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Abstract—Accurately modeling the delay of multi-input gates is chal-
lenging due to variations caused by switching different inputs in close
temporal proximity. This paper introduces a hybrid model for a CMOS
NOR gate, which is based on replacing transistors with time-variant
resistors. We analytically solve the entangled differential equations and
derive expressions for the gate delays, which also paved the way to
an empirical parametrization procedure. By comparison with Spice
simulation data, we show that our model indeed faithfully represents all
relevant multi-input switching effects. Using an implementation in the
Involution Tool, we also demonstrate that it surpasses the few alternative
models known so far in terms of accuracy.

I. INTRODUCTION

Digital timing analysis techniques are essential for modern circuit
design. Dynamic digital timing analysis traces the propagation of
individual transitions of a signal throughout a circuit, like analog
simulations e.g. via SPICE do, albeit much faster. An interesting
application domain for high-accuracy dynamic timing analysis are
Spiking Neural Network (SNN) hardware implementations [Fur16,
BVMRRVB20], for example. Neurons in SNNs communicate via
discrete-value continuous-time signals, where analog values are effec-
tively encoded via the delay between successive spike events. Besides
rate-based approaches, where a single analog value is represented by
the frequency of a whole spike train, inter-spike interval (ISI) time
encoding uses the time interval between two spikes to encode this
information in a more energy-efficient way. Obviously, for the latter, it
is crucial that the actual implementation of such a communication link
preserves delays between successive signal transitions as accurately
as possible.

Single-history delay models like [1], [2], which generalize the
popular pure (= constant input-to-output delay) and inertial delay (=
constant delay + too short pulses being removed) models [3], have
proved their potential with respect to improved behavioral coverage
and accuracy here. Particularly relevant for us is the involution
delay model (IDM) proposed in [2], which consists of zero-time
boolean gates that are interconnected by single-input single-output
involution delay channels. IDM channels are characterized by a
delay function δ(T ), which is a negative involution, in the sense
that −δ(−δ(T )) = T . Unlike all other existing delay models, the
IDM faithfully models glitch propagation in the short-pulse filtration
problem [4], and is hence the only candidate for a faithful delay
model known so far. The IDM is accompanied by a publicly available
timing analysis framework (the Involution Tool [5]), which allows
to compare the accuracy of different delay models. In particular, it
allows to randomly generate input traces for a given circuit, and
to evaluate the accuracy of IDM predictions compared to SPICE-
generated transition times and to other digital delay models.

In [5], it has been shown that the accuracy of IDM predictions
for single-input, single-output circuits like inverter chains or clock
trees is very good, but less so for circuits involving multi-input
gates. It was argued that this is primarily due to the IDM’s inherent
lack of properly covering output delay variations caused by multiple
input switching (MIS) in close temporal proximity [6], also known

as the Charlie effect (named after Charles Molnar, who identified
its causes in the 70th of the last century): Compared to the single
input switching (SIS) case, output transitions are sped up/slowed
down with decreasing transition separation time on different inputs.
Clearly, single-input, single-output delay channels cannot exhibit such
a behavior at all.

Related work: MIS effects have of course been addressed in
the literature before, with approaches ranging from linear [7] or
quadratic [8] fitting over higher-dimensional macromodels [9] and
model representations [10] to recent machine learning methods [11].
The resulting models are either empirical or statistical and unsuitable
as a basis for dynamic digital timing analysis, however.

In [12], Ebergen, Fairbanks and Sutherland studied the perfor-
mance of micropipelines, the control logic of which is often made
up of a chain of RendezVous elements. Their analysis rests on
a delay model for the RendezVous elements, which relies on the
Charlie effect exhibited by the constituent Muller C-gate. Rather than
providing a model that explains this MIS phenomenon, however, they
just take it for granted and use it for analyzing the token propagation
performance in a chain of RendezVous elements.

The only attempt to develop a delay model that captures MIS
effects and is suitable for dynamic timing analysis known to us is the
DATE’21 paper by Ferdowsi et. al. [13], where the authors proposed
a hybrid model of a 2-input CMOS NOR gate based on replacing
transistors by ideal zero-time switches in the simple RC model shown
in Fig. 2a. Since a NOR gate consists only of 4 transistors, this
results in a hybrid model with 4 modes, one for each possible
digital state of the inputs (A,B) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
Each mode is described by a simple system of constant-coefficient
first order ordinary differential equations (ODEs), which are switched
(continuously) upon an input state transition. Whereas this leads to
a surprisingly accurate delay model, it fails to faithfully model one
of the MIS effects, namely, for a rising output transition.

Main contributions: (1) Like in [13], we also use a CMOS
NOR gate for our primary1 target circuit. Instead of just replacing
all transistors by zero-time switches, however, we assume that the
two serial (pMOS) transistors are switched off in zero time, but are
switched on by following a simple time evolution function ∼ 1/t+
Ron. Rather than including the state of these resistors in the ODE
systems and switching those continuously upon an input transition
(which would blow up the system dimension), we use properly chosen
first-order ODEs with time-varying coefficients instead.

(2) We analytically solve the ODEs for all modes, and by compos-
ing the trajectory functions of different modes, like (0, 0)→ (0, 1)→
(1, 1), we also determine accurate analytic approximations for all
MIS gate delays.

1We stress, however, that our results actually also apply literally to the
“dual” NAND gate and even to some configurations of general AOI(and-or-
inverter) gates. Moreover, part of our current work is devoted to applying our
approach to other gates like Muller C-gates as well.
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Fig. 1: MIS effect in the CMOS NOR gate, taken from [13].

