replacing the nonparametric priors with temporally dependent distributions

[GMG+19], the resulting models still lack the flexibility of modern neural-network-based

graph models.

We aim to construct deep generative models for temporally growing multigraphs. Inspired

by the Bayesian nonparametric edge-exchangeable graphs, these models allow us to

capture graph sparsity and generate graphs that preserve that sparsity. Unlike their edge-

exchangeable counterparts, our model will be able to capture complex graph dynamics

and interactions.

Building more efficient inference algorithm for time-evolving graphs. While

BNL brings powerful representations and highly flexible models to the learning table,

model inference still faces great challenges. Despite of the pace of advancement in

statistical inference techniques, such as sampling-based inference algorithms (e.g., slice

sampling and Hamiltonian Monto Carlo), optimization-based inference algorithms (e.g.,

variational inference), and hybrid inference algorithms (e.g., stochastic gradient Markov

Chain Monto Carlo), applying efficient inference algorithm for the problem under study

still remains a challenging problem.

In this thesis, we used MCMC methodologies for the task of posterior inference. While

MCMC algorithms are robust or universal, this robustness may however induce a slow

convergence behaviour in that the exploration of the relevant space–meaning the part

of the space supporting the distribution that has a significant probability mass under

that distribution–may take a long while. In particular, with a finite number of samples,

Gibbs sampling is very often myopic in that it provides a good illumination of a local

area, while remaining unaware of the global support of the distribution. More generally,

an MCMC algorithm may require a large number of iterations to escape the attraction

of its starting point ◊0 and to reach stationary point, to the extent that some versions of

such algorithms fail to converge in the time available (i.e., in practice if not in theory).

It thus makes sense to seek ways of accelerating (a) the convergence of a given MCMC

algorithm to its stationary distribution, (b) the convergence of a given MCMC estimate

to its expectation, and/or (c) the exploration of a given MCMC algorithm of the support

of the target distribution. In the other hand, due to the exponentially increase in the

amount of data, MCMC algorithm
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6.2. Future research directions

One commonly accepted solution is truncation method [Fox09, FSJW09], which sets

the component number so large that the given data would only adopt a subset of

them, but it does introduce an approximation error. Another successful technique to

resolve this issue is data/variable augmentation [TW+10], also referred as slice sampling

[DWW99, N+03]. The slice sampling algorithm for DP [KGW11] introduces an auxiliary

variable ui ≥ N(0, „ki
), which functions as an adaptive truncation for the data i, and

then only needs to sample fi > ui for data i.

We aim to extend our current inference algorithms into parallel versions for multiple

processors/machines. Parallel MCMC [SWA09] uses an asynchronous method that makes

it easy to incorporate new data and processors and it is extremely fault-tolerant. The

disadvantage of this method is that it includes additional approximation. Further, parallel

MCMC for DP and PYP was proposed to overcome this problem [LAM12, DWPX14,

WDX13] based on the inverse-superposition of DPs where each processor or machine

handles one supercluster. Although these methods can marginalize representations of

DP to avoid truncation, a slice-sampling-based parallel MCMC [GCWG15] has been

developed to explicitly sample the weights of DP in an elegant way. We will use these

approaches as starting points.

In addition to scalable MCMC methods, we will also explore the use of other inference

techniques. An alternative approach for inference in BNL is variational inference [BKM17,

BJ+06]. This method uses a set of variational distributions to approximate the real

posterior distribution and transforms this posterior distribution into a high-dimensional

optimization problem that can be solved with help of gradients. Thus, choosing an

optimization method that boosts the inference efficiency together with setting variational

distributions which can significantly reduce the additional approximation error. The

form of variational inference is based on a stick-breaking representation where the latent

variables include stick weights, atom parameters and data assignment indices. Ordinary

Variational Inference adopts a truncation method to ensure that the infinite number of

atoms produced by DP reduced to only a finite number of atoms to be approximated

[KWV07]. Collapsed Variational Inference of DP [KWT07] marginalized out the stick

weights which makes it more accurate and efficient algorithm.

Some other inference methods that have been applied to BNL are: Sequential Monto

Carlo, also known as particle filtering that approximated the posterior distribution

through a large collection of particles (or samples) that are propagated over time and

updated by sequential importance sampling. It has been applied to DP mixutre with
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6.2. Future research directions

time-varying mixtures [CDD12], beta-binomial DP mixtures [MCL99], general conjugate

DP mixtures [Fea04], and nonparametric Bayesian matrix factorization [WG07], Power

Expectation Propagation [Min01] generalizes expectation propagation and variational

inference using a flexible –-divergence.

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

List of Figures

3.1 Precision, Recall and F1 score of Dyference. (a) Compared to InfoPath for

dynamic network inference over time on Core-Periphery (CP) Kronecker network with
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