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Abstract—Tracking multiple time-varying states based on het-
erogeneous observations is a key problem in many applications.
Here, we develop a statistical model and algorithm for tracking
an unknown number of targets based on the probabilistic fusion
of observations from two classes of data sources. The first class,
referred to as target-independent perception systems (TIPSs),
consists of sensors that periodically produce noisy measurements
of targets without requiring target cooperation. The second class,
referred to as target-dependent reporting systems (TDRSs), relies
on cooperative targets that report noisy measurements of their
state and their identity. We present a joint TIPS–TDRS obser-
vation model that accounts for observation-origin uncertainty,
missed detections, false alarms, and asynchronicity. We then es-
tablish a factor graph that represents this observation model
along with a state evolution model including target identities.
Finally, by executing the sum-product algorithm on that factor
graph, we obtain a scalable multitarget tracking algorithm with
inherent TIPS–TDRS fusion. The performance of the proposed
algorithm is evaluated using simulated data as well as real data
from a maritime surveillance experiment.

Index Terms—Multitarget tracking, data fusion, factor graph,
sum-product algorithm.

I. INTRODUCTION

MULTITARGET TRACKING (MTT) consists in estimat-
ing the number and the time-varying states of multiple

moving objects (targets) [1]–[6]. To obtain satisfactory perfor-
mance, it is often necessary to fuse information from multiple
heterogeneous data sources. Indeed, heterogeneous data fusion
for MTT is a key task for many applications including surveil-
lance, robotics, and remote sensing [2]–[4].

A. TIPS and TDRS
In this paper, we focus on the fusion of observations pro-

duced by two different classes of data sources, with the ob-
jective of improving the overall MTT capabilities. The first
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class will be referred to as target-independent perception sys-
tems (TIPSs). A TIPS consists of one or multiple sensors that
rely on an active and periodic interrogation of the environment
to acquire target-related measurements. Due to this active in-
terrogation, a TIPS can also acquire measurements related to
targets that do not cooperate in any form. Active interrogation
is based on signals that are either transmitted by the TIPS itself
or are signals of opportunity transmitted by other sources. The
sensors constituting a TIPS may be heterogeneous and with
different sensing modalities, e.g., radars, optical cameras, and
sonars [7]. The TIPS measurements are extracted in a prepro-
cessing step from a noisy received signal. As a consequence,
they are themselves noisy. Furthermore, due to errors made in
the preprocessing step, certain measurements may not origi-
nate from a target (false alarms) and certain targets may not
generate measurements (missed detections) [5], [6]. Since the
targets do not cooperate, there is a TIPS measurement-origin
uncertainty, i.e., it is not clear if a given TIPS measurement
was generated by a target, and by which target.

The second class of data sources will be referred to as
target-dependent reporting systems (TDRSs). A TDRS relies
on information autonomously transmitted by cooperative tar-
gets: each cooperative target is equipped with a transmitter,
which is identified by a code or ID, and transmits messages
to the TDRS—called reports—that include the ID and a noisy
measurement of the target state. Reports are received asyn-
chronously by the TDRS; moreover, due to imperfect com-
munication channels between the cooperative targets and the
TDRS, a report may be lost, i.e., not received at all, or it may
be received but contain a corrupted ID and/or measurement.
Because of such corrupted IDs, the association between coop-
erative targets and reports is uncertain; this is similar to the
TIPS measurement-origin uncertainty. However, each report
must originate from a cooperative target, i.e., it cannot be a
false alarm.

TIPSs and TDRSs arise in many applications. For exam-
ple, in the maritime domain, coastal/harbor radars are TIPS
sensors and the automatic identification system (AIS) [8] is a
TDRS, and in air traffic control, primary surveillance radars
are TIPS sensors and the automatic dependent surveillance
broadcast (ADS-B) system [9] is a TDRS. TIPSs and TDRSs
are mostly used as stand-alone systems, and the information
they provide is usually combined by fusing the respective esti-
mates of the target tracks [10]–[15]. In this paper, by contrast,
we address the estimation of the target states directly from
the heterogeneous TIPS-TDRS observations. This approach,
which is known as observation-level fusion, can be expected
to yield better performance [16]. An MTT algorithm fusing the
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observations from a single radar sensor and the AIS has been
proposed in [17]. This algorithm uses a joint probabilistic data
association technique to cope with the unknown associations
between targets and radar measurements as well as between
targets and IDs, along with a gating technique to reduce the
number of admissible associations. However, the radar and
AIS observations are assumed to be based on synchronous
clocks, and the radar measurement rate is assumed to be a
multiple of the AIS report rate. In practice, these assumptions
are often not satisfied.

B. Contributions and Paper Organization

In our previous work [18]–[20], we presented MTT algo-
rithms that fuse measurements from multiple TIPS sensors
and are able to confirm the existence of an unknown and
time-varying number of targets and track the target states in
the presence of TIPS measurement-origin uncertainty, missed
detections, and false alarms. These algorithms were derived
by formulating the multisensor MTT problem in a Bayesian
framework, representing the factorization of the joint posterior
distribution by a factor graph, and efficiently marginalizing
the joint posterior distribution via the sum-product algorithm
(SPA) [21], [22]. The SPA exploits conditional statistical inde-
pendences for a drastic reduction of complexity. This results
in an excellent scalability of the MTT algorithms of [18]–[20]
with respect to the number of targets, the number of TIPS
sensors, and the number of measurements per sensor. We note
that an alternative framework for the development of MTT
algorithms is constituted by random finite sets (RFSs) [23]–
[25]. Similarities and differences of an SPA-based derivation
of MTT methods relative to an RFS-based derivation are dis-
cussed in [19].

Here, we propose an SPA-based framework and algorithm
for MTT with TIPS-TDRS fusion. More specifically, we ex-
tend the MTT framework and algorithm of [18] to incorporate
reports provided by a TDRS. Our key contributions are as fol-
lows:
• We establish a statistical model of MTT based on mea-

surements provided by multiple TIPS sensors and re-
ports provided by a TDRS. The TDRS reports are asyn-
chronous and include the IDs from cooperative targets.

• We represent this statistical model by a factor graph and
use the SPA to develop a scalable message passing algo-
rithm for MTT with TIPS-TDRS fusion.

• We demonstrate performance advantages of MTT with
TIPS-TDRS fusion using simulated data, and validate the
proposed algorithm on real data from a maritime surveil-
lance experiment.

Parts of this work were presented in our conference publi-
cations [26] and [27]. This paper differs from those publica-
tions in that it extends the formulation beyond the maritime
(i.e., AIS) domain; it introduces an improved modeling for the
TDRS IDs; it presents detailed derivations of the joint posterior
distribution; it presents the SPA messages in a more complete
and detailed manner; and it validates the performance of the
proposed MTT algorithm in an additional simulated scenario
and in a real maritime scenario.

The remainder of the paper is organized as follows. The ba-
sic notation and nomenclature are described in the next sub-
section. Section II introduces the TIPS-TDRS fusion prob-
lem and outlines the proposed approach. The system model
and its statistical formulation are described in Section III. In
Section IV, we derive the joint posterior distribution and the
corresponding factor graph. The proposed message passing al-
gorithm is presented in Section V. Section VI provides an ex-
tensive evaluation of the proposed algorithm using simulated
data. Section VII presents an application using real data from
a maritime surveillance experiment.

C. Notation and Nomenclature
Vectors are denoted by boldface lower-case letters (e.g., a),

matrices by boldface upper-case letters (e.g., A), and sets by
calligraphic letters (e.g., A). The transpose is written as (·)T.
The Euclidean norm of vector a is denoted by ‖a‖. For a two-
dimensional (2D) vector a, ∠a is the angle defined clockwise
and such that ∠a= 0 for a = [0 1]T. We write diag(a1, . . . ,
aN ) for an N×N diagonal matrix with diagonal entries a1, . . . ,
aN , IN for the N×N identity matrix, and 0 for a zero vector.
We denote by 1(a) the indicator function of the event a= 0,
i.e., 1(a) = 1 for a = 0 and 1(a) = 0 otherwise. Finally,
we denote the probability mass function (pmf) of a discrete
random variable or vector by p(·) and the probability density
function (pdf) of a continuous random variable or vector by
f(·); the latter notation will also be used for a mixed pdf/pmf
of both continuous and discrete random variables or vectors.

We use the term observation generically for any target-
related data provided by a TIPS sensor or a TDRS. Further-
more, the terms measurement and report are used for an ob-
servation provided by a TIPS sensor and by a TDRS, respec-
tively. Finally, cluster designates a group of reports, and self-
measurement the information related to the state of a cooper-
ative target that is contained in a report or cluster.

II. TIPS-TDRS FUSION

We consider a TIPS with S sensors indexed by s∈ S , {1,
. . . , S}. All TIPS sensors provide measurements at times
tn = nT , n ∈ N. (The extension to the case where only
some TIPS sensors provide measurements at time tn and/or
the measurement times tn are spaced nonuniformly is straight-
forward.) As mentioned in Section I-A, the TIPS measure-
ments are affected by noise, false alarms, missed detections,
and measurement-origin uncertainty.

