
Evaluating the Energy
Simulations of Multicast Routing

Protocols used in Wireless
Sensor Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Daniel Lukitsch, BSc
Matrikelnummer 01634053

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Univ.Ass. Dipl.-Ing. Philipp Raich, BSc

Wien, 6. Dezember 2022
Daniel Lukitsch Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Evaluating the Energy
Simulations of Multicast Routing

Protocols used in Wireless
Sensor Networks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Daniel Lukitsch, BSc
Registration Number 01634053

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Univ.Ass. Dipl.-Ing. Philipp Raich, BSc

Vienna, 6th December, 2022
Daniel Lukitsch Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daniel Lukitsch, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. Dezember 2022
Daniel Lukitsch

v

Danksagung

An dieser Stelle möchte ich allen danken, die mich bisher während meines Master-Studiums
und der Arbeit an dieser Diplomarbeit unterstützt haben.

Besonderen Dank möchte ich dabei Dipl.-Ing. Philipp Raich aussprechen, der sich regel-
mäßig Zeit nahm, um mich bei der Erstellung dieser Arbeit immer wieder durch neue
Ideen, Hinweise zu unterstützen.

Weiters möchte ich auch Prof. Wolfgang Kastner für die Abwicklung dieser Arbeit, das
interessante Thema und die ausführliche Begutachtung danken.

Abschließend möchte ich mich natürlich auch bei meiner Verlobten, meinen Eltern und
allen, die mich sonst noch während des Master-Studiums unterstützt haben bedanken,
denn ohne diese Unterstützung wäre all das nicht möglich gewesen.

vii

Acknowledgements

I want to thank everyone who supported me with my master’s studies and especially
during the work of this master thesis.

Especially Dipl.-Ing. Philipp Raich, for the ideas, help and overall support he has given
to me, and for the time he spent helping me with this thesis. Other thanks go to Prof.
Wolfgang Kastner for making this exciting work possible and correcting it.

Finally, I want to thank my fiancée, parents, and everyone else who made it possible to
finish my master’s degree.

ix

Kurzfassung

Durch die rasante Entwicklung und Verbreitung des Internets der Dinge (IoT) und des
damit verbundenen, drastisch erhöhten Vernetzungsgrades von modernen Elektrogeräten
stellt diese aktuelle Veränderung auch die etablierte Domäne der drahtlosen Sensor-
netzwerke (WSNs) vor neue Herausforderungen. Durch die Kombination des Internet
Protokolls Version 6 (IPv6) mit dem Übertragungsstandard IEEE 802.15.4 ist es nun
möglich, diese ressourcen-limitierten Netzwerke in das Internets der Dinge einzubinden
und dadurch neue praktische Anwendungen umzusetzen.

Diese neuen Möglichkeiten eröffnen jedoch auch weitere Problemstellungen, vor allem für
Routing in diesen drahtlosen Sensornetzwerken. Die hierfür verwendeten Routingproto-
kolle müssen für eine möglichst verlässliche Ende-zu-Ende Übertragung jedes einzelnen
Datenpakets sorgen, während die Übertragungen zusätzlich mit maximaler Energie-
effizienz erledigt werden müssen. Um diese Eigenschaften für ein solches drahtloses
Sensornetzwerk mit spezieller Topologie und Konfiguration zu ermitteln, sind moderne
Netzwerksimulatoren unerlässlich.

Aus diesem Grund werden verschiedene Netzwerksimulatoren mit besonderem Fokus auf
die Verwendung mit drahtlosen Sensornetzwerken evaluiert. Nach dieser Evaluierung der
verfügbaren Simulatoren wird der Network Simulator 3 (NS-3) für die weitere Arbeit
verwendet, um das Multicast Protocol for Low-Power and Lossy Networks (MPL) zu
implementieren, das bestehende Ad hoc On-Demand Distance Vector (AODV)-Modell
für die Verwendung mit IPv6 portiert und die bestehende Implementierung des IEEE
802.15.4 Modells um ein Energiemodell zur direkten Simulation des Energieverbrauchs
erweitert.

Basierend auf diesen Implementierungen wird der NS-3 Simulator benutzt, um Mesh-
Under Flooding, MPL und AODV6 mittels verschiedenster Parameter-Konfigurationen
und Netzwerktopologien vergleichen zu können. Diese Vergleiche erlauben es, die un-
terschiedlichen Konfigurationsmöglichkeiten der genannten Protokolle hinsichtlich ihrer
Energieeffizienz, Verlässlichkeit und Störanfälligkeit zu beurteilen und aus diesen Simula-
tionsergebnissen, Empfehlungen für die Konfiguration und Verwendung dieser Protokolle
in realen Applikationen abzuleiten.

xi

Abstract

In the past few years, the tremendous increase of connected and interlinked electronic
devices led to the creation of the so-called Internet of Things (IoT), which has had a
high impact on today’s electronic devices, especially in the domain of Wireless Sensor
Networks (WSNs). The development of 6LoWPAN, which enables WSN for the usage of
IPv6 together with the transmission standard IEEE 802.15.4 opens many possibilities for
modern WSNs. The combination of these two technologies enables the direct connection
of WSNs into the global IoT, and therefore the realization of newer and even bigger
applications than it would have been possible with conventional and only locally connected
WSNs.

These emerging possibilities create new use cases and lead to new challenges and require-
ments for modern WSNs. One of these challenges is the usage of specialized routing
protocols inside the resource-limited nodes of a WSN. These specialized routing mecha-
nisms have to maintain a stable end-to-end communication over an unstable physical
transmission channel while at the same time only consuming an absolute minimum of
energy to enable a maximum lifetime for a node with its given battery power. Accordingly,
state-of-the-art network simulators are essential tools, as they allow us to simulate diverse
WSN, their different network topologies and protocol configurations.

Therefore, we evaluate different network simulators for their usage and simulation of
WSNs. As a result of this simulator evaluation, we further use the NS-3 and implement
the Multicast Protocol for Low-Power and Lossy Networks (MPL) for this simulator.
Additionally, we port the existing IPv4 based model for the Ad hoc On-Demand Distance
Vector (AODV) routing protocol for the usage with IPv6. Further, we extend the
simulator’s IEEE 802.15.4 model with an energy model, which allows us to simulate a
node’s energy consumption and turn it off if its battery uses all its available energy.

Further we use our extended NS-3 simulator to model the behaviour of WSNs that use
the following routing protocols, MPL, Mesh-Under Flooding and Ad hoc On-Demand
Distance Vector (AODV) Routing for IP version 6 (AODV6) with different parameter
configurations on the most common network topologies. We then use the data and results
generated in these simulations to compare the protocols against each other regarding
energy efficiency, reliability and capabilities. Therefore, we want to provide developers
of WSNs with recommendations and hints on how to use and configure these routing
protocols to achieve the best performance and energy efficiency.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 State of the Art . 4
1.4 Methodology and Structure of the Thesis 7

2 Wireless Network Simulators 9
2.1 Simulator Evaluation . 9
2.2 Simulator Comparison . 15
2.3 The NS-3 Simulator . 16

3 WSN Routing Protocols 23
3.1 Mesh-Under Flooding . 24
3.2 MPL . 26
3.3 AODV via IPv6 . 35

4 Implementation 37
4.1 AODV via IPv6 . 37
4.2 Flooding . 38
4.3 MPL . 38
4.4 LR-WPAN Energy Model . 45
4.5 Execution and Evaluation Framework 48

5 Used Models, Simulation Parameters and Metrics 55
5.1 Simulation Models . 56
5.2 Special Simulation Models . 60
5.3 Parameter Variations . 62
5.4 Protocol Metrics . 64

xv

6 Evaluation and Discussion 67
6.1 Multicast via Unicast Transmissions 67
6.2 Basic Model Simulations . 68
6.3 Network Lifetime Simulations . 81
6.4 Interference Simulations . 84

7 Conclusion and Future Work 89
7.1 Conclusion . 89
7.2 Future Work . 90

List of Figures 91

List of Tables 93

Glossary 95

Acronyms 97

Bibliography 99

CHAPTER 1
Introduction

1.1 Motivation
Modern WSNs have greatly improved and evolved in recent years. With the current
hardware and software technology available, their common use-cases have changed.
They are no longer separated networks which are designed for a single purpose. WSNs
previously needed particular transmission and routing protocols, such that they were not
compatible with the ones used in our standard computers. Instead, with the improvements
and possibilities that IPv6 offers, we can even integrate whole WSNs into the global
network of connected and intelligent devices, commonly referred to as the IoT [UWM+15].
Furthermore, this extends the usage of WSNs to many more applications, like smart
agriculture, home and building automation, weather measurement systems and many
others. However, all these applications have one thing in common: they all try to optimize
and connect single data points into one connected system.
Therefore, we have to take lots of different factors into account. One of the most important
ones is that the underlying WSN stays operational for a maximum time. Since nodes in a
WSN are commonly battery-powered, the energy efficiency of every single node is critical
in keeping the whole network operational. Hence, it is essential to simulate and test the
energy efficiency within virtual networks and implement state-of-the-art routing protocols
to keep the available network simulators up to date. The knowledge obtained from the
simulation results of these virtual WSNs, then helps us to gain a better understanding of
networks behaviour and its utilized network stack. This additional information can then
be further used to configure the protocols within the utilized network stack in a more
energy efficient way, for both virtual and also real-world wireless sensor nodes. This may
then reduce the overall energy consumption which leads to a longer battery lifetime and
ensures that the WSN stays operational for a longer period of time.
To reach these important goals, this thesis aim lies on the simulation based evaluation
of multicast routing protocols for WSN. Due to the small and constrained amount of

1

1. Introduction

energy that is available to wireless sensor nodes, the focus is especially on the energy
efficiency, reliability and functionality of the utilized routing protocols. Therefore, we
will have to evaluate and compare different wireless network simulators to select the best
suiting one four our needs and identify missing features and simulation models, that we
will have to implement ourselves. Next, after the simulator supports all the necessary
functionalities we perform various simulations of WSNs with different network topologies
and routing protocol configurations. The results obtained from these simulations are
then compared for their energy efficiency and overall functionality, which provides us
with a better understanding of the nodes’ observed behaviour. This additional knowledge
may then be used to find an optimal routing protocol configuration for a certain WSN
and extend its overall battery lifetime in and outside of the virtual simulation setup.

1.2 Problem Statement
This thesis addresses multiple problem statements and focuses on multicast transmissions
within the domain of WSN and their respective routing protocols. Due to the typically
very limited and minimal amount of energy that is available to the wireless nodes of a
WSN, it is a absolutely crucial to minimize the nodes’ energy consumption to reduce the
amount of necessary maintenance to ensure a maximal lifetime of the whole network.

This already introduces another problem that occurs, while implementing and fine
trimming the behaviour of a WSNs. This central problem is the sheer size of the network
itself, which often requires a lot of hardware nodes, a minimum distance between the
nodes and a realistic environment to optimally configure a network for its desired use
case. Most times creating, maintaining and rearranging such network setups solely for a
small amount of test cases is completely impractical and out of scope.

In such a situation, it is inevitable to simulate the desired WSN within a virtual setup
by using a special simulator for WSNs and evaluate the obtained results for this virtual
network. As there are numerous different WSN simulators available, another problem is
to find the one that suits best.

Therefore, we evaluate several available network simulators in chapter 2, to find a scalable
and feature-rich simulator. Further, this simulator shall also be convenient to use and
allows us to contribute our models and perform state-of-the-art simulations to analyse
the energy efficiency and other properties of multicast transmissions in modern WSNs.
We primarily focus on multicast routing protocols as they are commonly used with WSNs
and provide a good foundation for further work.

This focus on multicast routing protocols comes form the typical use case of the wireless
sensor nodes within a WSN. As the name suggests, these nodes are often smart and stand
alone sensors that periodically transmit their measured values to every other receiver
node within its transmission range in a reliable way, while consuming a the least amount
of energy. For such a behaviour, multicast transmissions are the only feasible choice,
when implementing a one-to-many communication scheme.

2

1.2. Problem Statement

The importance of multicast transmissions raises a further problem on how these specific
routing protocols solve their routing tasks while handling the inherent problem of achieving
an energy-efficient and simultaneously reliable way to communicate in low power and
lossy networks. To answer this question, we evaluate and analyse the functionality
of different multicast routing protocols and how their performance changes in various
different network and protocol configuration setups.

The second part of this work tries to answer what possibilities a simulator has to measure
the energy consumption and efficiency of a wireless sensor node in a WSN and what
metrics we can implement to quantify the energy consumption. This step is necessary as
we are working in a completely virtual setting without the ability to physically measure
the energy consumption of a real hardware node. Instead, we have to use energy models
that try to mimic the real behaviour of a hardware node in the virtual simulation domain
and provide us with approximated results for a node’s energy consumption in the real
world. Therefore, we examine several typical use cases together with specific routing
protocol configurations to evaluate their impact on the nodes’ energy efficiency, usability
and reliability. These use cases consider the nodes within the WSN as static and provide
the nodes with energy sources to mimic a real network with nodes that deplete their
batteries and become dysfunctional. We then use these obtained simulation results to
draw conclusions for a networks real-world behaviour and how realistic the behaviour
within a simulator actually is.

Beneath surveying the accuracy and limitations of such network simulations, we want to
evaluate metrics for different network topologies, protocol configurations and interference
situations. Further, we want to derive limitations and recommendations for real-world
applications from our results obtained from various use-case simulations. Based on our
virtual simulation results, these conclusions will help us maximize real-world applications’
performance and of used multicast routing protocols.

From all these different aspects and aims of this work, we derived the following four main
research questions that we want to answer with the work conducted throughout this
thesis:

• RQ1: How can we measure a nodes’ energy consumption in the virtual
environment of a simulator?
What possibilities are there to determine the realistic energy consumption of a
virtually simulated node within a WSN.

• RQ2: How accurate are virtual simulation results compared to physical
measurements?
What are the limitations and general restrictions of the utilized energy consumption
models, how can we improve their accuracy, and what does this mean for their
overall applicability.

• RQ3: Which hardware-independent metrics can we apply to acquire a
realistic overview of a WSNs energy consumption?

3

1. Introduction

Are some metrics not connected to any hardware-specific properties, which we can
use to get a reliable approximation of the energy efficiency of a routing protocol for
WSNs.

• RQ4: How can we define the energy-efficiency of a routing protocol?
Which network and transmission parameters of a node can we use as a metric to
compare the energy efficiency of a routing protocol.

1.3 State of the Art
WSN nodes and their running software must be permanently optimized to maximize the
performance and energy efficiency of the whole network they form. Peculiarly as the
nodes’ hardware and software capabilities improve at a very high rate, Lahmar et al.
show the improvements for modern nodes’ processors [LCA12], which provide us with a
boost in processor speed and the increase of available memory. Even more important
is the improvement of the overall energy efficiency of modern hardware, especially on
the energy needed to send and receive packets, as is shown by Adelmann in [Ade21].
The physical measurements done by Adelmann show that for modern hardware, the
energy used to receive and transmit has dropped to similar levels as the actual energy
consumption of the used processor itself, which makes sending and receiving data less
critical for the overall energy consumption than it was with older hardware.

Another important milestone for a WSN’s functionality is the definition of the IEEE
802.15.04 physical layer standardization [IEE20]. Together with the definition of the
6LoWPAN network adaption layer [MHCK07], these two protocols are essential for the
interoperability and connectivity between nodes from different WSN and their overall
integration into the IoT.

These innovations in the nodes network stack led to the need of a broad range of new
energy efficient unicast and multicast routing protocols that can be efficiently used within
WSNs. According to Raich et al. these routing protocols can be classified by their utilized
approach to route the messages [RK18]. These most common protocol classifications are:

• Flooding-Based
These protocols utilize the intrinsic broadcasting behaviour of wireless transmissions.
An initial sending node sends its data message. Depending on the utilized protocol
algorithm, all the receiving nodes either retransmit a message to their neighbours or
ignore it. The most famous protocols from this class are the basic Flooding protocol
and to some extinct also the MPL routing protocol, that uses the classical flooding
approach combined with a probabilistic algorithm to route its data messages.

• Table-Driven (Proactive)
For these protocols, the nodes try to create and maintain a representative graph of
the current network within their memory (tables) to identify the optimal route to
a message that must be sent. These protocols require a permanent and periodic

4

1.3. State of the Art

update and check if their maintained routing tables perform efficiently and register
changes within the network. Typical protocols for this protocol class are the Routing
Protocol for Low power and Lossy Networks (RPL) and Low-Energy Adaptive
Clustering Hierarchy (LEACH) routing protocols.

• Ad-Hoc (Reactive)
The ad-hoc or reactive routing protocols utilize the completely opposite approach
as the previously introduced table-driven ones. These protocols do not maintain a
graph that represents the current network topology. Instead, they always try to
acquire the necessary routing information on-demand when they want to send a new
data message. Therefore, before sending the actual data message, reactive protocols
perform some sort of route request, where they try to determine the network route
to send the datagram to. An example of such an reactive protocol is the AODV
protocol, which was initially developed for use within Mobile Ad-hoc Networks
(MANETs). Due to continuous improvements, it is also used within WSNs.

For completion, there are also the multipath, hybrid and optimization based approaches
that may offer better performance than the protocols from the previously introduced
protocol classes. However, these protocols also have a very high computational complexity,
resulting in high energy consumption, which reduces a node’s lifetime, which is often not
feasible for a WSN.

Another approach to classify and evaluate the numerous available routing protocols is
made by Sobral et al. [SRR+19]. This work analyses several routing protocols for their
use within WSNs and classifies them by their functional capabilities like their ability
to perform multicast transmissions, their capability to support mobile nodes and their
achieved Quality of Service (QoS). For this work, we are mainly focused on the listed
multicast protocols like the flooding-based MPL [HK16], which is specially designed to
transmit multicast messages within a low power and lossy network environment like a
WSN. Additionally, Sobral et al. also analyse and compare the different enhancements for
the basic RPL routing algorithm [SRR+19] [WTB+12], which make this solely unicast-
based and table-driven routing protocol capable for the transmission of multicast messages
within a WSN.

However, aside from the physical hardware and its increase in performance and resources
over the last years, the software running on a modern WSNs node is as important and
essential as the hardware it runs on. The software has to utilize its available hardware
resources optimally and handle the intrinsic restrictions and problems of WSNs as
discussed in [PK18]. Although some of these problems, achieving a low transmission
delay, were already present in the domain of ad-hoc networks, the developed solutions
for ad-hoc networks are not applicable for the use with modern WSNs. In [GMG07],
the similarities and differences between WSNs and ad-hoc networks are discussed, and
it commonly boils down to the different restrictions of the available resources, the
transmission properties and use cases of these two domains.

5

1. Introduction

Another difference between a WSN and a MANET is also the network size. Today, WSNs,
are commonly used in Home and Building Automation (HBA) Environmental Monitoring
and Smart Agriculture systems [SCK+14] [Laz13] [Kas20]. Their main purpose is to
monitor the environmental conditions and transmit the measured samples to a central
controlling system in these domains. Due to the wireless transmission, these measured
data values are broadcast to all the nodes within a node transmission range. Therefore,
as described in [RK18], efficient multicast protocols are significant for WSNs, e.g. to
deliver reconfiguration messages to certain nodes without the need to address each node
individually. Due to the high number of nodes used in modern WSNs, wireless network
simulators like the ones discussed in [KHN14] are essential to develop and test such a
network before deploying it with real hardware nodes. The usage of state-of-the-art
network simulators allows the developers to skip the costly and time-consuming step of
physically implementing the network and instead simulate specific use cases to analyse
the energy consumption, performance, network behaviour even functional correctness of
a completely virtual network.

Different open-source network simulators allow us to virtually deploy a WSN and
simulate its behaviour. Minakov et al. and Bakni et al. provide a detailed com-
parison between the features and performance of the most popular simulators for
WSNs [MPRS16] [BMC+19], like the famous NS-2, OMNeT++ and the Contiki/Cooja
simulator [IH12] [VH08] [ODE+06]. The only simulator missing within these comparisons
is the NS-3 simulator [RH10], which is developed as a successor for the discontinued
NS-2 simulator which is no longer developed nor maintained. This NS-3 simulator is
an improved and completely from scratch re-developed version, which is not compatible
with the NS-2 simulator. NS-3 is enhanced with various additional simulation models
compared to NS-2, is actively maintained and receives continuous updates as well as new
features and simulation models.

Further, the work of Bakni et al. also aims to give a detailed view of how the different
simulators implement their used energy models and what features and functional limi-
tations these energy simulation models have [BMC+19]. As shown, all of the analysed
simulators use the state-based approach to model the energy consumption of a node.
Therefore, they directly monitor how much time a device spends in certain Physical Layer
(PHY) states. This period is then multiplied with the supply voltage and consumed
current to calculate the assumed energy consumption of a certain state. Each time the
PHY changes its state, these calculated energy values are summed up and represent the
total energy consumption of a node during the simulation. The newly developed NS-3
simulator and its energy model implementation use this state-based approach to calculate
the overall energy consumption of a node [WNP11]. Depending on the actual simulator,
the used energy simulation models further provide additional features, like the simulation
of a connected battery, that is drained by the simulated energy consumption of the node
and shuts down the whole node if its available energy is depleted.

6

1.4. Methodology and Structure of the Thesis

1.4 Methodology and Structure of the Thesis
The thesis is structured and divided into multiple chapters, which handle this work’s
different aspects and methodology.

This thesis aims to evaluate and analyse the possibilities of simulating and comparing the
energy efficiency of multicast routing protocols. We first must research available network
simulators, check which features and energy measurement functionalities they provide us,
and select the best suiting one. In chapter 2, we describe the work conducted for this
thorough comparison and elaborate on our final decision to stick with NS-3. This chapter
introduces how to use the NS-3 simulator and implement new NS-3 compatible models.
Further, this chapter also explains the most critical software components of NS-3, how
we use it to simulate WSNs and how to extend and contribute new simulation models to
its code base.

Next, we need to pick a set of different routing protocols we are using throughout the
whole thesis and which we want to further evaluate with a simulator. These selected
routing protocols are Mesh-Under Flooding, MPL with both its proactive and reactive
operating modes and the standard AODV routing protocol. In chapter 3 we provide a
detailed description of the properties and mechanisms these selected routing protocols
use.

Chapter 4 describes the necessary adaptions to the NS-3 simulator, such that we can
later use it to simulate the actual use cases and experiments, from which we then extract
our results. All of these necessary software implementations are listed in this chapter. It
contains the description of the work done to implement the new simulation models for
the MPL routing protocol, the Low-Rate Wireless Personal Area Networks (LR-WPAN)
energy model, the porting of the AODV model to AODV6 and the development of a
whole automatic Simulation/Evaluation Framework.

In chapter 5, we introduce the different simulation topologies and models we use for our
simulations, as well as the different routing protocol configurations we are deploying to
these simulation models. The simulated topologies described in this chapter are the line,
circle and grid topologies.

Chapter 6 contains an evaluation and discussion of the results acquired from the sim-
ulations we performed. This chapter discusses what these simulation results provide,
how they can be interpreted in the particular context of energy efficiency, and how the
simulated results compare to actual hardware measurements.

Finally, chapter 7 concludes the thesis and provides an outlook on possible adaptions
and extensions to our performed simulations and lists the future work.

7

CHAPTER 2
Wireless Network Simulators

Network simulators play a vital role in the realization and development of WSNs, as they
provide the possibility to check and trim the behaviour of the nodes’ utilized protocols by
trimming specific parameters to optimize the overall performance of the WSN. Modern
simulators allow us to simulate many different aspects of a wireless network. We can use
their generated data to analyse and improve energy efficiency, throughput, reliability and
other network properties. That can be done either by using different routing protocols or
by fine-trimming, such that the used ones suit the desired use cases best. Due to the
high importance of these simulators, there are quite a lot of them available, so we want
to compare them against each other to provide a quick overview of them. This chapter
introduces and discusses the following four simulators, which are open-source software,
else it is not possible to use and adapt them for free, and commonly used to perform
state-of-the-art network simulations.

These simulators are Cooja [ODE+06], which is generally used to simulate WSNs utilizing
the well known Contiki OS as their base operating system. The second simulator on
our list is OMNeT++ [VH08] together with its specialization Castalia [NHH18], that
especially designed for the simulation of WSNs. The last two discussed simulators are
the NS-2 simulator [IH12], and its modernized state-of-the-art successor NS-3 [RH10].

2.1 Simulator Evaluation
First, we discuss the four previously mentioned simulators and list their strengths and
weaknesses. We compare them against each other and select the simulator that is the
best suited for the work done in this thesis.

When comparing the simulators against each other, there are three crucial properties
that a simulator has to fulfill, in order to be further considered for use within this thesis.
These properties are:

9

2. Wireless Network Simulators

• Actively Maintained:
The simulator has to be actively maintained, such that possibly implemented
simulation models and protocols can be streamed back into the original source-
code and possibly included into a future release. For a discontinued and outdated
simulator, this further usage of our implementation work is simply not possible
anymore.

• Discrete Event Simulator:
As we want to use a state-of-the-art simulator, that achieves a high and scalable
performance and calculates our simulation results in a minimum amount of time, it
is essential that it uses a discrete event simulation engine.

• Support for LR-WPAN (IEEE 802.15.4), 6LoWPAN and IPv6:
Our main goal is to simulate modern WSNs that could possibly be connected and
routed into the IoT. The availability of these three simulation models is a key
property, to keep the amount of additional implementation work low, because if
one of these basic protocols is already missing, it is unlikely that there is support
for any other IPv6-based routing protocol usable with WSNs.

2.1.1 Cooja/Contiki-NG
The first simulator is Cooja, which simulates the network behaviour of nodes that run
Contiki OS. Cooja is programmed in Java and offers an intuitive and easy to use GUI.
In Figure 2.1, an example of Cooja’s GUI is shown. As seen in Figure 2.1, it provides
the user with an overview of the network topology, the nodes’ sent messages, and the
bottom part shows the utilization and duty cycle of the nodes’ radio interface. The GUI
can be adapted easily, and extra functions and windows are available to depict additional
properties of the simulation.

