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Abstract—QDI circuits are robust towards timing issues, but
this elasticity makes them vulnerable in value-domain fault
scenarios because data-accepting windows are flexibly defined by
the handshakes, and during these windows any data transition
gets latched, even those originating from single event transients.

As a solution, locking the data-accepting windows after the first
transition contributes to robustness, but still needs consideration.
We examine WCHB variants called Interlocking-WCHB and
Input/Output-Interlocking-WCHB in this respect. To highlight
the relevant error triggering conditions, we chose two target
circuits to investigate the behavior in detail: FIFO and pipelined
multiplier.

Based on the experimental results we investigate the observed
errors to understand the main cause of their generation and
propagation. We highlight the problematic scenarios and propose
modifications in buffer styles that resolve most of these while
minimizing the area overhead to 50%.

I. INTRODUCTION

Delay variations caused by process tolerances as well as
fluctuations in voltage and temperature make attaining tim-
ing closure in synchronous designs increasingly harder. With
their flexibly adaptive timing, asynchronous design methods,
specifically the quasi delay-insensitive (QDI) one, promise to
be robust alternatives. In a nutshell, QDI circuits employ local
handshakes instead of a global clock to control the progress of
computation and data exchange. These handshakes essentially
form closed control loops that precisely adapt the timing to
the actual delays, hence QDI circuits can easily accommodate
delay variations, and they are robust against delay-related types
of faults. However, their operation is event-based (rather than
level-based as in synchronous designs), which makes them
vulnerable to single event transients (SETs) and other types
of transient faults. Proven fault-tolerance techniques known
from the synchronous domain usually cannot directly be
transferred into the asynchronous domain, but in the literature
several special techniques have already been proposed to make
asynchronous designs more resilient against SETs. In this
paper we closely analyze residual problems with some of these
techniques and, based on the insights thus gained, propose
an improved buffer design for a QDI pipeline which we then
validate by extensive fault-injection experiments in simulation.
We also show that our approach is competitive with respect
to performance penalty and area overhead.

II. RELATED WORK

The focus of this work is on the mitigation of transient
faults in asynchronous circuits, specific to the value domain,
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so here we survey models, effects and hardening techniques
for dealing with them. In synchronous systems transient faults
are efficiently mitigated through masking capabilities that are
partly inherent, and, where required, additionally established
with fault-tolerance techniques. The latter, however, tend to
have large overhead and architecture constraints when ported
to asynchronous systems.

Over the years, researchers have regarded redundancy as
key requirement for error resolution and taken inspiration from
synchronous hardening methods for protecting asynchronous
circuits, like [1], [2]. This strategy is backed by promising
results for duplication-based approaches [3], [4]. By leveraging
this topology [5], [6] and [7] proved the resilience of real-
word asynchronous circuits like processors and controllers. In
addition, [8], [9] and [10] highlight the main contributors that
must be considered for single event transient (SET)-tolerant
asynchronous circuits. Investigations and results of [11], [12],
and [13] suggest special ways to apply this redundancy to
asynchronous circuits.

Inspired from [4], [13], and [14], the authors of [15] pro-
posed two enhanced QDI buffer styles with high resilience for
their specific domains while maintaining low area overhead.
As a continuation to this, with a real-word circuit “multiplier”,
[16] presents a more elaborated view of QDI templates with
respect to transient faults. They not only compare templates,
but also illustrate how their behavior varies with circuit dy-
namics. Based on [15], [17] presents more robust QDI buffer
templates that shorten the windows where SETs are harmful.

In conclusion, mere replication of a circuit can enhance SET
tolerance, but for a high area cost. Consequently, it seems
promising to rather analyze the key contributors to faults in
order to selectively target smaller modifications.

III. ASYNCHRONOUS QDI CIRCUITS

The term “asynchronous” refers to the global temporal coor-
dination within the circuit, where each module maintains local
synchrony with its neighbors via handshakes. The handshake
cycle of circuits realized with a delay-insensitive (DI) protocol
is more flexible in terms of timing assumptions, because the
validity of data is defined by the data itself using multi-rail
encoding schemes. An explicit acknowledgement signal from
the receiver completes the handshake cycle [18].