In addition, we consider a TDRS, which is indexed by s= 0.
Each report received by the TDRS originates from a coopera-
tive target and arises at an arbitrary time, i.e., asynchronously
with respect to the TIPS measurement times tn. The set of IDs
is defined as D , {1, . . . , D} and is known by the TDRS. In
view of the imperfect target-to-TDRS communication chan-
nel, we distinguish between the intrinsic ID embedded in the
target’s transmitter, to be referred to as transmitter ID (TID),
and the ID contained in a report received by the TDRS, to
be referred to as report ID (RID). To elucidate this distinc-
tion, let us consider a cooperative target with TID d ∈ D that
transmits a report to the TDRS. If the transmission is success-
ful and without errors, the RID of the received report is itself
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Fig. 1. Time diagram of TIPS measurements (from a single sensor) and TDRS
reports during three consecutive time steps, assuming three cooperative targets
located in the region of interest. The TIPS measurements and TDRS reports
are represented by triangles and circles, respectively. The targets from which
the TIPS measurements and TDRS reports originate are identified by differ-
ent colors (black, blue, red). White triangles represent TIPS measurements
corresponding to false alarms, and white circles represent TDRS reports with
RID d /∈D.

d ∈ D. However, a transmission error will cause the RID to
be equal to d′ /∈ D or equal to d′ ∈ D with d′ 6= d. Therefore,
even though the target is cooperative, the target-report asso-
ciation is uncertain. In addition, again due to the imperfect
communication channel, also the self-measurement contained
in the TDRS report may be corrupted. If this is detected by
the TDRS, the report is discarded since the sole RID is not
meaningful for tracking.

Fig. 1 shows an example of TIPS measurements (from a
single sensor) and TDRS reports that are available over three
consecutive time steps tn−1, tn, tn+1. Note that at times tn and
tn+1, one target is missed by the TIPS sensor. TDRS reports
are received at arbitrary times, typically several of them—
possibly also from the same cooperative target—between any
two time steps. The statistical model and estimation method
that we will present allow the joint processing, at a considered
time tn, of all the TIPS measurements acquired at time tn
and all the TDRS reports received during the time interval
(tn−1, tn].

To enable this joint processing, we propose to group the re-
ports into clusters. More specifically, at time tn, reports with
an identical RID d ∈ D are grouped into the same cluster,
whereas reports with an RID d /∈D are not grouped. If there
are no transmission errors, then each cluster contains only re-
ports generated by one corresponding cooperative target, and
conversely, all reports transmitted by a given cooperative tar-
get are included in only one corresponding cluster. Otherwise,
some associations between reports and cooperative targets are
incorrect. However, if the RID errors are independent over
time, incorrect associations tend to be resolved in future time
steps. As we will show in Section VI-C, this joint processing
can lead to a more accurate estimation of the TIDs compared
to a sequential processing in which the TDRS reports are not
grouped and are processed as soon as they are received.

III. SYSTEM MODEL AND STATISTICAL FORMULATION

This section presents the system model underlying the pro-
posed multisensor MTT algorithm and a corresponding statis-
tical (Bayesian) formulation.

A. Target States, Existence Indicators, and TIDs

We consider K potential targets (PTs) indexed by k∈K ,
{1, . . . ,K}. Note that K is the maximum possible number of

actual targets.1 The state of PT k at time n is represented by
the vector xn,k and consists of the PT’s position and, possibly,
further parameters, e.g., the PT’s velocity. The existence of PT
k at time n is indicated by the binary variable rn,k ∈ {0, 1},
i.e., rn,k=1 if the PT exists and rn,k= 0 otherwise. The state
xn,k is formally defined also if rn,k = 0. The time evolution
of the state of a PT k that existed at time n−1 and still exists
at time n (i.e., for which rn−1,k = rn,k =1) is modeled as

xn,k = θ(xn−1,k,un,k), (1)

where θ(·) is some possibly nonlinear state transition function
and un,k is a driving process that is independent and identi-
cally distributed (iid) across n and k with a known pdf f(u).
This time evolution model (dynamic model) defines the state
transition pdf f(xn,k|xn−1,k).

Each PT k has a TID τn,k. If PT k is cooperative, then τn,k∈
D={1, . . . , D}, and if it is noncooperative, we set τn,k = 0.
Nonexisting PTs (i.e., for which rn,k = 0) are noncooperative.
Note that an existing PT is noncooperative at time n either if
it is not equipped with a transmitter—thus, it is unable to send
reports to the TDRS—or if it is provided with a transmitter
but has not sent a report so far. In the latter case, an existing
noncooperative PT can, at any time, become cooperative by
sending a report to the TDRS, and, consequently, its TID can,
at any time n, transition from τn−1,k = 0 to τn,k ∈ D. The
TID of a cooperative PT, instead, is time-invariant. It will be
convenient to combine the state xn,k, existence variable rn,k,
and TID τn,k of PT k at time n into the augmented state yn,k,
[xT
n,k, rn,k, τn,k]T. Finally, we define the vectors xn , [xT

n,1,

. . . ,xT
n,K ]T, rn , [rn,1, . . . , rn,K ]T, τn , [τn,1, . . . , τn,K ]T,

and yn , [yT
n,1, . . . ,y

T
n,K ]T, as well as x , [xT

1, . . . ,x
T
n]T,

r, [rT
1, . . . , r

T
n]T, τ , [τ T

1 , . . . , τ
T
n]T, and y, [yT

1, . . . ,y
T
n]T.

Under the assumption that the augmented states yn evolve
according to a first-order Markov model [3] and the states, ex-
istence variables, and TIDs of different PTs evolve indepen-
dently,2 the joint pdf of all the augmented states at all times
factors as

f(y) = f(y0)

n∏
n′=1

f(yn′ |yn′−1)

=

K∏
k=1

f(y0,k)

n∏
n′=1

f(yn′,k|yn′−1,k), (2)

where f(y0) =
∏K
k=1 f(y0,k) is the prior joint pdf of all the

augmented states at time n = 0. To establish an expression
of the transition pdf f(yn,k|yn−1,k), we assume that (i) con-
ditioned on the previous TID τn−1,k, the previous existence
variable rn−1,k, and the current existence variable rn,k, the
current TID τn,k is statistically independent of the previous
state xn−1,k and the current state xn,k; and (ii) conditioned

1Introducing a maximum possible number of targets K leads to a pre-
dictable computational complexity. The resulting model is analogous to a
multi-Bernoulli birth process [28]. An alternative approach where the number
of PTs is time-varying is presented in [19].

2The independence assumption across PT states is commonly used in
MTT algorithms [3]. The independence across PT TIDs does not guarantee
that each cooperative PT has a different estimated TID value d ∈ D; in prac-
tice, however, this is ensured by the probabilistic data association algorithm
described in Section III-C.
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on xn−1,k and rn−1,k, xn,k and rn,k are statistically indepen-
dent of τn−1,k. We then obtain

f(yn,k|yn−1,k) = f(xn,k, rn,k, τn,k|xn−1,k, rn−1,k, τn−1,k)

= p(τn,k|xn,k, rn,k,xn−1,k, rn−1,k, τn−1,k)

× f(xn,k, rn,k|xn−1,k, rn−1,k, τn−1,k)

= p(τn,k|rn,k, rn−1,k, τn−1,k)

× f(xn,k, rn,k|xn−1,k, rn−1,k). (3)

Next, we establish expressions of the factors in the product
(3). To obtain an expression of p(τn,k|rn,k, rn−1,k, τn−1,k),
we recall that a nonexisting PT is noncooperative, i.e.,

p(τn,k|rn,k= 0, rn−1,k, τn−1,k) =

{
1 , τn,k= 0 ,

0 , τn,k∈D .
(4)

A PT that existed at time n− 1 and still exists at time n,
and that was noncooperative at time n−1, is, at time n, still
noncooperative with probability 1− pt

n,k or cooperative with
probability pt

n,k; in the latter case, its TID can take on any
value in D with equal probability, i.e.,

p(τn,k|rn,k=1, rn−1,k=1, τn−1,k= 0) =

{
1−pt

n,k , τn,k= 0 ,

pt
n,k/D, τn,k∈D.

Therefore, pt
n,k is the probability that the TID of the exist-

ing noncooperative PT k transitions from τn−1,k = 0 to any
τn,k ∈ D, or, in other words, the probability that the existing
noncooperative PT k becomes cooperative at time n. More-
over, a PT that existed at time n−1 and still exists at time n,
and that was cooperative at time n−1, is still cooperative at
time n, and its TID τn−1,k ∈ D does not change, i.e.,

p(τn,k|rn,k=1, rn−1,k=1, τn−1,k= d∈D) =

{
1 , τn,k= d,

0 , otherwise .

Finally, we assume that a newly confirmed PT (i.e., for which
rn−1,k = 0 and rn,k = 1) is noncooperative with probability
p0n,k or cooperative with probability 1−p0n,k; in the latter case,
its TID can take on any value in D with equal probability, i.e.,

p(τn,k|rn,k=1, rn−1,k= 0, τn−1,k)

=

{
p0n,k , τn,k= 0 ,(
1−p0n,k

)
/D, τn,k∈D.

An expression of the second factor in (3), f(xn,k, rn,k|
xn−1,k, rn−1,k), is provided by [18, Eqs. (5) and (6)]. These
equations involve a survival probability ps

n,k, a birth probabil-
ity pb

n,k, and a birth pdf fb(xn,k).

B. Observation Model

Let S0 , S ∪ {0} = {0, 1, . . . , S} denote the index set of
both the TIPS sensors (s ∈ S = {1, . . . , S}) and the TDRS
(s= 0), which will be generically referred to as data sources.
Furthermore let M (s)

n be the total number of observations pro-
duced by data source s∈S0 at time n. These observations are
represented by the vectors z(s)n,m ∈ Rd(s)z , with m ∈ M(s)

n ,
{1, . . . ,M (s)

n }. We also define the vectors z(s)n ,
[
z
(s)T
n,1 ,

. . . , z
(s)T

n,M
(s)
n

]T
, zn,

[
z
(0)T
n , . . . ,z

(S)T
n

]T
, and z , [zT

1, . . . ,z
T
n]T

as well as mn,
[
M

(0)
n , . . . ,M

(S)
n

]T
and m, [mT

1, . . . ,m
T
n]T.

A TIPS sensor s∈S detects an existing PT k at time n, in
the sense that PT k generates a measurement z(s)n,m, with prob-
ability P

(s)
d (xn,k). The dependence of z(s)n,m on the PT state

xn,k is modeled by the likelihood function f
(
z
(s)
n,m

∣∣xn,k). Fur-
thermore, we assume that the number of false alarms generated
by TIPS sensor s is Poisson distributed with mean µ(s), and
each false alarm is distributed according to the pdf fFA

(
z
(s)
n,m

)
.