Due to its heavy dependency on Contiki OS, Cooja is tightly coupled with Contiki and
commonly used to simulate nodes and applications that use it as their Operating System
(OS). Apart from this tight coupling with Contiki, it is still possible to use Cooja to
simulate nodes that utilize other OSs, like, for example, RIOT OS.

Due to this possibility to simulate different OSs, Cooja enables us to use a big variety of
important WSN protocols, like the ones from Contiki, which features a 6LoWPAN, MPL
and even a fully functional RPL [WTB+12] implementation. Additionally, Contiki also
supports high-level application protocols and allows the user to customize the network
stack. Therefore, Contiki and its simulator Cooja are a solid choice for developing an
application for wireless networks for real-world applications and physical WSNs.

The only major problem with Cooja is its simulation engine, which is partly implemented
as a Discrete Event Simulator (DEVS), while on the other hand, it is also vastly based
on an explicit hardware emulator called MSP-Simulator (MSPSim) [EOF+09]. This
emulator allows to exactly virtualize the behaviour of hardware nodes based on the TI
MSP430 microcontroller. One such example is the Zolertia Z1 mote, which is most

10

2.1. Simulator Evaluation

Figure 2.1: GUI of the Cooja simulator during an active simulation

commonly used to implement simulations in Cooja. Due to this hybrid combination of a
DEVS together with an explicit hardware emulator for each node inside a simulation, its
generability lacks and it is not suitable to simulate large heterogeneous networks. Instead,
Cooja is often used to test specific application implementations and its main intention is
not to analyse protocols for their exact behaviour in broad networks which typically needs
a simulator whose performance scales better. A noteworthy feature of Cooja is its support
of custom plugins that can be installed and used to simulate various network aspects.
An example of such a plugin is the support for a mobility model, which is not part of the
basic Cooja installation. Despite that, a mobility model is available online from the broad
Contiki community, which has to be manually added to the Cooja installation to simulate
movable nodes. However, another problem of Cooja also originates from its hardware
emulation approach. This problem is its lack of advanced debugging mechanisms to
step through a program and analyse it in detail. Instead, it only features a so-called
Event-Listener, that pauses the simulation in certain situations. Debugging a program or
protocol with such limited analysis tools can be very tedious, and discovering bugs and
errors in the motes may be tricky.

The last problem that often occurs when using Cooja is that the only devices supported do

11

2. Wireless Network Simulators

not have enough memory to run a specific application. In such a situation, Cooja cannot
build and simulate the code. This behaviour may be good to know when developing a
real-world application. Nevertheless, when using Cooja for theoretical simulations and
protocol analysis, this type of behaviour can be bothersome because a user always has to
keep track of the memory usage and switch the mote types if a particular node runs out
of memory. In the worst case, creating a new hardware definition may be necessary if all
supported and existing nodes do not have enough resources or peripheral connections.

Writing such new hardware definitions is quite a tedious process. We have to extend the
suitable compiler toolchain to support the newly defined hardware device so that it can
create functional binaries for the new virtual microcontroller. An additional drawback
that originates from the utilization of the hardware-emulator is Cooja’s lack of support for
generic simulations. Due to the need to build a separate executable for each specific type
of node, the available nodes are not capable of storing generically programmed binaries
that support multiple routing protocols like those implemented in subsection 4.5.3. Such
an implementation would most likely consume all the memory of a single node and render
it useless. Therefore, Cooja is not suitable to perform parameter variation simulations
of a large WSN. Each change of its configuration requires additional re-compilations
and overhead to create the new binaries for the nodes for each configuration change.
These time consuming intermediate steps reduce the scalability, simulation performance
and usability of the simulator. This lack of scalability is a crucial disadvantage when
performing a high number of simulations for academic and research purposes rather than
designing and testing a specific application’s use case.

2.1.2 OMNeT++/Castalia
The second network WSN simulator is the OMNeT++ simulation framework [VH08], and
its additionally required software components, which form the OMNeT++/Castalia net-
work simulator. These additional software parts are the WSN simulator Castalia [NHH18],
and the INET network simulation framework [MVK19]. OMNeT++ is the generic, dis-
crete event framework that provides the discrete simulation engine. This framework
provides the required features, that are necessary to implement a functional network
simulator on top of it. In this case, the simulator using the OMNeT++ framework is
the so called Castalia wireless network simulator. This simulator implements the GUI to
design and configure the simulations and it triggers and controls the simulations that
are actually performed by the underlying OMNeT++ framework. The third component
necessary to perform a network simulation with the Castalia simulator is the INET
framework. This part contains the actual implementations of the different simulation
models, like the LR-WPAN model, which OMNeT++ and Castalia need to simulate
a WSN. The INET framework provides a broad variety of different simulation models,
for example there are mobility, energy consumption, transmission and routing protocol
models that can be used to simulate any form of communication network, when using
Castalia it would be a wireless network.

Like in the previous section with the Cooja simulator and Contiki, Castalia is also

12

2.1. Simulator Evaluation

absolutely dependent on the OMNeT++ simulation framework and extensions containing
the simulation models like INET or other custom software part that implement missing
simulation models. The software architecture of OMNeT++ requires this strict separation
into these three different software parts, that are needed to perform a simulation. These
parts are the general OMNeT++ framework implementing the discrete simulation engine,
a library with the network simulation models like INET and a simulator like Castalia
that implements the GUI and controls the whole simulation process. Due to this strict
separation, each part is a specialization with a specific purpose and provides the user
with an excellent tool-set to perform analytic and realistic simulations without a specific
hardware platform or processor. Castalia and OMNeT++ are both programmed in C++
and are commonly used for academic simulations and protocol analysis. Due to their
high scalability, the number of supported simulation models and the high amount of core
functionalities to analyse and visualize the simulation results.

The only problem with this simulation framework is the currently lacking support for
WSN protocols as there is no working version of the 6LoWPAN adaption-layer protocol
and other IPv6 based routing protocols that can be used with the existing IEEE 802.15.4
model. Kirsche and Schnurbusch present a very impractical and inefficient workaround to
use the precompiled 6LoWPAN implementation from Contiki [KS14], with the OMNeT++
simulation engine. Using this workaround has several drawbacks that originate from using
a model that is precompiled for the use with MSPSim. In order to use this precompiled
binary, the proposed 6LoWPAN model implements a wrapper that emulates the behaviour
of MSPSim to use the binary with OMNeT++. Further, this approach of reusing the
implementation from Contiki is bad for the overall performance, scalability and especially
its usability, as all the protocol configurations have to be done before compiling the model
in Contiki and cannot be changed within OMNeT++. Due to these shortcomings, this
workaround is not contained in the official version of INET and can only be used as an
unofficial extension-plugin together with the very old OMNeT++ framework version 3.4.
As the currently released version of INET framework is 4.3.7 and this 6LoWPAN plugin
is not maintained anymore, it is incompatible and dysfunctional with the latest versions
of OMNeT++ and Contiki OS. So there is only a single possibility to use this model. One
has to use the old OMNeT++ version where the plugin is functional and misses out on
all the new features OMNeT++ offers. Therefore, this prevents us from using models and
functionalities added in subsequent versions, only to have a model for 6LoWPAN. This
fact renders it not reasonable to use the stated 6LoWPAN model in a state-of-the-art
simulation environment. Other than the generally lacking support for WSNs, the whole
OMNeT++/INET/Castalia software packet features a broad range of available protocol
implementations to simulate wireless networks apart of WSNs, like WiFi networks, and
achieves realistic first order validation simulations of protocols without actual hardware
and any further loss of generality.

13

2. Wireless Network Simulators

2.1.3 NS-2
Another widely, if not the most used network simulator is NS-2. Like OMNeT++, NS-2
is also a discrete-event simulator, which allows fast and deterministic simulations of
both wireless and wired networks. NS-2 is still commonly used for scientific purposes
and academic research, which is quite impressive, as the initial release of NS-2 was in
1996, and active development officially ended in 2011 to focus the work on its successor
NS-3. Like the previous simulators, NS-2 features various models that are necessary
to implement a realistic and accurate network simulations. The usage of NS-2 is quite
different than with the other previously introduced network simulators. Instead of a
comfortable GUI, this simulator can only be used by programming the models and
simulations in C++ or the specialized scripting language OTcl, which is an adaption of
the basic Tcl script language. That means the user has to write a C++ or OTcl program
by using the available simulation modules as a library to implement the behaviour of the
nodes. This program is then compiled and started to execute the simulation.

Due to the complete lack of a GUI, NS-2 provides neither a graphical designer to create the
simulation network nor a visualization of steps happening during the running simulation,
like it is available with Cooja or Castalia. The NS-2 simulator only has an optional
software part that provides a visualization of the network behaviour after the simulation
has finished. Therefore, the simulation process writes an optional log file that contains
all the necessary information to visualize every single simulation step in a separate
visualization software afterwards. The additional network animation software then reads
these written events from the log file and visualizes them in a minimalistic GUI.

The advantage of NS-2 in comparison to other simulators is that there are no additional
frameworks and additional software parts needed to perform a simulation. An NS-2
installation contains all of the official NS-2 simulation models right from the start,
without any additional software frameworks or components, and the user can choose
and use the models needed for simulation. Another strength of NS-2 is that you can
use all the features of C++ to implement your simulation and use other additional C++
libraries to visualize the results of a simulation.

Of course, there are also drawbacks when using the NS-2 simulator, is the limited
availability of IPv6 based protocol, and the lack of an IEEE 802.15.4 and 6LoWPAN
model, which are absolutely crucial for the WSN simulations we want to perform. Another
major problem and showstopper for NS-2 is, that its development was already stopped
in 2011 is not continued anymore, which renders NS-2 completely outdated.

2.1.4 NS-3
As mentioned in the previous section, NS-3 is the improved and adapted version of
the successful NS-2 simulator, so it inherited most of its properties from NS-2. In
comparison to its predecessor, NS-3 can be programmed with the standard languages
C++ and Python without any further need of OTcl. This switch of the supported
programming languages was possible due to a complete redesign and reimplementation of

14

2.2. Simulator Comparison

the NS-3 core, which was necessary to acquire a modern and fast simulation environment
that offers the same features as NS-2. Although NS-3 was completely re-implemented
and renewed, its usage and essential features are quite the same as with NS-2. One
big difference between the two simulator generations is the high number of additional
simulation models that NS-3 offers. These newly implemented models feature broad
support of IPv6 based protocols like 6LoWPAN and additional transmission layers like
LR-WPAN, which enables our simulations to use the IEEE 802.15.4 protocol. These new
models allow a user to perform state-of-the-art simulations of IoT networks. Another
advanced feature of NS-3 is the possibility to use it for hardware-in-the-loop simulations,
which allows the simulator to interfere with real hardware and act as a testbench that
tests the network communication of the hardware.

2.2 Simulator Comparison
Now that we introduced some commonly used network simulators, Table 2.1 visualizes
their most important properties in detail. It also lists the available simulation models of
each simulator that are most important for this work. The key models are IEEE 802.15.4
and 6LoWPAN as these two models are mandatory to simulate modern WSNs.

NS-2 NS-3 Castalia/OMNeT++ Cooja/Contiki
Simulator Type Discrete-Event Discrete-Event Discrete-Event Hardware Emulator
Language C++, TCL C++, Python C++ C
GUI-Support Poor Poor Very Good Very Good
Scalability Very Good Very Good Very Good Poor
Documentation Very Good Very Good Good Poor

Simulation Models

IEEE 802.11,
IEEE 802.15.4
6LoWPAN
AODV,
MPL
RPL
(E)-SMURF
Mobility,
Energy model,

. . .

IEEE 802.11,
IEEE 802.15.4
6LoWPAN
AODV,
MPL
RPL
(E)-SMURF
Mobility,
Energy model,

. . .

IEEE 802.11,
IEEE 802.15.4
6LoWPAN
AODV,
MPL
RPL
(E)-SMURF
Mobility,
Energy model,

. . .

IEEE 802.11,
IEEE 802.15.4
6LoWPAN
AODV,
MPL
RPL
(E)-SMURF
Mobility,
Energy model,

. . .

Limitiations No new simulation models
No IEEE 802.15.4

No RPL,
IPv6 multicast support,
No energy model for IEEE 802.15.4

No mobility model
No 6LoWPAN,
No RPL,
Multiple component libraries

Lack of Debug possiblities,
Memory limitations of nodes
Relatively slow simulations
Bad scalability,
Hardware compilers necessary
No generic simulations
. . .

Special Features Hardware-in-the-Loop Excellent simulation framework Contiki-OS simulations

Actively Maintained No,
Last Release November 2011

Yes,
Last Release October 2021

Castalia: No,
Last Release October 2013
OMNet++: Yes,
Last Release November 2021

Yes,
Last Release July 2021

Table 2.1: Comparison of the introduced simulators

As this table shows, NS-3 and OMNeT++ are the most versatile simulators as they use
a state-of-the-art simulation framework and offer a broad range of available simulation
models. Though, they both have a common limitation, by not supporting a simulation
model for the RPL protocol. The only drawback that NS-3 has in comparison to

15

2. Wireless Network Simulators

OMNeT++ is the very minimalistic GUI support and visualization of the simulation.
There is only a rather trivial network animator in NS-3 that provides a rough overview
and analysis of the wireless network. So, if there is any specific visualization or diagram
output needed, a user has to implement such applications himself with all the available
C++ and Python libraries. Although, NS-3 still supports some additional models, and
its overall usage and documentation are very good in comparison to OMNeT++/Castalia.
Another important detail of NS-3 is that all of its components are actively maintained,
and there are periodic improvements and updates of the whole simulator available.
The other simulators like NS-2 and Castalia are not maintained anymore. For the
Castalia simulator, only the OMNeT++ base framework features active development and
maintenance. While the implementation and code of the Castalia simulator that is used
on top of OMNeT++ and INET was last updated in 2018.

Cooja on the other hand, uses a different simulation core than the other three introduced
simulators. These use a fast and efficient discrete event simulation engine that allows
skipping idle periods during a simulation, which speeds up the whole simulation process
and generates excellent scalability to use the simulators in simulations with up to hundreds
of different nodes, as Cooja uses a hardware emulation engine to simulate the processor
and network of the nodes. So the simulator has to emulate each node for itself, which is
very bad for the performance. Instead, it even has to emulate the waiting and idling of
the processors if they have to wait until a specific event occurs. Therefore, the simulation
engine of Cooja is not scalable to simulate bigger networks in a reasonable amount of
time.

We can conclude from the simulator comparison that NS-3 and OMNeT++/Castalia
are the most advanced ones that offer a broad range of features. However, when it
comes to the important details, the latter simulator does not feature a currently working
6LoWPAN model, which eliminates it from our available choices. For the same reason
NS-2 also cannot be used. Therefore, we can only select between NS-3 and Cooja, which
both feature all the mandatory models. Cooja has the advantage of various additional
routing protocols in comparison to NS-3. Nevertheless, this single advantage cannot
outweigh the various drawbacks due to the limited scalability, debug-ability and other
limitations listed in Table 2.1.

2.3 The NS-3 Simulator
Due to the comparison in Table 2.1, the available simulations models, general usability
and extend-ability of the simulators, NS-3 is chosen for further work in this thesis. NS-3
is generally very well documented, the documentation and simulator can be obtained
from its official website1.

Additionally, NS-3 also provides a centralized documentation of all the officially supported
simulation modules and the different functionalities that each of the models provides.2.

1Official NS-3 website: https://www.nsnam.org/releases/ns-3-34/
2NS-3 simulation models documentation: https://www.nsnam.org/doxygen/modules.html

16

https://www.nsnam.org/releases/ns-3-34/
https://www.nsnam.org/doxygen/modules.html

2.3. The NS-3 Simulator

2.3.1 NS-3 Core Features and Functionalities
Since NS-3 is the successor of the famous and commonly used NS-2, it aims to add
further improvements and additional features to allow simple and easy-to-use simulations.
Therefore, it has various specialized features and functions to achieve these goals.

For an overall understanding, we first have to introduce the mandatory Core module and
why we need it. This essential module is the heart of NS-3 and implements the whole
simulation framework, which is necessary to perform a simulation run. The functionality
of the Core module can be compared with the one of OMNeT++, with the difference
that it is completely integrated into the source-code of the simulator and not a separate
and stand alone software component.

The following main functionalities of the Core module were used to implement the
different simulation settings and new simulation models described in chapter 4.

• Simulator:
This functionality is the heart of NS-3, and all the other simulation modules
depend on this mandatory module. This static class creates, starts and destroys
the actual simulation process, keeps track of the internal simulation time and stops
the simulation after it reaches its end-time. Each simulation has to use the different
functions this Simulator class provides to control the overall simulation process
and schedule additional events during an active simulation.

• Smart Pointer:
The NS-3 Core module features a specific and non-standard dynamic memory
management system that takes care of the object creation and destruction. This
custom Reference Counting system handles the automatic deletion of unused
memory objects. This system keeps track of the dynamically created class objects,
detects if there are no more references to an object, and automatically deletes it for
the user. This functionality simplifies the implementation as the programmer does
not have to care for the correct deletion of all the created objects to prohibit memory
leaks and free all the used memory. Therefore, the Core module implements special
template classes and specific usage of how to work with this self-created Reference
Counting mechanism.

• Attributes:
The NS-3 core does not only feature its own and special Smart Pointer imple-
mentation. Further, the Core module has a specific Application Interface (API) to
define an attribute handler to access the private properties of the classes. These han-
dlers are custom Setter-methods used to assign a value to a certain class attribute.
For example, this allows implementing a Setter method that checks if a specific
value is correct and is assignable to a class attribute. This behaviour allows the
implementation of value checkers that catch out-of-bound values before assigning
them to the internal class attribute. The only requirement for this mechanism

17

2. Wireless Network Simulators

to work is an inheritance from the Object class for the new class. Due to this
inheritance, the new class inherits the implementation of method GetTypeId
(void). This function creates a new static object of the TypeId class, where
we have to define the classes properties, for the usage with the Smart Pointer
system of NS-3 and where we can add our custom attributes that shall be accessible
via this mechanism. Listing 2.1 shows an example definition of a class using the
Attributes functionality. The shown code defines the class ClassName and calls the
member functions to perform some mandatory settings by specifying the classes
inheritance parent, its member group name and the classes constructor. Without
this information, the Smart Pointer functionality does not work as intended. After-
wards a single unsigned integer attribute that is initialized with 1 and the property
m_InternalClassProperty is checked and filtered for a applicable value by
the generic UintegerChecker class.

1 TypeId ClassName::GetTypeId (void)
2 {
3 static TypeId tid = TypeId ("ns3::customNamespace::ClassName

")
4 .SetParent<InheritanceParent> ()
5 .SetGroupName ("GroupName")
6 .AddConstructor<ClassName> ()
7 .AddAttribute ("AttributeName", "String describing the

Atrribute.",
8 UintegerValue (1), // The init-value
9 MakeUintegerAccessor (&ClassName::m_InternalClassProperty),

10 MakeUintegerChecker ()); // The sanity checker-method
11 return tid;
12 }
13

Listing 2.1: Example of an Class and Attribute Definition

Now that we defined a custom class and its attributes, we can access and manipulate
the attribute’s value with the listed functions.
GetAttribute (’AttributeName’, v_Variable)

Set (’AttributeName’, UintegerValue (100))

These functions allow us to access and change the hidden private properties of
a class everywhere we need them without giving away complete control of the
property itself via the indirect Setter functions.
A detailed description of the attribute frameworks functionality is given in the
official documentation of NS-33.

• Command-Line:
Another commonly used functionality of NS-3 is its integrated parsing of command-
line parameters issued to the simulator throughout the waf build system. This

3Documentation of the Attribute-Framework: https://www.nsnam.org/docs/manual/html/
attributes.html

18

https://www.nsnam.org/docs/manual/html/attributes.html
https://www.nsnam.org/docs/manual/html/attributes.html

2.3. The NS-3 Simulator

mechanism allows users to configure the simulation at startup without recompiling
the code, offering the possibility to implement reconfigurable and generic models.
Users first define the possible arguments and their respective variables to use
this functionality to store the values. Next, the Command-Line automatically
searches the passed caller arguments for the defined keywords and parses their values
into the specified variable. Listing 2.2 shows the using of the argument parsing.
This code initializes the command-line parsing and adds a possible argument that
shall be parsed from the command-line by the following Parse (argc, argv)
function. This method checks all the passed arguments for occurrences of the
declared command line arguments, and if this is the case, it stores its value into
the intended variable.

1 CommandLine cmd(__FILE__);
2 cmd.AddValue("argumentName", "Description of the argument",

argumentVariable);
3 cmd.Parse(argc, argv);
4

Listing 2.2: NS-3 Argument Parsing Example

• Pseudo-Random Simulations:
Another mandatory feature of a state-of-the-art network simulator is to guarantee
pseudo-random simulations. These simulations allow us to calculate deterministic
results if a simulation is re-executed with an identical random-seed configuration
as the previous one. Therefore, the simulation framework has to support and
implement a seeding process for its internal random generators, which generate the
internal random variables, enabling two simulations with identical random seeds to
achieve the same results. In NS-3, this pseudo-randomness can be handled with the
RngSeedManager class, which allows the user to initialize the random-number
generation to ensure deterministic simulation results.
The RngSeedManager differentiates between two different types of seeding values,
the actual random-seed and the run-number, which is used for multi-run simulations
to introduce some randomness without to change the actual random-seed. When
recalculating the same result of a certain simulation, both of these values have to be
configured correctly with the static functions SetSeed(seed) and SetRun(run)
when starting the simulation before it uses all its internal random variables for the
first time. After these steps and a correct initialization of the Random Number
Generator (RNG) and its RngSeedManager, we can re-create previously calculated
simulation results.

• Variable Tracing:
With the Variable Tracing functionality, NS-3 allows us to track every single
change of a special variable. Every time the value of the tracing variable is modified,
this triggers the execution of a defined callback function, enabling this feature
to implement various statistics and evaluations, like counting the number of sent
packets by a certain node. Further, Variable Tracing is useful to debug

19

2. Wireless Network Simulators

applications by tracing and printing every assigned value. So it provides a good
overview of all the different values a property takes at runtime without using a
debugger and iterating through the application.

• Trickle Timer:
At last, we discuss one of the newest features of the Core module, which is the
implementation of the Trickle-Timer functionality. As the name suggests, this is
a fully functional implementation of the Trickle algorithm [LCH+11]. This feature is
mandatory for this work as the whole MPL protocol roots on the Trickle-Timer
and its behaviour. The NS-3 framework provides us with this implementation that
allows us to define a callback function, which it executes after the integrated timer
has fired, to trigger the further handling of this occurred event. Additionally, the
implementation provides all the necessary functions to start, stop, reset and issue
consistent and inconsistent events to the timer. This implementation handles all of
the various edge cases of a Trickle Timer and the correct firing of the callback
function.

2.3.2 Building, Executing and Debugging a Simulation
This section will look at the general usage of NS-3 and which working steps besides the
installation process are necessary to implement, execute and debug a simulation such
that it behaves as intended. This section introduces these essential tasks when working
with NS-3.

Implementing an NS-3 Simulation

After successfully installing NS-3, the first step is implementing a custom simulation.
The first and obvious step is to define the simulation scenario and implement it with
the available models provided by the simulation framework. For help with the necessary
programming work, there is documentation and example code in the Examples folder
of NS-3 itself or inside the model’s source code directory. This code can be used as a
template and combined with other available simulation models. By combining various
models it is possible to implement an scenario -- in our case using the LR-WPAN-,
6LoWPAN-, Internet- and Application-modules -- it is possible to implement a simple
WSN, which sends ping messages from a source to a sink node.

After the implementation of our custom simulation model is finished, we have to configure
the WAF build system to include our new code into the build process. Therefore,
it is necessary to adapt the wscript file within the same folder as our newly created
simulation. Listing 2.3 shows the wscript file of the two simulations contained into the
Energy-Examples of NS-3. As this example shows, two lines for each simulation define
the simulation name and its necessary dependency models. The second line lists the files
containing the source code of the simulation we want to build.

20

2.3. The NS-3 Simulator

1 ## -*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding:
utf-8; -*-

2
3 def build(bld):
4 obj = bld.create_ns3_program(’energy-model-example’, [’core’, ’mobility’,

’wifi’, ’energy’, ’internet’, ’config-store’])
5 obj.source = ’energy-model-example.cc’
6
7 obj = bld.create_ns3_program(’energy-model-with-harvesting-example’, [’

core’, ’mobility’, ’wifi’, ’energy’, ’internet’, ’config-store’])
8 obj.source = ’energy-model-with-harvesting-example.cc’

Listing 2.3: Example of a wscript file

Executing an NS-3 Simulation

Now that we have successfully implemented our custom simulation and configured the
build system to use it, we can assemble the new simulation. All that is necessary to
achieve this is to issue ./waf --run=energy-model-example at the root directory
of NS-3, this will start the build process of the selected simulation by recursively resolving
and building all the defined dependencies, then it generates an executable binary file that
contains the execution, which is then automatically executed to perform the simulation.

This example shows the modularity and simplicity of building and executing a sim-
ulation in NS-3. Another noteworthy feature of this build process is the advanced
dependency resolution. This functionality allows simplifying the definition of necessary
code dependencies.

Another feature of NS-3 and its WAF build-system is its support for automatically
executing the simulation’s binary inside a debugger. Hence, the developer can use this
extended scripting mode to debug the program and detect possible problems during
runtime.

