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Abstract: We critically analyse Robert Brandom’s incompatibility semantics
for classical S5, developed in the context of analytic pragmatism. Among
other problems, we point out that Brandom’s claim that incompatibility se-
mantics, although holistic and non-compositional, is nevertheless recursively
projectible, rests on an assumption that is at odds with intended applications.
We also explore an alternative approach that aims at a formal model of Bran-
dom’s concept of a ‘game of giving and asking for reasons’ (GOGAR).
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1 Introduction

In his John Locke Lectures, published as Between Saying and Doing: To-
wards an Analytic Pragmatism, Brandom (2008) stakes out an ambitious
program in the philosophy of language highlighting a pragmatist and infer-
entialist approach to meaning, that acknowledges the precedence of deontic
normative over non-modal vocabulary in the elaboration of successful com-
munication. This endeavour entails a new type of formal semantics for
propositional modal logic. This incompatibility semantics features several
aspects that distinguish it from traditional Tarski/Kripke-style semantics.
Rather than truth in a model, the basic notion is that of incompatibility
between or, more generally, incoherence among a set of sentences. This
leads to a holistic account, in which the semantic status of particular sen-
tences can only be asserted relative to a given context of other sentences.
As a consequence the semantics is non-compositional: the meaning of a
logically complex sentence is not determined by the semantic interpretants
(incompatibilities) of just its parts and the connectives used to form it. It
is often claimed that holistic, non-compositional semantics cannot account
for the projectibility and systematicity of language, and hence also not for

1Both authors are supported by FWF project P32684-N.
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its learnability. Therefore it is at the core of Brandom’s project to address
such worries by showing that incompatibility semantics enjoys what he calls

‘recursive projectibility’.
The paper is organized as follows. After briefly discussing its main tenets

and presenting its formal ingredients in Section 2, we take a critical look
at some aspects of Brandom’s presentation in Section 3 and suggest some
corresponding amendments. In Section 4, we point out that Brandom’s
claim that incompatibility semantics admits recursive projectibility rests on
an additional assumption, namely ‘inferential conservativity’, that is not
entailed by his axioms and that is actually quite problematic with respect
to the intended models.2 Section 5 seeks to clarify the relation between
incompatibility semantics and classical logic, including its extension to
modal logic S5, in a manner that is more transparent than Brandom’s own
take. Since incompatibility semantics, as presented by Brandom (2008), is
largely severed from its pragmatist and inferentialist context, we suggest
in Section 6 an alternative approach by introducing a formal model of the
game of giving and asking for reason (GOGAR), introduced by Brandom
(1994), that interprets the inference rules of a particular sequent calculus
for intutionistic logic as interactions between a proponent (of a claim) and a
questioner. We conclude in Section 7 with some remarks about open issues
and the relation to more recent work by Brandom and his collaborators.

2 Brandom’s incompatibility semantics in a nutshell

In the following we are working with languages L for propositional modal
logic. Each language is a set of atomic or logically complex sentences.3

Such languages need not be syntactically closed “upwards”, i.e. in terms
of forming arbitrarily complex sentences by applying logical connectives.
However, all languages are assumed to be closed “downwards”, such that
all subformulas of sentences in L are themselves members of L. These
languages are called proper.

The point of departure for Brandom’s semantic theory is his “suggestion:
represent the propositional content expressed by a sentence with the set of
sentences that express propositions incompatible with it” (Brandom, 2008,
p. 123). Incompatibility is a material, binary relation among sentences,

2The problem described in Section 4 has already been outlined, from a somewhat different
perspective, in Fermüller (2010).

3We will use p, q, r, . . . for atomic formulas and F , G, H , . . . for arbitrary formulas.
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a generalization of contradictoriness to the case of non-logical properties.
However, as Brandom is quick to point out, such a semantic representation of
propositional content would be too narrow, since it fails to take into account
incompatibilities that hold between three or more sentences while any two
of them are compatible. To overcome this limitation, Brandom generalizes
incompatibility from a relation among sentences to a relation among sets
of sentences. Formally, an incompatibility function I from the power set
of L, P(L), to P(P(L)) relates to each set of sentences the set of sets of
sentences that are incompatible with it. An ordered pair ⟨L, I⟩ is called an
standard incompatibility frame on L. In addition, Brandom introduces the
(non-relational) notion of incoherence, which is a material generalization of
inconsistency applying to (single) sets of sentences. Formally, Inc ⊆ P(L)
comprises all and only the incoherent sets of sentences of a given language L.
Incoherence is a property of a set which is inherited by any superset of it, i.e.
Inc satisfies the following axiom.

Axiom (Persistence) ∀ finite X,Y ⊆ L, and X ⊆ Y , if X ∈ Inc then
Y ∈ Inc.

An ordered pair ⟨L, Inc⟩ is called a standard incoherence frame on L. For
any given language L, the standard incompatibility frame and the standard
incoherence frame correspond to each other in virtue of jointly satisfying the
following axiom.

Axiom (Partition) ∀X,Y ⊆ L, X ∪ Y ∈ Inc iff X ∈ I(Y ).

Since reference and truth are not among the resources of incompatibil-
ity semantics, (material) entailment is not to be defined in terms of truth-
preservation. Rather, material4 entailment can be viewed in terms of the
preservation of compatibility or coherence from premises to conclusion, i.e.
the entailment relation between premise set and conclusion holds iff every
set of sentences that is compatible with the set of premises is also compati-
ble with the conclusion. This idea is equivalently expressed by the notion
of (material) incompatibility-entailment. A set X of sentences materially
incompatibility-entails a sentence F iff every set Z that is incompatible with
{F}, is also incompatible with X . Brandom generalizes this to a set Y in
place of a single sentence F in the following way.