For the TDRS, the observation vector z(0)n,m represents the
mth cluster at time n. As mentioned in Section II, a cluster
consists of a group of reports with the same RID d∈D, or of
an individual report with an RID d /∈D. We denote by ζn,m ∈
D0 with D0 , D ∪ {0} = {0, 1, . . . , D} the RID of clus-
ter m, where3 ζn,m = 0 identifies the case d /∈D. Moreover,
we denote by Ln,m the number of self-measurements within
cluster m, by q(`)n,m with ` ∈ Ln,m , {1, . . . , Ln,m} the `th
self-measurement within cluster m, and by qn,m,

[
q
(1)T
n,m, . . . ,

q
(Ln,m)T
n,m

]T
the vector comprising all the self-measurements

in cluster m. The observation vector z(0)n,m is thus given by
z
(0)
n,m ,

[
qT
n,m, ζn,m

]T
. Each self-measurement q(`)n,m is gen-

erated by a cooperative PT k at some intermediate time
t
(`)
n,m ∈ (tn−1, tn]. (We use the convention that ` < `′ im-

plies t
(`)
n,m 6 t

(`′)
n,m.) The dependence of q(`)n,m on the state

of cooperative PT k is modeled by the likelihood function
f
(
q
(`)
n,m

∣∣x(`)
n,k,m

)
, where x(`)

n,k,m is the state of cooperative PT
k at time t(`)n,m.

Next, we consider the likelihood function f
(
z
(0)
n,m

∣∣xn,k,
τn,k

)
, which describes the statistical dependency of z(0)n,m =[

qT
n,m, ζn,m

]T
on xn,k and τn,k. We assume that (i) given the

cooperative PT state xn,k, qn,m is conditionally independent
of the TID τn,k and the RID ζn,m, and (ii) given the TID τn,k,
the RID ζn,m is conditionally independent of xn,k. With these
assumptions, we obtain

f
(
z(0)n,m

∣∣xn,k, τn,k) = f
(
qn,m, ζn,m

∣∣xn,k, τn,k)
= f(qn,m|ζn,m,xn,k, τn,k)p(ζn,m|xn,k, τn,k)

= f(qn,m|xn,k)p(ζn,m|τn,k). (5)

The likelihood function f(qn,m|xn,k), which was not re-
ported in our previous works [26], [27], is derived in the
supplementary material manuscript [29]; this derivation in-
volves the previously introduced function f

(
q
(`)
n,m

∣∣x(`)
n,k,m

)
.

For an expression of the factor p(ζn,m|τn,k), we note the
following facts about the RID ζn,m of a report received by
the TDRS and transmitted by a cooperative PT k with TID
τn,k ∈D: (i) ζn,m coincides with τn,k with probability pc

n,m;
(ii) it is corrupted and does not belong to D with probability
pe
n,m; and (iii) it is corrupted and belongs to D but is different

from τn,k with probability (1−pc
n,m−pe

n,m)/(D−1). That is,

p(ζn,m|τn,k) =


pc
n,m , ζn,m= τn,k,

pe
n,m , ζn,m= 0,

1−pc
n,m−pe

n,m

D−1
, ζn,m∈D\{τn,k} ,

3Note that “τn,k = 0” and “ζn,m = 0” have different meanings: the
former means that PT k is noncooperative, whereas the latter means that the
mth report received by the TDRS contains a corrupted RID d /∈D.
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for τn,k ∈D. (For τn,k = 0, i.e., for noncooperative PTs, the
pmf p(ζn,m|τn,k) is not defined since noncooperative PTs do
not send TDRS reports.) We note that pc

n,m is the probability
that the PT-to-TDRS transmission is successful and without
errors, and pe

n,m is the probability that there is an error result-
ing in an RID ζn,m /∈D. In particular, setting pc

n,m+pe
n,m = 1

excludes the possibility of a transmission error resulting in an
RID ζn,m ∈ D that differs from the transmitted TID τn,k.

C. Observation-Origin Uncertainty

The TIPS and TDRS observations have an uncertain ori-
gin, since it is not known from which PTs they originate, and
TIPS observations may also be false alarms. To model this
observation-origin uncertainty, we make two assumptions. For
any data source s ∈ S0, the point-target assumption [1], [3]
states that at each time step and at each data source, an exist-
ing PT can generate at most one observation and an observa-
tion can originate from at most one existing PT. Furthermore,
the no-false-alarms assumption states that the TDRS (s = 0)
cannot produce false alarms, i.e., each TDRS observation must
originate from an existing cooperative PT.4 This implies that,
at each time step n, the number of cooperative PTs, denoted
N(τn), cannot be smaller than the number of TDRS clusters,
i.e., M (0)

n 6N(τn). Note that N(τn) =
∑K
k=1(1 − 1(τn,k)).

An association between the K PTs and the M
(s)
n observa-

tions produced by data source s∈S0 at time n will be called
admissible if it satisfies the above two assumptions.

The PT-observation association for data source s ∈ S0 at
time n can be described by the PT-oriented association vector
a
(s)
n ,

[
a
(s)
n,1, . . . , a

(s)
n,K

]T
and alternatively by the observation-

oriented association vector b(s)n ,
[
b
(s)
n,1, . . . , b

(s)

n,M
(s)
n

]T
[19],

[30]. Here, a(s)n,k is defined as m ∈ M(s)
n if PT k generates

observation m and 0 if PT k does not generate any observation,
and b(s)n,m is defined as k∈K if observation m originates from
PT k and 0 if observation m does not originate from a PT. We
also define the vectors an ,

[
a
(0)T
n , . . . ,a

(S)T
n

]T
, bn ,

[
b
(0)T
n ,

. . . , b
(S)T
n

]T
, a,

[
aT
1, . . . ,a

T
n

]T
, and b,

[
bT
1, . . . , b

T
n

]T
.

The alternative descriptions of a PT-observation association
that are provided by the association vectors a(s)

n and b(s)n are
equivalent, because, after M (s)

n is observed, a(s)
n can be de-

rived directly from b
(s)
n and vice versa. However, using both

a
(s)
n and b(s)n in parallel makes it possible to mathematically

characterize the admissibility of any PT-observation associa-
tion via an indicator function Ψ(s)

(
a
(s)
n , b

(s)
n

)
that factors into

KM
(s)
n component indicator functions. More specifically, we

define Ψ(s)
(
a
(s)
n , b

(s)
n

)
to be 1 if a(s)

n and b(s)n describe the
same admissible association event, and to be 0 otherwise. Then

Ψ(s)
(
a(s)
n , b(s)n

)
=

K∏
k=1

M(s)
n∏

m=1

ψ(s)
(
a
(s)
n,k, b

(s)
n,m

)
, (6)

4From now on, we will speak of “cooperative PTs” instead of “existing
cooperative PTs.” Indeed, we recall from Section III-A that a nonexisting PT
is noncooperative; as a consequence, a cooperative PT necessarily exists, i.e.,
τn,k ∈ D implies rn,k = 1.

where the factors ψ(s)
(
a
(s)
n,k, b

(s)
n,m

)
are given as follows. For

s ∈ S (TIPS sensor), ψ(s)
(
a
(s)
n,k, b

(s)
n,m

)
expresses the point-

target assumption and is thus 0 if a(s)n,k=m and b(s)n,m 6=k or if
a
(s)
n,k 6=m and b

(s)
n,m = k, and 1 otherwise. For s= 0 (TDRS),

ψ(0)
(
a
(0)
n,k, b

(0)
n,m

)
also takes into account the no-false-alarms

assumption, and thus ψ(0)
(
a
(0)
n,k, b

(0)
n,m

)
is 0 if a(0)n,k = m and

b
(0)
n,m 6= k or if a(0)n,k 6= m and b

(0)
n,m = k or if b(0)n,m = 0,

and 1 otherwise. Note that each component indicator function
ψ(s)

(
a
(s)
n,k, b

(s)
n,m

)
corresponds to one individual PT-observation

association, i.e., to one pair (k,m) with k∈K and m∈M(s)
n .

The factorization (6) is key as it enables the development of
scalable message passing algorithms [18], [19], [30].

D. Joint Prior Distribution
Next, we derive a factorization of the joint prior distribution

of the association variables a and b, the numbers of observa-
tions m, and the augmented PT states y, i.e., f(a, b,m,y).
Because f(a, b,m,y) = p(a, b,m|y)f(y), with f(y) given
by (2), it remains to consider p(a, b,m|y). Assuming that
a
(s)
n , b(s)n , and M

(s)
n are conditionally independent, given y,

across time n and data source index s∈S0, and that, given yn,
they are conditionally independent of all the past augmented
states yn′ with n′ < n [1], [3], we obtain

p(a, b,m|y) =

n∏
n′=1

p
(
a
(0)
n′ , b

(0)
n′ ,M

(0)
n′

∣∣yn′)
×

S∏
s=1

p
(
a
(s)
n′ , b

(s)
n′ ,M

(s)
n′

∣∣yn′) . (7)

For the TDRS, i.e., s = 0, the pmf p
(
a
(0)
n , b

(0)
n ,M

(0)
n

∣∣yn)
can be factorized by using the chain rule as follows:

p
(
a(0)
n , b(0)n ,M (0)

n

∣∣yn) = p
(
b(0)n

∣∣a(0)
n ,M (0)

n ,yn
)

× p
(
a(0)
n

∣∣M (0)
n ,yn

)
p
(
M (0)
n

∣∣yn) . (8)

Let us consider the three factors in this expression. For the first
factor, since b(0)n is fully described by a(0)

n and M (s)
n , we have

p
(
b
(0)
n

∣∣a(0)
n ,M

(0)
n ,yn

)
= p

(
b
(0)
n

∣∣a(0)
n ,M

(s)
n

)
. Then, using the

indicator function Ψ(0)
(
a
(0)
n , b

(0)
n

)
, which is 1 if a(s)

n and b(s)n
describe the same admissible association event and 0 other-
wise, we can write p

(
b
(0)
n

∣∣a(0)
n ,M

(s)
n

)
= Ψ(0)

(
a
(0)
n , b

(0)
n

)
. To

obtain the second factor, p
(
a
(0)
n

∣∣M (0)
n ,yn

)
, we observe that,

given M
(0)
n and yn, the number of PT-cluster associations

that satisfy the point-target and no-false-alarms assumptions
is equivalent to the number of draws of M (0)

n PTs out of the
N(τn) cooperative PTs, where the draws are without replace-
ment and with the drawing order respected. Assuming each of
these draws equally likely, it can be shown that

p
(
a(0)
n

∣∣M (0)
n ,yn

)
= p
(
a(0)
n

∣∣M (0)
n ,xn, rn, τn

)
=

(
N(τn)−M (0)

n

)
!