2.3.3 Developing Custom NS-3 Models
Now that we have a general understanding of the usage of NS-3, we will discuss the
components necessary to implement a new simulation model and integrate it into the
WAF build-system. In Figure 2.2, the structure and different files of the NS-3 6LoWPAN
simulation module are shown. This directory scheme is fixed for all the models and
ensures that the build system can detect all the models and integrate them into the
finally built executable.

So the first step when trying to develop a custom simulation model is to create the basic
model structure, which is needed to build and run a simulation that utilizes this new
module later. To simplify this initial creation of the correct folder and file structure for
a new model, NS-3 contains the create-module.py script in the ns3-dev/utils
folder performs this initial work and creates a basic skeleton of our new module.

21

2. Wireless Network Simulators

Figure 2.2: The code structure of the 6LoWPAN simulation model

Then, we have to declare and configure the WAF build system to include these new
source files in the build process. To do so, we again have to edit the wscript inside
the directory of the new module and declare the modules module-dependencies, soure
files, header-files, unit-test files and additional example simulations inside of the new
module folder. There are also further and optional declarations, like the helper-classes
that can be implemented to simplify the assigning of such a module-object to a specific
node within the simulation. As shown in Figure 2.2, optional documentation files and
python-bindings allow us to use the code written in C++ in combination with a Python
script.

These declarations are similar to the ones shown in Listing 2.3. The only difference is that
this wscript file contains the code to build the source code and examples inside of a
simulation module and not to execute a certain simulation, as it is for the given wscript
file in Listing 2.3. The official NS-3 documentation4 provides a detailed description on
how to correctly write and define all mandatory and optional code parts in a wscript
correctly.

After this work of configuring WAF, we can now finally build and execute an example
simulation that uses our newly defined and implemented module by issuing the commands
previously described in section 2.3.2.

4Creating and Declaring a Custom NS-3 Module:
https://www.nsnam.org/docs/manual/html/new-modules.html

22

https://www.nsnam.org/docs/manual/html/new-modules.html

CHAPTER 3
WSN Routing Protocols

Due to the limited resources and low-power wireless transmissions of nodes in a WSN,
they need specific routing protocols that are very energy efficient and do not exceed an
inevitable transmission delay from the sender to all the designated receivers. Since all
the transmissions in a WSN are wireless and therefore intrinsically broadcast to every
receiver within its range, these routing protocols try to take advantage of this intrinsic
broadcasting to achieve a reliable transmission over multiple hops while only using a
minimal amount of energy.

There are various different routing protocols for WSNs we will look at and analyse them
for their capabilities, like the support for multicast, their relevance in the domain of
WSN, their implementation complexity and their availability within the NS-3 simulator.

The protocols considered and analysed are the commonly used Flooding protocol, multicast
capable variants of the LEACH routing protocol, as well as RPL based multicast variations
like Stateless Multicast RPL Forwarding (SMRF) and its numerous enhancements, the
MPL routing mechanism as well as the original AODV protocol and its simplified
variant called Lightweight On-demand Ad hoc Distance-vector Routing Protocol—Next
Generation (LOADng) and numerous more. From this list we picked of three protocols,
consisting of Flooding, MPL and the AODV6.

These three protocols are used in the subsequent chapters to implement, simulate and
analyse for their energy efficiency and reliability in the domain of WSNs. As this thesis
has a special focus on multicast routing protocols, we selected MPL and Flooding as
both of them are capable to support multicast transmissions and MPL is even especially
developed to achieve energy efficient and reliable multicast transmissions. In comparison
we also choose the solely unicast capable AODV6 protocol to compare its performance
against the two multicast protocols, such that we can compare the energy effectiveness
in similar use cases and determine if it can be reasonable to use a unicast protocol to

23

3. WSN Routing Protocols

transmit multicast messages, by sending unicast messages to all the nodes within a
multicast domain.

3.1 Mesh-Under Flooding
At first, we will look at the Flooding protocol to introduce it and evaluate its usage and
some properties it features. The base version of the Flooding protocol is one of the simple
and basic routing protocols available for WSNs. As stated in [BMLG17], the protocol
is often used together with the IEEE 802.15.4 transmission standard to implement a
simple and resource-efficient routing mechanism to transmit packets via multiple hops
across a wireless network.

As the name suggests, the Flooding protocol uses controlled broadcasting of packets
across the whole network to transmit messages to their designated destinations. So
each node repeats a received packet in the best case exactly once and sends it to all its
neighbour nodes. Although, this best case cannot be guaranteed all the time, which
is one of the main problems of protocols that utilize this approach. The neighbours
receiving the message will also repeat it to reroute it to all of their neighbours. This
procedure continues throughout the whole network. With this mechanism, the protocol
aims to transmit the message to every reachable node inside the network. Due to the
automatic broadcasting of wireless transmission, Flooding can route unicast and multicast
messages without the need for another routing protocol, as every sending of a packet is
automatically a broadcast transmission that floods across the whole network. So every
node can decide if it has to drop or pass the message up to the next layer of its network
stack.

There are some additional mechanisms in the Flooding protocol to prevent broadcast
storms, which originate from uncontrolled forwarding of every received packet without
checking if the node already routed the message before. So every node has to maintain
a list of its currently handled messages to prevent further retransmissions of the same
messages over and over, which would cause uncontrolled message floods, called the
Message-Cache. If a node receives a new message, it stores it into its Message-Cache,
such that in case it receives the same message again, the node detects that it already
knows this message and does not forward it again. Additionally, as this Message Cache
cannot store an endless amount of messages, there is also the TTL field in the packet
header, which decrements at every hop. So this counter sets the maximum number of
transmission hops a packet can make before it is not forwarded anymore by the nodes
receiving it. This hop-counter is sometimes crucial to prevent a broadcast storm. Such a
situation occurs if there is too much traffic inside the network and a node has already
overwritten its complete message cache, which is limited due to the low resources of a
node, with other messages. If the node then receives a duplicate of this message again, it
forwards this again into the network, which then creates even more traffic and broadcast
storm is developing and draining the nodes’ batteries.

Flooding also has a third function to improve its energy efficiency and transmission

24

3.1. Mesh-Under Flooding

reliability, the so-called Mesh-Jitter timer of every node. This timer generates a random
milliseconds delay that has to elapse before a received packet is forwarded again. This
delay is necessary as the Medium Access Control (MAC) layer of IEEE 802.15.4 uses
CSMA/CA to access the shared transmission medium. CSMA/CA means that every node
listens on the medium and checks if there is an ongoing transmission or if it is free and
can be acquired. The Mesh-Jitter delay shall reduce the number of message collisions, as
not all the nodes start to send at the same time as soon as the medium is accessible. This
mechanism improves energy efficiency and reliability by reducing the number of collisions
and the resulting retransmissions. The only drawback this Mesh-Jitter introduces is
increased latency and delay for each transmission, which increases with every hop the
packet makes, so the additional Mesh-Jitter delays are also summed up.

Figure 3.1: Mesh-under and Route-over network stack transitions [AK19]

Flooding can be used in two different ways inside a nodes network stack, either via the
conventional way as a route-over protocol inside the Network Layer, on top of IPv6 and
its specific adaption protocol 6LoWPAN. On the right part of Figure 3.1, the route-over,
stack traversal is shown. For this type of routing, the network layer of the nodes network-
stack implements the routing protocol. On the other hand, the left side of Figure 3.1
shows the mesh-under approach of routing protocols used in this thesis to simulate the
Flooding protocol. With this approach, it is possible to route and forward the received
packets on a lower layer of the network stack, which introduces some differences in the
behaviour to the previously mentioned route-over routing. As [AK19] states the main
difference between these two approaches is the handling of fragmented packets and the
resulting energy efficiency and reliability. When using Mesh-under routing, each possible
fragment of a whole message is handled and routed on its own. Therefore, if one such part
is received improperly, only this single segment is dropped and needs to be retransmitted.
In comparison, with a route-over routing approach, all the fragments have to be received
correctly before the stack passes the message to the network layer, where the message
is further processed. Therefore, if one such fragment is missing, all its correct received
parts are also dropped and need to be retransmitted again. This behaviour is due to
the routing in the network-layer, which processes only the complete messages as the

25

3. WSN Routing Protocols

lower layers of the network stack already handle the fragmentation and defragmentation
process. According to [AK19], the route-over mechanism has improved transmission
reliability as there are more re-transmissions as with the mesh-under approach. However,
due to the excessive number of retransmissions, this increased reliability also causes a
much higher energy consumption, which again shortens the functional lifetime of the
whole network when a high number of packet fragments are transmitted. Therefore, as
the mesh-under routing is expected to achieve a better energy consumption than the
classical route-over approach, we will use the mesh-under approach for the Flooding
protocol in the further work of this thesis.

3.2 MPL
The second routing protocol analysed in this thesis is MPL, whose functional details are
specified in RFC 7731 [HK16]. Due to MPL being a multicast routing protocol, each
node internally starts with subscribing itself to its desired IPv6 multicast domains and
listens for messages destined to these destination addresses. After a node has successfully
subscribed, it handles all the messages originating from these domains and tries to route
them inside the wireless network.

The biggest difference between the MPL and Flooding protocols is that apart from
forwarding recently received messages, it allows the nodes to retransmit packets multiple
times automatically. Further, it also uses so-called MPL-Control-Messages, which list the
data messages already known to a node. Therefore, MPL features multiple mechanisms
to detect and counter the loss of a packet to achieve reliable transmissions. This increased
reliability may again cause a higher energy consumption per node due to the additional
retransmissions. Additionally, MPL is a typical route-over routing protocol, whose
decisions are made in the Network Layer as it is depicted on the right side of Figure 3.1.

In the following subsections, we discuss the main parts of MPL, which are its two
operation modes and the basic Trickle algorithm [LCH+11].

3.2.1 Trickle Timer
The whole MPL routing protocol originates from its usage of the Trickle Timer, which is
an important algorithm used within MPL, that controls when the sending of a message
shall be triggered. Every single message that has to be handled and transmitted by a
node is associated with its message-specific Trickle Timer. This timer indicates and
triggers the sending and retransmission of its associated message to the neighbouring
nodes.

The algorithm itself is specified and described in [LCH+11]. Therefore, we will repeat
the key aspects and set them into the specific context for the implementation of MPL
according to [HK16].

A Trickle Timer is an event triggered algorithm, which defines two types of events.
These two event types are the consistent and inconsistent events. These events are used

26

3.2. MPL

to interact with a running Trickle Timer and either signalize to it that everything is
good and it does not have to fire soon, by sending a consistent event. Hence, sending
an inconsistent signalizes the exact opposite to the Trickle Timer, as it then has to
reconfigure itself and fire as soon as possible.

In general, a single Trickle Timer has three following parameters:

• Imin [ms, s] is the minimum duration the timer has to be running. Its value range
for usage with MPL is generally in milliseconds or seconds.

• Imax [int] specifies the maximum duration the timer is allowed to run. This
parameter is not a time value, instead it is an integer value which gives the number
of doubling of Imin. The following formula is used to calculate the maximum
duration of a Trickle Timer :

tmax = 2Imax ∗ Imin (3.1)

• k [int] is the redundancy constant of the timer and indicates the target value of
the received consistent events during a single timer interval.

And the following three variables are used to implement the desired functionality:

• I [time] is the current interval size and has to be within the inclusive borders
defined by the two previously introduced parameters Imin and Imax.

• t [time] is a the Trickle Timer’s current end time. Therefore, t is the time the
timer is running. Its value has to be within [I

2 , I], which is calculated from the
current interval time-span I.

• c [int] is the consistent event counter. Each time such an event is received, this
counter is increased.

Now that we have discussed all the parameters and variables used by a Trickle Timer,
we will focus on the functionality and steps of the algorithm, as stated in [LCH+11].
As the first step when the algorithm is started, the Trickle Timer randomly selects an
initial value for its interval-parameter I inside of [Imin, 2Imax ∗ Imin] and resets its internal
counter c to 0. Additionally, it also initializes the variable t, a value from the interval
[I
2 , I] and starts the timer with the value form the variable t. While the timer is running,

we count the occurrences of consistent events during this interval. After the timer has
reached its end value and we received less than k consistent events, the timer fires, else it
continues without firing. Additionally, after the timer has finished, the current interval I
is doubled with a maximum value of Imax, and the timer can be restarted. A special case
is the reception of an inconsistent event. This event resets the Trickle Timer instantly, I

27

3. WSN Routing Protocols

is reset to Imin, c becomes zero again, and t is also set to Imin and the timer is instantly
started again.

Therefore, the algorithm does not instantly react to such an inconsistent event. Instead,
the node sends its earliest response after Imin has passed. The node might not even
answer to this inconsistent event at all if it receives enough consistent events during
this short time. This delayed behaviour prevents instant firing from all the nodes that
simultaneously received such an inconsistent event. Such a case would cause all the
receiving Trickle Timers to fire and execute their respective expiration, which may
generate a bottleneck situation.

The second property of a Trickle Timer is the counting of the consistent events. This
behaviour introduces and implements a so-called polite-gossiping scheme. Therefore, a
node is not a dumb repeater anymore that forwards everything it receives. Instead, it
waits for a specific time and handles the occurring consistent and inconsistent events, to
determine if a message has to sent or not.

3.2.2 MPL Message Types
In this section, we will now introduce and discuss the two types introduced by the MPL
routing protocol. These are the Data Message with the special MPL-Option and the
Control Message.

3.2.3 Data Messages
First, we introduce the Data Messages used to transmit application data. To generate
such a Data-Message, we have to modify a basic IPv6 data packet, by adding an additional
MPL-Option to the IPv6 header.

Therefore, we first have to recap how an IPv6 header is structured [DH98], how to handle
it according to extensions, and how we add the MPL-Option to such a header the right
way. A standard IPv6 header has a minimal length of 40 bytes. It contains the basic
information needed to successfully deliver a packet, like a source address, a destination
address, payload length and other important parameters. This additional MPL-Option
extends the basic header by adding a further IPv6-options, which is necessary to route
the data message. MPL needs such an additional option, called the MPL-Option, to put
all of its routing information into the packet header. These fields are an 8-bit Sequence
number, some control flags and an optional Seed-ID that the nodes use as their specific
address. The structure of such an MPL-Option is shown in Figure 3.2.

The actual length of the MPL-Option depends on the used length of the Seed-ID. The
value of the S-flags gives the used length for the Seed-ID, whose value 0 indicates that
the IPv6 address is the Seed-ID, 1 specifies a 16-bit Seed-ID identifier, 2 an identifier with
64 bits lengths and an identifier of 3 indicates a length of 132 bits. Every message also
needs the Sequence field, as every message of a certain Seed-ID has a sequence counter,
which increments with each new message. Further, there is the M-flag, which indicates

28

3.2. MPL

0 8 16 24 317 15 23

Option Type = 0x6D Option Data Length

S M V RSV Sequence Seed-ID (optional 0/16/64/132 Bit)

Figure 3.2: Format of an MPL-Option used to route data messages [HK16]

that packets Sequence number is the highest one known to the sending node for this
specific Seed-ID. It allows to detect inconsistencies and raise the according Trickle event
to trigger the process to correct them. Additionally, there are also the V-Flag and RSV
parts of the header. The V-Flag is generally always set to 0, as it indicates if the packet
conforms to the RFC specification. If this bit is one, a standard MPL implementation
has to drop the packet. RSV marks some bits that are currently unused and reserved
for later use. These bits must be set to 0 and ignored by a receiving node. To form a
correct MPL data message, this MPL-Option is directly added to the message’s IPv6
header, into the so called Hop-by-Hop Options Header, which is then followed by the
IPv6 protocol’s payload.

Control Messages

Next, we will look at the second message type that MPL defines, the Control Messages,
how and why we need and use them, which data they contain and the situations when
we send such a message.

In general, such a Control Message contains an overview of all the received Data Messages
of a node that are not old enough to be deleted. A node can delete data messages to
reduce its amount of used memory only if a message’s sequence number is lower than
a certain minimum sequence number. In this case, the message is considered as old
and successfully handled, which allows the node to delete this message if it needs to.
Additionally, a node also deletes all information it has from a node due to the expiration
of the SEED_SET_ENTRY_LIFETIME timeout if it did not receive any messages from
it during this period.

Each control-message is a special ICMPv6 message, that is sent to the control-domain
of an according data-domain. The general management and reserved address ranges for
these domains are described in [HK16] and [Hab02]. These RFCs define a permanent
multicast address for the usage with MPL, the ALL_MPL_FORWARDERS multicast
address ‘FF0X::FC’. The ‘X’ is a placeholder for the used multicast address scope of the
sent messages.

MPL specifies, that there are two separate MPL-domains necessary to use both data and
control messages, as each domain is only allowed to handle a single message type. The

29

3. WSN Routing Protocols

two IPv6 addresses necessary for these domains only differ by their multicast address
scope value. The data-domain typically uses a scope value of 3, which forms the address
‘FF03::FC’, while the control domain then uses the Internet Protocol (IP) address
‘FF02::FC’.

A control-message consists of the basic ICMPv6 fields Type (=159), Code (= 0) and
followed by the standard ICMP-checksum. As additional part of their header, these
messages have an array of MPL Seed Info objects. Figure 3.3 shows the content of such
an object and the overall construction of an MPL control-message. Such an MPL Seed
Info object encodes all the important information that a node currently has on another
node’s received messages.

0 8 16 24 317 15 23

Type = 159 ICMP Checksum

MPL Seed Info [0 .. n]

Code = 0

MPL Seed Info Object:

Min-Sequence Number Seed ID (0/16/64/128 Bits)

Buffered MPL Messages (Variable Length)

B-Messages Len S

Figure 3.3: The MPL Control Message used by the reactive operating mode of
MPL [HK16]

It contains the currently used minimal sequence number for a particular node indicated
by the field Seed ID. The S -field indicates the length of the Seed-ID field congruent with
the data messages. The B-Messages Len field states the length of the Buffered MPL
Messages data field. This field is a bit-vector, where each set bit indicates that the
sending node knows the message. The translation of the bit-index to the actual message’s
sequence number is calculated by SeqNo = i + MinSeqNo, where i is the index of the
currently handled bit. A receiving node can decode the content and compare it with its
own known message sets to detect inconsistencies and initiate the corresponding steps to
correct them.

30

3.2. MPL

3.2.4 MPL Operation Modes
Proactive MPL

The proactive operation mode of MPL utilizes the Trickle algorithm [LCH+11], to schedule
and transmit data messages to all the neighbour nodes. Upon reception of a new MPL
message, each of these neighbour nodes will store this new message in their specific history
of received messages and create and start an associated Trickle Timer for this message.
If this timer expires and the node has received enough consistent trickle events, the
node does not retransmit the message. If there were too few consistent events, the node
retransmits the associated message. In the context of the proactive operation mode, such
a consistent event is the reception of the same data message from different nodes. When
there is an inconsistency within the MPL header information (e.g. mismatch of the header
flags and sequence number) of a previously received message, this data-inconsistency
triggers an inconsistent trickle event, and the message’s timer is reset (subsection 3.2.1).

Another property of this operation mode is that it sends data messages without additional
control messages. However, the nodes only know for themselves which messages they
previously received. They have no information and possibility to identify if they received
all the messages sent by their neighbour nodes.

This property addresses the first problem of the proactive mode. With this mode
alone, there is no possibility to check if all the current neighbours received the previous
transmissions. All that the proactive mode does is automatically retransmit a newly
received packet after some time if it did not receive it enough times from its neighbour
nodes. Therefore, the reliability improves only by retransmitting the message multiple
times. However, there is no acknowledgement or feedback from other nodes if they
received the message or if the node missed out on some further data messages.

Therefore, an energy-efficient WSN that uses MPL’s proactive operation mode needs
the following six parameters optimally configured. Otherwise, the network will lack
performance and reliability, or its battery will be drained soon due to the high amount of
retransmissions. Three out of these six parameters are the ones needed to configure the
utilized Trickle timers for the transmission of MPL data messages. The fourth one enables
the proactive operation mode, and the algorithm uses the fifth parameter to specify the
maximum number of Trickle timer expirations for the transmission of a data message.
Therefore, this parameter defines the maximum number of data message retransmissions
for this node if there are no inconsistent events raised. The last parameter is a watchdog
timeout, which is necessary to free old data that is no longer needed. Such old and
remaining data are the different messages, trickle timers, sequence-counters, and other
temporal data of a node from which we did not receive new messages.

• PROACTIVE_FORWARDING [bool]
This parameter simply defines if the proactive mode shall be used or not, when a
MPL data message is received. If it is deactivated, the routing protocol will not
forward any received messages on its own.

31

3. WSN Routing Protocols

• DATA_MESSAGE_IMIN [time]
This is the Imin parameter of the Trickle algorithm, that acts as the lower bound
for the timers initial value and defines the lowest possible delay that can be used
for the initial interval of the Trickle Timer.

• DATA_MESSAGE_IMAX [int]
This integer parameter specifies the value used to calculate the upper border for
the Trickle algorithm. This upper border is calculated with

tmax = 2Imax ∗ Imin (3.2)

defines the longest possible Trickle interval, after which the timer runs off and a
data message is sent if the Trickle Timer fires.

• DATA_MESSAGE_K [int]
This parameter declares how many consistent events have to be received to inhibit
the transmission of a data message when the Trickle timer has expired.

• DATA_MESSAGE_TIMER_EXPIRATIONS [int]
This parameter indicates the number of Trickle Timer expirations are allowed to
happen until the timer is deactivated and no further message transmissions are
triggered anymore. Therefore, this parameter is used to set the maximum number
of initially planned data message transmissions. Although, a the reception of an
inconsistent event resets the corresponding expirations counter to zero and restarts
the Trickle Timer.

• SEED_SET_ENTRY_LIFETIME [time]
Specifies the idle time after which a node deletes all the information it has of
another node. This ensures, that allocated memory freed again, as the node
is considered as disabled, if we did not receive any data from it for a this
SEED_SET_ENTRY_LIFETIME period of time. This parameter is commonly
specified in minutes or hours depending on the application’s expected idle times.

With these five parameters, we can configure the whole behaviour of the proactive mode.
In fact, it is possible to configure MPL to behave like the route-over Flooding protocol.
The two parameters DATA_MESSAGE_IMIN and DATA_MESSAGE_IMAX provide
us with a random Mesh-Jitter delay that has to pass before we can send. If we set
DATA_MESSAGE_K to zero and DATA_MESSAGE_TIMER_EXPIRATIONS to one,
this will cause the Trickle Timer to send the message exactly once, independent of how
many consistent events we received while the timer was running. The only difference to
the Flooding protocol is the handling of possible inconsistent events that may occur due
to differing values for a packets sequence number and M -flag compared to a nodes local
information base. Such a case would trigger a additional sends of the associated message,
which is a difference to the Flooding protocol.

32

3.2. MPL

Reactive MPL

Like with the proactive, the reactive mode can be completely deactivated, used on its
own or together with the proactive mode to enable the user all kinds of configurations
and combinations of the MPL functionalities. The reactive mode uses a much more
sophisticated mechanism to achieve stable and reliable transmissions inside a WSN.
Instead of simply retransmitting the messages a certain number of times, the reactive
mode works with MPL Control messages. These are ICMPv6 messages introduced in
section 3.2.3, that are necessary to compare all the currently known data messages of
a single multicast domain. A node encodes all of its currently known data messages
from each Seed-ID. The node then sends these control messages to all the neighbours to
synchronize their data message history with the received one from the neighbour node.
Suppose the receiving node detects no differences between the two histories. In that case,
a consistent event to the control message Trickle Timer will prevent the sending of an
additional control message. If the histories differ, the reactive mode tries to correct these
differences by sending additional control or data messages. These differences in the nodes’
known information act as the inconsistent events for the Trickle Timer controlling the
sending of the control messages. We have to take the following two cases into account
when handling the inconsistency events.

• Case 1: The node receiving the control message detects that it knows a data
message which is not known to the originator of the control message.
Correction: The node has to reset and start the Trickle Timers for each of the
missing data messages. These timers will then trigger the retransmission of their
corresponding data message. Additionally, a node also has to handle the raised
inconsistent event accordingly, so the Trickle Timer controlling the control messages
has to be reset and started again to ensure shorter synchronization periods between
the nodes.

• Case 2: The node receiving the control message detects that the sending node
knows a message, which itself, the receiving node, currently does not know.
Correction: The receiving node cannot reset the data message timers as it does
not know these messages. For this case, the only possible action sequence is first to
handle the inconsistency event. Second, reset the Trickle algorithm for the control
message, and send a control message itself, hoping a node knowing the missing data
packets detects the inconsistency and triggers the retransmission of the missing
data messages as described in the previous Case 1.

This additional operation mode addresses the previously highlighted problem of the
proactive mode that the nodes’ buffered messages do not synchronize with the other
nodes. For suitable applications, like software updates or parameter re-configurations of
the nodes in a WSN, the transmissions must be reliable, and a best-effort transmission
scheme will not be sufficient. Especially, as WSNs are not capable to use TCP as their
protocol for the Transport Layer. Due to the constrained resources of these networks, the

33

3. WSN Routing Protocols

nodes cannot utilize the reliable but complex TCP protocol to detect missing messages.
Apart from the general restriction that TCP does not support multicast transmissions.
Therefore, it handles all its communication as bidirectional unicast sessions. Instead, the
nodes use the much simpler UDP, which does not have any additional mechanisms to
improve the transmission reliability.

The parameters to configure the transmission of these control messages are similar to
the ones previously described for the data messages. Only the amount of used Trickle
Timers is different, as the reactive mode uses only a single Trickle Timer, per control
domain. Additionally, each unknown data message a node receives triggers a reset of this
Trickle Timer. The parameters needed to configure the reactive mode are listed below.

• REACTIVE_FORWARDING [bool]
This parameter defines if the reactive mode shall be used or not. If it is deactivated,
the routing protocol will not transmit and handle any control-messages.