4Brandom is trying to articulate “the material (that is, non-, or better, pre-logical) sense
of ‘good inference’ [in which sense, for instance] ‘Pedro is a donkey,’ incompatibility-entails
‘Pedro is a mammal’" (Brandom, 2008, p. 121).
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Definition 1 (Incompatibility-Entailment) Given an incompatibility func-
tion I , a (possibly infinite) set X ⊆ L and a finite set Y ⊆ L,

X |=I Y iff
⋂
F∈Y

I({F}) ⊆ I(X).

According to this definition, the set Y is read disjunctively, i.e. the
“heuristic meaning” of X |=I {F1, . . . , Fn} is that X entails F1 or . . . or Fn

(Brandom, 2008, p. 42).

Definition 2 (Validity) ∀X ⊆ L, X is valid iff Y ∈
⋂

F∈X

I({F}) ⇒ Y ∈ Inc.

X is valid iff only incoherent sets are incompatible with X , read disjunc-
tively. As a special case we have ∅ |=I {F} iff {F} is valid.

Now we are in a position to introduce, axiomatically, the logical operators,
negation, conjunction and necessity.

Axiom (Negation Introduction; NI) ∀X ⊆ L, X ∪ {¬F} ∈ Inc iff X |=
F.

Axiom (Conjunction Introduction; CI) ∀X ⊆ L, X ∪ {F ∧G} ∈ Inc iff
X ∪ {F,G}.

Axiom (□ Introduction; LI) ∀X ⊆ L, X ∪ {□F} ∈ Inc iff X ∈ Inc or
∃Y ⊆ L[X ∪ Y ̸∈ Inc & Y ̸|= {F}].

These axioms specify the content expressed by a logically compound sen-
tence, according to incompatibility semantics, by specifying which sets of
sentences are incompatible with it. However, it is a crucial feature of this
semantics that the semantic interpretants of compound sentences are not
determined by or computable from the semantic interpretants of their com-
ponents alone, i.e. that this semantics is not compositional. For instance,
it is easy to see that what is incompatible with F , on the one hand, and
what is incompatible with G, on the other, do not fully determine what is
incompatible with {F,G}. This non-compositionality makes incompatibil-
ity semantics holistic. It has been a common criticism of semantic holism
that non-compositionality prevents it from accounting for the projectibility,
systematicity and learnability of language. Brandom insists that the standard
arguments to this effect are fallacious, and are refuted by his incompatibility
semantics.

. . . although that semantics is not compositional, it is fully recursive.
The semantic values of logically compound expressions are wholly de-
termined by the semantic values of logically simpler ones. It is holistic,
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that is, non-compositional, [. . .] But this holism within each level of
constructional complexity is entirely compatible with recursiveness
between levels. And this is not just a philosophical claim of mine. The
system I am describing allows us to prove it. (In this context, proof is
the word made flesh.) (Brandom, 2008, p. 135)

In the rest of the paper we are going to critically evaluate Brandom’s
claim (and his ‘proof’ of it) as well as essential parts of the underlying
machinery of incompatibility semantics.

3 A critical analysis of Brandom’s account

To gain a better understanding of the essential features of the suggested
semantic framework, we take a closer, critical look at Brandom’s definitions
and axioms outlined in Section 2. First, note that Brandom employs an
unconventional concept of ‘language’. While a language L may contain
logically complex formulas, L, in general, is not closed under forming
complex formulas from given ones using the logical connectives. We may,
however, assume that all languages considered here are proper, i.e., they
are closed under taking sub-formulas. Moreover, for our purposes, it is
sufficient to consider only finite languages. A more problematic feature of
Brandom’s notion of a logical language is that he only considers conjunction
(∧), negation (¬), and the modal operator (□) for necessity. Disjunction and
implication are only introduced as operators ‘abbreviating’ certain formulas,
built up from atomic formulas using conjunction and negation only. While
one can, of course, treat all connectives of classical logic as defined from
conjunction and negation alone, this is not the case for most other logics. If
the aim of incompatibility semantics is to provide an independent approach
to the meaning of logical connectives that does not exclude nonclassical
logics from the outset, then it is certainly odd to declare that F ∨G is to be
understood as abbreviation for ¬(¬F ∧ ¬G) and that also F → G has no
meaning beyond serving as abbreviation for ¬(F ∧ ¬G). In particular, the
decision to treat disjunction and implication not as first class citizens of the
logical vocabulary, but as defined connectives, excludes the possibility to
come up with a notion of logical validity that is able to distinguish between
classical and intuitionistic logic, as demonstrated by the following well-
known fact.

Fact 1 Over the language fragment, where ¬ and ∧ are the only logical
connectives, classical tautologies coincide with intuitionistic tautologies.
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We will indicate in Section 5 how one can augment Brandom’s account
to accommodate a richer logical vocabulary. More importantly, we will
introduce an alternative to incompatibility semantics in Section 6 that will
treat the usual propositional connectives on a par with each other and that
arguably remains closer to Brandom’s own pragmatist and inferentialist
perspective.