N(τn)!

K∏
k=1

λ(rn,k, τn,k, a
(0)
n,k) . (9)

Here, the function λ(rn,k, τn,k, a
(0)
n,k) is defined as 1 if rn,k =

1 and τn,k 6= 0, and as 1(a
(0)
n,k) otherwise. This function en-

sures that a PT that is nonexisting (rn,k = 0) or existing
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and noncooperative (rn,k = 1 and τn,k = 0) cannot be as-
sociated to a TDRS cluster. Finally, the third factor in (8),
p
(
M

(0)
n

∣∣yn) = p
(
M

(0)
n

∣∣xn, rn, τn), expresses the prior dis-
tribution of the number of TDRS clusters. In the absence of
further knowledge, we assume that M (0)

n is uniform between
0 and N(τn), i.e., p

(
M

(0)
n

∣∣xn, rn, τn) = 1/
(
N(τn) + 1

)
if

M
(0)
n 6 N(τn) and 0 otherwise. Thus, by inserting (9) into

(8), and using (6), we obtain

p
(
a(0)
n , b(0)n , M (0)

n

∣∣yn) = p
(
a(0)
n , b(0)n , M (0)

n

∣∣xn, rn, τn)
= χ

(
τn,M

(0)
n

) K∏
k=1

λ(rn,k, τn,k, a
(0)
n,k)

M(0)
n∏

m=1

ψ(0)
(
a
(0)
n,k, b

(0)
n,m

)
,

(10)where

χ
(
τn,M

(0)
n

)
,


(
N(τn)−M (0)

n

)
!(

N(τn) + 1
)
!
, M (0)

n 6N(τn)

0 , otherwise.

Note that expression (10) does not depend on xn,k.
For a TIPS sensor s∈S, the joint prior distribution p

(
a
(s)
n ,

b
(s)
n ,M

(s)
n

∣∣yn) was derived in [18], and is reported here for
completeness:

p
(
a(s)
n , b(s)n , M (s)

n

∣∣yn) = C
(
M (s)
n

) K∏
k=1

h(s)
(
yn,k, a

(s)
n,k;M (s)

n

)
×
M(s)

n∏
m=1

ψ(s)
(
a
(s)
n,k, b

(s)
n,m

)
. (11)

Here, C
(
M

(s)
n

)
, e−µ

(s)

(µ(s))M
(s)
n /M

(s)
n !, and h(s)

(
yn,k,

a
(s)
n,k;M

(s)
n

)
= h(s)

(
xn,k, rn,k, τn,k, a

(s)
n,k;M

(s)
n

)
, s∈S, is de-

fined for rn,k = 1 as P (s)
d (xn,k)/µ(s) if a(s)n,k ∈ M

(s)
n and

1− P (s)
d (xn,k) if a(s)n,k=0, and for rn,k=0 as 1

(
a
(s)
n,k

)
. Note

that h(s)
(
yn,k, a

(s)
n,k;M

(s)
n

)
, s∈S , does not depend on τn,k.

Finally, by inserting (10) and (11) into (7), the overall pmf
p(a, b,m|y) = p(a, b,m|x, r, τ ) becomes

p(a, b,m|x, r, τ ) = CM(m)

n∏
n′=1

χ
(
τn′ ,M

(0)
n′

)
×

S∏
s=0

K∏
k=1

h(s)
(
xn′,k, rn′,k, τn′,k, a

(s)
n′,k;M

(s)
n′

)

×
M

(s)

n′∏
m=1

ψ(s)
(
a
(s)
n′,k, b

(s)
n′,m

)
, (12)

where CM(m) ,
∏n
n′=1

∏S
s=1 C

(
M

(s)
n′

)
and h(0)(xn,k, rn,k,

τn,k, a
(0)
n,k;M

(0)
n ) is defined for rn,k = 1 as 1 if τn,k 6= 0 and

1(a
(0)
n,k) if τn,k = 0, and for rn,k = 0 as 1(a

(0)
n,k). We ob-

serve that expression (12) is defined only if rn,k = 0 implies
τn,k = 0. Indeed, for other choices of r and τ , the value of
p(a, b,m|x, r, τ ) is irrelevant to the joint posterior distribu-
tion provided later in Section IV, since these choices yield
p(τn,k|rn,k, rn−1,k, τn−1,k) = 0 (see (4)). We emphasize that
the formulation of the joint prior pmf in (12) in terms of both
the association vectors a and b allows the joint prior pmf
to factorize with respect to both k and m; this factorization,

in turn, is key to developing a probabilistic data association
scheme with reduced complexity [18], [19], [30].

E. Likelihood Function

The likelihood function f(z|y,a, b,m) expresses the sta-
tistical dependence of the observation z on the augmented
states y, the association vectors a and b, and the number-of-
observations vector m. Since the information carried by a and
by b is equivalent once m is observed, we have f(z|y,a, b,
m) = f(z|y,a,m). Then, under the assumptions that given
y, a, and m, the observations z(s)n ∈Rd

(s)
z M(s)

n are condition-
ally independent across time n and data source index s∈S0,
and that, given yn, a(s)n , and M (s)

n , they are conditionally in-
dependent of all the past variables yn′ , a

(s)
n′ , and M

(s)
n′ with

n′ < n, and of all the current variables a(s
′)

n and M
(s′)
n re-

lated to source indexes s′ ∈ S \ {s}, the likelihood function
can be factorized as [1], [3]

f(z|y,a,m) =
n∏

n′=1

f
(
z
(0)
n′

∣∣yn′ ,a(0)
n′ ,M

(0)
n′

)
×

S∏
s=1

f
(
z
(s)
n′

∣∣yn′ ,a(s)
n′ ,M

(s)
n′

)
. (13)

Assuming moreover that the clusters z(0)n,m are conditionally
independent given yn, a(0)

n , and M
(0)
n , the TDRS likelihood

function f
(
z
(0)
n

∣∣yn,a(0)
n ,M

(0)
n

)
can be written as

f
(
z(0)n

∣∣yn,a(0)
n ,M (0)

n

)
=

M(0)
n∏

m=1

f
(
z(0)n,m

∣∣yn,a(0)
n

)
=

∏
k∈K(0)

n,a

f
(
z
(0)

n,a
(0)
n,k

∣∣∣xn,k, τn,k) (14)

if the dimension of the vector z(0)n is consistent with M (0)
n in

the sense that z(0)n ∈ Rd(0)z M(0)
n , and f

(
z
(0)
n

∣∣yn,a(0)
n ,M

(0)
n

)
=

0 otherwise. Here, K(0)
n,a ,

{
k ∈K : rn,k = 1, τn,k 6= 0, a

(0)
n,k ∈

M(0)
n

}
is the set of cooperative PTs that generate a cluster of

TDRS reports at time n. We note that expression (14) is de-
fined only if rn,k = 0 implies τn.k = 0, a(0)

n satisfies the point-
target and no-false-alarms assumptions, and M

(0)
n 6 N(τn).

Indeed, for other choices of yn, a(0)
n , or M (0)

n , the value of
f
(
z
(0)
n

∣∣yn,a(0)
n ,M

(0)
n

)
is irrelevant to the joint posterior distri-

bution since these choices yield p(τn,k|rn,k, rn−1,k, τn−1,k) =

0 (see (4)) or p
(
a
(0)
n , b

(0)
n ,M

(0)
n

∣∣xn, rn, τn) = 0 (see (10)). By
extending the product in (14) to all k∈K, the TDRS likelihood
function can be expressed as

f
(
z(0)n

∣∣yn,a(0)
n ,M (0)

n

)
=

K∏
k=1

g(0)
(
yn,k, a

(0)
n,k; z(0)n

)
, (15)

with g(0)
(
yn,k, a

(0)
n,k; z

(0)
n

)
= g(0)

(
xn,k, rn,k, τn,k, a

(0)
n,k; z

(0)
n

)
defined for rn,k =1 and τn,k 6= 0 as f

(
z
(0)
n,m

∣∣xn,k, τn,k) (see
(5)) if a(0)n,k=m∈M(0)

n and 1 if a(0)n,k=0, and for rn,k=0 or
τn,k = 0 as 1.

For the TIPS sensors, the likelihood function f
(
z
(s)
n

∣∣yn,
a
(s)
n ,M

(s)
n

)
, s∈S , is given by [18]
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f
(
z(s)n

∣∣yn,a(s)
n ,M (s)

n

)
= C

(
z(s)n

) K∏
k=1

g(s)
(
yn,k, a

(s)
n,k; z(s)n

)
(16)

if the dimension of the vector z(s)n is consistent with M (s)
n , i.e.,

z
(s)
n ∈ Rd(s)z M(s)

n , and f
(
z
(s)
n

∣∣yn,a(s)
n ,M

(s)
n

)
= 0 otherwise.