• CONTROL_MESSAGE_IMIN [time]
This is the Imin parameter of the Trickle algorithm, which acts as the lower bound
of the timers runtime interval. It defines the lowest possible delay that can be used
for the initial interval of the Trickle Timer.

• CONTROL_MESSAGE_IMAX [int]
This integer parameter specifies the value used to calculate the upper border for
the Trickle algorithms time interval. This upper border is again calculated with

tmax = 2Imax ∗ Imin (3.3)

and defines the longest possible Trickle interval, after which the timer runs off and
a control message is sent if the Trickle Timer fires.

• CONTROL_MESSAGE_K [int]
This parameter declares how many consistent events have to be received to skip
the transmission of the control message.

• CONTROL_MESSAGE_TIMER_EXPIRATIONS [int]
This parameter indicates the number of Trickle Timer expirations. After the timer
has expired this often, it is stopped, and does not send any further control messages
until a timer-reset happens and the timer is restarted. This reset is mostly triggered
by receiving a new and unknown data message, which acts as an inconsistent event
and restarts the Trickle Timer.

The introduced reactive operation mode also has a drawback, which is the high delay
that this operation mode introduces. The delay increases particularly with multi-hop
transmissions, as for every hop, the sending of the actual data message is initiated via
a control message first. Further, the data-message Trickle Timer has to expire before

34

3.3. AODV via IPv6

the message is transmitted. A second problem is the overhead introduced by the control
messages, since these messages do not contain any application data and can become large
for networks with many different senders.

3.3 AODV via IPv6
The last protocol that is discussed in this thesis is the IPv6 enabled version of the basic
AODV protocol. AODV in its basic and only IPv4 compatible version is introduced
and defined in [PBRD03], while [PR01] defines the necessary adaptions to use AODV in
together with IPv6, which enables it for usage as a routing protocol for WSNs, on-top
of the 6LoWPAN adaption layer. In comparison to the previously discussed routing
mechanisms of Flooding and MPL that are both capable of transmitting multicast
messages, AODV only works as a unicast routing protocol. Nevertheless, a node can
also handle all multicast messages as many unicast transmissions. Therefore, we will
compare the differences in performance and energy efficiency when using AODV in this
special manner to special multicast protocols. There are even approaches described
in [SRRAM19] to simplify and enhance AODV for the usage as a multicast protocol
and optimize it for the usage in IoT and WSN applications. This optimization may
be necessary, as AODV was initially developed for the usage in MANETs and ad-hoc
networks, that use WiFi standard IEEE 802.11 for their physical layer instead of the
completely different IEEE 802.15.4 standard.

The two most important differences between these two standards, as stated by Ting et
al. [TEN+11], are the much higher data rate (>10 Mbit/s) and connection reliability that
IEEE 802.11 offers compared to the < 250 kbit/s of transfer rate that IEEE 802.15.4
achieves. The second and much more important difference is the energy consumption, as
the WiFi standard is by far not as energy efficient and suitable for resource-constrained
devices as the LR-WPAN standard. Therefore, it may be counterproductive to use a
routing protocol, which was developed for an entirely different domain and use case.

AODV’s basic working principle to find and determine the route to a certain node within
a wireless network [PBRD03], is a practical use of the Breath First Search (BFS) graph-
searching algorithm [KMT10], which is further enhanced with some caching methods to
reuse previously found routes. The introduction of AODV done by Klein-Berndt depicts
its basic functionality and used algorithm [KB01].

Each node tries to generate a routing list to the available nodes in the network. If a node
detects that the destination is not a neighbour node, it sends a so-called Route Request
(RREQ) packet to all its neighbours to ask them if they know the desired destination
address as their neighbour. If the neighbour receiving the RREQ also does not know the
destination, it again sends another RREQ to continue the search. This action continues
until a route to the searched node is found, or the TTL of the RREQ expires, and the
search process aborts. In case a node finally knows the destination, it answers with a
Route Reply (RREP) message that the intermediate nodes forward to the node starting

35

3. WSN Routing Protocols

this searching process. Each of the nodes receiving an RREP packet updates its routing
table to speed up and skip the search for a suitable route for subsequent messages.

Additionally, there are two further messages commonly used to implement AODV, these
are the Route Error (RERR) and HELLO messages. It uses these messages to update
the routing tables of neighbour nodes to populate changes in the network topology and
availability of previously reachable nodes. Such a HELLO message periodically informs
all of a sending node’s neighbours of its availability. This message is not forwarded and
only used by immediate neighbours. In comparison, the RERR message informs other
nodes that they have to delete a routing table entry from their routing tables due to one
of the three reasons:

• A node that receives a data packet does not have a routing entry for the packet’s
destination. Therefore, the node answers with an RERR message to delete the
incorrect routing entry in the forwarding node’s table.

• If a node receives an RERR message, it has to invalidate and delete a route from its
routing table. Additionally, it transmits another subsequent RERR message that
contains the deleted nodes, such that this delete instruction propagates through
the whole network, and other nodes will also delete these entries from their routing
tables.

• When a node detects that the link to one of its neighbours breaks and the neighbour
becomes unavailable, this triggers the transmission of a new RERR message to
inform other nodes that their routes to this node are not valid anymore.

AODV works quite well with stable and reliable transmissions common in an ad-hoc
network using the WiFi standard. As we will also see in the subsequent chapters, stable
and reliable transmissions are essential factors for the performance of AODV. As each
falsely received packet triggers RERR messages to delete established routes in all the
nodes. This deletion may falsely invalidate routes and cause a new route search only
to find the same routing path again. Such a case would create a lot of unnecessary
transmissions and overhead in a WSN. As the WSNs generally use IEEE 802.15.4 as
their physical layer, which features very low-power and lossy transmissions, the high
number of transmitted messages possibly generates a high amount of transmission failures.
These failures again trigger more RREQ and RERR messages, which further increase the
message overhead. Another possible problem of AODV together with lossy networks is the
frequent sending of HELLO messages, which are a special form of RREQs message that is
periodically broadcast when the node was idle for some time. These continuous broadcasts
permanently consume energy, and in the worst case, a dropped HELLO messages can
causes a lot of RERR messages, as other nodes have to send RERR messages, if they did
not receive a HELLO packet from a node for a certain period.

36

CHAPTER 4
Implementation

This chapter describes the models and components implemented. It contains the descrip-
tion of the new MPL model, LR-WPAN energy model, AODV6 model and the additional
execution and evaluation framework. These models are developed for the use with NS-3
and can be obtained and used from the public repository of this thesis1.

4.1 AODV via IPv6
The first new protocol implementation introduced is the simulation model for the AODV6
protocol. This models is not an entirely new simulation model, as there is already a
functionally working implementation of AODV available with NS-3. The only problem
with this model is its incompatibility for simulations of modern WSNs as it does not
support usage with IPv6. Hence, it was only necessary to adapt and port certain parts
of the existing AODV protocol’s implementation, such that it can be used together with
6LoWPAN and IPv6.

Further, AODV6 is the only protocol used in this thesis that is not capable of transmitting
multicast messages. It was nevertheless used to answer and discuss the two following
questions and as an entry point to implement NS-3 simulation models.

• Are protocols designed for use with the IEEE 802.11 (WiFi) also suitable and
reasonable efficient for transmissions via the IEEE 802.15.4 standard?

• Are multicast protocols even necessary, or is it feasible to utilize unicast messages
to transmit the data instead?

To port the existing AODV model to its AODV6 version, the main differences between
these two are based on the extended length of the different packet types, due to the

1Public thesis-repository: https://github.com/dlukitsch/ns-3-dev

37

https://github.com/dlukitsch/ns-3-dev

4. Implementation

increased size of IPv6 addresses, which are now 128-bit long. We have to consider this
change of parameter length for all four packet types of AODV6. This increased length of
the IP addresses leads to a vast increase in the overall packet sizes as the IP addresses
themselves are the main parts of all the four main packet types which are RREQ, RREP,
RERR and Route Reply Acknowledgment (RREP-ACK). As AODV6 is completely based
on the existing version of AODV, which does not implement the Flooding extension
description in section 10 of [PR01], this features is also not available in the ported AODV6
version.

Additionally to changing the packet structures, packet handling has to be adapted to
accommodate IPv6. Further, the usage of Address Resolution Protocol (ARP) has to be
replaced with its pendant Neighbour Discovery Cache for IPv6 (NDISC) and finally the
mandatory adjustments for the build systems have to be adjusted.

4.2 Flooding
The second protocol utilized for the simulations in this thesis is the mesh-under Flooding
multicast routing protocol. It is a simple routing engine, which is commonly used in a
broad range of WSN applications. One of these applications is the new Bluetooth-Mesh
specification [HSPDDCGL+20], which uses this simple and basic Flooding approach as
their only supported routing protocol.

Due to the importance and simplicity of the mesh-under Flooding routing algorithm, this
it is available from the NS-3 as part of the 6LoWPAN model. It can instantly be used
together with the underlying LR-WPAN model and acts as the most basic entry point to
simulate WSNs with NS-3 using its LR-WPAN and 6LoWPAN models.

4.3 MPL
The third routing protocol implemented for the use with NS-3 is MPL. As introduced
in section 3.2, this routing protocol relies strongly on the Trickle algorithm, which is
readily available from the NS-3 core-module and acts as an integral part of the MPL
implementation.

The class-diagram shown in Figure 4.1, provides an overview of the implemented classes
and how they are associated with each other and with the classes of the NS-3 network
stack.

To implement a functional routing protocol that can be used together with the IPv6 stack
of NS-3, the class implementing the routing logic has to be derived from the abstract
class Ipv6RoutingProtocol. This inheritance is necessary as the Ipv6L3Protocol
class requires the implementation of the Ipv6RoutingProtocol interface, for any type
of IPv6 routing protocol that shall be used with NS-3. Ipv6L3Protocol represents
the Layer-3 (Network Layer) and is responsible for receiving and sending the to the
neighbouring layers 2 and 4. To solve the actual routing tasks, it delegates them to its

38

4.3. MPL

mpl::RoutingProtocol

-bool m_EnableProactiveForwarding
-bool m_EnableReactiveForwarding
-map<Ipv6Address, pair<TrickleTimer*, uint8_t>> m_controlTimers
-set<Ipv6Address> m_subscribedDomains
-map<Ipv6Address, map<uint64_t, SeedSetEntry*> m_SeedSet
-map<Ipv6Address, map<uint64_t, map<uint8_t, MplDataMessage>>> m_BufferedMessagesSet
+void SubscribeToDataDomain(Ipv6Address dataDomain)
+void UnsubscribeFromDataDomain(Ipv6Address dataDomain)
-void RetransmitMessage(...)
-void SendControlMessage(Ipv6Address)
-bool HandleControlMessage(...)
...

Ipv6RoutingProtocol

+Ptr<Ipv6Route> RouteOutput(...)
+bool RouteInput(...)
...

TrickleTimer

+void Enable()
+void ConsistentEvent()
+void InconsistentEvent()
+void Reset()
+void Stop()
...

mpl::MplDataMessage

-TrickleTimer m_trickle
-Ptr<Packet> m_packet
-Ptr<Ipv6Route> m_route
-uint8_t m_retransmission
-uint8_t m_sequenceNr
+void ResetTrickle()
+void IncrementRetransmission()

mpl::SeedSetEntry

+Watchdog m_watchdog
+uint64_t m_seedId
+Ipv6Address m_domain
+uint8_t m_minSequenceNr

1

1

0..* 1

1

0..*

1

0..*

Ipv6L3Protocol

-Ptr<Ipv6RoutingProtocol> m_routingProtocol
...
+Send(...)
+Receive(...)
...

0..*1

Figure 4.1: Class-diagram of the MPL implementation

linked Ipv6RoutingProtocol class-object. Therefore, each Ipv6RoutingProtocol
has to implement two essential methods, called RouteOutput() and RouteInput().
RouteInput() method implements the algorithms necessary to decide if a message
shall be dropped or not. Hence, if an MPL data or control message is received, it removes
the MPL specific header parts and uses this information to route the incoming message
upwards the protocol stack. Accordingly, the RouteOutput() method handles the
packets going into the opposite direction and is responsible to route the outgoing message
downwards the network stack and add the MPL specific parts of the IPv6 header.

The mpl::RoutingProtocol and Trickle Timer classes together with the
MplDataMessage and SeedSetEntry classes from the mpl-namespace contain the
actual implementation of the MPL protocol as specified by [HK16]. This specification
defines the different operation modes, parameters, message extensions and the general
rules of how to handle the messages. Our implementation follows this specification and
also implements the optional memory-management- and housekeeping features to reduce
the memory usage as it is necessary for implementations in real resource-constrained nodes.
The only two minor restrictions our implementation currently employs is the reduced
support of only a single Seed-ID length of 16-Bit instead of the different possible lengths
specified. The second restriction is the currently missing implementation for IP-in-IP
tunnelling as specified in [DC98]. We currently omitted these additional functionalities
intentionally, as they are not substantially necessary for our scope.

39

4. Implementation

The functionality and details on how MPL works are discussed in section 3.2. Therefore,
we now focus on the work necessary to integrate its two operation modes into NS-3 and how
to extend the network stack to support the new message types for MPL-Data-Messages
and MPL-Control-Messages.

4.3.1 Proactive MPL

MPL-Option Header

Before we start with the implementation of the proactive mode, we first have to extend
the IPv6 network stack to support the creation of MPL-Data-Messages, that contains an
MPL-Option within a Hop-by-Hop Options Header.

MplOptionHeader

-uint8_t m_flags
-uint8_t m_sequence
-uint64_t m_seedId

MplOption

-MplOptionHeader m_mplOptionHeader
+MplOptionHeader GetOptionHeader()

Ipv6OptionHeader

+void Serialize(...)
+uint32_t Deserialize(...)

Ipv6Option

+uint8_t Process(Ptr<Packet> packet, ...)
+uint8_t GetOptionNumber()

Ipv6OptionDemux

+Ptr<Ipv6Option> GetOption(int optionNumber)

Ipv6ExtensionHopByHopHeader

Ipv6ExtensionHeader

0..*

1

0..* 1

11

Figure 4.2: Class-diagram of the MPL-Option implementation

To implement the MPL-Option, we need to add two classes MplOptionHeader and
MplOption as shown in Figure 4.2 to the NS-3-simulator.

The first one, MplOptionHeader is the class that contains the relevant parameters
that have to be included into an actual Data-Packet, while the second class MplOption
implements the Process() method, which is necessary to read a MplOptionHeader
from a received data-packet. To simplify this complex extraction process, NS-3 provides
us with the Ipv6OptionDemux class, which allows to easily extract any available
Ipv6OptionHeader from a data-packet by calling the GetOptionHeader() with
the header’s OptionType.

The reactive mode is MPL’s backbone, as it is responsible for handling the sending, re-
ceiving and caching of all the Data-Messages. Therefore, the mpl::RoutingProtocol
objects need three data structures to route MPL-Data-Messages for multiple multicast-
domains. The following list describes the purpose of each of them and what their intended
usage is.

40

4.3. MPL

• set<Ipv6Address> m_subscribedDomains
Any node can dynamically join and leave different multicast domains while running
and the node needs this data set to keep track of the domains it is currently
registered. Every message with a destination address not inside this set is irrelevant
and dropped, as the node is currently not subscribed to this domain.

• map<Ipv6Address, map<uint64_t, SeedSetEntry*> m_SeedSet
This two-dimensional map functions as the node’s memory to keep track of all
the active Seed-Nodes within the multicast domain. A Seed-Node is the node that
generated the message and initially sent it to its neighbour nodes. Upon sending,
these nodes insert their Seed-ID into the MPL-Option of the packet header, which
we use to identify the origin of a particular message.

• map<Ipv6Address, map<uint64_t, map<uint8_t, MplDataMessage*
>>> m_BufferedMessageSet
It functions as a message cache of variable length containing all the messages that
the protocol considers relevant and new enough. Therefore, this Message Buffer
is implemented as a three-dimensional map, such that we can uniquely acquire a
single Data-Message, sent from a certain Seed-ID to one of a node’s subscribed
domains.

These data structures function as a node’s memory to handle all the routing tasks of
MPL. Primarily, the m_BufferedMessageSet functions like a large message cache
that allows storing data messages and its associated Trickle Timer. Most of the further
steps necessary to implement the proactive mode are functions that manage the insertion,
searching and deletion of data for the three data structures. In contrast, the actual
sending process of the data messages is solely triggered by the callback function of a data
message’s Trickle Timer. Figure 4.3 shows an activity diagram that depicts the different
steps implemented to send and receive a single data message with MPL’s proactive
operation mode.

The sending and receiving processes only differ in a single additional step when receiving
a data message, which is necessary to route the packet to the next higher level of the
network stack. The remaining steps are similar between sending and receiving, as every
received message is forwarded by the node, which uses the same action sequence as a
newly sent packet.

The two triggers that initiate a send or receive routing process are the two functions
RouteOutput() and RouteInput(). When calling them with the currently assembled
data packet, MPL will first perform the check if the node is subscribed to the MPL
domain of the currently handled packet’s domain. It performs this check by searching
the destination address of the packet within the m_subscribedDomains set. The
packet is further processed if the right domain is found within this set. Otherwise it is
dropped, and the routing finishes. When processing the packet, the next step is to search
the node’s correct network interface, which has to send/forward the handled packet. If

41

4. Implementation

RouteOutput() called?

Yes
Forward packet to next stack layer

Find correct forwarding route

Route found?

Create the MPL data message
and start Trickle Timer

Drop packet

No

No

Packet already known?

Generate consistent or
inconsisntent trickle-event

Yes

Insert/update data message into
buffered-message set Create/update senders seed-set entry

No

MPL domain subscribed?

No

Drop packet

Yes

RouteInput() or
RouteOutput() called

Packet transmitted often enough?

Stop data message's Trickle Timer Update and send data message
increase its transmission counter

Trickle Timer expired

Yes No

Figure 4.3: Activity diagram to send/receive a data message with the proactive mode

such a network interface cannot be found, the routing protocol must again drop the
packet as it cannot route it correctly. If there is a suitable route found to send the
packet, the following step is to check if the node already knows this particular message or
received it for the first time. Therefore, the protocol checks m_BufferedMessageSet
if it contains an entry for this message. If it does not know the handled message, it has to
perform the necessary tasks to create a new data message entry and its associated Trickle
Timer and to start this new timer. Further, the routing protocol also has to insert the
message into the m_BufferedMessageSet and update the packet originator’s entry
in the m_SeedSet data structure. If the node knows the handled packet, there exists
already a Trickle Timer instance for this packet. Thus, it searches the messages and
timers in the m_BufferedMessageSet and raises either a consistent or inconsistent
event. The event type depends on comparing the flags and sequence numbers of the
handled and stored packets. If there were any inconsistencies, an inconsistent Trickle
event is raised, else a consistent one. After these tasks, the only missing one is to forward
the packet upwards to the next layer of the network stack if the protocol handles a newly

42

4.3. MPL

received data packet.

It is crucial to notice that MPL according to its specification, does not instantly send or
forward a packet to its neighbours. Instead, all the actual sending tasks are triggered
sometime later by the message’s assigned Trickle Timer. If this timer fires, it executes
the function necessary to send a packet. Therefore, each time a data message’s Trickle
Timer fires, it first has to check if the packet’s re-transmission counter is less than
DATA_MESSAGE_TIMER_EXPIRATIONS, to check if the message must not be sent
again. If the message is sent, its values for the re-transmission counter and M-flag are
updated, and it is passed to the next lower level of the network stack. If the message
was already re-transmitted DATA_MESSAGE_TIMER_EXPIRATIONS times due to
previous timer expirations, the associated Trickle Timer is stopped. When the associated
Trickle Timer is stopped, it does not trigger any new transmissions for this message until
it may be restarted by an inconsistent event or the reactive mode.

4.3.2 Reactive MPL

The main purpose of the reactive mode is to synchronize the known data messages among
neighbour nodes. Therefore, it uses a second message type called control messages and an
additional Trickle Timer per subscribed multicast domain. For these timers, we use an
additional map object called m_controlTimers, which uses the domain’s IP address
as its key and a pointer to the associated Trickle Timer object as its value. Like for
the proactive mode, these additional timers trigger the sending process of the control
messages.

Within these control messages, the reactive mode encodes all the currently known data
messages for a specific multicast domain and Seed-ID into several MPL Seed Info objects.
Each of these Seed Info objects consists of a Min-Sequence Number and a bit vector,
where the Min-Sequence Number functions as the offset and indicates which sequence
number the bit on position zero stands for. These two data fields, together with the
bit-position inside the bit vector, allow us to encode if a data message with a certain
sequence number is known, the bit is set, or if not, then the current bit is reset.

These control messages are then sent to the neighbour nodes, which upon reception,
compare the Seed Info objects from the control message with their currently known
messages for the given MPL domain. Therefore, they check if they have the same
messages in their m_BufferedMessageSet data structures as the node sending the
control message. These inconsistencies then raise the according Trickle Timer events as
described in section 3.2.4 with the aim to correct these differences.

In Figure 4.4, the necessary logic to implement the reactive mode are depicted. Just
as for the proactive mode, a node first has to subscribe to a certain MPL domain, by
inserting the IP address of the subscribed domain into m_subscribedDataDomains
and inserting the IP address, together with the Trickle Timer and a counting variable,
used to count the timer expirations, into the m_controlTimers map object of type

43

4. Implementation

Trickle Timer expired

Subscribe to MPL domain,
start and create Trickle Timer

Node startup

Send the control message,
increment expirations counter

Control Message sent often enough?

Create the control message
by iterating over all messages

of a domain

No

Subscribed to domain?

Received control message
via call to RouteInput()

Drop Packet

No

Compare Control Message content
 with known data messages

Yes

Reset Trickle Timers for
inconsistent data messages

Inconsistencies found?

Control Trickle Timer
raise consistent event

No Control Trickle Timer
raise inconsistent event
reset expirations counter

Yes

Stop Control
Trickle Timer

Yes

Sending of control messages Receiving of control messages

Figure 4.4: Activity diagram to send and receive a control message with the reactive
mode

map<Ipv6Address, pair<TrickleTimer*, uint8_t». After that, the reactive
mode is ready and waiting to either send or receive control messages.

To send a control message, the Trickle Timer for the control messages has to fire, then
the callback function to send a control message is executed, which first checks if there
were already CONTROL_MESSAGE_TIMER_EXPIRATIONS or not. If there are already
that many control messages sent, the timer is stopped, and no further control message is
generated until an inconsistent event is detected. Otherwise, we can still send further
control messages, the SendControlMessage() method iterates over all the Seed-IDs of a
domain, creates the Seed Info objects and inserts them into the new control message it
creates. After this step has finished, the Trickle Timers expiration counter is incremented
by one and the control message is sent via the Internet Control Message Protocol (ICMP)
implementation of NS-3.

On the right side of Figure 4.4, we can see the handling of a received control message.
Compared to handling data messages, the handling of received control messages is much
simpler, as a received node does not forward these messages. The node checks if it
subscribed to the domain of the control message and in case the node is subscribed to the
domain, it consumes the data and compares the content of the control message with its

44

4.4. LR-WPAN Energy Model

own data messages stored in m_BufferedMessageSet. Depending on the differences
detected, the implementation then raises the according Trickle events for its data message
Trickle Timers.

4.4 LR-WPAN Energy Model
As this thesis aims to evaluate the energy consumption and efficiency of different routing
protocols using LR-WPAN and 6LoWPAN, it was necessary to extend the LR-WPAN
model with an optional Energy model. This additional model is necessary to enable
the implementation of the LR-WPAN PHY to simulate its energy consumption. As the
WiFi model already supports such a model, it was adapted for the use with the intended
LR-WPAN model. Hence, the existing LR-WPAN model of NS-3 is extended with its
own energy model, that allows to simulate nodes and their connected energy sources.
This new model is derived from the existing wifi-radio-energy-model [WNP11],
and enables the LR-WPAN model to connect battery-objects with its LR-WPAN nodes.
Figure 4.5 shows the energy model’s Unified Modeling Language (UML) class diagram
for the initial implementation of the WiFi energy model and the overall Energy model
framework of NS-3.

Figure 4.5: UML class diagram showing the NS-3 WiFi energy model [WNP11]

This initial model depicting the implementation in the WiFi model was ported for the
use with NS-3’s LR-WPAN model. In order to calculate the virtual energy consumption

45

4. Implementation

of a node, the model is installed onto a node and connects to the nodes’ LR-WPAN
PHY and monitors its internal states for the sender and receiver. This lr-wpan-phy
component then notifies the energy model on every state change it performs. The model
then uses the information of the states and their active periods to calculate the consumed
energy of a node, by multiplying the time period with the drawn current and supply
voltage for a specific state. These time-boxed slots are then summed and to calculate the
overall energy consumption of a node during the simulation.
With this adaption to NS-3’s existing WiFi energy model, it is now possible to perform
simulations of the nodes’ energy consumption within a WSN using LR-WPAN. Addition-
ally, this model allows us to simulate the behaviour of a drained battery that switches off
a node when its available energy is drained. A node with such an empty battery is then
automatically disabled by turning off its PHY. This is done by switching off both of its
internal sender and receiver units leading to a node that does not send and receive any
further packets. The node stays completely inactive until the simulation has ended or its
battery is recharged again. In case of such a recharge, the node has new energy available,
gets functional again and starts to communicate with the other nodes in the network
again.
With these implemented features, the model allows us to simulate the detailed lifetime
of every node within a WSN. This additionally available data allows us to detect areas
inside a network that have a higher energy consumption than others. These additional
parameters are tracked with two TracedValues, for the total consumed energy and the
depletion state of a node’s battery. These TracedValues generate a notification each time
they are changed and allows us to extract the exact results from the simulations.