Throughout the article we focus on QDI circuits, where we
stick with a 4-phase return-to-zero handshake protocol with
dual-rail (DR) encoding. In the DR scheme a single bit x is
represented by two rails (x.t, x.f) where t and f are true and
false rails, respectively [18]. A logical “1” is represented by
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setting these rails to (1, 0) and “0” by (0, 1). These are code
words and called (data) tokens. The code (0, 0) is used as
a spacer, as demanded in the 4-phase protocol to separate
data tokens. Note that for the considered scheme (1, 1) is an
illegal pattern. In this protocol without global clock a module
interacts with an other by simply placing a data token on its
data rails, and after receiving a logical high acknowledgement
signal (when considering logic low as reset) from the receiver
it changes the data token for a spacer. The handshake is
completed with its 4th phase when the receiver responds by
resetting the acknowledgment [19].

A. The Muller C-element

In QDI circuits the Muller C-element (MCE) is a fundamen-
tal building block. Its functionality is simple: only the logic
level of matching inputs is passed to the output and retained
until a matching pattern with the opposite logic level arrives
Figure 1 shows a symbolic representation of a MCE and its
variants.
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Fig. 1. MCE and its derivatives

In the Regular MCE the output changes for symmetric
inputs after the inertial delay of the gate. This also holds for the
MCE with negative input (C-element-); however, here for up-
transitions (only) the input NegIN has no impact. Likewise,
the MCE with positive input (C-element+) ignores PosIN for
the down-transition.

B. QDI Buffer Templates

As QDI circuits operate with handshakes rather than a
global clock, they require special storage elements that also
obey the handshake protocol with the respective encoding
scheme. In this paper we will restrict ourselves to the very pop-
ular 4-phase QDI buffer template named Weak-Conditioned
Half Buffer (WCHB). We will start with the basic template
and then continue with some of its variants that are designed
to mitigate the effects of transient faults like SETs. Figure 2
shows a 1-bit WCHB: according to the DR scheme, only one
input rail may go high at a time, and if the enable (en) signal
is also high, the respective MCE fires, which, in turn, activates
the acknowledgment Ack out and arms the same MCE for
capturing the spacer.

If due to a fault both input rails (In.T , In.F ) go high
while the en is high, the illegal (1,1) pattern propagates to
the output. To mitigate this error the authors of [15] propose
their Interlocking WCHB as shown in Fig. 2. Here the MCE
whose output transitioned to “1” first, blocks the other MCE
from making the same transition, which effectively prevents a
(1,1) output. Due to the inertial delays of the MCEs, however,
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Fig. 2. Considered Buffer Styles

this interlocking fails for error scenarios where an up-transition
on both is enabled at nearly the same time.

To address this issue [17] proposed the Input-Output In-
terlocking WCHB shown in Fig. 2. This approach provides
a first stage of interlocking (actually input filtering) that just
compares the inputs without considering the output and hence
does not suffer from the delay problem as the Interlocking
WCHB does. This stage is followed by a second one that
actually resembles an Interlocking WCHB, albeit with inverted
inputs (this is done to optimize area). This latter stage protects
against faults at the output that might make the state flip to
(1,1). In addition, the AND gates with their delayed and non-
delayed version of the same signal provide some degree of
glitch filtering. For simplicity we will in the following indicate
the plain WCHB with letter α, the Interlocking WCHB with
β, and the Input-Output Interlocking WCHB with δ .

C. Pipeline Load Factor

QDI circuits flexibly adapt their operation to the speed in
which tokens are provided by the source and consumed by the
sink. Consider the case where a fast source keeps providing
tokens to the circuit, while, after their propagation, a slow sink
consumes them only some time after they become available.
Due to the backpressure by the handshake, new tokens start
waiting at the source to be issued. This behavior is called
Bubble limited because most of time the pipeline is waiting for
acknowledgment (termed bubble, as a counterpart to token) to
complete the handshake cycle. In contrast to that, if the source
is slow, then a fast sink will start waiting for a new token or
spacer. This is called Token limited mode of operation.