Here, C
(
z
(s)
n

)
,
∏M(s)

n
m=1 fFA(z

(s)
n,m), and g(s)

(
yn,k, a

(s)
n,k; z

(s)
n

)
=g(s)

(
xn,k, rn,k, τn,k, a

(s)
n,k; z

(s)
n

)
, s∈S , is defined for rn,k=

1 as f
(
z
(s)
n,m

∣∣xn,k)/fFA
(
z
(s)
n,m

)
if a(s)n,k =m ∈M(s)

n and 1 if
a
(s)
n,k=0, and for rn,k=0 as 1. Note that g(s)

(
yn,k, a

(s)
n,k; z

(s)
n

)
,

s ∈ S, does not depend on τn,k. Similarly to (14), expres-
sion (16) is defined only if rn,k = 0 implies τn.k = 0 and
a
(s)
n satisfies the point-target assumption. Indeed, for other

choices of yn or a(s)
n , the value of f

(
z
(s)
n

∣∣yn,a(s)
n ,M

(s)
n

)
,

s ∈ S is irrelevant to the joint posterior distribution since
these choices yield p(τn,k|rn,k, rn−1,k, τn−1,k) = 0 (see (4))
or p

(
a
(s)
n , b

(s)
n ,M

(s)
n

∣∣xn, rn, τn) = 0 (see (11)).
Finally, by inserting (15) and (16) into (13), we obtain the

likelihood function

f(z|y,a,m) = CS(z)

n∏
n′=1

S∏
s=0

K∏
k=1

g(s)
(
yn′,k, a

(s)
n′,k; z

(s)
n′

)
,

(17)

with CS(z) ,
∏n
n′=1

∏S
s=1 C

(
z
(s)
n′

)
.

IV. POSTERIOR DISTRIBUTION AND FACTOR GRAPH

We next consider the joint posterior pdf f(y,a, b|z), which
is needed for PT existence confirmation and PT state estima-
tion. Indeed, the ultimate objective of the proposed algorithm
is to determine the existence of the PTs k∈K and to estimate
the PTs’ states xn,k and TIDs τn,k from all the current and
past observations, i.e., from z. We will confirm that PT k ex-
ists if its posterior existence probability p(rn,k=1|z) is above
a threshold Pth [31, Ch. 2]. If confirmed, then estimates of its
state and TID are obtained as x̂n,k =

∫
xn,k f(xn,k|rn,k =

1, z)dxn,k and τ̂n,k=arg max τn,k∈D0
p(τn,k|rn,k=1, z) , re-

spectively [31, Ch. 4], where, as defined earlier, D0 = {0, 1,
. . . , D}. Here, the pmfs p(rn,k|z) and p(τn,k|rn,k = 1, z)
and the pdf f(xn,k|rn,k = 1, z) can be calculated by sim-
ple elementary operations—including marginalizations—from
f(xn,k, rn,k, τn,k|z), which, in turn, is a marginal density of
the joint posterior pdf f(y,a, b|z). To obtain an expression of
f(y,a, b|z), we recall that, once m is observed, the informa-
tion carried by a and by b is equivalent, and we use Bayes’
rule. That is,

f(y,a, b|z) =
∑
m′

f(y,a, b,m′|z)

∝
∑
m′

f(z|y,a, b,m′)p(a, b,m′|y)f(y)

=
∑
m′

f(z|y,a,m′)p(a, b,m′|y)f(y) . (18)

Here,
∑
m′ is the summation over all elements in N(S+1)n

0 . Re-
calling the expression of f(z|y,a,m) in (13) and the fact that
f
(
z
(s)
n

∣∣yn,a(s)
n ,M

(s)
n

)
, s∈S0 involved in (13) is nonzero only

if z(s)n is consistent with M
(s)
n , expression (18) simplifies to

f(y,a, b|z) ∝ f(z|y,a,m)p(a, b,m|y)f(y) .

Then, by inserting the expressions (17) for f(z|y,a,m), (12)
for p(a, b,m|y), and (2) for f(y), we finally obtain

f(y,a, b|z) ∝

(
K∏
k′=1

f(y0,k′)

)
n∏

n′=1

χ
(
τn′ ,M

(0)
n′

)
×

K∏
k=1

f(yn′,k|yn′−1,k)

S∏
s=0

υ(s)
(
yn′,k, a

(s)
n′,k; z

(s)
n′

)

×
M

(s)

n′∏
m=1

ψ(s)
(
a
(s)
n′,k, b

(s)
n′,m

)
, (19)

where

υ(s)
(
yn,k, a

(s)
n,k; z(s)n

)
, h(s)

(
yn,k, a

(s)
n,k;M (s)

n

)
×g(s)

(
yn,k, a

(s)
n,k; z(s)n

)
. (20)

Note that since h(s)(yn,k, a
(s)
n,k;M

(s)
n ), s ∈ S and g(s)(yn,k,

a
(s)
n,k; z

(s)
n ), s ∈ S do not depend on τn,k, it follows that

υ(s)
(
yn,k, a

(s)
n,k; z

(s)
n

)
, s∈S does not depend on τn,k.

The factorization (19) is represented by the factor graph
shown for one time step n in Fig. 2. This factor graph contains
three different types of loops for each time step n. Within each
block corresponding to a data source s∈S0, there are “inner”
loops across association variables a(s)n,k, k∈K and b(s)n,m, m∈
M(s)

n ; these correspond to the data association constraints.
Furthermore, there are “middle” loops across different data
source blocks; these correspond to the incorporation of the
observations provided by all the data sources s∈S0. Finally,
there is an “outer” loop across all the PTs, which is due to
the factor χ

(
τn,M

(0)
n

)
.

V. SPA-BASED DATA FUSION AND
MULTITARGET TRACKING

The posterior pdfs f(yn,k|z) = f(xn,k, rn,k, τn,k|z), k∈K,
used for PT existence confirmation and PT state estimation as
discussed in Section IV, are marginal densities of the joint
posterior pdf f(y,a, b|z). Direct marginalization is gener-
ally infeasible as it requires high-dimensional integrations and
summations. However, following [18], approximations of the
marginal posterior pdfs f(yn,k|z) can be calculated efficiently
by applying the SPA [21], [22] to the factor graph in Fig. 2.
Because that factor graph contains loops, the SPA is executed
iteratively. We will compute the individual SPA messages in
an order that is defined by the following rules: (i) Messages
are not sent backward in time; (ii) iterative message passing
is performed within the inner loops and the outer loop, and
not for the middle loops. As a consequence, the messages at
different data source blocks (ηk, βk, νmk, and ξkm in Fig. 2)
can be computed in parallel, without any direct interaction be-
tween them.

In the next subsections, we will present expressions of the
SPA messages that are passed between the various nodes of
the factor graph in Fig. 2, as shown there. Some of these ex-
pressions were already provided in [26]. The expressions are
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′
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Fig. 2. Factor graph representing the factorization (19) of the joint poste-
rior pdf f(y,a, b|z) for one time step n. For conciseness, the indices n,
j (inner-loop iteration index), and i (outer-loop iteration index) are omitted,
and the following short notations are used: f̃−k , f̃(yn−1,k), yk , yn,k ,
ak , a

(s)
n,k , bm , b

(s)
n,m, fk , f(yn,k|yn−1,k), χ , χ

(
τn,M

(0)
n

)
, υk ,

υ(s)
(
yn,k, a

(s)
n,k;z

(s)
n

)
, ψkm , ψ(s)

(
a
(s)
n,k, b

(s)
n,m

)
, αk , α(yn,k), δk ,

δ(i)(yn,k), εk , ε(i)(yn,k), γ
(s)
k , γ(s)(i)(yn,k), ηk , η(s)(i)

(
a
(s)
n,k

)
,

βk,β(s)(i)
(
a
(s)
n,k

)
, νmk, ν

(s)(j)
m→k

(
a
(s)
n,k

)
, and ξkm, ξ

(s)(j)
k→m

(
b
(s)
n,m

)
.

obtained by direct application of the general SPA rules de-
scribed in [21], [22], and are introduced in what follows in
the order in which they are calculated at each time step n. We
will denote by I and i∈ {1, . . . , I} the number of iterations
and the iteration index, respectively, for the outer loop, and
by J and j∈{1, . . . , J} the number of iterations and the iter-
ation index, respectively, for the inner loop. Furthermore, the
final approximation of the marginal posterior pdf f(yn,k|z)
is denoted by f̃(yn,k) and referred to as a belief.

A. Prediction

In the prediction step, the beliefs computed at the previ-
ous time step, f̃(yn−1,k) = f̃(xn−1,k, rn−1,k, τn−1,k), are
propagated to the current time n and converted into messages
α(yn,k) = α(xn,k, rn,k, τn,k) according to

α(xn,k, rn,k, τn,k)

=
∑

rn−1,k∈{0,1}

∑
τn−1,k∈D0

∫
f̃(xn−1,k, rn−1,k, τn−1,k)

×f(xn,k, rn,k, τn,k|xn−1,k, rn−1,k, τn−1,k)dxn−1,k

=
∑

rn−1,k∈{0,1}

∑
τn−1,k∈D0

p(τn,k|rn,k, rn−1,k, τn−1,k)

×
∫
f(xn,k, rn,k|xn−1,k, rn−1,k)

× f̃(xn−1,k, rn−1,k, τn−1,k)dxn−1,k , (21)

where we used (3) for f(xn,k, rn,k, τn,k|xn−1,k, rn−1,k,
τn−1,k). As shown in Fig. 2, the messages α(xn,k, rn,k, τn,k)
are passed from the factor nodes “fk” to the variable nodes
“yk”. From (21) and the fact that f̃(xn−1,k, rn−1,k, τn−1,k)
is normalized, it follows that α(xn,k, rn,k, τn,k) is normalized
too, i.e.,

∑
rn,k∈{0,1}

∑
τn,k∈D0

∫
α(xn,k, rn,k, τn,k)dxn,k=1.