RX Idle RX Idle RX Idle

TX Busy

RX Busy

Figure 4.6: States of the NS-3 current model to calculate the energy consumption

The model utilizes a similar TxCurrentModel as the WiFi model, called the
LinearLrWpanTxCurrentModel. This class is again adapted from the already existing

46

4.4. LR-WPAN Energy Model

transmit current model of the WiFi component and models the sending current based on
the configured gain of the transmitter. The different values configured for the receiver and
sender current levels are used from the measurements made by S. Adelmann in [Ade21],
who performed a detailed analysis of the sending and receiving processes of the NRF52840
board. Based on these results, we defined the default parameters as stated in Table 4.1.
As seen in Figure 4.6, the currently implemented Current model is a very simplistic
one and models every supported types of the LR-WPAN PHY’s current consumption
states as rectangles and does not allow to used different types of curves. This limitation
on the one hand comes from the monitoring of LR-WPAN PHY’s different states. As
the current implementation uses only a minimal set of four different states, these state
changes are the only information available to the Energy model to simulate the PHY’s
energy consumption. These states provided by the PHY are:

• Receiver Idle

• Receiver Busy

• Sender Busy

• Sender and Receiver Off

To adapt and solve this problem, it might be possible to divide these four states provided
by the LR-WPAN PHY into additional sub-states, that can be designed based onto the
actually measured energy consumption of a node. Further, the current LR-WPAN PHY’s
implementation does neither support Radio Duty Cycling (RDC) nor any other method
to disable the receiver during idle times, which has a big influence on the overall results
and functionality of the new energy model for LR-WPAN. However, improving these
limitations would require a complete refactoring and reimplementation of the current
PHY, which is completely out of scope and deferred to further work.

The LinearLrWpanTxCurrentModel model can be used with the energy model to
calculate the current energy consumption based on its dynamic configuration. Since
its Tx Send Current is not only fixed value, this sending current becomes a linear
function which depends on the currently configured sending power given in [dBm]. This
allows us to change different properties during simulation to automatically calculate
parameters relevant for the energy consumption. The function implemented by the
LinearLrWpanTxCurrentModel is shown in Equation 4.1. Therefore, if we utilize the
default parameters of Vbat = 3V, η = 0.1, Iidle = 6.74mA, we acquire a sending current
of IT x = 10.08mA for a sending power of PSend = 0dBm, which is equivalent to the
measured sending current for the NRF52840 board at +4dBm [Ade21].

IT x = 10(PSend−30)∗0.1

Vbat ∗ η
+ IIdle (4.1)

47

4. Implementation

Parameter Name Value [mA]
Tx Idle Current 5.9
Rx Idle Current 5.9
Tx Send Current 10.1
Rx Receive Current 8.75

Table 4.1: Current values for the LR-WPAN energy model at 0dBm sending power

It is obvious apparent that this linear model, together with the calculation of the energy
consumption via the constant current values for the sender and receiver’s idle states, is a
significant simplification compared to the actual processes happening in real hardware
nodes. However, due to the limitation of the states provided by the lr-wpan-phy
model and given that the energy consumption of a node is very hardware dependent,
these formulas are detailed enough to perform meaningful simulations with them.

In Listing 4.1, the example code of how to use this energy model in a NS-3 simulation is
shown. This code uses the provided helper-objects to install an energy source to the object
of a physical node, and the energy-model itself gets installed on a certain NetDevice of
this node. Therefore, this model allows for the utilization of different energy models for
every NetDevice connected to a node. In contrast, each of these energy models accesses
the connected energy-source of the node itself.

1 BasicEnergySourceHelper basicSourceHelper;
2 EnergySourceContainer sources = basicSourceHelper.Install(nodeContainer);
3
4 LrWpanRadioEnergyModelHelper radioEnergyHelper;
5 DeviceEnergyModelContainer deviceModels = radioEnergyHelper.Install(

netDeviceContainer, sources);

Listing 4.1: Example usage of the energy model for LR-WPAN

4.5 Execution and Evaluation Framework
As we are using NS-3 to perform a large number of simulations over various parameters
and configurations, some features of NS-3 to implement ourselves a framework aside from
the basic NS-3 simulator. As shown in Figure 4.7, this framework allows us to generate
simulation topologies quickly, define various parameter configurations for these topologies
and automatically use them to configure the NS-3 simulator to perform and evaluate
the executed simulations for several different parameters, which it monitors during the
simulation.

This section introduces all these implemented functionalities, which allow us to perform
automated while reducing configuration overhead. Another positive side effect of these
predefined simulation configurations is the reduction of falsely configured simulations,

48

4.5. Execution and Evaluation Framework

NS-3

Network Topology
Generator

Generic Simulation Model

Statistics
Model

Core model LR-WPAN

MPL

Energy model

6LoWPAN

Mobility

IPv6 Stack

topology.csv
User

simCon$g.csv
User

results.csv

Post
processing

Run
simulations

Automated simualtion script

Figure 4.7: Schematic functionality of the Execution and Evaluation Framework

as it solves the task of constantly editing simulation parameters within the simulations
source code.

4.5.1 Network Topology Generator
The functionality necessary to work with this simulation framework in order to, later
on, perform simulations is to create the overall structure and starting positions of the
nodes inside a WSN. These generated starting positions for the nodes inside a network
are then later on used to create the WSN within NS-3 and position the nodes according
to the generated network structure.

A NetworkGenerator simulation was implemented for NS-3 that generates and exports dif-
ferent network topology setups to a file. This simulation model is completely parametrised
within its source code and uses the different PositionAllocators classes provided by
NS-3 to generate network topologies. These topologies are encoded in Comma Separated
Values (CSV) files. Such a file contains the number of nodes inside the network and initial
positions on the grid. In Table 4.2, the typical content and layout of such a generated
CSV file is shown, it describes a network consisting of three nodes that are arranged in a
line structure and do not have any interference generating nodes.

As the simulation only positions the nodes, the original output file does not contain any
definitions of the source and optional sink nodes. These are the nodes that have the
actual NS-3 application-layer functions installed that send messages into the network
periodically. As we also implement simulations that use AODV6 and Flooding to route
their unicast-packets, we also need a possibility to specify the sink node where the
source nodes attempt to send their generated packets. Therefore, after generating and

49

4. Implementation

ID x y z Sender Receiver Interference Sender Interference Receiver
0 0 0 0 2
1 110 0 0
2 220 0 0 0

Table 4.2: Example output of the NetworkGenerator model

manually fine-tuning the specifying the source and sink nodes as well as adding optional
interference nodes, this current network topology is ready to be used with the Generic
Simulation Model.

4.5.2 Evaluation and Statistic Model

The Execution and Evaluation Frameworks’ primary target is to execute simulations,
store and post-process the simulated results automatically. Thus, the implementation
of the Statistic component was necessary to extract all the different simulation
results for from the nodes. This Statistic model provides us with the functionality
of monitoring, gathering, processing and extracting the data generated by different
simulations. It collects all the experimental parameters of a node and needs to be
installed directly to every node that has to be monitored. After the simulation stops, the
model allows storing the observed simulation results. Additionally, this model contains
some Python scripts that implement the post-processing of generated simulation data as
well as automatically plotting diagrams from the results.

The functionality of this model uses the so-called TraceSources that are part of the NS-3
core functionality and execute a certain callback function every time the value of such
a special TracedValue property changes. This callback allows us to continuously track
and evaluate the different results for every node inside a simulation. Such monitored
properties are, for example, the sent and received packets, the internal states of the PHY
and the energy consumption and battery state of a node. The model uses this information
and further refines it into more advanced properties that allow us to understand better
what is happening inside every node. Such a tracing function can simply be registered as
shown in Listing 4.2 this code connects multiple functions to the provided TracedSources
of the LR-WPAN-PHY implementation.

1 void Statistics::InstallTraces(Ptr<LrWpanPhy> phy, bool withEnergyModel)
2 {
3 phy->TraceConnectWithoutContext("TrxStateValue", MakeCallback(&

Statistics::TransceiverStateTraceSink , this));
4 phy->TraceConnectWithoutContext("PhyTxDrop", MakeCallback(&Statistics

::TxEndDropTraceSink, this));
5 phy->TraceConnectWithoutContext("PhyTxEnd", MakeCallback(&Statistics

::TxEndTraceSink, this));
6 phy->TraceConnectWithoutContext("PhyRxEnd", MakeCallback(&Statistics

::RxEndTraceSink, this));

50

4.5. Execution and Evaluation Framework

7 phy->TraceConnectWithoutContext("PhyRxDrop", MakeCallback(&Statistics
::RxEndDropTraceSink, this));

8 if(withEnergyModel)
9 {

10 phy->GetLrWpanRadioEnergyModel()->TraceConnectWithoutContext("
TotalEnergyDepleted", MakeCallback(&Statistics::NodeEnergyDepleted, this)
);

11 phy->GetLrWpanRadioEnergyModel()->TraceConnectWithoutContext("
TotalEnergyConsumption", MakeCallback(&Statistics::EnergyUsage, this));

12 }
13 }

Listing 4.2: Installation of the tracing functions of the statistic model

An example of such a tracked property is the TraceSource provided to monitor all of
the successfully received messages. Therefore, the statistics model registers a specific
callback functions inside of the nodes’ LR-WPAN-PHY, which executes every time a
packet is successfully received. Next, we can use this behaviour to implement a simple
counter that provides the total number of messages received after the simulation ends.
Of course, we can freely extend the code executed inside of these callback functions and
use them to implement more complex and advanced metrics. Such an advanced metric is,
for example, the number of different data messages, where each node tries to store every
one of its received data messages into a map. This map allows a node to distinguish
between new and known messages such that it can increase the associated counter for
each newly inserted message.

4.5.3 Generic Simulation Setup
Due to the aim of automating the whole execution process of NS-3, it was feasible to
implement a highly configurable, generic simulation setup called Generic_Model. Its
main purpose is to simplify the configuration work necessary create simulations of different
network topologies with different protocols, parameter configurations and functionalities
(e.g. Energy model).

This generic simulation is completely parametrisable via its command line parameters
and allows an automated execution of multiple simulations one after another. The
implementation of this simulation itself also lives inside the folder of the previously
introduced NetworkGenerator and its generated network topology definitions.

The Generic Simulation Setup allows to implement and maintain a single implementation
that can be used to simulate a complete set of differently configured simulations. Hence,
it is only necessary to maintain this single implementation, which highly reduces the
amount of maintenance needed to synchronize changes for multiple simulation definitions.

Apart from its generic structure and functionality, this simulation provides other essential
features. The first one is the feature of performing multiple pseudo-random simulations
that automatically run for a specific configuration. Thus, it provides us with a higher
amount of simulation results, allowing us to reduce the possible impact on our results

51

4. Implementation

due to outliers occurring only within a single simulation run. Further, the simulation
also stores its used random-generator settings and the results, allowing us to re-simulate
and acquire the same values as for the previous runs.

In order to implement an automatic execution functionality for NS-3, this Generic_Model
uses the CommandLine feature from the NS-3-Core. This CommandLine component
implements a automated parsing of command line parameters, this functionality allows to
pass arguments from the command line into the readily compiled simulation and use them
to configure its actual behaviour. The CommandLine functionality implements the whole
process of parsing and storing the data into a specified local variable and creates a simple
way to pass a high number of arguments via the waf build system into the simulation
program. Together with the Automatic Simulation Script (see subsection 4.5.4), the
generated network topologies and separately defined simulation configurations, this
generic simulation automatically performs a set of simulations without any necessity of
additional user interaction.

The Generic_Model further provides us with other useful features that are listed below:

• Fully configurable simulation via command-line parameters

• Reproducible simulation results due to pseudo-random simulation runs

– Multiple different but reproducible simulation runs with the same configuration
setup

– Seed values get stored to re-run a certain simulation

• Support for multiple routing protocols

– Fully configurable MPL
∗ Proactive mode
∗ Reactive mode

– Flooding

• Setup of a second network aimed to create wireless interference

• Loading of pre-configured network structures with an arbitrary amount of nodes

• Usage of the mobility model to simulate static and movable nodes

• Usage of an optional energy model for each normal node

• Generation of correctly dissected PCAP-files for every node

• Generation of Netanim-trace files to visualize the simulation

• Automatic extraction of simulation results into a CSV-file

52

4.5. Execution and Evaluation Framework

4.5.4 Automatic Simulation Script
The main target of our custom Execution and Evaluation Framework is to execute a
configured set of simulations automatically. We have already introduced and implemented
a suitable simulation model and a network topology generator. We finally need a third
part that combines the different features and handles the possibly necessary recompilation
and automatic execution of the created binary program for the current simulation.

This part is handled by a script called run_simulations.sh located at the root folder
of the NS-3 repository. This script contains the control logic to perform automated
simulations. First, it reads the different simulation configurations from a configuration
file, automatically configures and executes them and finally post-processes the acquired
results from the different runs of a single simulation setup.

For all these steps to happen, it first reads and interprets a passed configuration file
line-by-line, parses its content and triggers the NS-3 simulations one after another via
the waf build system. The read parameter configurations from the configuration file get
passed as command-line arguments to the simulation, and the Generic_Model uses them
to configure and perform the simulation.

Additionally, this automation script also allows us to automatically execute post-processing
steps to simplify and combine the considerable amount of data generated by the various
simulation runs. The most important one of these post-processing scripts employed is the
combineCsvFiles.py, which is part of the implemented statistics-model. Utilizing
this script in the post-processing steps enables us to automatically combine the data
generated by the different simulation runs of a simulation. This combineCsvFiles.py
script calculates the results for the mean and median, and standard deviation from all of
the related simulation-run result-files of an actual simulation. Thus, this script enables a
fast, simple and automatic processing for the subsequent work relying on these calculated
results.

53

CHAPTER 5
Used Models, Simulation
Parameters and Metrics

This chapter introduces the different model variations used to obtain the described results
from the subsequent chapter 6. The model definitions are used as the base topologies
for the various performed simulations and parameter variations. Further, this chapter
introduces the different metrics used to compare the performance of the simulated routing
protocols.

As it is simply impossible to consider all the aspects, layouts and functionalities a WSN
can have, it is necessary to restrict the simulated use cases to a representative subset.
Therefore, specific structures and network sizes are selected, that ensure representative
simulations, while also being compact enough to effectively analyse them to draw the
resulting conclusions from their results. Additionally, the virtual results can then be
compared with the measurements and behaviour obtained from actual hardware nodes,
that are described in the thesis of Adelmann [Ade21].

A WSN model has many different properties, affecting the energy efficiency and quality
of the performed transmissions. These properties are divided into different parameter
subgroups. The first group of properties are every single node’s physical and hardware
properties and the parameters of the whole WSN. Such parameters are, for example, the
number of nodes inside the network, the physical distances between them, the energy
available from the nodes’ batteries and many other parameters of a single node. The
second group to distinguish is the utilized routing protocol together with its configuration.
These parameters can be kept constant throughout the whole network, or they can be
specialized and optimized for every node to increase the performance and lifetime of the
overall network without further maintenance to replace the node’s batteries to keep the
network functional. At last, there is the group of external and transient parameters that
influence each node’s transmissions differently. Such external parameters are, for example,

55

5. Used Models, Simulation Parameters and Metrics

the amount of interference a node has to deal with while sending or receiving a message.
The influence of interference is generally completely different throughout the whole
network, and it has to be considered when designing a WSN, as it can drastically affect
the performance of a resource-constrained network. The actual amount of interference a
node has to handle depends on the exact distance to the interference generator, and the
time the interference blocks the transmission channel and therefore prohibits a successful
transmission.

With the results obtained from the simulations of these different network models the
performance of the used routing protocols can be classified and compared. With this
found classification configuration to find the best performance in transmission reliability
and energy efficiency for a particular use case.

Next, the different network configurations for the simulations performed in this thesis are
introduced. Some general properties are kept consistent throughout all the performed
simulations. Such properties are the number of different simulation runs for a single
model, the size of the data packet generated by the sender nodes and many more. In
Table 5.1, all of these fixed properties are listed.

Further, all the used models consist of a single sender node that generates the initial
messages, periodically sending a fixed amount of equally formed messages with regular
payload size to the nodes inside the network. The nodes handle their received messages
according to their activated routing protocols, and forward them to the other nodes
inside the network. After the simulation has finished, various properties are collected
to calculate metrics from them, such as the number of sent and received packets and
how many packets were lost during transmission and did not reach their designated
destinations. These metrics are then used to compare the routing protocols and their
configurations against each other.

The generated models can be divided into the following three separate model types
according to their unique properties. These groups are basic simulations of standard
network topologies, the simulations of interference scenarios and energy depletion simula-
tions. These depletion simulations utilize the energy model for LR-WPAN to simulate a
node with connected batteries.

5.1 Simulation Models
First, the used model topologies used in the simulations are introduced. These models
are used to show the performance of each protocol configuration on static WSN, which
are very common for many applications, like monitoring specific agricultural processes or
measuring weather conditions. As these applications are critical in the energy-efficient
and reliable WSNs and need to work with minimal maintenance, the simulations of these
static models provide the data for their real-world counterparts.

The models use a fixed distance between every node inside such a model without the
effect of external interference. As the transmission quality declines, the further a node

56

5.1. Simulation Models

Parameter Value
Simulation File Generic Model
Distance between Nodes 110m
Transmission Success Rate 75%
Simulation Runs 5 Runs
Data Packet Size 20 Bytes
Number of Data Packets 60 Packets
Sending Intervall 60s
Simulation Endtime 3800s
Transmit Power 0dBm
Channel Number Channel 11
MPL Seed-Lifetime 30min
MPL Data Imin 1s
MPL Data Imax 3
MPL Data K 1
MPL Control Imin 3s
MPL Control Imax 3
MPL Control K 1
Flooding Message Cache 10 Messages
Flooding Hops 125
Initial Battery Energy 500J
Interference Send Intervall 5ms
Interference Packet Size 50 Bytes
Interference Transmit Power 4dBm
Interference Channel Channel 11

Table 5.1: Simulation parameters with constant values throughout all performed simula-
tions

is away from another sending node. It is necessary to determine the distance between
two nodes that best serves our purpose to be unreliable and unstable enough while still
ensuring that most packets are successfully delivered. Therefore, the Packet Delivery
Ratio (PDR) between two nodes for the performed simulations is fixed with a value of
approximately 0.75%.

Hence, it is necessary to acquire the physical distance between two nodes that results in
a PDR of 0.75%. This task is done with an an additional simulation called
lr-wpan-error-distance-plot. This simulation of a LR-WPAN model generates
the diagram showing the simulated PDR for the corresponding distance between two
nodes. Figure 5.1 shows the result of this simulation run. As depicted, the transmissions
are quite reliable until the distance between the two nodes becomes greater than 100m.
When further increasing the distance, the PDR drops rapidly on the next 30m. Therefore,
at approximately 130m of distance, the nodes have reached zero connectivity and cannot

57

5. Used Models, Simulation Parameters and Metrics

receive any packets from each other.

The target is to have a PDR of 0.75% for our simulations. This target PDR can be
achieved with a gap of 110m between two nodes. This distance is also utilized in the
following declarations of the different model topologies and setups.

80 90 100 110 120 130 140 150

Distance [m]

0

20

40

60

80

100

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

 (
P

D
R

)
[%

]

Packet (MSDU) size = 20 bytes; tx power = 0 dBm; channel = 11

Distance-vs-PDR

Figure 5.1: PDR of LR-WPAN transmissions in NS-3

5.1.1 Line Structure
The Line Structure is probably the most basic structure to build with a certain number
of nodes. As its name suggests, it is a WSN that builds a straight line with a constant
distance between all nodes, where the sender-node is on one specific end of the line.
Although this network topology is quite simple to build and does not look incredibly
complicated, it has extraordinary properties and difficulties for unreliable transmission
channels. One of these is the absence of redundant transmission paths within the network.
Suppose a node wants to send a message from one end to the other, and a single
transmission during one of the intermediate node hops fails. That means the intended
destination cannot receive the data without an advanced protocol that handles such
failed transmissions and tries to resend the packet.

Another exciting aspect of this topology is its assumed energy consumption throughout
the different nodes of the network. Assuming that its message traffic originates from the
same leaf node of the network, their energy consumption throughout the overall network
is likely to be very inhomogeneous. That causes the initial nodes to send and receive

58

5.1. Simulation Models

messages more often, depleting energy sources faster. In contrast, the nodes on the
opposite side of the network may receive far fewer transmissions, and therefore the energy
usage may be significantly less. This behaviour comes from its inherent problem that
the Packet Error Ratio (PER) which calculates with PER = 1 − PDR, add up for every
message hop. So the number of packets that reach the next node decreases significantly
after each hop. Due to the previously selected PDR of 0.75%, it is safe to assume that in
the case of a Line topology nodes which are five or more intermediate hops away from
the sender will not receive any messages. The only possibility to improve this number is
by implementing additional packet retransmissions that increase the number of hops a
packet can sustain.

Of course, such a setup is an entirely constructed case. It would be very irresponsible to
design a Line topology with such a transmission quality and instead reduce the distance
between the nodes to achieve an optimal link quality between two nodes. However,
as soon as there is a switch to real-world applications, there may be further effects
that influence a networks behaviour, like changes in the environmental temperature and
humidity that reduce the sending range of a node, as described by Luomala and Hakala
in [LH15]. Due to these effects described by their work, our seemingly constructed use
case with this rather low PDR of only 75% is not completely unlikely to occur in a real
world environment.

Hence, this seemingly constructed use case can be considered as a possible and plausible
use case for a WSN during its overall lifetime. Therefore, our aim is to observe the
occurring problems and possibilities and what is necessary to overcome such problems
with different routing protocols and their corresponding impact on the energy efficiency
of the whole network.

5.1.2 Grid Structure
The grid structure in comparison is a completely different topology than the Line setup.
Compared with the previously described Line structure, the main difference between
this topology is the increased number of neighbour nodes as it is a much denser network.
With this topology, each node has at least two distinct neighbours if it is a corner
node and a maximum of four neighbours if a node is not a border node. This case
increases the likelihood of a successful transmission as there are multiple forwarders
for a single transmission now. In Figure 5.2, a transmission in such a regular Grid
topology is shown, where the diagonal nodes 10, 12, 20 and 22 are outside the effective
sending range and thus cannot receive the packet. Therefore the datagram can only be
delivered vertically and horizontally throughout the whole network. However, compared
with the Line structure, this topology provides us with much more redundant paths to
successfully route packets through the network. This allows even the Flooding protocol
to quite successfully transmit messages throughout the whole network, which is not really
successful for the Line topology with similar transmission properties. Generally, the
expectation is that a nodes’ energy consumption distributes more uniformly throughout
the whole network due to these redundant transmission paths. However, there might be

59

5. Used Models, Simulation Parameters and Metrics

a higher energy consumption for the nodes inside the middle of the grid, as each node has
a higher number of neighbour nodes. So these multiple received messages from different
neighbours might cause these nodes to receive a increases number of messages, leading to
higher energy consumption for these specific nodes.

Figure 5.2: Packet transmission in a regular Grid topology

5.1.3 Circle Structure
The topology of a Circle is an exceptional combination of the Line and Grid structure,
as in a circle, each sending node has precisely two paths to reach a specific destination
node within the overall circle. Therefore, compared with the single path of Line- and the
multiple redundant paths within the Grid-structure, there are precisely two redundant
paths with the same length and intermediate hops to transmit the packet to the node on
the opposite side of the circle. With this model, it can be evaluated how much a second
path increases the overall PDR and what this means for the energy consumption of the
whole network. In Figure 5.3, such a sending process inside the Circle topology and its
separate paths to reach node five are shown.

5.2 Special Simulation Models
Additionally to the already introduced simulation models, some specialized simulations are
used to determine the behaviour of the WSN and its utilized routing protocol in certain
different environment setups that limit the functionality of the nodes. These simulations

60

5.2. Special Simulation Models

Figure 5.3: Packet transmission showing the redundant paths in a Circle topology

provide further data and insight into the robustness against external interference and the
same lifetime of a WSN and its nodes. These simulations provide the results that are
use to take additional realistic environment aspects into account that cannot be covered
with the models from section 5.1.

5.2.1 Network Lifetime Simulations

The Network Lifetime Simulations utilize the already introduced simulation topologies.
However, compared to the previous simulations, the nodes in these simulations do not
have endless energy available. This depletion leads to the dynamic reduction of nodes
inside the network as the node shuts down if its battery depletes. So the network’s
topology dynamically changes depending on each node’s actual energy consumption.
Further, we cannot only determine a network’s change throughout its lifetime but also
how long it stays operational and how fast a certain percentage of nodes shuts down
and when the network can be considered dysfunctional. Together with the standard
simulations, which do not consider the nodes’ energy depletion but instead measure the
overall energy consumption throughout the simulation, these results provide us with
the information of which nodes inside a certain topology are drained first and how this
depletion affects the performance and energy consumption of the remaining nodes within
the WSN.

61

5. Used Models, Simulation Parameters and Metrics

5.2.2 Interference Simulations

Another specialized simulation type used is the set of Interference Simulations. This type
of simulation setup extends the existing models with additional interference nodes, which
are not part of the basic WSN. Instead, such interference nodes form a separate network,
with the intention to periodically send messages on the same frequency channel as our
main network. Depending on how frequently and big the sent interference messages
are, they block the wireless medium for a certain amount of time. While this period,
the medium is blocked for all the nodes within sending range of the interference nodes.
This distortion of the medium leads to an increased traffic on the wireless medium, such
that our WSN nodes have to deal with this type of disruption accordingly. However,
compared to simply reducing the PDR of a single transmission, the simulations provide
selective distortions of the wireless medium that a node’s routing protocol has to handle
accordingly. The Interference simulations provide better details on how a specific routing
protocol configuration can deal with external influence on the medium, which is a critical
property when designing simulations for as realistically environment setup as possible.

5.3 Parameter Variations

Next, the different parameter setups of the routing protocols are introduced. These
configurations are utilized to simulate the different WSN topologies and routing protocols.
Further, explicit names for these setups are defined that allow a better readability and
interpretability of the later discussed results.