As pointed out in Section 2, Brandom presents incompatibility semantics
in terms of 5 axioms and some accompanying definitions. They center around
the notions of incompatibility and incoherence, the latter modeled as a set Inc
of sets of formulas, i.e., Inc ⊆ P(L). The Axiom of Persistence postulates
incoherence to be monotonic (with respect to the subset relation), which
induces a monotonic notion of material inference.While there is nothing
wrong with investigating a monotonic notion of (material) incoherence, it is
somewhat strange that the Persistence Axiom explicitly restricts monotonicity
to finite sets of sentences. Since Brandom hardly wants to claim that infinite
sets of sentences may be coherent even if they contain incoherent subsets,
we interpret this oddity simply as an indication that the presented version of
incompatibility semantics is intended for finite language scenarios only.5

Brandom defines a standard incoherence frame as a pair ⟨L, Inc⟩. Since
this definition refers to the material level of an interpreted language and
not to a logical frame in the sense of Kripke semantics for modal logic,
it would be better to speak of an incoherence model, instead. Even more
confusingly, there is a second definition of a standard incompatibility frame
as a pair ⟨L, I⟩, where I is a function of type P(L) 7→ P(P(L)), called
incompatibility function. Since X ∈ I(Y ) iff X ∪Y ∈ Inc (Partition Axiom),
incoherence frames and incompatibility frames amount to just two different
presentations of the same concept. The Partition Axiom can be understood as
solely introducing convenient notation.

To amend the outlined infelicities in Brandom’s presentation of incom-
patibility semantics, we will adopt the following alternative notion.

Definition 3 An incoherence model IncL over the (finite) language L, is a
subset of P(L), such that

(i) ∅ ̸∈ IncL,

(ii) if X ⊆ Y and X ∈ IncL, then Y ∈ IncL.
5There remains a minor lacuna in Brandom’s account: the empty set should be declared to

be coherent (∅ ̸∈ Inc). While this follows from persistence if there are other coherent sets, one
needs to make it explicit for models where all other sets are incoherent.
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When there is no danger of confusion, we will drop the subscript referring
to L. The sets in Inc are called incoherent with respect to Inc. If X ̸∈ Inc
then X is coherent with respect to Inc. We say that X is incompatible with
Y (with respect to Inc) if X ∪ Y ∈ Inc. The set of sets that are incompatible
with Y is denoted by I(Y ). If X = {F} we also say that the formula F is
incompatible with Y (in Inc).

The remaining three axioms, called CI, NI, and LI in Brandom (2008),
concern conjunction, negation, and necessity, respectively (see Section 2).
Inspecting Brandom’s formulations of these axioms, restated in Section 2,
more closely, reveals that in each case one has to restrict the corresponding
statements to refer to only those languages in which the exhibited complex
formula actually occurs. (Recall that Brandom allows for languages that
contain, e.g., F and G, but not F ∧G, ¬F or □F . For such languages, CI,
NI, and LI are inappropriate without a restricting clause.) From now on, we
will assume that in any statement that implicitly or explicitly refers to some
language L, L contains every formula that is mentioned in that statement.

The axiom for conjunction (CI) just states that, in judging incoherence,
sets of formulas are treated as conjunctions of formulas. Since Brandom
wants incoherence to serve as ‘a generalization of inconsistency to the case
of non-logical properties’ (Brandom, 2008, p. 141) this is an obvious choice.
The axioms for negation and necessity are much less straightforward, since
they involve the notation of incompatibility-entailment, defined by X |=I

Y iff
⋂

F∈Y I({F}) ⊆ I(X)6. Brandom wants Y to be read disjunctively,
rather than conjunctively, in order to be able to mimic Gentzen’s classical
sequent calculus LK. While understandable as a proof strategy this does
not sit well with the general setup of incompatibility semantics as Brandom
himself seems to admit in a footnote on page 123 of Brandom (2008), where
he explicitly states that a ‘very natural way’ to generalize from a single-
conclusion to a multiple-conclusion version of incompatibility entailment is
to interpret the set Y on the right hand side as a conjunction. We therefore
suggest to consider the following definition, that has the additional advantage
of making transparent that one does not need to involve the function I:

6Right after the definition Brandom adds: ‘When Y is empty we read
⋂

F∈Y I({F}) as
equivalent to P(L)’. However, e.g., the proof of Claim 2.1 (Weakening) (Brandom, 2008,
p. 143) starts as follows: ‘Suppose X |= Y . Then

⋂
F∈Y I({F}) ⊆ I(X).’ But this is clearly

false if
⋂

F∈Y I({F}) is to be read as P(L), as stipulated in the cited remark. Moreover,
identifying I(∅) with P(L) is already ruled out by the Partition Axiom.
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Definition 4 The set of formulas X materially incompatibility-entails the
set of formulas Y with respect to an incoherence model IncL, written X |=Inc
Y , iff for all Z ⊆ L: Y ∪ Z ∈ Inc implies X ∪ Z ∈ Inc.

We write F1, . . . , Fn |= G, instead of {F1, . . . , Fn} |= {G}. Note that
in this single-conclusion case Definition 4 coincides with Brandom’s original
definition. We observe that X |=Inc ∅ holds for every X . This is also the
case for Brandom’s original definition, if one ignores his additional remark
about identifying the empty intersection of sets of formulas with P(L). If
one wants to express incoherence in terms of entailment, then one should
introduce the logical constant ⊥ (falsum). Moreover, it is useful to also add ⊤
(verum). Brandom’s axioms for introducing connectives should consequently
be augmented as follows.

(Falsum Introduction ⊥I:) {⊥} ∈ Inc

(Verum Introduction ⊤I:) X ∪ {⊤} ∈ Inc iff X ∈ Inc.

Note that ⊥I guarantees that X ∈ Inc is equivalent to X |=Inc ⊥.
Brandom also defines a notation of ‘validity’ that renders a formula F

‘valid’ iff ∅ |=Inc {F}. This piece of terminology is unfortunate, since valid-
ity traditionally does not refer to the material level of a given interpretation,
but rather singles out what holds with respect to all interpretations. If one
wants to preserve validity as a logical notion, one should call F valid iff
∅ |=Inc {F} for every incoherence model IncL. Note that only with respect
to this latter, more traditional notion, does it make sense to claim, as Bran-
dom does, that the ‘intrinsic’ logic of incompatibility is the classical modal
logic S5.