It will be convenient to introduce

αn,k ,
∑

τn,k∈D0

∫
α(xn,k, 0, τn,k)dxn,k

=

∫
α(xn,k, 0, 0)dxn,k

= 1−
∑

τn,k∈D0

∫
α(xn,k, 1, τn,k)dxn,k , (22)

where the second step follows by using (4) in (21). We note
that 1−αn,k =

∑
τn,k∈D0

∫
α(xn,k, 1, τn,k)dxn,k can be in-

terpreted as the predicted probability of existence of PT k.

B. Outer Loop

The outer loop is composed of the factor node “χ”, the
variable nodes “yk”, and the blocks designated “Data Source”
in Fig. 2; the latter process the observations provided by the
TIPS sensors and the TDRS. The messages passed from “χ”
to “yk” in the ith outer-loop iteration are calculated as

δ(i)(yn,k) =
∑

τ−n,k∈D
K−1
0

∑
r−n,k∈{0,1}K−1

χ
(
τn,M

(0)
n

)
×

∏
k′∈K\{k}

∫
ε(i)(yn,k′)dxn,k′

=
∑

τ−n,k∈D
K−1
0

χ
(
τn,M

(0)
n

) ∏
k′∈K\{k}

ε̃(i)(τn,k′) .

(23)
Here, r−n,k , [rn,1, . . . , rn,k−1, rn,k+1, . . . , rn,K ]T is the vec-
tor of all the existence variables except the kth; τ−n,k, [τn,1,
. . . , τn,k−1, τn,k+1, . . . , τn,K ]T is the vector of all the TID
variables except the kth; ε(i)(yn,k) are the messages passed
from “yk” to “χ”, which are calculated as

ε(i)(yn,k) = α(yn,k)

S∏
s=0

γ(s)(i)(yn,k); (24)

and

ε̃(i)(τn,k) ,
∑

rn,k∈{0,1}

∫
ε(i)(xn,k, rn,k, τn,k)dxn,k .

The messages γ(s)(i)(yn,k) in (24), which are passed from
the data source blocks to the respective nodes “yk”, will be
presented in Section V-D. We finally note that, according to
expression (23), δ(i)(yn,k) depends only on τn,k. Thus, we
will denote it as δ̃(i)(τn,k).

C. Observation Evaluation

A further operation within the ith outer-loop iteration is the
calculation of the messages

β(s)(i)
(
a
(s)
n,k

)
=
∑

τn,k∈D0

δ̃(i−1)(τn,k)
∑

rn,k∈{0,1}

∫
α(xn,k, rn,k, τn,k)

× υ(s)
(
xn,k, rn,k, τn,k, a

(s)
n,k; z(s)n

)
dxn,k (25)

for all PTs k∈K and data sources s∈S0, with δ̃(0)(τn,k) = 1.
These messages are passed from the factor nodes “υk” to the
variable nodes “ak”. Differently from the previously presented
messages, β(s)(i)

(
a
(s)
n,k

)
involves the observation z(s)n . Let us

introduce the shorthand β(s)(i)
n,k (m) , β(s)(i)

(
a
(s)
n,k=m

)
. Then,

for the TDRS, i.e., s = 0, using (20) and the definitions of
the functions h(0)

(
xn,k, rn,k, τn,k, a

(0)
n,k;M

(0)
n

)
and g(0)

(
xn,k,
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rn,k, τn,k, a
(0)
n,k; z

(0)
n

)
from Section III-D and Section III-E, re-

spectively, as well as (5), we obtain for all m∈M(0)
n

β
(0)(i)
n,k (m) =

∑
τn,k∈D

δ̃(i−1)(τn,k) p(ζn,m|τn,k)

×
∫
f(qn,m|xn,k)α(xn,k, 1, τn,k)dxn,k ,

and for m=0

β
(0)(i)
n,k (0) =

∑
τn,k∈D0

δ̃(i−1)(τn,k)

×
(
αn,k1(τn,k) +

∫
α(xn,k, 1, τn,k)dxn,k

)
,

where definition (22) has been used. For the TIPS sensors
s∈S , expression (25) specializes as follows:

β(s)(i)
(
a
(s)
n,k

)
= δ̃(i−1)(τn,k= 0)αn,k1

(
a
(s)
n,k

)
+
∑

τn,k∈D0

δ̃(i−1)(τn,k)

∫
α(xn,k, 1, τn,k)

× υ(s)
(
xn,k, 1, τn,k, a

(s)
n,k; z(s)n

)
dxn,k .

The messages β(s)(i)
(
a
(s)
n,k

)
are used for the iterative proba-

bilistic data association algorithm5 discussed next.

D. Inner Loop: Iterative Probabilistic Data Association

Iterative probabilistic data association corresponds to pass-
ing messages ν

(s)(j)
m→k

(
a
(s)
n,k

)
and ξ

(s)(j)
k→m

(
b
(s)
n,m

)
on the inner

loop. In the jth inner-loop iteration, following [30], these mes-
sages are calculated for each PT k ∈ K, data source s ∈ S0,
and observation m∈M(s)

n according to

ξ
(s)(j)
k→m

(
b(s)n,m

)
=

M(s)
n∑

a
(s)
n,k=0

ψ(s)
(
a
(s)
n,k, b

(s)
n,m

)
β(s)(i)

(
a
(s)
n,k

)
×

∏
m′∈M(s)

n \{m}

ν
(s)(j−1)
m′→k

(
a
(s)
n,k

)
(26)

and

ν
(s)(j)
m→k

(
a
(s)
n,k

)
=

K∑
b
(s)
n,m=0

ψ(s)
(
a
(s)
n,k, b

(s)
n,m

) ∏
k′∈K\{k}

ξ
(s)(j)
k′→m

(
b(s)n,m

)
.

(27)

(We note that these messages also depend on the outer-
loop iteration index i, which is omitted to simplify the no-
tation.) The iteration constituted by (26) and (27) is initial-
ized by ν

(s)(0)
m→k

(
a
(s)
n,k

)
= 1. After all the inner-loop iterations

j = 1, . . . , J have been performed, the messages ν(s)(J)m→k
(
a
(s)
n,k

)
are available. These messages are then used to calculate mes-
sages η(s)(i)

(
a
(s)
n,k

)
, which are passed from variable nodes “ak”

to factor nodes “υk”, according to

η(s)(i)
(
a
(s)
n,k

)
=

∏
m∈M(s)

n

ν
(s)(J)
m→k

(
a
(s)
n,k

)
. (28)

5We note that in an RFS-based filter derivation, probabilistic data as-
sociation can be interpreted as an approximation of multi-Bernoulli mixture
components by multi-Bernoulli components [24].

Algorithm 1 SPA-Based MTT Algorithm with TIPS-TDRS Fusion

Input: f̃(yn−1,k), zn.
Output: f̃(yn,k)

1: PREDICTION Compute α(yn,k) for all k∈K as in (21)
OUTER LOOP

2: δ(0)(yn,k)←− 1

3: for i = 1 to I do
OBSERVATION EVALUATION

4: for s = 0 to S do (in parallel)
5: Compute β(s)(i)(a

(s)
n,k) for all k∈K as in (25)

6: INNER LOOP Compute data association messages (26) and (27)
7: Compute η(s)(i)(a(s)n,k) for all k∈K as in (28)
8: Compute γ(s)(i)(yn,k) for all k∈K as in (29)
9: end for

10: Compute ε(i)(yn,k) for all k∈K as in (24)
11: Compute δ(i)(yn,k) for all k∈K as in (23)
12: end for
13: BELIEF COMPUTATION Compute f̃(yn,k) for all k∈K as in (30)

Finally, messages γ(s)(i)(yn,k), which are passed from factor
nodes “υk” to variable nodes “yk”, are calculated as

γ(s)(i)(yn,k) =

M(s)
n∑

a
(s)
n,k=0

υ(s)
(
yn,k, a

(s)
n,k; z(s)n

)
η(s)(i)

(
a
(s)
n,k

)
. (29)

Following [30] with certain modifications, an efficient im-
plementation of the above algorithm with a complexity of
O(KM

(s)
n ) per inner-loop iteration can be developed. This

implementation is based on the fact that, due to the definition
of the binary function ψ(s)

(
a
(s)
n,k, b

(s)
n,m

)
in Section III-C, the

expressions (26) and (27) can take on only two different val-
ues. A detailed derivation and formulation are provided in the
supplementary material manuscript [29].

E. Belief Calculation

After all the outer-loop iterations i = 1, . . . , I have been
performed, the messages δ̃(I)(τn,k) and γ(s)(I)(yn,k) are
available. The final step is to calculate the beliefs f̃(xn,k,
rn,k, τn,k) approximating the marginal posterior pdfs f(xn,k,
rn,k, τn,k|z) as

f̃(xn,k, rn,k, τn,k) =
1

Cn,k
α(xn,k, rn,k, τn,k) δ̃(I)(τn,k)

×
S∏
s=0

γ(s)(I)(xn,k, rn,k, τn,k) , (30)

where Cn,k is a normalization constant defined such that∑
rn,k∈{0,1}

∑
τn,k∈D0

∫
f̃(xn,k, rn,k, τn,k)dxn,k = 1.

F. Implementation and Complexity Reduction

A step-by-step summary of the proposed SPA-based MTT
algorithm with TIPS-TDRS fusion is provided in Algorithm 1.
A particle-based implementation can be obtained by extending
the algorithm presented in [18]. This implementation approxi-
mates the beliefs f̃(yn,k) as well as the messages α(yn,k) and
γ(s)(i)(yn,k) by a set of particles and corresponding weights
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[32], thereby avoiding the direct computation of integrals and
enabling a feasible computation of the messages and beliefs.