Configuration Name Data Imin Data Imax Data K Data Expiration’s Control Imin Control Imax Control K Control Expiration’s
MPL 1D0C 1s 3 1 1 — — — —
MPL 1D1C 1s 3 1 1 3s 3 1 1
MPL 2D0C 1s 3 1 2 — — — —
MPL 2D1C 1s 3 1 2 3s 3 1 1
MPL 2D2C 1s 3 1 2 3s 3 1 2
MPL 2D1K2C2K 1s 3 1 2 3s 3 2 2
MPL 2D2K2C1K 1s 3 2 2 3s 3 1 2
MPL 2D2K2C2K 1s 3 2 2 3s 3 2 2

Table 5.2: Utilized MPL parameter configurations and naming scheme

In Table 5.2 the mainly used parameter setups and names of the simulations utilizing
MPL are shown, to indicate the used naming scheme. This scheme is used to instantly
identify the used simulation parameters for a simulation form its name.

The naming scheme uses XD and XC as part of its name, to indicate how many data
and control messages are configured and if the reactive mode is enabled. Further,
if the simulation name also contains a XK, its name indicates the used redundancy
constants for the proactive and reactive operation mode. With this naming scheme the
MPL configuration and its variable parameters can be directly identified, while all the
remaining parameters not contained in the simulation name are kept constant.

62

5.3. Parameter Variations

Table 5.2 shows some of the later used configurations and how their parameters build up
the simulation name. As seen, not every single the parameter that the MPL protocol
offers is varied, instead two of the basic Trickle Timer parameters (Imin, Imax) are kept
constant, and only change the two redundancy constants K and both of the MPL-specific
Expiration parameters. These Expiration’s parameters controls how often the a Trickle
Timer of a Data or Control message is restarted. Therefore, these parameters define how
often a certain message is sent at most.

Another parameter that can be quite tricky to choose correctly are the redundancy
constants K of the used Trickle Timers. These parameters control the so-called ’polite
gossip’ mechanism of MPL, by defining how often a message has to be received by a node
until it cancels the retransmission of this message for itself. Generally, optimal values
for these parameters depend on the network’s actual topology and density. Therefore,
selecting a K that is too big for a sparse network minimizes the ’polite gossip’ effect.
Which causes nodes to not receive the same message often enough to cancel its own
retransmission of this message. Therefore, the node will unnecessarily repeat certain
messages as their transmissions never get cancelled, which creates energy inefficiencies.
Opposed to that, a to low configured value for K used in a dense network may create too
many cancelled messages, which may prevent neighbour nodes from receiving particular
messages at all, which again can be countered by increasing the number of data message
expirations or by enabling the reactive mode and use the active synchronization mechanism
to improve the performance, but as this mode uses its own K constant it faces the same
problem again.

Accordingly, there are three additional MPL configurations where the K parameter for
the data and control messages is changed. With these additional variations of the K
parameter, to evaluate the impact on the routing protocol’s performance, energy efficiency
and which configuration is best suited for each network topology. All these parameter
variations and their simulation results, provide data that helps to understand how the
changes of a single parameter will likely affect the overall network behaviour.

Due to the limited amount of parameters to configure and the total absence of control
messages for the Flooding protocol, there is only one configuration that is used for the
simulation with the Flooding protocol. This routing protocol has only three important
parameters to configure. The first one is the length of the Message Cache that stores
several messages our node currently received. The second parameter is the TTL or the
number of hops till a node has to drop the packet by force to prevent it from circling
uncontrolled through the network. At last, there is the maximum value for the Mesh
Jitter that randomly delays the sending in different nodes in order to prevent collisions.

As the expectation is that none of these available parameters cause a significant change
in the network’s behaviour if they somehow suit the deployed network, there are no
parameter variations done for the Flooding protocol. Therefore, we are explicitly excluding
the possible occurrence and causes of a wireless Broadcast-Storm, which can occur for
totally wrong configured values for the Message Cache and TTL parameters. Such a

63

5. Used Models, Simulation Parameters and Metrics

Broadcast-Storm is considered as an exceptional and disastrous circumstance, which is
out of the scope of this thesis.

5.4 Protocol Metrics
Next, the metrics used and defined to compare the simulation results against each other
are introduced. The metrics are obtained and derived from the acquired simulation
results and try to make the energy consumption of the WSN comparable. To achieve
this, the metrics combine specific simulation results aspects and calculate a numeric
value, that is then used to compare the different routing protocol configurations and
their performances and energy efficiency against each other.

The used metrics are divided into two separate groups, the ones which are completely
hardware independent and not relying on hardware specific parameters. These metrics do
not need fine grained details of a certain node’s hardware parameters. Therefore, these
metrics enable the general comparison of different routing protocol setups without any
a-priory knowledge of the underlying hardware components.

The second group are the hardware specific metrics, the results for these metrics are
dependent on certain hardware parameters that have to be configured when simulating
the WSNs. As these metric’s values are strongly depending on the configured hardware
parameters, they can be used to determine and compare the performance of different
routing protocols on a specific hardware platform. Additionally, the hardware-dependent
metrics also allow us to compare a routing protocol’s energy efficiency for different
hardware platforms to determine the most energy efficient ones.

5.4.1 Hardware-Independent Metrics
As introduces, these metrics do not depend on the hardware specific parameters con-
figured within a certain simulation. Hence, these metrics allow us to compare a WSN
and its utilized routing protocol for its energy efficiency, although, these metrics are
completely independently from the configured hardware. Due to their independence from
the underlying hardware, these cannot provide us with an absolute result and direct
comparison for a purely hardware-depending parameter like the energy consumption of
a network. Instead, these metrics only allow a indirect comparison, nonetheless, these
values are expected to directly correlate with the energy consumption and performance
of the network. The hardware-independent metrics used are:

• Number of Sent Messages:
This metric counts every message sent for a single node and the whole network.
This metric completely ignores if a packet is actually data or controls the message.

• Number of Received Messages:
This metric is similar to the previously introduced one and counts all of the messages
received by a specific node. It allows to

64

5.4. Protocol Metrics

• Transmitted Overhead:
This metric calculates how much bytes of overhead a routing protocol sends.
Therefore, it provides the ratio between the totally sent bytes and the amount of
bytes necessary to deliver every data message exactly once. Therefore, this metric
indicates how much additional bytes are sent as overhead within the whole network.
The minimal amount of transmitted bytes that does not have any overhead is the
case where every unique data message is only sent once by every node within the
network.

• Delivered Data Message Ratio:
This metric indicates how many of the unique and initially sent data messages are
successfully delivered to all the receiving nodes within a multicast domain. Hence,
this metric is the ratio of how many new and previously unknown data messages a
node receives. With this metric, we can compare how well the routing protocols
perform to deliver a set of messages.

5.4.2 Hardware-Dependent Metrics
The hardware dependent metrics are the counterpart to the previously introduced hard-
ware independent ones. All of these hardware dependent metrics depend on the energy
consumption simulated by the LR-WPAN energy model. This energy model again needs
a realistic configuration of the current values drawn by the sender and receiver parts of a
hardware node’s PHY. The hardware dependent metrics use are:

• Total Energy Consumption:
For this metric, we add up all of the nodes consumed energy to determine the
network’s total energy consumption. This metric allows us to categorize the protocol
configurations by their overall energy consumption without considering them with
other parameters. This metric applied to a simulation using the LR-WPAN module
of NS-3 has the drawback of a very high baseline energy consumption due to the
implementation of the MAC component, does not support any form of RDC or
similar approach to keep the PHY’s receiver disabled for as long as possible.

• Energy Consumption per Delivered Data Message:
Using only the consumed energy of a node on its own may provide misleading
results, as it does not consider if the network is still functional and messages get
successfully delivered. To solve this problem, we combine the energy consumption
of a node or network with its ratio for the Delivered Data Message Ratio to compare
how energy efficient the different routing protocols work.

• Network Lifetime
The Network Lifetime metric defines how long a certain amount of nodes within
a WSN stays operational. A network is considered dysfunctional, when a certain
amount of nodes depleted their connected batteries’ energy and switched off. As

65

5. Used Models, Simulation Parameters and Metrics

the nodes to not deplete linearly throughout the networks lifetime, this metric
is a tuple of three values, where each value uses a different amount of nodes to
consider a network dysfunctional. The first value gives the timestamp at with the
first node within the network is depleted, the second value indicates when 50%
of the networks nodes are inoperable and the third value is the time, where the
penultimate node depleted and a communication between two nodes is not possible
anymore.

• Network Lifetime per Delivered Data Messages
This metric sets the previously introduced Network Lifetime metric in relation
to the achieved Delivered Data Message Ratio. Therefore, this metric indicates,
which network configurations are operable for the longes amount of time, while
also achieving the best data message delivery performance. This is necessary as
the Network Lifetime itself does not guarantee that the network is still capable of
successfully sending messages to all the remaining nodes within the network.

66

CHAPTER 6
Evaluation and Discussion

This chapter contains the evaluation and comparison of the different simulation results,
as well as the discussion and our answers to this thesis’ initially proposed research
questions. Further, all the source code and configuration files necessary to re-perform the
deterministic simulations and acquire the same results, as the ones used for the evaluation
and discussion, are publicly accessible via the Github repository1 of this thesis.

6.1 Multicast via Unicast Transmissions
The simulations performed first were the ones utilizing the ported AODV6 routing
protocol. The aim of these AODV6 simulations is to show that there is a substantial
need for maximum energy efficient routing protocols, that cannot be satisfied by re-using
existing routing mechanisms that were developed or the use within a completely different
wireless network domain, like for example AODV and its origin from MANETs.

Additionally, these simulations and their results show the eminent weaknesses of AODV6,
when used for routing protocols in a WSN. One of the main problems of AODV6 is its
sheer complexity and a-priori knowledge about a WSN which is necessary to configure
the routing protocol correctly. As a quick comparison, the implementation of AODV6
in NS-3 needs a total of 24 different configuration parameters, that have to suit the
WSN where the routing protocol is supposed to be used with. In contrast the Flooding
protocol only needs a set of 4 parameters and MPL only 11, which are divided into two
similar sets of 5 parameters used to configure the two operation modes. Hence, this
simple comparison of the configuration possibilities shows the first problem when using
AODV6 with a WSN, which is its enormous complexity and that it can only be used
to transmit unicast messages. Another enormous drawback of the AODV6 protocol

1Repository containing the source code to acquire the described simulation results:https://github.
com/dlukitsch/ns-3-dev

67

https://github.com/dlukitsch/ns-3-dev
https://github.com/dlukitsch/ns-3-dev

6. Evaluation and Discussion

compared to MPL and Flooding, is its dependency that the route returned by a successful
RREQ stays valid and all the messages get delivered successfully, as AODV6 does only
use hop-by-hop unicast messages that are only sent to nodes from the found route, so
apart from initially detecting the route, AODV6 does not use the multicast-capability of
wireless transmissions to transmit its unicast messages. Therefore, if one of the route’s
intermediate links drops a message, the sending node reacts by multi casting RERR
messages to all its neighbours, which further forward these error-messages throughout
the whole network, invalidating the route, such that a new RREQ is necessary to send to
the same message again.

Therefore, if a message is dropped when using AODV6, this causes a lot of network traffic
that vastly affects the overall energy efficiency of the whole network. If such a routing
protocol is then used within a low-power and lossy network like a WSN, where messages
are dropped quite frequently, the resulting energy efficiency is simply not suitable for
the use within an energy constrained WSN trimmed for maximum node lifetime and
transmission performance.

This expected behaviour was verified by simulation results we acquired. As long as the
distances between the nodes were small enough, such that all the messages are successfully
transmitted and there are no dropped messages, AODV6 works quite well to deliver its
unicast packets. Although, if the space between the nodes is increased such that the
PDR drops, this causes the routing protocol to constantly invalidate the network routes
rendering it unusable to transmit actual data messages. As the AODV6 protocol already
struggles to succeed with its main purpose of transmitting unicast messages within a basic
WSN to a single receiver node, while at the same time completely draining the nodes’
batteries. Hence, the performance of AODV6 for a single periodic unicast transmission is
already quite bad and gets even worse when trying to emulate a multicast transmission
by sending unicast messages to all of the destination nodes.

These results explicitly show the necessity for more reliable, energy efficient and scalable
routing protocols in the domain of WSNs. These protocols have to exploit the intrinsic
broadcasting ability of wireless networks to achieve optimal performances and multicast
capabilities. Therefore, it is simply unrealistic and unfeasible to re-use a protocol like
AODV from the MANET domain whose algorithm is mostly designed on the usage with
WiFi and expect it to perform well either for unicast or multicast transmissions.

6.2 Basic Model Simulations
To compare the two remaining routing protocols Flooding and MPL for their energy
consumption and reliability, we performed benchmark simulations with a fixed use case of
a single initial sender node. This node sends a new application data packet every minute
until it has generated a total of 60 different data messages. These packets shall then be
distributed to all the other nodes inside the network. The different network topologies
simulated are the Line, Circle and Grid structures introduced in chapter 5.

68

6.2. Basic Model Simulations

The performance of different protocol configurations are compared by calculating the
metrics defined in section 5.4, which allow a comparison by using hardware-dependent
and hardware-independent metrics.

6.2.1 Line Structure
The simulation results of the Line structure provide information on how well a routing
protocol can transmit data if there is only a single path through the whole network.
Thus, the routing protocol has to efficiently transmit all its messages to the nodes in this
network. Especially for the simulations with the Line structure, we want to note that
the simulations use a single-hop-PDR of about 75%. Therefore, the Line structure with
a single receiving node is an extreme use-case for a network with unmovable nodes and
limited PDR. This specific scenario and how different routing protocols handle it can be
seen in Figure 6.1 for a Line structure of 10 nodes. It shows the number of sent messages
for each node. The sender node is indicated by the leftmost bar and sends messages to
the nodes on its right, indicated by the bars shown to the right. This sequence continues
until the rightmost bar is reached. This number of sent messages is equivalent to the
number of uniquely received data messages. Therefore, the sent messages of the ninth
node indicate how many data messages reached this last node of the line topology and
were successfully transmitted up to this point. This number of received messages then
indicates how reliable the transmissions of a specific protocol configuration are.

The simulation results depicted in Figure 6.1 provide a good overview of how the different
protocol settings affect the behaviour and actual performance of the whole network. In
Figure 6.1a and Figure 6.1b, which show the number of messages each node sent using
the Flooding and MPL 2D0C protocol, we can see that each hop decreases the number
of messages that were successfully received and then forwarded to the next neighbour.
For the plain Flooding protocol, this even means that the achieved PDR approximates to
the configured 75%, so with each hop, we loose 25% of the messages a node forwards.
This causes the last node to receive only a single data message out of the 60 that are
initially sent. All the others were dropped during the previous hops.

Let’s compare Flooding and MPL 2D0C. We observe that the MPL 2D0C routing protocol
initially duplicates the 60 initial messages, such that the sender node initially transmits
twice as many data messages as for the Flooding protocol. Therefore, achieving a PDR
of approximately 75%, directly showing that if we send twice the amount of messages,
the drop-rate is halved to 25%. Although, still only 7 of the 60 unique and initially
sent messages are received by the last node, which shows that simply increasing the
number of redundant messages increases the reliability, especially for the first few hops.
However, the message delivery throughout the whole network is still very inhomogeneous.
This problem can either be tackled by simply further increasing the amount of data
messages the nodes send. This will further improve the number of delivered messages.
However, the distribution will still be very unbalanced throughout the network. The
second approach is to use the reactive mode of MPL, like shown in Figure 6.1c for the
MPL 2D1C configuration. It only adds the reactive mode configured with a single control

69

6. Evaluation and Discussion

0 1 2 3 4 5 6 7 8 9

Node

0

50

100

150

200

250

300

350

400

450

#
 S

e
n
t

P
a
c
k
e
ts

Overall Packets

Data Packets

Control Packets

(a) Flooding

0 1 2 3 4 5 6 7 8 9

Node

0

50

100

150

200

250

300

350

400

450

#
 S

e
n
t

P
a
c
k
e
ts

Overall Packets

Data Packets

Control Packets

(b) MPL 2D0C

0 1 2 3 4 5 6 7 8 9

Node

0

50

100

150

200

250

300

350

400

450

#
 S

e
n
t
P

a
c
k
e
ts

Overall Packets

Data Packets

Control Packets

(c) MPL 2D1C

0 1 2 3 4 5 6 7 8 9

Node

0

50

100

150

200

250

300

350

400

450

#
 S

e
n
t
P

a
c
k
e
ts

Overall Packets

Data Packets

Control Packets

(d) MPL 4D1C

Figure 6.1: Number sent packets for the Line structure with different configurations

message to the previously used MPL 2D0C configuration. As seen in Figure 6.1c, it
provides a more even distribution of the sent and delivered messages throughout the
network at the cost of sending nearly three times as many messages, data and control
messages, throughout the whole network. The comparison between Figure 6.1b and
Figure 6.1c shows the impact of the reactive mode on the network’s behaviour as it tries
to synchronize the data messages throughout the whole network by using its control
messages to restart the proactive mode for certain messages. This resulted in better
reliability with the obvious drawback of higher energy consumption due to the vastly
increased number of sent and received messages.

Further, the MPL 2D1C protocol is still incapable of ensuring a completely reliable and
even distribution of the data messages throughout the whole network due to unsuccessfully
transmitted control and data messages. The only solution to achieve reliable transmissions
from one to the other end of the whole line structure is to increase the amount of data
packets our nodes send and accept the drawback of even higher energy consumption
further. Our simulation results for the MPL 2D1C and MPL2D2C simulations shown in

70

6.2. Basic Model Simulations

Table 6.1 indicate that solely increasing the amount of sent control messages does not
change the performance significantly. The results show that it is much more effective
to keep the reactive mode enabled with a single control message and only increase the
parameter for the data-message expirations to send more data messages. In Figure 6.1d
the result for the MPL 4D1C simulation is depicted, which shows a very even distribution
for the sent messages for both the data and control messages, which indicates that most
of the initially sent packets were successfully transmitted to all the nodes inside the
network. The high amount of successfully delivered messages can also be seen in Table 6.1,
where we calculated a message delivery ratio of approximately 95.6% for the MPL 4D1C
simulation. This means that out of the 540 (=9*60) messages that had to be delivered
to the 9 other nodes that subscribed to the sender. Therefore, MPL 4D1C was able to
successfully deliver 516 of these messages and only 24 were lost and did not reach their
destinations, which is quite a good result for this very difficult and lossy line network
topology.

Protocol Sent Packets [#] Received Packets [#] Transmitted Bytes Overhead [%]
Flooding 174 287 0%

MPL 1D0C 159 257 0%
MPL 2D0C 706 1252 0%
MPL 1D1C 922 1613 11.8%
MPL 2D1C 1934 3472 146.5%
MPL 2D2C 2724 4891 217.6%
MPL 4D1C 3523 6352 389.0%

Protocol Delivered Data Message Ratio [%] Total Energy Consumption [J] Energy per Delivered Data Message [J]
(Energy Consumption without Baseline [J]) (Energy without Baseline per Delivered Data Message [J])

Flooding 32.0% 626.612 (0.010) 19.6 (0.0003)
MPL 1D0C 29.3% 626 (0.113) 21.4 (0.0039)
MPL 2D0C 61.7% 634.088 (7.486) 10.3 (0.1214)
MPL 1D1C 54.4% 630.767 (4.165) 11.6 (0.0765)
MPL 2D1C 77.2% 640.526 (13.924) 8.3 (0.1803)
MPL 2D2C 85.6% 645.089 (18.487) 7.5 (0.2161)
MPL 4D1C 97.2% 654.795 (28.193) 6.7 (0.2900)

Table 6.1: Metrics to compare the protocols energy efficiency for the 10 node Line network

Table 6.1 shows the simulation results for the previously introduced metrics. These
values indicate the energy consumption of the whole network and allow us to compare the
different protocols against each other. The results obtained from these metrics confirm
our interpretations drawn from the diagrams in Figure 6.1 the more packets our routing
protocols are sending, the more of the 60 initially generated packets get delivered to all
the nodes inside the network, which can be seen from the Delivered Message Ratio metric.
This increase in the sent and received packets also increases the number of redundant
data messages received by the nodes and the total overhead of the transmitted bytes,
compared to a perfect transmission without any lost data.
Further, it is interesting to see that the Transmitted Byte Overhead metric is that the
protocols that send the least amount of packets result in an overhead of 0% as they do

71

6. Evaluation and Discussion

not even send enough bytes as it would be necessary to deliver the 60 initial packets to
every single node. This shows, that the first three protocol configurations from Table 6.1
cannot even achieve a 100% Delivered Message Ratio for our setup of the line topology
as they simply do not send enough messages, while having a too high drop-rate.

Another interesting aspect of these metrics is the impact and effect of the reactive mode.
If we compare the results for the MPL 1D0C, MPL 2D0C, MPL 1D1C and MPL 2D2C
we see, that the reactive mode affects the behaviour the most when it gets activated
with a single sent control message. The effect of the reactive mode for the MPL 1D1C
compared to MPL 1D0C improved the overall performance but also vastly increased the
value for the Redundant Received data messages as its control messages re-trigger the
data message transmissions of the proactive mode. This mode can distribute the packets
further within the network, which led to a notable increase for the Delivered Message
Ratio compared to the MPL 1D0C protocol. While the usage of a second control message
expiration with the MPL 2D2C protocol causes only minimal changes for the network’s
overall Delivered Data Message Ratio, compared to the extra amount of energy it uses,
as shown in Figure 6.2. Therefore, we can conclude that using only a single control
message expiration provides the most improvement, and it is not beneficial to use more
than that as it only increases the energy consumption but does not provide a significant
improvement in the data message delivery ratio.

If we also consider the results from the MPL 2D0C simulation in this comparison, it can
be seen that the effect of adding a second expiration for the proactive mode is nearly twice
as effective as activating the reactive mode. Not only achieves MPL 2D0C an increase
in the Delivered Message Ratio of 45.2% − 23.9% = +21.3%, which is approximately
two times the improvement as the one obtained from MPL 1D1C, which gained only
34.6% − 23.9% = +10.7%. Additionally, the MPL 2D0 routing protocol even used less
energy than the MPL 1D1C, which again results in a far better result for the Energy per
Delivered Data Message metric as depicted in Figure 6.2b.

Figure 6.2 compares several different protocol configurations for their energy efficiency
and reliability by comparing their results for the Delivered Data Message Ratio and
Energy per Delivered Data Message metric. As seen, the Flooding, MPL 1D0, MPL 2D0C
and MPL 1D1C protocols are very inefficient, as they have a bad data message delivery
ratio. This again leads causes a lot of used energy without getting any available reward
from it. This relation between the consumed energy and delivered data messages are
expressed with the Energy per Delivered Data Message metric, which indicates how much
energy our network consumes on average to deliver a single data message to a node
within the network.

Another interesting conclusion from Figure 6.2b, is that only increasing the amount of
sent messages is not the ideal way to increase performance and energy efficiency. It is
more effective to enable the reactive mode with a single control message expiration than
to keep it deactivated and only use additional data message expirations. This can be
seen by comparing two pairs of simulations from Figure 6.2b, both MPL 1D1C and MPL

72

6.2. Basic Model Simulations

Flooding 1D0C 2D0C 3D0C 1D1C 2D1C 2D2C 4D1C 6D1C 7D1C

30

40

50

60

70

80

90

100

D
e

liv
e

re
d

 M
e

s
s
a

g
e

s
 [

%
]

(a) Comparison of Delivered Messages Metric

Flooding 1D0C 2D0C 3D0C 1D1C 2D1C 2D2C 4D1C 6D1C 7D1C

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

E
n

e
rg

y
 p

e
r

D
e

liv
e

re
d

 M
e

s
s
a

g
e

s
 [

J
]

(b) Energy per Delivered Messages with included
Baseline Energy Consumption

Flooding 1D0C 2D0C 3D0C 1D1C 2D1C 2D2C 4D1C 6D1C 7D1C

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
n

e
rg

y
 w

it
h

o
u

t
B

a
s
e

lin
e

 p
e

r
D

e
liv

e
re

d
 M

e
s
s
a

g
e

s
 [

J
]

(c) Energy per Delivered Messages with removed
Baseline Energy Consumption

Figure 6.2: Energy Efficiency and Reliability of the Routing Protocols for the Line
Topology

2D1C achieve a better performance for both metrics, than their direct counterparts MPL
2D0C and MPL 3D0C.

Further, the results from Figure 6.2b show that delivery performance is far more critical
for our simulations than reducing the sent overhead. Especially for networks like the ones
we have to use that do not use methods like RDC, IPv6 Time Slotted Channel Hopping
(6TiSCH) [VWC+20] to reduce the energy consumption of the PHY during their long
idle periods. This can be seen by comparing the results for the MPL 6D1C and MPL
7D1C protocols in Figure 6.2b. They seem identical, by both of them achieving a perfect
100% data packet delivery rate, with and an Energy per Delivered Data Messages of 6.5J
and 6.6J .

Effectively the network using MPL 7D1C consumes 5.6J more than the one using MPL
6D1C due to the additional sending and receiving processes. Still, both achieve a nearly
identical result for our energy efficiency metric. This behaviour originates from the
incredible inefficient energy consumption of our LR-WPAN-PHY, for which we simulated

73

6. Evaluation and Discussion

a total minimum energy consumption of approximately 62.6602J per 3800 seconds of
simulation time. Accumulated for the whole network, this results in minimal energy
consumption of 626.602J for our 10 nodes, without any sending activity. Compared
to this enormous base energy consumption, the additionally consumed 5.6J are only
0.9% of additionally consumed energy. Suppose we extrapolate this percentage over a
whole year. In that case, we lose approximately three days of additional runtime for an
entire year, considering we can find battery sources that are durable enough to power
our energy-hungry nodes for an entire year.