To express how much the speed of the pipeline is dominated
by a lack of tokens or bubbles, the Pipeline load factor
(PLF) has been discussed in detail in [16]. For the remaining
discussion a PLF less than 1 indicates a token limited mode of
operation, and a PLF greater than 1 a bubble limited mode. In
context with our asynchronous QDI design style, the question
arises why one should be concerned about these types of delay,
because, while affecting throughput, they have no impact on
data integrity. In context with transient faults, however, the
PLF makes a difference, as the circuit’s sensitivity to faults,



Chin 
8_bits

Buffer_0
8_bits

Buffer_1
12_bits

Buffer_2
12_bits

 a(3:0) 
  b(3:0)

a(3:0)
b(3:1)

z(4) = 0
z(3:0) = a(3:0) & b(0)

a(3:0) 
b(0) z(4:0) z(4:1) + (a(3:0)&b(1))

a(3:0)
b(3:2)

z(5:1)
a(3:0) 
b(1) 

z(4:1)

z(0) Buffer_3
12_bits

z(5:2) + (a(3:0)&b(2))

a(3:0)
b(3)

z(6:2)
a(3:0) 
b(2) 

z(5:2)

z(1:0) Buffer_4
8_bits

z(6:3) + (a(3:0)&b(3)) z(7:3)
a(3:0) 
b(3) 

z(6:3)

z(2:0) Chout 
8_bits 
z(7:0)

Fig. 3. Pipelined Multiplier

Chin 
4_bits

Buffer_0
4_bits

4_bits Buffer_1
4_bits

4_bits Buffer_2
4_bits

4_bits Buffer_3
4_bits

Chout 
4_bits

Fig. 4. Empty Pipeline Circuit

as well as the relative distribution of different types of fault
effect (see later) have been shown to depend on the PLF [16].

IV. EXPERIMENT SETUP

Their event-driven nature and their timing flexibility make
QDI circuits specifically sensitive to SETs, as, in the lack of
rigid restrictions, faulty transitions can easily be mistaken for
correct ones. So to properly mitigate effects caused by SETs
without compromising the circuit’s timing elasticity, the circuit
operation as well as the effects SETs cause on it must be
carefully analyzed and well understood. This is exactly the
purpose of our experiments.

A. Circuit Designs

Different circuits have their inherent properties and behave
differently under different conditions. For this first investiga-
tion we chose fundamental but useful real-world circuits. Our
list comprises:

1) Empty pipeline or FIFO
2) Multiplier

The data bitwidth remains same for all, namely 4-bit. Lacking
any computational function the empty pipeline, as shown
in Fig. 4, might be considered an overly simplified target.
However, we included it because (a) it can be found in real-
world applications like up/down counters or communication
interfaces, and (b) the reduction of the pipeline to buffer stages
only can allow interesting insights like the identification of
possible effects that are specific to the buffers, or, vice versa,
such that never occur in buffers.

Due to its simplicity backtracking of effects to the root
cause promises to be simpler, and potential masking of effects
by combinational function blocks can be ruled out in the
empty pipeline. Another advantage is that changing from one
template to another already changes the whole circuit.

To make the comparison more realistic, the multiplier target
is designed in a pipelined manner (other variants are under
investigation for future work). This pipelined multiplier, see
Fig. 3, is supposed to give insights about how pipelines with
relatively complex computational units in between react to
SETs, because these units also contribute to error generation.
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Multiplication is performed using a simple binary multiplica-
tion method.

B. Fault Injection simulation environment

Fig. 5 shows our simulation setup [20]. It consists of a QDI
source and sink generating and acknowledging DR data with
programmable delays to mimic real-world DI scenarios. With
these programmable source/sink delays we control the PLF.
Monitors are placed at the interfaces of the target circuit that
check each activity and compare it to a golden run. Please note
that only value deviations are considered as error, while timing
issues are only considered an observation because circuits are
QDI. As our concern is SETs, which occur rarely, we only
inject one fault per simulation and observe the behavior. We
are excluding input and output signals from the injection list
because these are directly observable to the monitors with no
chance for mitigation or masking, so these will simply result
in higher fault rates. Injection time and location are randomly
chosen, while the injection pulse length is fixed to a value
higher than the longest inertial delay among all gate delays in
our considered buffer templates, and hence electrical masking
cannot occur (we are only interested in logical and temporal
masking effects here).