However, the computation of the message δ̃(i)(τn,k) can still
be expensive; indeed, according to (23), δ̃(i)(τn,k) is the sum
of (D + 1)K−1 terms, and thus its computation scales expo-
nentially in the number K of PTs. We therefore propose a
low-complexity (LC) computation in which δ̃(i)(τn,k) is ap-
proximated with only a single term, given by

δ̃(i)(τn,k) ≈ χ
(
τ ?n ,M

(0)
n

) ∏
k′∈K\{k}

ε̃(i)(τ?n,k′) , (31)

where τ ?n , [τ?n,1, . . . , τ
?
n,k−1, τn,k, τ

?
n,k+1, . . . , τ

?
n,K ]T with

τ?n,k′ , arg max τn,k′∈D0
ε̃(i)(τn,k′) for k′ 6= k. To motivate

(31), we note that at each step of the outer loop, ε̃(i)(τn,k)
can be interpreted as the (nonnormalized) probability distri-
bution of τn,k, the TID of PT k, after observation evaluation
and data association. The messages ε̃(i)(τn,k′) coming from
all PTs k′ 6= k are then used to obtain δ̃(i)(τn,k). More specif-
ically, according to the summation in (23), all the possible
combinations between the TIDs in D0 and the PTs (except
the kth) are evaluated and weighted by χ(τn,M

(0)
n ), and the

corresponding terms are marginalized out. The LC approxima-
tion (31) then corresponds to considering only the single most
likely of these combinations. In Section VI, we will verify
experimentally the validity of this approximation.

VI. RESULTS FOR SIMULATED DATA

We evaluate the performance of the proposed MTT algo-
rithm with TIPS-TDRS fusion in a simulated scenario, and
we compare it with that of three alternative algorithms.

A. Experiment Setup

The simulated scenario consists of nine targets that are mov-
ing in a region of interest (ROI) with a constant velocity of 4
m/s during 200 time steps, with time step duration T = 10 s.
The target trajectories, whose starting points are equally
spaced on a circle with center (0, 0) and radius 4 km, and
the ROI are shown in Fig. 3. Five targets appear at n=1 and
disappear at n=200, and the other four targets appear at n=5
and disappear at n = 195. Six randomly selected targets are
cooperative and transmit TDRS reports between n= 10 and

x1 [km]

x
2

[k
m

]

−16 −12 −8 −4 0 4 8 12 16
−8

−6

−4

−2

0

2
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6

8

TIPS Sensor

Trajectory Start Point

1 km Radius Circle

Fig. 3. Simulated scenario: ROI, TIPS sensors (black bullets), and target
trajectories. The star marks the initial position of the highlighted trajectory;
the other trajectories are rotated (by 40 degrees) versions of the former.

n = 190; the number of TDRS reports transmitted per time
step interval is a random variable that is Poisson distributed
with mean 0.5 for three of the six cooperative targets and 2
for the other three cooperative targets.

The PT states xn,k are composed of the 2D position vector
x̌n,k and the 2D velocity vector ˙̌xn,k, i.e., xn,k=[x̌T

n,k, ˙̌xT
n,k]T.

For the dynamic model in (1), we choose the nearly constant
velocity model, i.e., xn,k = Fxn−1,k + Gun,k, where F ∈
R4×4 and G ∈ R4×2 are defined as in [33, Sec. 6.3.2] (this
involves the time step duration T ) and un,k ∼N (0, σ2

u I2) is
a 2D zero-mean iid Gaussian random vector that is also iid
across n and k, with σu =0.05 m/s2.

There are two TIPS sensors (i.e., S = 2), which generate
range-bearing measurements z(s)n,m =

[
z
(s)
n,m,r , z

(s)
n,m,b

]T
, s ∈ S.

The range measurement z(s)n,m,r is a Gaussian random vari-
able with mean

∥∥x̌n,k−ρ(s)∥∥ and standard deviation σ
(s)
r =

σr = 250 m, and the bearing measurement z(s)n,m,b is a von
Mises random variable with mean ∠(x̌n,k − ρ(s)) and con-
centration parameter κ(s)b = κb = 500 [34, Ch. 3.5.4]. Here,
ρ(1) = [15, 0]T km and ρ(2) = [−15, 0]T km are the positions
of the TIPS sensors. Furthermore, the mean number of false
alarms is µ(s) = 2, and the false alarm pdf fFA(z

(s)
n,m) is uni-

form on the ROI and zero outside. The detection probability
is P (s)

d (xn,k)=P
(s)
d =0.5.

The TDRS self-measurement is modeled as q(`)n,m= x̌
(`)
n,k,m+

v
(`)
n,m, where v(`)n,m∼N (0, σ2

v I2) with σv = 10 m is a 2D zero-
mean iid Gaussian random vector that is also iid across n,
m, and `. The ID set is chosen as D = {1, 2, . . . , 6}. The
probability that the PT-to-TDRS transmission is successful and
without errors is pc

n,m = pc = 0.95, and the probability that
there is an error resulting in an RID outside D is pe

n,m=pe =
0.045; the RIDs within the reports are simulated in accordance
with these probabilities. Finally, each TDRS report time t(`)n,m
is randomly (uniformly) chosen within the respective time step
interval (tn−1, tn].

We compare our algorithm, which jointly processes TIPS
and TDRS observations at each time step n, with three al-
ternative algorithms. The first conforms to the system model
proposed in Section III except that the TDRS reports are se-
quentially processed as soon as they become available and,
thus, the PT states are estimated each time a TDRS report is
received; this will thus be called the “sequential” algorithm.
The second alternative algorithm, which we will refer to as
the “all-TIPS” algorithm, models and treats the TDRS as a
TIPS sensor. Accordingly, the TDRS clusters are considered
as TIPS measurements, which means that their RID is ignored
(once the clusters are formed) and the possibility that they
are false alarms is not ruled out. For this virtual TIPS sen-
sor, we assume a detection probability of P (0)

d = 0.9, 0.5,
or 0.25—depending on the scenario—and a mean number of
false alarms of µ(0) = 10−16. Here, the small value of µ(0)

reflects the low mean number of false alarms expected from
the TDRS. (We do not set µ(0) to 0, because this would result
in a division by 0 in the expression of h(s)(·) reported below
equation (11).) The third alternative algorithm is the one pro-
posed in [18], which fuses only the TIPS measurements and
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will hence be called the “no-TDRS” algorithm. We use the fol-
lowing parameters in all algorithms if applicable and unless
otherwise stated: K = 30, pt

n,k = pt = 0.1, pb
n,k = pb = 10−3,

ps
n,k=ps =0.999, and Pth = 0.95.
We assess the performance of the various algorithms in

terms of the Euclidean distance based generalized optimal sub-
pattern assignment error for trajectories (GOSPA-T) [35], with
cut-off parameter c= 500 m, switching penalty 250 m, and or-
der 1. The GOSPA-T metric accounts for localization errors
for correctly confirmed targets, errors for missed targets and
false targets (i.e., confirmed PTs not corresponding to any ac-
tual target), and an error for track switches. Furthermore, we
report the time on target (ToT), track fragmentation (TF), and
false alarm rate (FAR). The ToT is the fraction of time dur-
ing which the PT corresponding to a target is confirmed and
the distance between its estimated and true positions is lower
than 500 m. The TF is the number of different PTs associated
with an actual target during the target’s lifespan. The FAR is
the number of false tracks per unit of space and unit of time.
As the ToT and TF are defined for each target individually,
we will usually consider their averages taken over all targets,
which will be referred to as A-ToT and A-TF, respectively.
Finally, to evaluate the accuracy in estimating the TIDs for
the proposed algorithm and the sequential algorithm, we re-
port a metric referred to as the TID errors count. At each time
step n, given the optimal sub-pattern assignment (with cut-off
parameter c= 500 m) between the actual targets and the esti-
mated PTs, the TID errors count is defined as the number of
errors committed by the tracking algorithm in estimating all
the TIDs. All the mentioned performance indices are averaged
over 100 simulation runs.

B. Effect of the LC Approximation

We first assess the validity of the LC approximation (31)
by comparing the resulting performance with that of the full-
complexity (FC) computation of the messages δ̃(i)(τn,k) ac-
cording to (23). To avoid an excessive complexity of the FC
computation, we temporarily consider only three targets—two
cooperative and one noncooperative—and choose K=10 and
D= {1, 2}. Fig. 4 shows the mean GOSPA-T of the LC and
FC versions versus time step n. One can see that the LC ap-
proximation does not reduce the performance of the proposed
algorithm. This is confirmed by Fig. 5, which shows the mean
TID errors count, and by Fig. 6, which shows the A-ToT versus
FAR performance for varying existence confirmation thresh-
old Pth (see Section IV). A further confirmation is provided
by the fact that the A-TF was obtained as 1.34 for the FC
version and 1.35 for the LC version.