As this incredible inefficient baseline energy consumption offset is equally present for
every node and every routing protocol configuration. Therefore, this constant offset only
distorts the overall analysis of the energy efficiency, as every protocol that simply sends a
huge amount of data packets and therefore uses even more energy, is always better rated
than the energy-saving routing protocols. Therefore, this huge and misleading energy
baseline of all the nodes is not considered anymore for the further work of this thesis,
instead the energy-efficiency always considers the values with the this constant receiving
baseline removed.

In Figure 6.2c, the Energy per Delivered Message metric was recalculated with this con-
stant offset removed, which provides a completely different performance than previously
depicted in Figure 6.2b, as now the energy efficiency really matters. As it can be seen
with the baseline removed, the Flooding, MPL 1D0C and MPL 1D1C can be considered
the most energy efficient ones, as they achieve the most successful transmissions for their
consumed energy. Especially the Flooding protocol is surprisingly incredible efficient, as it
never sends any redundant messages or additional control packets and every successfully
transmitted packet immediately improves its efficiency vastly. All the other protocols
simply send way to much overhead and cannot achieve the same efficiency than the
Flooding approach. Although, if there is a minimum amount of delivered data messages
required by the WSN’s application, the MPL 1D1C and MPL 2D1C are a better choice
as these protocols achieve relatively high ratios of delivered data messages, while at the
same time also achieving a good and constant energy efficiency.

6.2.2 Circle Structure

The following network topology we simulate is the circle topology. The most important
difference between a Line and circle structure is that every node within a circle has
two neighbours it can send messages to. So generally, we can cut the circle open at
the position of the initial sending node and handle it as a line structure, where we
simultaneously send messages from both of its ends, which halves the theoretical number
of hops necessary to reach the nodes in the middle of this transformed line structure.
This vastly reduces the number of lost and dropped messages due to the fewer hops
necessary to reach every single node. Additionally, a message that successfully reached
the node in the middle is further forwarded into the second half of the line, so if the
packet on the one side is lost earlier, there is still an additional possibility that the packet

74

6.2. Basic Model Simulations

from the other side reaches several nodes from the other half, which again increases the
possibility that a packet is transmitted to as many nodes as possible.

150 200 250 300 350 400 450 500 550

X-Coordinate [m]

0

50

100

150

200

250

300

350

Y
-C

o
o
rd

in
a
te

 [
m

]

Sender

Sent Packets

10

20

30

40

50

60

Figure 6.3: Sent data messages for Flooding in a 10 node circle structure

Figure 6.3 shows the results of the Flooding protocol used with a 10 node circle structure.
Node 0 is the sender node, which simultaneously sends its packets to nodes 1 and 9. With
every hop, the nodes get smaller and lighter as more and more messages get dropped,
but still, every node receives at least ten different data messages, which is far better
than the Flooding protocol achieved with the Line structure. This single simulation
results impressively shows the influence a certain network topology has on a routing
protocols performance. In case of the Circle structure, this improvement vastly comes
from reduced amount of maximum hops till a packet reaches the nodes furthest away.
Hence, by halving this maximum amount of hops and adding a redundant path to the
node furthest away the Flooding protocol was able to achieve a Delivered Data Message
Ratio of 58%, which is nearly twice as good as for the Line structure that only achieved
32%. The detailed results of the Circle topology are shown in Table 6.2.
Another notable aspect of the Circle structure’s results compared to the results from the
Line structure, is that the delivery rate for the MPL routing protocols for Flooding and
MPL 1D0C doubles, while all the other ones do not profit that from the topology switch.
These remaining protocols do not receive the same amount of performance increase than
Flooding and MPL 1D0C, but still these protocols also increased their performance. MPL
4D1C even achieved to deliver every single message correctly, MPL 2D1C and MPL
2D2C both achieved a remarkable result of 95.7% delivered messages. Although, as for
the Line topology, this good result with the Circle structure for the message delivery
ratio comes with the drawback of a huge amount for the Sent Bytes Overhead metric.
This additional overhead indicates, that MPL 4D1C sends approximately four times the
minimum necessary amount of bytes as additional overhead.

75

6. Evaluation and Discussion

Protocol Sent Packets [#] Received Packets [#] Transmitted Bytes Overhead [%]
Flooding 260 516 0%

MPL 1D0C 258 516 0%
MPL 2D0C 984 1968 0%
MPL 1D1C 1210 2418 0%
MPL 2D1C 2286 4572 184.1%
MPL 2D2C 3051 6101 250.6%
MPL 4D1C 3565 7129 395.1%

Protocol Delivered Data Message Ratio [%] Total Energy Consumption [J] Energy per Delivered Data Message [J]
(Energy Consumption without Baseline [J]) (Energy without Baseline per Delivered Data Message [J])

Flooding 57.8% 626.625 (0.023) 10.8 (0.0004)
MPL 1D0C 56.9% 630.055 (3.453) 11.1 (0.0607)
MPL 2D0C 88.1% 633.798 (7.195) 7.2 (0.0816)
MPL 1D1C 74.6% 631.695 (5.093) 8.5 (0.0682)
MPL 2D1C 96.9% 636.619 (10.017) 6.6 (0.1034)
MPL 2D2C 95.7% 643.386 (16.784) 6.7 (0.1753)
MPL 4D1C 100% 647.480 (20.878) 6.5 (0.2088)

Table 6.2: Metrics to compare the protocols energy efficiency for the 10 node Circle
network

Overall the performance for the Circle structure is best described by the Energy without
Baseline per Delivered Message metric, which indicates that Flooding is again by far
the most energy efficient protocol, while MPL2D2C and MPL 4D1C can be considered
completely energy inefficient as they generate way too much overhead without achieving
better results than the MPL2D1C that achieves a similar Delivered Data Message Ratio,
while at the same time achieving a much lower energy consumption.

6.2.3 Grid Structure
The following discussed network topology is the Grid structure, that consists out of 25
nodes that are organized into rows of 5. The results for the Flooding protocol which is
again the most energy efficient one shown in Figure 6.4. Due to the network’s layout and
its increased density, each node on the network borders has at least two neighbours, while
the ones on the inside all have exactly four neighbours. This increased network density
leads to a much higher traffic for the whole network and causes an overall increase in the
energy consumption of each node. As Figure 6.4 shows, the nodes on the right and upper
edges receive the least amount of messages as they are the nodes furthest away from the
sender and have the lowest number of neighbour, hence the possibilities to successfully
receive a data packets are lower than for the other nodes.

The Flooding protocol, therefore, achieves an even better result than for the previous
Circle structure and increases its Delivered Data Message Ratio up to 74.8% for a network
with more than double the size as the one used with the Circle topology. In Table 6.3,
the detailed results for the other simulations are shown. As for the previous simulation
setups, the Flooding protocol is again the most energy-efficient one, as it generates the

76

6.2. Basic Model Simulations

0 110 220 330 440

X-Coordinate [m]

0

110

220

330

440
Y

-C
o
o
rd

in
a
te

 [
m

]

Sender

Sent Packets

24

32

40

48

56

Figure 6.4: Sent data messages for Flooding in a 5×5 Grid structure

least amount of packets, which keeps the overall network traffic low and saves energy.
Although, due to the high amount of redundant paths through the whole network, all
the simulated routing protocols achieved a data message delivery ratio of at least 70%.
Again as for the Circle topology, the Flooding protocol improved its performance the
most and outperformed all the other routing protocol configurations again in terms of its
energy efficiency.

Protocol Sent Packets [#] Received Packets [#] Transmitted Bytes Overhead [%]
Flooding 890 2692 0%

MPL 1D0C 891 2872 0%
MPL 2D0C 2800 8963 0%
MPL 1D1C 3686 12049 0%
MPL 2D1C 5711 18225 184.9%
MPL 2D2C 7477 23761 243.2%
MPL 4D1C 8919 28507 396.0%

Protocol Delivered Data Message Ratio [%] Total Energy Consumption [J] Energy per Delivered Data Message [J]
(Energy Consumption without Baseline [J]) (Energy without Baseline per Delivered Data Message [J])

Flooding 74.8% 1566.777 (0.271) 20.9 (0.0036)
MPL 1D0C 70.9% 1570 (3.647) 22.1 (0.0514)
MPL 2D0C 94.4% 1597.439 (30.934) 16.9 (0.3278)
MPL 1D1C 84.1% 1594.216 (27.711) 19.0 (0.3298)
MPL 2D1C 96.9% 1605.757 (39.252) 16.6 (0.4049)
MPL 2D2C 97.1% 1622.857 (56.352) 16.7 (0.5805)
MPL 4D1C 100% 1627.108 (60.603) 16.3 (0.6060)

Table 6.3: Metrics to compare the protocols energy efficiency for the 5×5 Grid network

The other simulation results are similar to the ones from the previous Circle topology.

77

6. Evaluation and Discussion

These results again show that all the MPL routing protocol configurations need at least
ten times more energy than the Flooding approach. Especially the MPL routing protocols
that have the reactive mode enabled perform worse in terms of actual energy efficiency as
they send too many messages that are not suppressed by the polite gossiping approach of
MPL.

The overall conclusion from the simulations of the three basic network topologies Line,
Circle and Grid is that mesh-under Flooding is by far the most energy-efficient protocol
configuration from the ones evaluated. The only drawback of the Flooding protocol is its
low message delivery ratio in very sparse networks like the Line structure. Although, it
is reasonable to say that such a network topology is a difficult task for a low-power and
lossy network that requires complex routing mechanisms like MPL to ensure a certain
Data Message Delivery Ratio. These specific cases where a minimal amount of delivered
data messages is required and Flooding cannot ensure this is the only reason to use a less
energy-efficient routing protocol. In such a specific case with a minimum transmission
performance required, the only routing protocols feasible to use are the ones that do not
create a vast amount of overhead and send only the bare minimum needed to achieve
the requirements. Such protocol configurations are the MPL 2D0C and MPL 1D1C.
Using MPL 1D0C does not provide additional advantages as it achieves the same packet
delivery performance as Flooding at worse energy efficiency.

6.2.4 Effect of the Redundancy Constant K
Selecting a suitable value for the Redundancy Constant K is a substantial part of the
configuration of the MPL routing protocol. It defines how often a node has to receive
the same data- or a consistent control-message until its scheduling of this data or control
message is suspended, its message is not sent, and its expirations-counter is increased.

Therefore, this Redundancy Constant K directly controls the behaviour of the polite
gossiping of MPL. When configured at a too high value, it affects the protocols energy
efficiency as the already known messages are always transmitted and not suspended if
they are re-received. If this parameter is too low, messages that have to be forwarded
might get suppressed in certain situations.

As stated by the specification of MPL [HK16], the default value of K is set to 1 for
both operation modes. The parameter K is often only relevant for specific topologies or
transient situations, where it might be beneficial to use a higher value. Especially with
networks that consist of randomly distributed nodes, due to this random distribution,
not all the nodes may have an equal number of neighbours. Such a setup may lead to
unwanted suppressions of packets that shall be forwarded.

Therefore, several simulations with the Grid structure were performed to evaluate the
effect of changing the redundancy constant for both the proactive and reactive operation
mode. The simulations used were based on the MPL 2D0C, MPL 2D2C, and MPL 4D1C
variated K from 1 to 4 for these routing protocol configurations. Nonetheless, none of
these additional simulation results showed any improvements or changes to the previously

78

6.2. Basic Model Simulations

described results in Table 6.3, which justifies the the possibly higher energy consumption
and more network traffic. Hence, we derive from these results that it is ok to commonly
set K to 1 and expect the network to work efficiently.

6.2.5 Energy Simulation vs. Real-World Measurement
The simulations and the results acquired from them allow for fast development and
testing of complex hardware setups. However, these results are virtual simulations, hence
approximations and abstractions of real-world hardware. These approximations raise the
essential question of how accurate the provided results of the simulations are.

The results and measurements published by Adelmann [Ade21] are used to compare
the simulation results to measurements obtained from physical hardware setups. This
comparison between the simulator domain and actual hardware concentrates on the
simulator parts necessary to determine the energy consumption of a simulated node. The
first step, therefore, is to compare the simulator’s utilized sending-current model to the
current consumption of physical hardware nodes. In Figure 6.5, the current consumption
during the sending process of the NRF52840 and CC1352r1 hardware nodes [Ade21],
and the abstracted sending current model used by NS-3 to model and calculate the energy
consumption of a virtual node.

As seen in Figure 6.5c, the current model used by NS-3 is a completely simplified rough
abstraction of the real-world current-consumption models like Figure 6.5b and Figure 6.5a.
The simulator’s energy model only consists of constant current values applied to the
durations of the LR-WPAN PHY’s states. Comparing NS-3’s current model with the
measurements of the two hardware nodes shows, that there are several crucial differences
between them which show that the simulator does not achieve a proximate result for the
energy consumption of a real-world hardware node.

This comparison shows that the need for better simulation models is inevitable to improve
the resulting quality of the energy simulations of NS-3. It seems nearly impossible to
generate a completely generic current model, applicable and configurable to match the
behaviour of various hardware nodes. Additionally, real hardware has even more physical
properties, like chip ageing, temperature effects and many more, that shall be considered
when aiming to develop an ideal simulation model. Another major part that adds up
to a node’s energy consumption is the necessary amount of energy consumed by the
Central Processing Unit (CPU). As shown in the work of Adelmann [Ade21], the energy
consumption of the CPU is a substantial part of the overall energy consumption and
is again very different across the various hardware platforms. For some nodes like the
CC1352, his work showed that the actual software executed by the CPU is responsible for
one-third of the energy consumption during a sending process. The energy consumption
by the CPU shows that even the program executed on the CPU has a remarkable influence
on the energy consumption of a node. This finding introduces an additional factor that
affects a node’s energy consumption. Hence, also the computational complexity of the
used routing protocols like AODV6 or MPL, which have a much higher complexity and

79

6. Evaluation and Discussion

(a) Send Current of NRF52840 node [Ade21] (b) Send Current of CC1352r1 node [Ade21]

(c) Send Current Model of the NS-3 simulator

Figure 6.5: Sending currents of two hardware nodes and the sending energy model used
by NS-3

memory consumption, than a simple Flooding implementation. Therefore, it is reasonable
to expect the Flooding protocol to be even more energy efficient than indicated by the
simulations described in section 6.2.

This finding on the importance of the energy consumed by the processor indicates even
more crucial to keep the number of sent messages as low as possible to minimize the
amount of time the CPU, sender and receiver units of the node have to leave their idle
states and switch on. Apart from the complex current consumption of the network PHY,
an exact energy-simulator simulator has to simulate a node’s processor and even the
executed program. Accordingly, a realistic energy simulation may only be possible to
acquire when using an exact hardware emulator, which can be fine-trimmed to all the
specifics of a specific node. In comparison, a generic and abstract network simulator
like NS-3, whose aim is to simulate a broad range of communication networks and their
numerous protocols. Hence, it is not NS-3’s primary use case to perform high-end energy
simulations. Instead, it uses a very abstract and simplified current model, which is easy
to configure and use and aims to provide a rough and quick estimation of the performance
and energy consumption of a specific network setup. It is not the intended use case
of NS-3 to provide high-end energy simulations for specific hardware nodes that are

80

6.3. Network Lifetime Simulations

directly mappable to the real world. Of course, there is always potential and a need
for better simulation models. Such an example is the need for an improved LR-WPAN
model. Especially for the PHY- and MAC-layers, which need crucial improvements to
implement more detailed energy models for LR-WPAN, that allows simulating more
complex PHY behaviour like realistic switching effects, when enabling or shutting down
the sender or receiver. Such an improvement would create the necessary base-features to
allow an implementation of an RDC functionality, which improves the overall quality
and applicability of the simulation results for the energy consumption.

6.3 Network Lifetime Simulations
The next category of performed simulations is the ones that utilize the shut-off function-
ality of NS-3’s LR-WPAN energy model. Other than the previously discussed simulations
from section 6.2, where the nodes had an infinite amount of energy available, the simula-
tions performed in this section only provide a limited amount of energy to the nodes,
which is not enough for all the nodes to last for the whole simulation. Therefore, nodes
that deplete their energy source switch off their sender and receiver units and do not
interact with the remaining active nodes. These simulations allow us to detect which
parts of a network use the most energy and deplete their energy fastest. The information
from these simulations is also helpful for detecting nodes that need to use batteries with
a higher energy capacity or even utilize mechanisms like energy harvesting to reload their
strained batteries.

These simulations use the Network Lifetime and Normalized Network Lifetime per
Delivered Data Message metrics to quantify and compare the behaviour for the different
routing protocols and network topologies. The used Network Lifetime metric is a three-
value tuple sampled in three different situations. The first-lifetime value is sampled when
the first node within the network is depleted. The second and third ones are taken after
50%, and 90% of the nodes have shut down. These three values allow a better insight
into the temporal behaviour of the network’s depletion process.

Table 6.4 shows the results for the different routing protocol configurations obtained from
the network simulations using nodes with a limited energy source. The first thing to
notice from these results is the minimal time difference between the three values of the
metric’s tuple. This minimal time difference indicates that the overall network becomes
dysfunctional within a timespan of only a few milliseconds, regardless of the utilized
routing protocol. This behaviour again origins in the functionality of the LR-WPAN
network PHY used to simulate the nodes, as NS-3’s PHY implementation is not capable
disable the receiver to reduce the energy consumption. As shown previously in section 6.2,
this permanently enabled receiver drains the vast amount of energy from the battery
compared to the part used to transmit messages to other nodes. Hence, all the nodes
within the network deplete nearly simultaneously as the nodes’ differences in the amount
of energy used to send their messages are only a minimal fraction compared to the energy
consumed by the permanently enabled receiver.

81

6. Evaluation and Discussion

Topology Line Circle Square
Network-Lifetime 1st [s] 50% [s] 90% [s] 1st [s] 50% [s] 90% [s] 1st [s] 50% [s] 90% [s]
Flooding 3389.66 3389.67 3389.68 3389.61 3389.62 3389.62 3389.24 3389.25 3389.26
MPL 1D0C 3389.67 3389.69 3389.69 3389.58 3389.60 3389.60 3389.03 3389.04 3389.04
MPL 2D0C 3389.17 3389.19 3389.20 3388.97 3388.98 3388.98 3387.29 3387.29 3387.29
MPL 1D1C 3389.15 3389.17 3389.18 3388.98 3388.99 3388.99 3387.53 3387.53 3387.54
MPL 2D1C 3388.35 3388.36 3388.36 3388.24 3388.24 3388.24 3385.88 3385.88 3385.89
MPL 2D2C 3388.05 3388.07 3388.07 3387.85 3387.85 3387.85 3384.99 3385.00 3385.00

Table 6.4: Results for the Network-Lifetime simulations of the three different network
topologies when the 1st, 50% and 90% of a networks’ nodes shut down

Nonetheless, the results still allow an interpretation of the energy consumption of a
routing protocol used within the Line, Circle and Grid topology. Table 6.4 combined
with the results from section 6.2, shows that the more messages are transmitted within
a network, the lower the overall network lifetime gets. This effect is the biggest for
the Grid topology as a node sends a higher number of messages than with the other
topologies. This higher number of transmitted messages a node sends to its multiple
neighbours results in more successfully sent messages. Hence, when comparing the
Network Lifetime of the Flooding protocol between the Line and Grid topologies, the
nodes within the grid-formed network send and receive more messages than the ones
from the Line topology, which results in a lower Network Lifetime. The same logic can be
applied when comparing the Network Lifetime results of the different routing protocols
for the same network topology.

When comparing the results for the Grid topology simulations, it is noteworthy that,
apart from the permanently enabled receiver, the used routing protocols still make a
difference for the Network Lifetime. For the simulations using the Grid topology, this
makes a difference of up to 4.26 seconds between the Flooding and MPL 2D2C routing
protocol during an approximate runtime of one hour. When scaling this result up to a
maintenance cycle of a whole year until the nodes batteries have to be changed, these
4.26 seconds scale upwards to approximately 10 hours of lifetime difference between the
Flooding and MPL 2D2C routing protocol. This estimated time difference does not
manifest in a substantial difference in the application lifetime but inferred that these
results represent the worst case where the receiver or sender is always enabled. Hence, as
soon as there is some functional RDC mechanism used that balances the ratio between
energy used to send and energy consumed to power the receiver, the importance of the
used routing protocol on the Network Lifetime will vastly increase and resulting in higher
differences in the Netowork Lifetime.

Although the Network Lifetime itself gives us a good indication of how long a certain
amount of nodes stays operational within a network, it does not provide us with any
information if these active nodes are actually receiving any new messages or if they are
only idling until their battery depletes too. To better understand how performant such a
long-living network is, the Network Lifetime metric is combined with the amount of at

82

6.3. Network Lifetime Simulations

least once received messages. This newly created metric combines the Network Lifetime
with a performance metric that allows distinguishing networks that successfully send and
receive data or only idle without any activity.

In Figure 6.6, the simulation results for the Network Lifetime per Delivered Data Message
normalized to the overall network size are shown. These results are used to quantify
the performance of the different routing protocols for their energy efficiency, paired with
the amount of successfully delivered messages. In Figure 6.6a, the results for the Line
topology are shown. The results shown are contrary to the ones listed in Table 6.4, where
the Flooding protocol achieved the highest Network Lifetime. Although, when combining
the Network Lifetime energy-efficiency metric with a transmission metric, this indicates
the effective Network Lifetime. The whole situation changes, as the results are shown in
Figure 6.6a and Figure 6.6b for the Flooding and MPL 1D0C routing protocols indicate
that they were only able to achieve such a high Network Lifetime because the nodes were
idle most of the time.

Flooding MPL 1D0C MPL 2D0C MPL 1D1C MPL 2D1C MPL 2D2C

0

500

1000

1500

2000

2500

3000

3500

N
o

rm
e

d
 L

if
e

ti
m

e
 p

e
r

D
e

liv
e

re
d

 D
a

ta
 M

e
s
s
a

g
e

 [
s
]

(a) Line topology

Flooding MPL 1D0C MPL 2D0C MPL 1D1C MPL 2D1C MPL 2D2C

0

500

1000

1500

2000

2500

3000

3500

N
o

rm
e

d
 L

if
e

ti
m

e
 p

e
r

D
e

liv
e

re
d

 D
a

ta
 M

e
s
s
a

g
e

 [
s
]

(b) Circle topology

Flooding MPL 1D0C MPL 2D0C MPL 1D1C MPL 2D1C MPL 2D2C

0

500

1000

1500

2000

2500

3000

3500

N
o

rm
e

d
 L

if
e

ti
m

e
 p

e
r

D
e

liv
e

re
d

 D
a

ta
 M

e
s
s
a

g
e

 [
s
]

(c) Grid topology

Figure 6.6: Results for the Normalized Network Lifetime per Delivered Data Message

Therefore, this metric can quantify how energy efficient and performant a routing
protocol configuration is for a specific network topology. For the results obtained from

83

6. Evaluation and Discussion

the performed NS-3 simulations, this metric indicates that the nodes sending and receiving
the most messages are also the ones performing best. This result is distorted again
by the fact that the amount of energy used to send messages is irrelevant compared
to the energy consumed by the PHY’s receiver. Due to this limitation, the routing
protocols have only a minimal difference in their achieved Network Lifetime, which causes
the amount of successfully delivered data messages to the relevant aspect that decides
which routing protocol works best. Nonetheless, this metric still provides the correct
information on which routing protocol configuration is most energy-efficient and achieves
the best compromise between delivery performance and energy consumption.

6.4 Interference Simulations
The final set of simulations probes the different routing protocols for their ability to
overcome high-interference situations. In these situations, the physical transmission
medium is highly distorted, which increases the possibility of irregular transmission
failures. Interference from other nodes’ message transmission is a common problem
with wireless networks that depending on the amount of interference created, can vastly
influence the PDR in a WSN. Therefore, the performed interference simulations aim
to evaluate the effect of interference distortions from other WSN networks on the
performance of a routing protocol configuration for a specific network topology. The
interference simulations utilize similar topologies and setups as the previously described
simulations from section 6.2. The only differences to these topologies are the so-called
interference nodes and an increased sending power of +4 dBm, such that all of the
observed transmission failures occur due to interference. The additional interference
nodes form a separate LR-WPAN network that communicates on the same channel
and periodically sends packages between them to create traffic on the physical medium
that distorts the transmissions from the main-network. The conducted simulations use
exactly two interference nodes, one sender and one receiver. The interference nodes are
configured according to the parameters listed in Table 5.1.

The main goal of these simulations is to show how interference-tolerant the different
routing protocol configurations are for the three main topologies. These interference
simulations do not provide us with relevant energy consumption results, as the interference
nodes send on the same frequency channel as the main network and therefore keep the
receivers nearly permanently receiving the sent interference messages, which falsifies the
values for the energy consumption. Hence, the metrics used in these simulations are the
number of transmitted packets and the delivery ratio of the senders’ different messages.
These two metrics indicate best how much impact the interference packets make on the
otherwise successful LR-WPAN transmissions.

The first simulation results are shown in Figure 6.7, which depicts the Line topology
network with its ten nodes and the two additional interference nodes and their transmission
range, indicated by the two red circles. These circles are indications to mark which nodes
have to deal with the most interference distortions.