C. Gate Delays

For the gate delays we utilized the timings from
NanGate 15nm library file with typical conditions [21]. As
an MCE is not part of this library, we considered the MCE
model from [22] in which they propose a combination of
simple NAND gates. Gate delays are computed from a timing
matrix of the respective gate using an interpolation method
with fixed index 1 (input net transition), as in our simulations
we are not varying this parameter, while we vary index 2
(total output net capacitance) depending on the fanout of the
respective gate.
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D. Fault effects

Deviations from the golden run are classified into two main
categories, namely data errors and timing issues.

For timing issues, i.e., data arriving earlier or later than
expected, data integrity remains safe, because of the circuit’s
delay insensitivity.

Data errors are further classified into four categories
(a) Value error: data is received correctly, but the value is

not as expected.
(b) Coding error: both rails of the DR bit go high; this is

illegal in our considered DR encoding.
(c) Glitch: during any handshake phase a signal makes more

than one transition, or causality of signals is otherwise
violated by a wrong sequence, like acknowledgment
activated before data completion

(d) Deadlock: the circuit stops in a state where no further
transition is possible.

Fig. 7 illustrates some of these effects, as they would be
triggered by faults propagating through the pipeline shown in
Fig. 6. Recall that we had decided to exempt the input and
output rails (indicated by orange color) from fault injection.

Value error, box D: if a fault hits Out1.T at a time instant
(1) when buffer-2 is armed for token reception (i.e. for
an up-transition), the faulty transition is simply stored and
generates the Ack2 out (2), which resets the enable signal
en1, thus blocking the correct token from entering that just
arrived at In1.F. Consequently, a formally correct token with
an erroneous value is generated at Out2.T (3). The monitor
compares it with the reference behavior obtained in the golden

run and flags a value error because it expected (Out2.T = 0,
Out2.F = 1).

Coding error, box E: The fault hits Out1.F (1), like above
while buffer-2 is armed for a token, this time, however, very
close to the instant when In1.T (correctly) goes to “1” as well
(2). Due to the propagation delay of the OR completion detec-
tor, Ack2 out cannot block the correct transition anymore by
arming buffer-1 for the spacer. So at buffer-2 both, the faulty
transition on Out1.F (1) and the correct transition Out1.T arrive
and get latched, thus forming an illegal code word. Now there
is no way to reset any of the two rails, so the illegal code
word propagates through the pipeline and reaches the output
rails (3), where the monitor flags a coding error.

Timing Issues, box F: If the fault hits any of the rails
at a moment when the token was already conveyed to the
successor stage and acknowledged, it only changes the timing
of Ack out, as apparently the spacer arrived earlier. Please
note that the scenarios of D and F are almost the same, but
the different timing and fault polarity have significant impact,
which changes the fault effect.

These examples are only meant to illustrate the error types
and to provide some insight into possible fault effects. How-
ever, this list is by no means complete, and when injecting at
randomly chosen instants we can expect further scenarios.

V. RESULT ANALYSIS

Fig. 8, 10 and 12 show the error rates we experimentally
observed for our target circuits with varying PLF. It is not
easy at this stage to identify which factors contribute where.
Let us start with glitches from fig. 8 because the magnitude
of this error type is very low. Buffer δ performs very well
in bubble limited mode, while other styles show some errors.
So, the first question arises: What are the main causes of all
these?

A. Main causes of glitches in QDI pipelines

We define a glitch as a short pulse, i.e., a sequence of two
opposing transitions. We have already seen that the leading
transition may or may not arrive at a point in time when
actually a regular transition is expected (MCE is armed). If
no transition is expected, the faulty one remains ineffective or
at most causes a timing deviation. If a transition is expected,
the glitch’s leading transition will move the handshake process
forward one step in one or the other way. However, in a QDI
circuit, a next transition on the same signal will then only be
expected once the reaction to the previous one has sufficiently
propagated. Therefore, due to the short duration of the glitch
(by definition), its trailing transition cannot arrive at an armed
MCE and must hence remain ineffective. In conclusion we can
state that in a QDI circuit glitches cannot propagate.