Fortunately, neither Brandom’s strange notion of validity, nor his prob-
lematic generalized entailment relation matter for the presentation of axioms
NI, and LI, since only single-conclusion material entailment is used there.
However, both axioms are highly problematic with respect to the claim that
incompatibility semantics enjoys recursive projectibility, by which Brandom
means that judgments about the incoherence of sets of logically complex
sentences can be systematically reduced to judgments that only involve less
complex sentences. To get a better view on the problem, we reformulate NI
without making explicit use of the entailment relation.

(Negation Introduction NI:) X ∪ {¬F} ∈ IncL iff for all Y ⊆ L: if
{F} ∪ Y ∈ IncL then X ∪ Y ∈ IncL.

8
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This condition is circular, which is brought out most clearly by considering
the instance in which X = ∅ and Y = {¬F}. Since we may safely assume
that {F,¬F} ∈ IncL, the statement boils down to {¬F} ∈ IncL iff {¬F} ∈
IncL in this case. 7

The axiom LI for introducing the modal operator is plagued by the same
problem as NI: the statement is circular. The scope of the quantifier in the
statement refers to all sets of formulas in the given language and hence
includes the set X ∪ {□F}, the (in)coherence of which is to be settled.

Let us sum up our analysis of Brandom’s presentation of incompatibility
semantics, so far. Brandom’s axioms refer to three basic notions: Inc (inco-
herence as a property of sets of formulas), the incompatibility function I, and
incompatibility-entailment. In fact, each of these notions can be defined in
terms of any of the two other notions. In particular, it is sufficient to consider
just Inc. Since Inc refers to the material level, one should replace Brandom’s
talk of ‘incoherence frames’ and ‘incompatibility frames’ by references to
incoherence models, as defined in Definition 3. This leaves only the axioms
CI, NI, and LI to be considered. The fact that non-modal formulas are
built up from atomic formulas using conjunction and negation only, spoils
prospects to come up with a complete, independent semantic framework for
(potentially) nonclassical logics. Most problematic, however, is the fact that
the axioms for negation (NI) and for necessity (LI) are circular. In the next
section, we investigate why Brandom nevertheless thinks that incompatibility
semantics admits ‘recursive projectibility’ and characterizes the logic S5.

4 Problems with recursive projectibility

To get a better grip on the circularity problem outlined in the last section, we
focus on negation and consider the following example.

7There seems to be a tension (an incoherence?) between the accounts, respectively, in the
main text and the appendix of (Brandom, 2008) concerning the semantics of negated sentences.
On the one hand, the main text (p. 127) suggests a recursive, step by step, extension of an
incoherence frame in tandem with the corresponding incompatibility consequence relation in
order to provide the incompatibility sets for more and more complex negated sentences. Such a
stepwise construction of the semantics of negated sentences may avoid circularities. However,
on the other hand, in the appendix (p. 142) the semantics of all logical connectives is clearly
presented axiomatically and there is no indication of a semantic construction by successive
extensions starting from an incoherence frame for a language containing only atomic formulas
etc. Such a construction would also require more machinery, such as definitions of how to
dovetail the respective extensions of the language/semantics by the three connectives.
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Example 1 Let L = {p, q} and IncL = ∅. Obviously p |=Inc p and
q |=Inc q. Since there are no incoherent sets, we also have p |=Inc q and
q |=Inc p.

Now let us consider L′ = {p, q,¬p}. In Brandom’s terminology, L′ is a
proper extension of L. Since p entails itself, axiom NI yields {p,¬p} ∈ Inc′L′

for any Inc′ over L′. We want to keep {p, q} coherent, like in IncL. But what
about {q,¬p}? Here we run into the circularity pointed out in Section 3: NI
requires that {q,¬p} ∈ Inc′L′ iff for all Y ⊆ L′ either Y ∪ {p} is coherent
or Y ∪ {q} is incoherent. Since {p} and {p, q} are coherent and {p,¬p} is
incoherent this boils down to {q,¬p} ∈ Inc′L′ iff {q,¬p} ∈ Inc′L′ . In other
words, we are free to declare {q,¬p} to be either coherent or to be incoherent
in Inc′L′ without violating Brandom’s axioms for incompatibility semantics.

As we have seen in Section 2, a central claim of Brandom is that incom-
patibility semantics, although holistic, nevertheless is ‘fully recursive’. More
precisely, Brandom claims:

The semantic values of all the logically compound sentences are
computable entirely from the values of less complex sentences.
(Brandom, 2008, p. 135)

But Example 1 refutes this claim. The semantic value of ¬p in the model
Inc′L′ , i.e. its coherence or incoherence jointly with other sentences, is not
determined by the coherence or incoherence of the sets of sentences in the
language L, where L′ = L ∪ {¬p}. So why does Brandom think that he
can maintain his claim, although (apparent?) counterexamples are readily
specified? The answer to this question can (only) be found in Section 5
of Appendix I to Chapter 5 of Brandom (2008). There, it turns out that in
extending an incoherence model Inc (‘frame’ in his terminology) from a
language L to a model Inc′ over a richer language L′, just like in Example 1,
Brandom does not consider it sufficient that Inc′ and Inc coincide over sets
of sentences in L. He rather imposes another property, namely inferential
conservativity, defined as follows.