C. Comparison with Alternative Algorithms

Fig. 7 compares the mean GOSPA-T of the proposed al-
gorithm (with LC approximation), of the all-TIPS algorithm
with P

(0)
d = 0.9, 0.5, and 0.25, of the sequential algorithm,

and of the no-TDRS algorithm. The proposed algorithm is
seen to consistently outperform both the all-TIPS algorithm,
independently of the chosen detection probability P

(0)
d , and

the no-TDRS algorithm. The performance difference between
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Fig. 4. Mean GOSPA-T obtained with the proposed algorithm using the FC
and LC implementations. In this figure and in subsequent figures, the dashed
vertical lines delimit the time interval during which the targets are within the
circle of radius 1 km shown in Fig. 3.
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Fig. 5. Mean TID errors count obtained with the proposed algorithm using
the FC and LC implementations.
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Fig. 6. A-ToT versus FAR curves obtained with the proposed algorithm
using the FC and LC implementations and drawn by varying the existence
confirmation threshold Pth.

the proposed algorithm and the all-TIPS algorithm is largest
in the time interval between time steps n= 75 and n= 125,
when the targets are within the circle of radius 1 km shown in
Fig. 3 and perform a smooth right turn. Indeed, the exploita-
tion of the RID included in the TDRS reports enables the
proposed algorithm to accurately track the targets even while
maneuvering. The performance of the proposed algorithm and
the sequential algorithm is quite similar, with a slightly higher
mean GOSPA-T obtained with the proposed algorithm. This is
arguably due to the immediate processing of the TDRS reports
performed by the sequential algorithm: because the TDRS re-
ports are processed as soon as they are received, the PT state
prediction is performed over a shorter time interval, which re-
duces the growth of uncertainty over time. On the other hand,
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Fig. 7. Mean GOSPA-T obtained with the proposed algorithm (with LC
approximation) and with the sequential, all-TIPS, and no-TDRS algorithms.
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Fig. 8. Mean TID errors count obtained with the proposed algorithm (with
LC approximation) and the sequential algorithm.
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Fig. 9. A-ToT versus FAR performance of the proposed algorithm (with LC
approximation) and of the sequential, all-TIPS, and no-TDRS algorithms.

as shown next, the sequential processing leads to an inaccurate
estimation of the TIDs.

Fig. 8 presents a comparison between the proposed algo-
rithm and the sequential algorithm in terms of the mean TID
errors count. It can be seen that the mean TID errors count
of the sequential algorithm is consistently higher than that of
the proposed algorithm, which indicates frequent errors in es-
timating the TIDs. At time n=1, the mean TID errors count
is equal to 5 because only five targets are present in the ROI;
it then increases at time n=5 when the other four targets ap-
pear. The peak at time n=100 is mostly due to an erroneous
assignment between the PTs and the actual targets, which is
due to the close proximity of all the targets.

Fig. 9 compares the A-ToT versus FAR performance of the
proposed algorithm and the three alternative algorithms. It is
seen that the proposed algorithm outperforms the other algo-

rithms in that it yields the highest A-ToT for a given FAR.
Finally, the proposed algorithm outperforms the other al-

gorithms also in terms of the A-TF. Indeed, we obtained its
A-TF as 2.45, which is lower than the A-TF of the all-TIPS
algorithm (4.81, 3.93, and 3.67 for P (0)

d =0.9, 0.5, and 0.25,
respectively), of the sequential algorithm (2.62), and of the
no-TDRS algorithm (3.64).

VII. RESULTS FOR REAL DATA

Next, we apply the proposed algorithm to a real dataset
acquired in a maritime scenario and compare its results with
those obtained with the sequential algorithm. The dataset has a
duration of about 7.5 hours and consists of TIPS measurements
provided by two radar sensors (i.e., S=2) and TDRS reports
provided by the AIS. The radar measurements were acquired
by two high-frequency surface wave (HFSW) radars [36] lo-
cated on the Italian coast, one on the island of Palmaria (IP)
near La Spezia and the other in San Rossore Park (SRP) near
Pisa. Each measurement consists of range, bearing, and range
rate, i.e., z(s)n,m=

[
z
(s)
n,m,r, z

(s)
n,m,b, z

(s)
n,m,ṙ

]T
. The range measure-

ment z(s)n,m,r and bearing measurement z(s)n,m,b are modeled as
described in Section VI-A, with σr = 150 m and κb = 1000.
The range rate measurement z(s)n,m,ṙ is modeled as a Gaussian
random variable with mean (x̌n,k−ρ(s))T ˙̌xn,k/

∥∥x̌n,k−ρ(s)∥∥
and standard deviation σṙ =0.1 m/s. The mean number of false
alarms is set to µ(s) = 15, and the false alarm pdf fFA(z

(s)
n,m)

is uniform on the ROI (which is the intersection of the fields
of view of the two radar sensors) and zero outside, as well as
uniform in range rate in the interval [−25, 25] m/s and zero
outside. The detection probability is set to P (s)

d = 0.8.
Each AIS report contains an RID, i.e., the maritime mo-

bile service identity (MMSI), and a self-measurement of the
position of the respective target (ship). The self-measurement
is modeled as in Section VI-A, with σv = 100 m. Due to the
lack of other information sources, the AIS data are also used as
ground truth for evaluating the time-averaged mean GOSPA-T
and the time-averaged mean TID errors count, as well as the
A-ToT, A-TF, and FAR. More specifically, a sequence of re-
ports with the same MMSI forms an “AIS track,” which is
considered to be a ground-truth trajectory. Since these AIS
tracks represent only a subset of the ships actually present
in the ROI, our performance assessment and comparison of
the proposed algorithm and the sequential algorithm are not
exhaustive; they are merely intended to demonstrate the ap-
plicability of the proposed statistical formulation and tracking
algorithms to a real-world scenario. To account for the facts
that the AIS sequences are not temporally aligned with the
radar time steps and some of them contain “gaps” of several
minutes or even hours, we use cubic interpolation to deter-
mine the instantaneous positions of the AIS tracks at each
radar time step.

The number of PTs is set to K = 100. The PT state and
dynamic model are defined as in Section VI-A, with σu =0.05
m/s2 and T = 16.64 s. The existence confirmation threshold
is set to Pth = 0.99. All the other parameters involved in our
algorithm are chosen as specified in Section VI-A.
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Fig. 10. Measurements produced by the IP and SRP radar sensors (repre-
sented by blue and green dots, respectively) and trajectories estimated by the
proposed algorithm (represented by black or colored lines) during 7.5 hours.
Colored lines represent the estimated trajectories of cooperative ships iden-
tified through the MMSI, whereas black lines represent the estimated trajec-
tories of noncooperative ships. For improved clarity, trajectories of duration
less than ten time steps are not shown. The dashed white rectangle identifies
the subregion depicted in Fig. 11.

Longitude [deg]

L
at

it
u
d
e

[d
eg

]

9.24 9.26 9.28 9.30 9.32 9.34 9.36 9.38 9.40
43.74

43.75

43.76

43.77

43.78

43.79

1.6 km

(a) Proposed algorithm.
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(b) Sequential algorithm.

Fig. 11. Trajectories estimated by (a) the proposed algorithm and (b) the se-
quential algorithm in a rectangular subregion of the ROI. Blue and green dots
represent measurements produced by the IP and SRP radar sensors, respec-
tively, and red dots represent the positions indicated by the AIS reports.

In Fig. 10, we depict the measurements of the two radar sen-
sors and the trajectories estimated by the proposed algorithm
during 7.5 hours. (The trajectories estimated by the sequential
algorithm are very similar; they are not shown to avoid a clut-
tered figure.) One can see that fusing the TIPS measurements
provided by the HFSW radars and the TDRS reports provided
by the AIS allows MMSI-based identification of the coopera-
tive ships. On the other hand, the lack of AIS reports for the
remaining noncooperative ships does not impede their track-

ing. Note that the superposition of the measurements seems to
form line segments along some range directions of the radar
sensors; these line segments are caused by a nonuniform dis-
tribution of false detections affecting HFSW radars, and do
not correspond to actual ship trajectories.

Fig. 11 compares the trajectories estimated by the proposed
algorithm and the sequential algorithm in a rectangular subre-
gion of the ROI where one of the ships is maneuvering. We
observe that in this specific example the proposed algorithm
produces a single track for the maneuvering ship, whereas the
sequential algorithm does not achieve track continuity.

The time-averaged mean GOSPA-T is 2353 m for the pro-
posed algorithm and 2042 m for the sequential algorithm.
These results conform to those we obtained for simulated data
in Section VI-C. The time-averaged mean TID errors count is
0.05 for the proposed algorithm and 0.78 for the sequential al-
gorithm, which confirms that the proposed algorithm is more
accurate in estimating the TIDs. Furthermore, compared to the
sequential algorithm, the proposed algorithm exhibits a higher
A-ToT (0.99 versus 0.82), a higher FAR (0.14 versus 0.12
km−2 h−1), and a higher A-TF (1.31 versus 1.23). Note that
definite conclusions cannot be drawn from these results be-
cause the ground truth is available only for a subset of the
ships, i.e., for those providing AIS reports. Indeed, the results
are mainly intended to demonstrate the applicability of the
proposed statistical formulation and tracking algorithms to a
real-world scenario.

VIII. CONCLUSION

Heterogeneous data fusion is an important functionality in
high-performance multitarget tracking (MTT) systems. In this
paper, we considered multisensor MTT with an inherent prob-
abilistic fusion of two classes of data sources: sensors that pro-
duce measurements without requiring target cooperation, and
a reporting system that conveys information—possibly includ-
ing target ID—that is provided by cooperative targets. We es-
tablished a statistical observation model that combines these
two classes of data sources and accounts for measurement-
origin uncertainty, missed detections, false alarms, incorrectly
received IDs, and asynchronicity.

Adopting a Bayesian framework, target existence confirma-
tion and state estimation essentially amount to marginalizing
a joint posterior distribution that involves the target states, ex-
istence indicators, and IDs, the observation-target association
indices, and the past and current observations from all the sen-
sors and the reporting system. To obtain an efficient and scal-
able sequential algorithm for approximate marginalization that
exploits conditional independencies, we used the sum-product
algorithm on a factor graph that represents the structure of
our Bayesian statistical model for the multisensor MTT and
information fusion problem. The resulting MTT algorithm al-
lows a real-time integration of the two classes of data sources
and exhibits high tracking accuracy at moderate complexity.
We demonstrated the performance of the algorithm and the ef-
fectiveness of our fusion approach using both simulated data
and real data from a maritime surveillance experiment. Our re-
sults showed the benefits of fusing heterogeneous information
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and substantial performance advantages over three alternative
algorithms.

A possible direction of future research is the extension of
the proposed framework to an indoor simultaneous localiza-
tion and mapping scenario [37] enhanced by radio-frequency
identification tags [38].
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