84

6.4. Interference Simulations

0 110 220 330 440 550 660 770 880 990

X-Coordinate [m]

0000000000

Y
-C

o
o

rd
in

a
te

 [
m

]

Flooding with Interference

PDR [%]

10.0

11.7

16.7

33.3

61.7

100.0

Sent Packets

6

7

13

32

60

Figure 6.7: Impact of interference on the Flooding protocol for the Line topology

The graphic shows that, the first hops at the beginning are both done without any lost
packet, as both following nodes receive every one of the initially sent data messages.
Although, as soon as the transmissions reach the first node, positioned within the
transmission range of the interference-generating nodes, the amount of delivered messages
suddenly declines. This drop in the PDR and the amount of sent messages indicates
that the interference nodes have a devastating effect on the transmission quality of the
remaining nodes. In the depicted situation of a Line topology with initially perfect
transmissions, this impact leads to nearly 90% of the data messages dropped that do not
reach the last node within the network. This result indicates that although LR-WPAN
uses an CSMA/CA approach that checks if the medium is already used by another node,
there are still lots of collisions and dropped packets. Due to the Flooding protocol not
retransmitting unsuccessfully transmitted messages, the PDR drops to only 10%.

As a counterpart to the bad performance of the Flooding protocol, Figure 6.8 depicts the
results for the Line topology used with the MPL 2D1C routing protocol configuration.
These results for the MPL 2D1C show much better performance than the one achieved
by Flooding. MPL 2D1C achieves a more than four times better PDR of the initially
sent data messages. This result shows that MPL 2D1C utilizing the reactive operation
mode and sending more than two times the amount of initially sent data messages is
still unable to deliver at least 50% of the necessary data messages. Therefore, the only
way to further improve the PDR in these interference setups for the Line topology is to
increase the number of retransmissions of the data messages, which improves the odds

85

6. Evaluation and Discussion

0 110 220 330 440 550 660 770 880 990

X-Coordinate [m]

0000000000

Y
-C

o
o

rd
in

a
te

 [
m

]

MPL 2D1C with Interference

PDR [%]

46.7

56.7

83.3

100.0

Sent Packets

52

56

120

121

124

Figure 6.8: Impact of interference on the MPL 2D1C protocol for the Line topology

that one of a message’s retransmissions is successfully delivered. On the other hand, such
an increase automatically leads to additional energy consumption by the nodes and even
more traffic and interference on the transmission medium.

At the moment, the described simulations only considered the Line topology consisting
of one single path to transmit a message to any node within the network. If this path
then becomes distorted because of any possible reason, the PDR of the whole network
is reduced. Hence, it is also necessary to evaluate how a denser network like the Grid
topology handles such an interference situation. Figure 6.9 shows such a case, where the
interference-generating nodes are positioned right in the middle of the network. Although
all the nodes are configured the same as they were for the previous simulations with the
Line topology, the MPL 1D0C routing protocol can deliver more than 95% to any node
within the network. This result again shows that the overall layout and topology of the
WSN can be way more important than selecting the utilized routing protocol. Figure 6.9
even shows that although the nodes in the centre do receive nearly all of the different
messages, they do not re-transmit them again due to the polite gossiping mechanism of
MPL.

Hence, these conducted interference simulations showed that the overall layout of a WSN
is the most important property that controls its behaviour. To make a WSN resilient
to heavy distortions on the wireless medium or any other faults, mandatory to add
multiple redundant paths within the overall network. Using such a dense network instead
of a sparse one like the Line topology even allows using a simple and energy-efficient

86

6.4. Interference Simulations

0 110 220 330 4400 110 220 330 4400 110 220 330 4400 110 220 330 4400 110 220 330 440

X-Coordinate [m]

00000

110110110110110

220220220220220

330330330330330

440440440440440

Y
-C

o
o

rd
in

a
te

 [
m

]

MPL 1D0C with Interference

PDR [%]

96.7

98.3

100.0

Sent Packets

47

50

52

55

57

60

Figure 6.9: Interference simulation of the MPL 1D0C protocol for the Grid topology

routing protocol like Flooding or MPL 1D0C without any critical impacts on the overall
transmission performance.

87

CHAPTER 7
Conclusion and Future Work

7.1 Conclusion

This thesis analyses, implements, simulates and evaluates different multicast routing
protocols in the simulation domain. Several network simulators are evaluated for their
available simulation models and features to simulate crucial aspects of WSNs and finally
the NS-3 simulator is selected for the further usage. Missing features like the MPL routing
protocol are implemented. Several hardware-independent and hardware-dependent metrics
are used to compare the simulation results of the different routing protocol configurations
for their energy efficiency.

When applying these metrics on the obtained simulation results. It got obvious that due
to the simplifications applied within the MAC layer of the currently available LR-WPAN
simulation model of NS-3, it is not possible to use more sophisticated Energy simulation
models. Due to these limitations of the used simulation models, it is not possible to
directly map the results obtained for the hardware-dependent metrics from the virtually
performed simulations to measurements taken from real-world hardware nodes. There is
simply no such energy consumption model at the moment, that is generally applicable
and versatile enough to describe the hardware nodes with all the necessary details to
directly apply the hardware-dependent results form the simulations to real-world nodes.

Nonetheless, there are also the hardware-independent metrics, which showed, that their
results can be used for reasonable comparisons between the virtual simulations networks
and the real-world WSNs. Although, as shown by Adelmann [Ade21], the applicability of
hardware-independent metrics is not available with every type of hardware. Hence, it solely
depends on the actually used hardware setup for the nodes, if the hardware-independent
metrics obtained per simulation can be used to describe the energy consumption of this
node or not.

89

7. Conclusion and Future Work

These conclusions and results of this thesis show, that simulations are a great tool to
test and experiment with a WSN. Simulations allow a user to determine how certain
network parameters, like different network topologies and interference, affects the overall
behaviour of the network. Nonetheless, one has to be aware that a simulation is always
a simplified abstraction of the real-world, that requires trade-offs between the achieved
accuracy and feasibility of the simulation model. Hence, this thesis showed, that NS-3 has
a major need for better LR-WPAN and Energy models in order to realistically simulate
the energy consumption of a hardware node.

7.2 Future Work
As it is sheer impossible to address every detail, possibility and aspect that combines
the domain of WSNs and the vital role they have in the global perspective of an IoT.
Nonetheless, this thesis provides an entry point for researchers interested in multicast
routing protocols used together with Low Power and Lossy Networks. Therefore, it is
necessary to point out further aspects that could not be handled in this thesis, as the
amount of work would have vastly exceeded the scope of this master thesis. Such aspects
for Future Work are, for example, the additional implementations of other multicast
routing protocols. Most importantly, if NS-3 finally releases an RPL module, which
would level the ground for the implementation of further commonly used multicast
routing protocols like SMRF and further enhancements of this routing protocol [OP12].
Further work may also include additional metrics, simulations with movable nodes and
definitions for energy efficiency. Also, we can extend the existing simulation models to
feature multiple message generator nodes within a single network or the behaviour and
influence of interference generated by two concurrent networks instead of using artificial
interference generating nodes.

Hence, it is still a lot of future work to do, especially with the tremendous current
development process and speed of microelectronic devices and their used software. These
new possibilities re-open the research domain of WSNs and combine their encapsulated
view with a global perspective of the dynamic and highly connected IoT, which changes
the handling and characteristic of specific properties like the exact causes and results for
a node’s energy consumption. All these significant changes in these previously well-known
properties and the general consequences of integrating WSNs directly into the highly
connected and dynamic world of the IoT provide this research domain with many further
fascinating questions and problems to analyse and solve.

90

List of Figures

2.1 GUI of the Cooja simulator during an active simulation 11
2.2 The code structure of the 6LoWPAN simulation model 22

3.1 Mesh-under and Route-over network stack transitions [AK19] 25
3.2 Format of an MPL-Option used to route data messages [HK16] 29
3.3 The MPL Control Message used by the reactive operating mode of MPL [HK16] 30

4.1 Class-diagram of the MPL implementation 39
4.2 Class-diagram of the MPL-Option implementation 40
4.3 Activity diagram to send/receive a data message with the proactive mode 42
4.4 Activity diagram to send and receive a control message with the reactive mode 44
4.5 UML class diagram showing the NS-3 WiFi energy model [WNP11] . . . 45
4.6 States of the NS-3 current model to calculate the energy consumption . . 46
4.7 Schematic functionality of the Execution and Evaluation Framework . . . 49

5.1 PDR of LR-WPAN transmissions in NS-3 58
5.2 Packet transmission in a regular Grid topology 60
5.3 Packet transmission showing the redundant paths in a Circle topology . . 61

6.1 Number sent packets for the Line structure with different configurations . 70
6.2 Energy Efficiency and Reliability of the Routing Protocols for the Line

Topology . 73
6.3 Sent data messages for Flooding in a 10 node circle structure 75
6.4 Sent data messages for Flooding in a 5×5 Grid structure 77
6.5 Sending currents of two hardware nodes and the sending energy model used

by NS-3 . 80
6.6 Results for the Normalized Network Lifetime per Delivered Data Message 83
6.7 Impact of interference on the Flooding protocol for the Line topology . . 85
6.8 Impact of interference on the MPL 2D1C protocol for the Line topology . 86
6.9 Interference simulation of the MPL 1D0C protocol for the Grid topology 87

91

List of Tables

2.1 Comparison of the introduced simulators 15

4.1 Current values for the LR-WPAN energy model at 0dBm sending power . 48
4.2 Example output of the NetworkGenerator model 50

5.1 Simulation parameters with constant values throughout all performed simula-
tions . 57

5.2 Utilized MPL parameter configurations and naming scheme 62

6.1 Metrics to compare the protocols energy efficiency for the 10 node Line
network . 71

6.2 Metrics to compare the protocols energy efficiency for the 10 node Circle
network . 76

6.3 Metrics to compare the protocols energy efficiency for the 5×5 Grid network 77
6.4 Results for the Network-Lifetime simulations of the three different network

topologies when the 1st, 50% and 90% of a networks’ nodes shut down . . 82

93

Glossary

6LoWPAN IPv6 over Low power Wireless Personal Area Network. xiii, 4, 10, 13–16,
20–22, 25, 35, 37, 38, 45, 91

CSMA/CA Carrier Sense Multiple Access-Collision Avoidance. 25, 85

GUI Graphical User Interface. 10–14, 16, 91

ICMPv6 Internet Control Message Protocol for the Internet Protocol Version 6. 29, 30,
33

IPv4 Internet Protocol Version 4. xiii, 35

IPv6 Internet Protocol Version 6. xiii, 1, 10, 13–15, 25, 26, 28–30, 35, 37–40

NS-2 Network Simulator Version 2. 6, 14–17

NS-3 Network Simulator Version 3. xiii, 6, 7, 9, 14–23, 37, 38, 40, 44–46, 48–53, 58, 65,
67, 79–81, 84, 89–91

OMNeT++ Objective Modular Network Testbed in C++. 6, 9, 12–17

OTcl Object Oriented Tcl. 14

RFC Request For Comments. 29

Tcl Tool Command Language. 14

TCP Transport Control Protocol. 33, 34

TTL Time To Live. 24, 35, 63

UDP User Datagram Protocol. 34

95

Acronyms

6TiSCH IPv6 Time Slotted Channel Hopping. 73

AODV Ad hoc On-Demand Distance Vector. xiii, 5, 7, 23, 35–38, 67, 68

AODV6 Ad hoc On-Demand Distance Vector (AODV) Routing for IP version 6. xiii, 7,
23, 37, 38, 49, 67, 68, 79

API Application Interface. 17

ARP Address Resolution Protocol. 38

BFS Breath First Search. 35

CPU Central Processing Unit. 79, 80

CSV Comma Separated Values. 49, 52

DEVS Discrete Event Simulator. 10, 11

HBA Home and Building Automation. 6

ICMP Internet Control Message Protocol. 44

IoT Internet of Things. xiii, 1, 4, 10, 15, 35, 90

IP Internet Protocol. 30

LEACH Low-Energy Adaptive Clustering Hierarchy. 5, 23

LOADng Lightweight On-demand Ad hoc Distance-vector Routing Protocol—Next
Generation. 23

LR-WPAN Low-Rate Wireless Personal Area Networks. 7, 10, 12, 15, 20, 35, 37, 38,
45–48, 50, 51, 56–58, 65, 73, 79, 81, 84, 85, 89–91, 93

MAC Medium Access Control. 25, 65, 81, 89

97

MANET Mobile Ad-hoc Network. 5, 6, 35, 67, 68

MPL Multicast Protocol for Low-Power and Lossy Networks. xiii, 4, 5, 7, 10, 20, 23,
26–33, 35, 37–41, 43, 52, 62, 63, 67–69, 75, 78, 79, 86, 89, 91, 93

MSPSim MSP-Simulator. 10

NDISC Neighbour Discovery Cache for IPv6. 38

OS Operating System. 10

PDR Packet Delivery Ratio. 57–60, 62, 68, 69, 84–86, 91

PER Packet Error Ratio. 59

PHY Physical Layer. 6, 45–47, 50, 51, 65, 73, 79–81, 84

QoS Quality of Service. 5

RDC Radio Duty Cycling. 47, 65, 73, 81, 82

RERR Route Error. 36, 38, 68

RNG Random Number Generator. 19

RPL Routing Protocol for Low power and Lossy Networks. 5, 10, 15, 23, 90

RREP Route Reply. 35, 36, 38

RREP-ACK Route Reply Acknowledgment. 38

RREQ Route Request. 35, 36, 38, 68

SMRF Stateless Multicast RPL Forwarding. 23, 90

UML Unified Modeling Language. 45, 91

WSN Wireless Sensor Network. xiii, 1–7, 9, 10, 12–15, 20, 23, 24, 31, 33, 35–38, 46, 49,
55, 56, 58–62, 64, 65, 67, 68, 74, 84, 86, 89, 90

98

Bibliography

[Ade21] Stefan Adelmann. A Survey of Energy Efficient Multicast Routing
Protocols for Wireless Low Power and Constrained Devices. Mas-
ters’s thesis, TU Wien, 2021. https://repositum.tuwien.at/
handle/20.500.12708/19215.

[AK19] Hayder Al-Kashoash. Congestion Control for 6LoWPAN Wireless
Sensor Networks: Toward the Internet of Things. Springer theses.
Springer, 2019.

[BMC+19] Michel Bakni, Luis Manuel, Moreno Chacón, Yudith Cardinale, Guil-
laume Terrasson, and Octavian Curea. WSN Simulators Evaluation:
an Approach Focusing on Energy Awareness. International Journal
of Wireless & Mobile Networks, 11(6):1–20, December 2019.

[BMLG17] Jimmy Bondu, Anupal Mishra, Vijay Laxmi, and Manoj Singh Gaur.
Flooding in Secure Wireless Sensor Networks: Student Contribution.
In Proceedings of the 10th International Conference on Security of
Information and Networks, pages 151–156, Jaipur India, October 2017.
ACM.

[DC98] Dr. Steve E. Deering and Alex Conta. Generic Packet Tunneling in
IPv6 Specification. RFC2473. Internet Engineering Task Force, 1998.

[DH98] Stephen E. Deering and Robert M. Hinden. Internet Protocol, Version
6 (IPv6) Specification. RFC 2460. Internet Engineering Task Force,
1998.

[EOF+09] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes,
Adam Dunkels, Thiemo Voigt, Robert Sauter, and Pedro José Marrón.
Cooja/mspsim: Interoperability testing for wireless sensor networks.
In Proceedings of the 2nd International Conference on Simulation
Tools and Techniques, Simutools ’09, Brussels, BEL, 2009. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering).

99

https://repositum.tuwien.at/handle/20.500.12708/19215
https://repositum.tuwien.at/handle/20.500.12708/19215

[GMG07] Antonio Garcia-Macias and Javier Gomez. MANET versus WSN.
In Nitaigour P. Mahalik, editor, Sensor Networks and Configuration:
Fundamentals, Standards, Platforms, and Applications, pages 369–388.
Springer, Berlin, Heidelberg, 2007.

[Hab02] Brian Haberman. Allocation Guidelines for IPv6 Multicast Addresses.
RFC 3307. Internet Engineering Task Force, 2002.

[HK16] Jonathan W. Hui and Richard Kelsey. Multicast Protocol for Low-
Power and Lossy Networks (MPL). RFC 7731. Internet Engineering
Task Force, 2016.

[HSPDDCGL+20] Ángela Hernández-Solana, David Pérez-Díaz-De-Cerio, Mario García-
Lozano, Antonio Valdovinos Bardají, and José-Luis Valenzuela. Blue-
tooth Mesh Analysis, Issues, and Challenges. IEEE Access, 8:53784–
53800, 2020.

[IEE20] IEEE. IEEE Standard for Low-Rate Wireless Networks. IEEE Std
802.15.4-2020 (Revision of IEEE Std 802.15.4-2015), pages 1–800,
July 2020.

[IH12] Teerawat Issariyakul and Ekram Hossain. Introduction to Network
Simulator NS2. Springer US, Boston, MA, 2012.

[Kas20] Mohamed Rawidean Mohd Kassim. IoT Applications in Smart Agri-
culture: Issues and Challenges. In 2020 IEEE Conference on Open
Systems (ICOS), pages 19–24, Kota Kinabalu, Malaysia, November
2020. IEEE.

[KB01] Luke Klein-Berndt. A Quick Guide to AODV Routing.
http://cs.uccs.edu/~chow/pub/master/pjfong/UCCS%
20Project/Papers/A%2520Quick%2520Guide%2520to%
2520AODV%2520Routing.pdf Wireless Communications Tech-
nologies Group, NIST, 2001. Accessed: 2022-02-26.

[KHN14] Muhammad Amir Khan, Halabi Hasbullah, and Babar Nazir. Re-
cent Open Source Wireless Sensor Network Supporting Simulators:
A Performance Comparison. In 2014 International Conference on
Computer, Communications, and Control Technology (I4CT), pages
324–328, Langkawi, Malaysia, September 2014. IEEE.

[KMT10] Maciej Kurant, Athina Markopoulou, and Patrick Thiran. On the
Bias of BFS (Breadth First Search). In 2010 22nd International
Teletraffic Congress (lTC 22), pages 1–8, September 2010.

[KS14] Michael Kirsche and Matti Schnurbusch. A New IEEE 802.15.4
Simulation Model for OMNeT++ / INET. In Proceedings of the 1st
International OMNeT++ Community Summit (OMNeT 2014), 2014.

100

http://cs.uccs.edu/~chow/pub/master/pjfong/UCCS%20Project/Papers/A%2520Quick%2520Guide%2520to%2520AODV%2520Routing.pdf
http://cs.uccs.edu/~chow/pub/master/pjfong/UCCS%20Project/Papers/A%2520Quick%2520Guide%2520to%2520AODV%2520Routing.pdf
http://cs.uccs.edu/~chow/pub/master/pjfong/UCCS%20Project/Papers/A%2520Quick%2520Guide%2520to%2520AODV%2520Routing.pdf

[Laz13] Mihai T. Lazarescu. Design of a WSN Platform for Long-Term
Environmental Monitoring for IoT Applications. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 3(1):45–54,
March 2013.

[LCA12] Khawla Lahmar, Rym Cheour, and Mohamed Abid. Wireless Sensor
Networks: Trends, Power Consumption and Simulators. In 2012 Sixth
Asia Modelling Symposium, pages 200–204, May 2012.

[LCH+11] Philip Levis, Thomas Heide Clausen, Jonathan Hui, Omprakash
Gnawali, and JeongGil Ko. The Trickle Algorithm. RFC 6206. Internet
Engineering Task Force, 2011.

[LH15] Jari Luomala and Ismo Hakala. Effects of Temperature and Humidity
on Radio Signal Strength in Outdoor Wireless Sensor Networks. In
2015 Federated Conference on Computer Science and Information
Systems (FedCSIS), pages 1247–1255, 2015.

[MHCK07] Gabriel Montenegro, Jonathan Hui, David Culler, and Nandakishore
Kushalnagar. Transmission of IPv6 Packets over IEEE 802.15.4
Networks. RFC 4944. Internet Engineering Task Force, 2007.

[MPRS16] Ivan Minakov, Roberto Passerone, Alessandra Rizzardi, and Sabrina
Sicari. A Comparative Study of Recent Wireless Sensor Network Sim-
ulators. ACM Transactions on Sensor Networks, 12(3):1–39, August
2016.

[MVK19] Levente Mészáros, Andras Varga, and Michael Kirsche. INET Frame-
work. In Antonio Virdis and Michael Kirsche, editors, Recent Advances
in Network Simulation, pages 55–106. Springer International Publish-
ing, Cham, 2019.

[NHH18] Khoa Anh Ngo, Trong Thua Huynh, and De Thu Huynh. Simulation
Wireless Sensor Networks in Castalia. In Proceedings of the 2018 In-
ternational Conference on Intelligent Information Technology - ICIIT
2018, pages 39–44, Ha Noi, Viet Nam, 2018. ACM Press.

[ODE+06] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and
Thiemo Voigt. Cross-Level Sensor Network Simulation with COOJA.
In Proceedings. 2006 31st IEEE Conference on Local Computer Net-
works, pages 641–648, November 2006.

[OP12] George Oikonomou and Iain Phillips. Stateless Multicast Forwarding
with RPL in 6LowPAN Sensor Networks. In 2012 IEEE International
Conference on Pervasive Computing and Communications Workshops,
pages 272–277, 2012.

101

[PBRD03] Charles Perkins, Elizabeth M. Belding-Royer, and Samir R. Das.
Ad hoc On-Demand Distance Vector (AODV) Routing. RFC 3561.
Internet Engineering Task Force, 2003.

[PK18] Nileshkumar R. Patel and Shishir Kumar. Wireless Sensor Networks’
Challenges and Future Prospects. In 2018 International Conference
on System Modeling & Advancement in Research Trends (SMART),
pages 60–65, Moradabad, India, November 2018. IEEE.

[PR01] Charles E. Perkins and Elizabeth M. Royer. Ad hoc On-Demand
Distance Vector (AODV) Routing for IP Version 6. Internet-Draft.
Internet Engineering Task Force, 2001. https://www.ietf.org/
archive/id/draft-perkins-aodv6-01.txt Accessed: 2022-
02-26.

[RH10] George F. Riley and Thomas R. Henderson. The ns-3 Network Sim-
ulator. In Klaus Wehrle, Mesut Güneş, and James Gross, editors,
Modeling and Tools for Network Simulation, pages 15–34. Springer,
Berlin, Heidelberg, 2010.

[RK18] Philipp Raich and Wolfgang Kastner. The Need for Efficient Multicast
Routing in Low-Power IPv6 Mesh Networks. In 2018 14th IEEE
International Workshop on Factory Communication Systems (WFCS),
pages 1–4, Imperia, Italy, June 2018. IEEE.

[SCK+14] Niksa Skeledzija, Josip Cesic, Edin Koco, Vladimir Bachler, Hrvoje
Nikola Vucemilo, and Hrvoje Dzapo. Smart Home Automation System
for Energy Efficient Housing. In 2014 37th International Convention
on Information and Communication Technology, Electronics and Mi-
croelectronics (MIPRO), pages 166–171, Opatija, Croatia, May 2014.
IEEE.

[SRR+19] José V. V. Sobral, Joel J. P. C. Rodrigues, Ricardo A. L. Rabêlo, Jalal
Al-Muhtadi, and Valery Korotaev. Routing Protocols for Low Power
and Lossy Networks in Internet of Things Applications. Sensors,
19(9), 2019.

[SRRAM19] José V.V. Sobral, Joel J.P.C. Rodrigues, Ricardo A.L. Rabêlo, and
Jalal Al-Muhtadi. Multicast Improvement for LOADng in Internet of
Things networks. Measurement, 148:106931, December 2019.

[TEN+11] Kok Seng Ting, Gee Keng Ee, Chee Kyun Ng, Nor Kamariah Noordin,
and Borhanuddin Mohd. Ali. The Performance Evaluation of IEEE
802.11 against IEEE 802.15.4 with Low Transmission Power. In The
17th Asia Pacific Conference on Communications, pages 850–855,
October 2011.

102

https://www.ietf.org/archive/id/draft-perkins-aodv6-01.txt
https://www.ietf.org/archive/id/draft-perkins-aodv6-01.txt

[UWM+15] M. U.Farooq, Muhammad Waseem, Sadia Mazhar, Anjum Khairi, and
Talha Kamal. A Review on Internet of Things (IoT). International
Journal of Computer Applications, 113(1):1–7, March 2015.

[VH08] András Varga and Rudolf Hornig. An Overview of the OMNeT++
Simulation Environment. In Proceedings of the 1st international
conference on Simulation tools and techniques for communications,
networks and systems & workshops, Simutools ’08, pages 1–10, Mar-
seille, France, March 2008. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[VWC+20] Xavier Vilajosana, Thomas Watteyne, Tengfei Chang, Mališa Vučinić,
Simon Duquennoy, and Pascal Thubert. IETF 6TiSCH: A Tutorial.
IEEE Communications Surveys & Tutorials, 22(1):595–615, 2020.

[WNP11] He Wu, Sidharth Nabar, and Radha Poovendran. An Energy Frame-
work for the Network Simulator 3 (NS-3). In Proceedings of the 4th
International ICST Conference on Simulation Tools and Techniques,
Barcelona, Spain, 2011. ACM.

[WTB+12] Tim Winter, Pascal Thubert, Anders Brandt, Jonathan W. Hui,
Richard Kelsey, Philip Levis, Kris Pister, Rene Struik, Jean-Philippe
Vasseur, and Roger K. Alexander. RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks. RFC 6550. Internet Engineering
Task Force, 2012.

103

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	State of the Art
	Methodology and Structure of the Thesis

	Wireless Network Simulators
	Simulator Evaluation
	Simulator Comparison
	The NS-3 Simulator

	WSN Routing Protocols
	Mesh-Under Flooding
	MPL
	AODV via IPv6

	Implementation
	AODV via IPv6
	Flooding
	MPL
	LR-WPAN Energy Model
	Execution and Evaluation Framework

	Used Models, Simulation Parameters and Metrics
	Simulation Models
	Special Simulation Models
	Parameter Variations
	Protocol Metrics

	Evaluation and Discussion
	Multicast via Unicast Transmissions
	Basic Model Simulations
	Network Lifetime Simulations
	Interference Simulations

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Bibliography