Definition 5 Let L ⊆ L′ and let Inc be an incoherence model over L. Then
an incoherence model Inc′ over L′ is inferentially conservative with respect
to Inc iff, for all X,Y ⊆ L, X |=Inc Y iff X |=Inc′ Y .8

8In Brandom (2008) |=Inc and |=Inc′ refer to the disjunctive generalization of the single-
conclusion incompatibility entailment relation, whereas we prefer the conjunctive version of
Definition 4. However, nothing in our criticism below depends on this choice.
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Brandom shows that for every incoherence model Inc over L and any
proper extension L′ of L, there exists a unique smallest incoherence model
Inc′ over L′, called the model for L′ determined by Inc, that is inferentially
conservative with respect to Inc.

Let us revisit Example 1 to see whether the insistence on inferential con-
servativity indeed settles the question whether {q,¬p} should be incoherent
in Inc′L′ , extending IncL. Recall that q |=Inc p. If we declare {q,¬p} to
be coherent in Inc′ then we obtain q ̸|=Inc′ p, since {p,¬p} ∈ Inc′L′ , but
{q,¬p} ̸∈ Inc′L′ . Therefore we have to set {q,¬p} ∈ Inc′L′ , if we want Inc′L′

to be inferentially conservative over IncL.

We emphasize that Brandom’s axioms for incoherence and incompatibil-
ity entailment do not constrain the models as indicated above. If incompat-
ibility semantics is intended to apply only to models that are inferentially
conservative over a given model over an atomic language, then one should
add corresponding axioms. But this complaint should not eclipse a more
urgent question, namely whether restricting attention to ‘determined’ models
meshes with the intended meaning and use of incompatibility semantics. We
argue that this is not the case, by instantiating the propositional variables p
and q of Example 1 with concrete sentences as follows:

p: “It is raining in Vienna.”

q: “It is raining in New York.”

The incoherence model over the language L = {p, q} in Example 1 declared
p to be compatible with q. This is certainly a reasonable choice also with
respect to the given natural language interpretation of p and q. Once more,
we expand L to L′ by including also ¬p = “It is not raining in Vienna”.
As we have seen above, insisting on inferential conservativity forces us to
declare “It is not raining in Vienna” to be incompatible with “It is raining in
New York”. This looks very odd, indeed. Incompatibility semantics should
allow us to formally model a situation where not only p is compatible with q,
but also ¬p is compatible with q (and where the three mentioned statements
are the only ones under consideration). However, we can only accomplish
this if we ignore inferential conservativity and consequently dispense with
recursive projectibility.
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5 Characterizing classical logic and S5

Brandom (2008) shows that the set of formulas that are coherent in all inco-
herence models coincides with the set of valid formulas in modal logic S5.
The proof is quite involved and not without problems, because of the issue
with Brandom’s disjunctive version of the generalized incompatibility en-
tailment relation that we have pointed out in Section 3. In any case, it is
important to recognize that (material) incompatibility entailment behaves
quite differently compared to classical material entailment, even in its ordi-
nary, single-conclusion format. To get a better view of the issue, let’s first
review some basic notions of classical logic.

Definition 6 A (CL-)valuation (or interpretation) is a function v that assigns
either 1 (for ‘true’) or 0 (for ‘false’) to every propositional variable.9 It is
extended to propositional formulas, built up using negation and conjunction,
as usual:

v(¬F ) = 1− v(F ) v(F ∧G) = min(v(F ), v(G))

We may add the atomic formula ⊥ (falsum), stipulating v(⊥) = 0.
A set of formulas X materially CL-entails a formula F with respect

to an interpretation v (written X |=v F ) iff v(G) = 0 for some G ∈ X
or v(F ) = 1. X logically CL-entails a formula F iff X |=v F for all
interpretations v. F is CL-valid (|=CL F ) iff v(F ) = 1 for all valuations.

We write G1, . . . , Gn |=v/CL F instead of {G1, . . . , Gn} |=v/CL F .

Already on the atomic level, a difference between material CL- and
incompatibility entailment emerges. Let p and q be propositional variables.
For every valuation v, we clearly have

p |=v q or q |=v p.

In contrast, there are incoherence frames Inc, such that

neither p |=Inc q nor q |=Inc p.

To see the latter, consider a language containing also the propositional vari-
ables r and s, and let {q, r} ∈ Inc, {p, r} ̸∈ Inc, {p, s} ∈ Inc, {q, s} ̸∈ Inc.

9Usually, one assumes an infinite supply of propositional variables. But when the context
fixes a finite language L (in the sense of Brandom) we may safely assume that only those
propositional variables that occur in L are meant.
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Even if we restrict attention to languages containing only those propo-
sitional variables that are explicitly mentioned in the entailment claim, in-
compatibility entailment behaves non-classically: if L = {p, q, p ∧ q} and
{p, q} ∈ Inc, but {p} ̸∈ Inc and {q} ̸∈ Inc we have

p ̸|=Inc ⊥ and q ̸|=Inc ⊥, but p ∧ q |=Inc ⊥.

In spite of the indicated differences, one can establish a clear and tight
connection between incompatibility semantics and classical semantics in
a manner that is simpler and more transparent than Brandom’s approach.
The idea is to simply declare a set of sentences to be incoherent iff the
conjunction of its members is false. More formally, consider the following
correspondence between incompatibility models and sets of CL-valuations.

Definition 7 Let Inc be an incoherence model over a language L. The
corresponding set of CL-valuations VInc is defined as

VInc = {v | ∀X ∈ Inc∃F ∈ X: v(F ) = 0}.

Since we only consider finite sets of sentences, we have X ∈ Inc iff all
valuations in VInc evaluate the conjunction of formulas in X as false.

The inverse translation, from sets of valuations to incoherence models
needs to be handled with some care, due to Brandom’s unusual definition of
a (proper) language L.