Backtracking the glitches we had observed for bubble
limited mode in our experimental results gave an amazing
insight: faults on only one signal contribute to all glitches we
observed. Further inspection shows, that for PLF 0.25, and 0.5
all variants show 0% glitches, so we can eliminate these from
further analysis. We will come back to the case of PLF = 0.1
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later on. For PLF ≥ 1 there is, as visible in Fig. 8, no glitch
recorded as soon as we remove the last stage’s enable signal
from injection list that always contributes to glitch generation.

Having identified the culprit through filtering of the results,
we can now use Fig. 6 to explain how an SET on en2 (enable
signal of the last stage) can generate a glitch at the output.
With our choice of PLF ≥ 1 the circuit is running in bubble
limited mode as illustrated in Fig. 9 box J. In this mode the
last stage spends a lot of time waiting for Ack In.

1) At D1, a data token arrives at the circuit output, and as a
result, Ack2 out is activated at time D2 as a confirmation
to the predecessor stage.

2) This acknowledgement ripples upstream to the source,
and as a result the latter issues a spacer at J1 that is
passed to the last buffer stage’s input rails at J2.

3) Now the last stage is waiting for Ack In from the sink
to complete the four-phase handshake at J5.

4) Accidently during this waiting window (highlighted with
Sink delay) if a fault hits the en2 signal as shown at J3. It
just produces a spacer at the output (at J4 in our example)
before the sink responded to the data token,.

Recall our definition of fault effects, according to which the
case where any rail changes more than once during same
handshake phase it considered a glitch. So the main cause of
glitches in all target circuits is when a new transition arrives
during an ongoing handshake phase.

A close look at Fig. 6 reveals that en2 is simply the
inversion of Ack In. While the latter, being an input signal,
is excluded from fault injection, the former is not. The δ
design, however, works without acknowledgment inversion,
and therefore its Ack In is never hit by a fault, which explains
the absence of glitches in our results for that template during
bubble limited mode. This is an important observation. A
remedy to this that provides more fairness in the comparison of
the different buffer templates is to consider the enable signal
of the last buffer stage as input signal as well, together with
Ack In, because these two signals are just inverted versions
of each other. To verify this approach, we ran the injection
experiments again, this time, however, excluding Ack In as
well as en2 from the injection. The results in Fig. 8 with
label ′′Without last stage en′′ indeed confirm 0% glitches
for the bubble limited mode.
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In settings with PLF = 0.1 another important problem arises:
To visualize the cause with a different reference, we replace
the buffer style of our Fig. 6 circuit by the Interlocking
WCHB. Fig. 9 box Q illustrates the situation:

1) Q1, a fault hits Out1.T of the C-element+. Due to the
interlocking buffer style, the faulty transition just prevents
the other C-element+ from making a high transition.

2) This value propagates to the sink and generates a value
error there – but this is not our focus here.

3) The important thing is that the Ack out at Q2 is gener-
ated before the valid data from the source arrived – this
triggers a glitch.

4) We know that In1.T remains low, while the logical 1
at In1.F is simply not passed to the next stage due to
Q1. Consequently, a spacer is generated at the output of
buffer-1 when en1 goes low, and it generates Ack out
low at Q3.

5) These acknowledgements of data and spacer at Q2 and
Q3 respectively, that were generated before the source
generated a valid token and a spacer, are problematic and
make our monitor flag a glitch.

It becomes clear from the explanation that this discussed
scenario for PLF = 0.1 already generates some other types
of errors in the pipeline. Therefore, in Fig. 8 with label
′′Without last stage en′′ this is not counted as a glitch.

Having understood in all detail how SETs can cause glitches
in our QDI circuits, we will now move on to Coding errors.
As Fig. 8 shows, only the original WCHB (α) is a contributor
to that type of erroneous behavior, while the improved buffer
types do not show it. So the second question arises: Why does
only the WCHB type α suffer from coding errors, and not the
other buffer types?

B. Main Causes of Coding Error

Section IV-D already explained how coding error are gen-
erated:

Latching of a second data transition (one on each rails) is
only allowed in WCHB α, in the absence of any interlocking.
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In other buffer styles the first transition just locks the compan-
ion MCE for further transitions. That’s why other buffer styles
only generate value errors for this type of fault scenario. As
a consequence their value error rates are higher, as visible in
Fig. 10. This is because the interlocking mechanism prioritizes
the first transition that occurs, even if that is the faulty one,
and blocks the one that arrives later. In this way, a valid code
is enforced, but the encoded value may be wrong.