Definition 8 Let L be a proper language (in the sense of Brandom) and
let V be a set of CL-valuations over the set Lat of propostional variables
occurring in L. Then the incoherence model IncVL corresponding to V is
given by

IncVL = {X ⊆ L | ∀v ∈ V,∃F ∈ X: v(F ) = 0}.

Let us indicate why IncVL, as just defined, indeed constitutes an incoher-
ence model, complying with Brandom’s axioms. Persistence, i.e. the fact
that X ∈ IncVL implies X ′ ∈ IncVL for every X ⊆ X ′ ⊆ L, is maintained
since ∃F ∈ X: v(F ) = 0 trivially implies ∃F ∈ X ′: v(F ) = 0 whenever
X ⊆ X ′.

To see that axiom CI holds for IncVL, it suffices to recall that we are only
dealing with finite languages here and thus may identify a set of formulas
with the conjunction of its members. (The empty conjunction is identified
with ⊤.)
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To understand that also the negation axiom NI is satisfied, recall the
reformulation of NI as stated in Section 3. Since there is no reference
to the logical form of the involved formula, except for the negation sign
preceding F , we may code X , Y , and F by propositional variables x, y,
and f , respectively. In accordance with Definition 8, we may thus expresses
the claim X ∪ {¬F} ∈ IncVL as the claim that v(x ∧ ¬f) = 0 for all
corresponding valuations v. Proceeding analogously for {F}∪Y and X ∪Y
reduces NI to the following claim referring to classical logic:

v(x ∧ ¬f) = 0 iff ∀y[v(f ∧ y) = 0 implies v(x ∧ y) = 0].

That this statement is true for all CL-valuations v can be verified by eliminat-
ing the propositional quantifier and coding the whole claim as the proposi-
tional formula

¬(x ∧ ¬f) ↔ [(¬(f ∧ ⊥) → ¬(x ∧ ⊥)) ∧ [¬(f ∧ ⊤) → ¬(x ∧ ⊤))

which is a classical tautology.
What about the modal operator □? We argue that the above analysis

straightforwardly generalizes to a characterization of S5. Recall that the
standard (Kripke) semantics for modal logics refers to a model ⟨W,R, V ⟩,
where W is a non-empty set of worlds, R a binary accessibility relation
over W , and where V associates a CL-valuation with every w ∈ W . The
semantics of ¬ and ∧ refers to the CL-valuations as usual, thus assigning
a truth value vw(F ) to every non-modal formula F in each world w. This
extends to modal formulas via the condition vw(□F ) = 1 iff vw′(F ) = 1
for all w′ such that R(w,w′). A formula F is called valid in S5 if for all
models, where R is reflexive, symmetric and transitive (i.e. an equivalence
relation) vw(F ) = 1 in every world w. It is easy to see that only connected
components of the graph (frame) ⟨W,R⟩ are relevant when evaluating formu-
las in a given world. Hence, in the case of S5, we may focus on the special
case where R is the universal relation, i.e. R(w,w′) for all w,w′ ∈ W . But
in such models duplicates of worlds associated with the same valuation are
redundant. To sum up these observations: we may define S5-validity with
respect to an arbitrary set of CL-valuations V , rather than with respect to
Kripke models, by declaring for any v ∈ V that v(□F ) = 1 iff v(F ) = 1 for
all v ∈ V . Notice that this means that the correspondence between incoher-
ence models and sets of CL-valuations, established by Definitions 7 and 8,
carries over to languages that include modal formulas. In other words, we
may still interpret X ∈ Inc as expressing that for every v ∈ VInc we have
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v(F ) = 0 for at least one F ∈ X . An argument analogous to that for the
axiom NI, above, shows that also the axiom LI for the introduction of the
modal operator □ is satisfied for the suggested interpretation of incoherence.

6 A GOGAR model

Compared to Brandom’s rather involved and indirect proof that S5-validity
coincides with coherence in all incoherence models, the considerations in
Section 5 provide a much more direct route to the understanding of the
relation between incompatibility semantics and classical Tarski/Kripke se-
mantics. However, one might complain that our analysis is at variance with
Brandom’s deliberate avoidance of reference to truth values and his inten-
tion to interpret ‘incoherence’ as a pragmatic notion, rather than as a purely
semantic concept. However, as our above analysis reveals, the setup of the
semantic machinery in Brandom (2008) is largely severed from Brandom’s
philosophical stance about logic: accepting incompatibility semantics does
not directly support normative inferentialism. In fact we share Brandom’s fa-
voring of an approach to logic that gives preference to normative pragmatics
over pure semantics and that consequently respects inferentialist insights. We
also embrace the concept of logical expressivism regarding the meaning of
connectives. Since incompatibility semantics itself hardly adequately meets
corresponding demands, we finally want to explore, at least tentatively, an
alternative approach that is more directly connected to Brandom’s concept of
a ‘game of giving and asking for reasons’ (GOGAR), introduced in Making
It Explicit (Brandom, 1994) and that may well be classified as inferentialist,
pragmatist, and logically expressivist.

We suggest to model GOGAR10 as a formal game played by a propo-
nent P and a questioner Q, reminiscent of the ‘dialogical logic’ of Lorenzen
(1960). The game is not intended to cover the full range of possible interac-
tions between two rational conversationalists, but rather restricts attention
to a scenario where P seeks to defend a single claim questioned by Q. Let
us first ignore the logical structure of sentences. The corresponding atomic
game instantiates the following simple schema:

P: asserts a claim p
Q: asks for reasons to accept p
P: offers corresponding reasons r1, . . . , rn

10Another formal model of GOGAR is presented in Porello (2012).
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At this point Q may declare to be satisfied or not. If Q is not (yet) satisfied,
the game continues by treating the asserted reasons as further claims made
by P that may be questioned by Q. Deciding rationally whether Q should
declare to be satisfied consists in making two different kinds of judgments:
(1) judging whether the reasons r1, . . . , rn materially entail p and (2) judging
whether to accept r1, . . . , rn (independently of the claim p). Note that we
did not exclude the possibility that P offers the asserted claim itself among
the reasons to accept it. Such a move by P clearly settles the entailment
judgment (1), but has no bearing on the second judgment (2). Here, we are
only interested in the ‘intrinsic logic’ of GOGAR and hence focus on the
entailment question. At a first glance, this seems to trivialize to task of P:
simply repeating the claim when questioned by Q settles the matter. But this
is only the case if we understand the (atomic) game as strictly adversarial, i.e.,
formally, as a win-lose game. However, we may just as well assume that it is
in the interest of the players to make non-trivial entailment claims explicit.
In fact, rather than simply referring to an arbitrarily given atomic relation,
we may connect the game with incompatibility semantics and stipulate that P
and Q agree about an atomic incoherence frame IncL, where L is the set of
(atomic) sentences assertible as claims or reasons. In this scenario the above
game may proceed as follows.

Q: chooses q1, . . . , qm such that {p, q1, . . . , qm} ∈ IncL
P: replies by pointing out that {r1, . . . , rn, q1, . . . , qm} ∈ IncL

Depending on IncL, Q may not be able to make the indicated move. In this
case r1, . . . , rn |=Inc p has been established. Similarly, P may not be able
to make her move, which means that r1, . . . , rn ̸|=Inc p. Furthermore, if P
has a reply to every possible move of Q, then, again, r1, . . . , rn |=Inc p.

Let us now consider richer languages. Like in the atomic case, a gen-
eral GOGAR instance starts with a claim F by P, followed by reasons
G1, . . . , Gn for accepting F , asserted by P after questioned by Q. This
results in a state denoted by G1, . . . , Gn ▷ F , corresponding to a material
entailment claim G1, . . . , Gn |= F . Not only the claim (consequent) F , but
also the stated reasons (premises) may be questioned by Q. Since we do
not want to prevent Q from questioning the same sentence more than once
during the run of the game, the collection G1, . . . , Gn is formally modeled
as a multiset, rather than a set of sentences.

In contrast to Brandom, we aim at an autonomous semantics for impli-
cation (→) that does not define F → G as an abbreviation of ¬(F ∧ ¬G).
Rather, we want to come up with a GOGAR rule that matches the logi-
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cally expressivist insight that F → G is just a syntactic device that allows
one to express that G is materially entailed by F in a given context of fur-
ther assertions. We therefore suggest the following rule that refers to state
H1, . . . ,Hm ▷ F → G.

Q: asks for reasons to accept F → G if H1, . . . ,Hm are accepted
P: asserts that H1, . . . ,Hm, augmented by F , are reasons for asserting G

From now on we will denote such a rule more concisely as

H1, . . . ,Hm ▷ F → G

H1, . . . ,Hm, F ▷ G

For conjunctive claims we stipulate the following rule.

H1, . . . ,Hm ▷ F ∧G

H1, . . . ,Hm ▷ F and H1, . . . ,Hm ▷ G

In words: when Q asks P for reasons to accept F ∧G given the sentences
H1, . . . ,Hm, P replies that H1, . . . ,Hm constitute reasons to accept F as
well as reasons to accept G. Thus conjunction (∧) is treated as an expressive
device to join two separate entailment claims. Note that this rule indicates
that an overall state of GOGAR is given by a multiset {Γ1 ▷F1, . . . ,Γn ▷Fn}
of component states, where each Γi is a multiset of sentences currently
offered as reasons for the claim Fi. To determine how the game is to proceed,
we let Q choose the component state (entailment claim) to which the next
round of interactions has to apply.

The GOGAR rule for disjunction involves a choice by player P:

H1, . . . ,Hm ▷ F ∨G

H1, . . . ,Hm ▷ F or H1, . . . ,Hm ▷ G

In other words, in reply to Q’s questioning of the claim F ∨G, P reduces
her disjunctive claim to claiming one of the disjuncts.

We still need rules for reducing states that involve logically complex
sentences asserted as reasons. The case for conjunctive reasons is particularly
simple: if Q questions a conjunctive sentence F ∧ G, asserted by P as a
reason for accepting some claim, then P simply replaces F ∧G by F and G
in the multiset of asserted reasons. In our concise notation this amounts to

F ∧G,H1, . . . ,Hm ▷ I

F,G,H1, . . . ,Hm ▷ I
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For disjunctive reasons we introduce the following rule:

F ∨G,H1, . . . ,Hm ▷ I

F,H1, . . . ,Hm ▷ I and G,H1, . . . ,Hm ▷ I

In other words, if prompted by Q, P makes explicit that in order to establish
the material entailment claim F ∨ G,H1, . . . ,Hm |= I it is sufficient to
establish the two entailment claims that result from replacing F ∨G by either
F or G, respectively, in the premises (i.e., in the multiset of reasons given so
far for accepting I).

Finally, consider the following rule for the case, where Q questions
F → G among the reasons given by P for accepting the sentence I .

F → G,H1, . . . ,Hm ▷ I

F → G,H1, . . . ,Hm ▷ F and G,H1, . . . ,Hm ▷ I

Again, the rule can be understood as making explicit that establishing F →
G,H1, . . . ,Hm |= I can be reduced to establishing G,H1, . . . ,Hm |= I
as well as F → G,H1, . . . ,Hm |= F . The presence of F → G in the
latter entailment claim may appear redundant at first glance. However, it
turns out that one should allow Q to question F → G again in this situation.
(Alternatively, one may introduce a rule forcing P to provide another copy of
the indicated implication, if prompted to do so by Q.)