More generally, Fig. 10 shows that mitigation techniques in
some cases fail to handle value errors, so in the next section
we will investigate these in detail.

C. Main causes of Value Errors

Based on the circuit diagram from Fig. 6 and the timing
diagram from Fig. 7, box D, we can explain the generation
and propagation of value errors. A closer inspection reveals
the storage loop within the MCE as important source of value
errors. Recall that the storage loop retains the last output level
– by feeding it back to the input – as long as the inputs
are asymmetric. When a fault hits that output signal, the
feedback may make the storage loop flip. Fig. 11 illustrates
some situation for the buffer type β.

(i) In Token Limited mode In.F = 1 is expected (dim dotted
line shows that values have not arrived yet). But before
valid data arrives, a fault at Out.T flips the MCE that is
supposed to remain 0 during this phase. As a result, the
valid transition is halted and the fault propagates further
to the output.

(ii) In Bubble Limited mode valid data is waiting at the
buffer input for the en signal (dim dotted lines shows that
after some time en goes high) but before that arrives, a
fault at Out.T flips the MCE output as well as disables
the other MCE that was supposed to fire valid data.

For the δ approach the idea of interlocking inputs and outputs
is reasonable, but the use of extra MCEs increases the area
ovehead, while failing to shows promising result during token
limited mode: as visible from Fig. 10 WCHB β is performing
better than its successor δ. For bubble limited mode the error
rate of δ drops, as its design considered this very region.

The δ variant has another very prominent drawback. Con-
sider the scenario presented in Fig. 11. If during token limited
mode a fault hits the input of the MCE that is assumed to not

change during this phase, it generates a value error without
performing any input interlocking. Fig. 10 shows that indeed
during token limited mode it experiences more value errors.

Finally, as illustrated in Fig. 11, logic units also contribute
to the value errors.

Like the Delay-Insensitive Minterm Synthesis (DIMS) im-
plementation of an AND gate shown in the example, these
also may contain MCEs and hence suffer from the same state
flips as illustrated: Out.T goes high where inputs of that MCE
are not yet completed.

D. Main causes of deadlocks

For our analysis we now consider the pipelined multiplier
with WCHB δ. The discussed scenario is not an abstract
discussion but the visualization of a real simulation instance,
however, with a simplified view. As it is not possible to show
all wires and details here, we present the affected signal lines
with buffers in Fig. 13 and use these for explanation.
(a) Fig. 13 shows that b(3) is directly connected from buffer-

2 to buffer-3. So, if a high fault hits the b3.T line that is
supposed to remain low, and at the same time b3.F also
makes a transition to high, C3 and C4 mutually interlock
each other and both transitions remain at the input of
buffer-3.

(b) Ack Out is only generated when this interlocking is re-
solved and any output rail of buffer-3 makes a transition.
That is, however, not happening.

(c) Here the important thing is that the fault, by hitting the
input signal of C3, also affected the output of C1, and got
latched by flipping its storage loop (as explained earlier).
So the erroneous state at b3.T is memorized in C1.

(d) C2 will not change b3.F before receiving the Ack out –
which is, however, not generated due to the interlocking
of C3 and C4.

No acknowledgment means no further transitions.

VI. NOVEL BUFFER WITH IMPROVED RESILIENCE

Basically, the concept of input output interlocking from
WCHB δ performs well, and if realized in an efficient fash-
ion, can address errors with reasonable area overhead. Our
experimental investigation has shown the following residual
deficiencies:
(a) SETs on the enable of the last buffer stage can lead

to glitches. This problem is confined to the last stage
only and can be solved by appropriate design of the
read interface, or specific hardening of the en signal.
Consequently we do not address it in the following
discussion about improvements for the buffer design in
general.

(b) The interlocking between the MCEs storing true- and
false-rail, respectively, can eliminate coding errors due
to SETs, but at the cost of an increased rate of value
errors.

(c) SETs at the output signal of a MCE can make its state
flip, which can result in value errors and deadlocks.
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(d) The δ WCHB as discussed in V-C has some design issues
due to which it does not perform as well as expected.

From these insights we can now derive some further en-
hancements, as shown in Fig. 14.

We prefer using SR latches instead of MCEs for input in-
terlocking. This not only saves area, it also, most importantly,
mitigates the problem of state flipping through faults at the
output of the MCE used for input interlocking, as discussed
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Fig. 14. IOISRWCHB = θ

in Sec V-C. In fact, this SR latch resembles the classical mutex
implementation from [23] – albeit without metastability filter
– much closer than the interlocked MCEs did.

Importantly, the decision to arm the C-element+ is now
combining input and output state using a NOR gate that,
together with its companion from the other rail, forms another
SR latch. We named this approach Input Output Interlocking
with SR latch WCHB (IOISRWCHB) represented by the letter
θ. Fig. 8, 10 and 12 show the fault-injection results that were
generated using the same settings as for all other buffer styles
to make the comparison fair.

A. Mitigating Value Errors

For value errors we observe in Fig 10 that in token limited
mode the rate is lower than with WCHB δ. Considering Fig. 14
we can explain this improvement as follows:

1) If a fault hits Int.T , IntIn.T or Int.F , IntIn.F ,
whatever the scenario, this has no effect: Even if the
respective signal value matches with the direct inputs
In.T or In.F , it just validates the output prematurely
raising only the timing issue flag. Otherwise it will be
masked anyway at the MCE. Recall from Fig. 11 that for
WCHB δ the same scenario of hitting an internal signal
generated a value error.

2) If the fault hits In.T or In.F its effectiveness depends
on a few factors.

(a) It first passes through the input interlock filter (NAND
gate) and the output filter (NOR gate). It after that the
en signal is also matched to the context of the fault
then it becomes visible to the MCE.

(b) If the fault length is less than the propagation delay
of NAND plus NOR gate, the In.T or In.F already
changed back to the regular level when the fault ap-
pears at the positive input of the MCE. In this situation
the fault has no impact on the circuit. So, we safely
filter most input faults.

In summary, through the strict separation of original and
delayed path, our internal filter signals are immune to faults.
Another important insight about the θ approach is that tran-
sitions must first pass its input interlock before being able to
halt the opposite rail. In contrast, WCHB δ blindly interlocks
the other rail for further transition, as explained in Fig. 13.

An important benefit of the proposed WCHB variant θ is the
obtained reduction of area and throughput penalty as compared
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to δ. The results are shown in Fig. 15, with the WCHB as
baseline. Our θ approach shows a significant reduction (approx
50%) in area overhead and achieves higher throughput as
compared to its base-buffer style δ. This is mainly due to
the replacement of the MCEs in the input stage by simple
combinational gates and the way we interlock output MCEs.

VII. CONCLUSION

In this work we have thoroughly analyzed the effects of
SETs in QDI circuits and highlighted vulnerabilities of exist-
ing buffer designs, specifically the WCHB and some hardened
variants of it. To this end we have combined statistics obtained
from extensive fault-injection experiments in simulation with
a very detailed investigation of fault effects on the level of in-
dividual signal traces. To make our analysis as comprehensive
as possible we have performed these experiments for different
target circuits that we operated with different settings for the
speed of source and sink.

One of our findings was that, even though, due to their
operational principle, QDI circuits do not propagate glitches,
these can still occur when an SET hits the enable signal of
the last buffer stage. Furthermore we could identify the pre-
mature handshake completion caused by an SET as another
source of glitch-like circuit behavior.

Based on our insights we have proposed a further improved
buffer design, for which our experimental validation confirmed
an improved resilience to SETs, with notable resilence in
token limited operation while showing comparable behaviour
during extreme bubble limited mode of operation. At the same
time 50% reduction in area and performance penalty of our
approach are quite competitive.

For future direction we have also identified state flips of the
MCE (while in state holding mode) through SETs on its output
as a main contributor to error effects. So, our deep analysis
suggest if somehow we are able to maintain the symmetry of
input lines of the MCE during the waiting time of the pipeline
(called token or bubble limited modes), faults at the output of
the MCE lose their effectiveness. As a result the remaining 1
to 3% faults are easily addressable.
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