No separate rules for negated sentences as reasons or claims are needed
if ¬F is treated as F → ⊥, where ⊥ denotes a sentence that is incoherent in
all interpretations.

To turn our GOGAR model into an ordinary two-person extensive form
game, we still have to do three things: (1) define how the game ends, (2)
specify pay-off values for both players at final states, and (3) settle a remain-
ing indeterminacy about the possible continuation at non-final states: once Q
has picked a component (entailment claim) to which one of the above game
rules is to be applied, who gets to choose which non-atomic formula (claim
or reason) is to be reduced?

Let us address task (1) first. Note that it is not reasonable to declare
that the game ends if and only if all sentences in all entailment claims that
constitute the current state game are atomic, since we keep non-atomic
sentences asserted as reasons available for further questioning. Rather, we
declare that the game ends as soon as, in every component (entailment
claim) of the current state, the claimed sentence (conclusion) is atomic
and also appears among the sentences asserted as reasons for it or else ⊥
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appears among the asserted reasons (premises). I.e., final states are multisets
of component states, each of the form p,H1, . . . ,Hn ▷ p or of the form
⊥, H1, . . . ,Hn ▷ p, where p is an atomic sentence. Of course, there is still
no guarantee that a given instance of the game ever ends: we have to take
into account infinite runs as well.

Tasks (2) and (3) are not independent of each other. If we model GOGAR
as a win-lose game, then we stipulate that P wins the game whenever it
reaches a final state and Q wins if the game runs forever. In this case we
should give P the right to choose the next non-atomic formula to be reduced
(i.e., the rule to be applied) in the component of the current state that has
been chosen by Q, since otherwise Q could trivially force each non-atomic
instance of the game to run forever. An alternative option is to model GOGAR
as cooperative game, where both players prefer to reach a final state, rather
then to play forever. In the latter case, it does not matter whether P or Q
chooses the sentence to be reduced next.

Claim 1 Suppose that GOGAR starts with P’s claim that F and Poffers the
reasons H1, . . . ,Hn for accepting F , when questioned by Q.

In the win-lose version of GOGAR, P has a winning strategy iff F
is a logical consequence of H1, . . . ,Hn according to intuitionistic logic
(H1, . . . ,Hn |=IL F ).

In the cooperative version of GOGAR, P and Q, jointly have a winning
strategy iff H1, . . . ,Hn |=IL F .

A detailed proof of Claim 1 is beyond the scope of this paper. However,
we may indicate the essence of the proof by directing the reader to the sequent
calculus G3i for intuitionistic logic in (Troelstra & Schwichtenberg, 2000).
Reading our game rules from bottom to top and replacing ▷ by the sequent
arrow turns them into the propositional rules of G3i. Moreover, the axioms
of G3i match the definition of final game states. In this manner, our version
of GOGAR emerges as an interpretation of this intuitionistic calculus.11

7 Conclusion

Our re-assessment of incompatibility semantics revealed a number of prob-
lems with Brandom’s definitions and claims. Most importantly, the central

11It is easy to see that G3i proofs correspond to winning strategies in GOGAR. To complete
the proof, one still has to establish that the above stipulations about the possible successions of
moves amount, in both versions of the game, to a successful proof search strategy in G3i.
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claim that, although holistic and non-compositional, incompatibility seman-
tics admits recursive projectibility and hence refutes the claim that holistic
semantics cannot account for the systematicity and learnability of language,
has been shown to rest on the additional assumption of inferential conserva-
tivity. This assumption, however, is at odds with the intended application of
incoherence models as pointed out in Section 4: recursive projectibility can
only be obtained for a price that, arguably, is too high to pay.

Another complaint about Brandom’s approach to logical semantics is
the fact that it does not, at least not directly, amount to a pragmatist and
inferentialist account that ties in with logical expressivism. In particular,
Brandom’s own insight that the logical connective in F → G can be seen
as an expressive device for expressing that G is materially entailed by F is
not reflected in a corresponding meaning postulate in incompatibility seman-
tics. Therefore we suggested an alternative approach that seeks to define the
meaning of logical connectives via rules of an idealized, formal ‘game of giv-
ing and asking for reasons’, in which a proponent P systematically reduces
a logically complex entailment claim to an atomic entailment, prompted
by systematic questioning by a second player Q. While this is similar to
dialogical logic (Lorenzen, 1960), a main difference is that the role of Q
need not necessarily be understood as antagonistic to that of P.12 Moreover,
we indicated how our GOGAR model can be connected to the concept of
incompatibility-entailment at the atomic level. The game amounts to an
interpretation of a cut-free sequent calculus that is sound and complete for
intuitionistic logic. It remains to be investigated whether this model can
be extended to rules for asserting sentences that feature a modal operator.
Another line for further research is to explore connections to the notion of
scorekeeping in language games by Lewis (1979) and observations about
the necessity of postulating a common ground between effective conversa-
tionalists (Stalnaker, 2002). Finally, it should be mentioned that Brandom
and his collaborators recently shifted attention to an account of material
and logical entailment that, in contrast to the incompatibility semantics of
Brandom (2008), embraces non-monotonicity and consequently relates to
sequent systems that do not admit weakening (see Brandom, 2021). We plan
to investigate whether our game semantic approach can be extended to cover
also corresponding insights about non-monotonic inference.

12Another major difference is that in the GOGAR model Q, unlike the opponent to P in
Lorenzen’s game, does not assert sentences herself, but only questions those asserted by P.
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