(3) We provide a procedure for parametrizing our new delay model
for a given circuit. More specifically, given certain SIS and MIS
delay values, we use insights gained from the analytic gate delay
approximations derived in (2) for guiding the process of empirically
fitting our many parameters to match these delay values. To validate
our model, we apply it to a CMOS NOR gate both in a 15 nm
technology and in a 65 nm technology. It turns out that the delay
predictions of our model match the real delays very well, in particular,
also in that MIS case where [13] fails.

(4) We implemented our new delay model in the Involution
Tool [5], and experimentally compared the average modeling accu-
racy and the simulation times of our model to other analog/digital
simulations for one of the circuits studied in [5]. As expected, our
model outperforms all alternative models considered, without an
undue performance penalty.

Paper organization: In Section II, we briefly summarize the results
of the analog simulations used for quantifying MIS delays for a
15 nm CMOS NOR gate reported in [13], which provide our baseline.
Section III introduces our hybrid ODE model. In Section IV, we
analytically solve the entangled ODEs and derive gate delay expres-
sions from these solutions. Section V provides our parametrization
procedure, which is applied to both our 15 nm and some 65 nm
CMOS NOR gate simulation data for model validation. Using this
parametrization, we finally quantify the average modeling accuracy
using the Involution Tool in Section VI. Some conclusions and
directions of future research are provided in Section VII.

II. MULTIPLE INPUT SWITCHING (MIS)

In this section, we provide a summary of the MIS effects in
CMOS NOR gates reported in [13]. Let tA, tB , and tO denote the
points in time when the analog trajectories of input signals A, B,
and the output signal O cross the discretization threshold voltage
Vth = VDD/2, respectively. Varying tA and tB allows to study the
gate delay (tO−tA resp. tO−tB , depending on the particular output
state) over the relative input separation time ∆ = tB − tA.

In the case of a falling output transition, either the nMOS transistor
T3 or T4 starts to conduct (is closed), while one of the two pMOS
transistors in series stops conducting (is opened). Obviously, closing
both T3 and T4 leads to an accelerated discharge of the capacitance
C and thus a (substantial) speed-up MIS effect. Fig. 1a shows
the relevant gate delay δ↓S(∆) = tO − min(tA, tB), i.e., the time
difference between the threshold crossing of the output and the earlier
input, extracted from analog simulations. The delay for simultaneous
transitions (∆ = 0) is indeed around 30% smaller than on the
outskirts.

For rising output transitions, the behavior of the NOR is quite
different. Each falling input transition causes one of the nMOS to
stop conducting while simultaneously one of the pMOS gets closed.
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Fig. 2: Implementations of a CMOS NOR gate.

Since there is only a single path connecting the output to VDD , the
shape of the output signal is essentially independent of ∆; only the
position in time varies. Since the gate only switches after both inputs
have changed, the gate delay is δ↑S(∆) = tO − max(tA, tB). The
resulting MIS effect is a (moderate) slow-down, i.e., the gate delay
increases for |∆| → 0.

III. OUR HYBRID MODEL

In our attempt to accurately model the gate delays of our NOR
gate, we introduce a model (see Fig. 2b) that replaces the two
serial (pMOS) transistors by time-varying resistors and the two
parallel (nMOS) by ideal switches as in the model proposed in
[13] (called ideal switch model in the sequel). The values Ri(t),
i ∈ {1, . . . , 4} thereby vary between some fixed on-resistance
Ri and the off-resistance ∞. This results in a hybrid model with
4 different modes, corresponding to the 4 possible input states
(A,B) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Whereas one could maintain R1(t), . . . , R4(t) explicitly in every
ODE system, and switch between those systems continuously upon
an input transition, the resulting full-state model would increase the
dimension of the ODE systems by 4 and render finding an analytic
solution hopeless. We emphasize that the availability of analytic
formulas for the trajectories turned out to be instrumental to guide
the process of model parametrization (see Section V). We therefore
use a different approach, namely, incorporating these resistors only
in the coefficients of a simple first-order ODE, which hence become
non-constant. We will relate our model to these alternative models at
the end of this section.

Applying Kirchhoff’s rules to Fig. 2b leads to C dVout
dt

=
VDD−Vout
R1(t)+R2(t)

− Vout
R3(t) || R4(t)

. This can be transformed to the non-
homogeneous ordinary differential equation (ODE) with non-constant
coefficients

dVout
dt

+
Vout

C Rg(t)
= U(t), (1)

using 1
Rg(t)

= 1
R1(t)+R2(t)

+ 1
R3(t)

+ 1
R4(t)

and
U(t) = VDD

C(R1(t)+R2(t))
. Note that the entire voltage

divider in Fig. 2b is equivalent to an ideal voltage source
U0 = VDD

R3(t)||R4(t)
R1(t)+R2(t)+R3(t)||R4(t)

and a serial resistor Rg(t)

sourcing C. Consequently, CU(t) = U0/Rg(t) in (1) is the
short-circuit current, and CU(t) − Vout/Rg(t) the current actually
sourced into C. It is well-known that the general solution of (1) is

Vout(t) = V0 e
−G(t) +

∫ t

0

U(s) eG(s)−G(t)ds, (2)



TABLE I: State transitions and modes. ↑ and ↑↑ (resp. ↓ and ↓↓) rep-
resent the first and the second rising (resp. falling) input transitions.
+ and − specify the sign of the switching time ∆ = tB − tA.

Mode Transition tA tB R1 R2 R3 R4

T ↑− (0, 0)→ (1, 0) 0 −∞ on→ off on off → on off

T ↑↑+ (1, 0)→ (1, 1) −|∆| 0 off on→ off on off → on

T ↑+ (0, 0)→ (0, 1) −∞ 0 on on→ off off off → on

T ↑↑− (0, 1)→ (1, 1) 0 −|∆| on→ off off off → on on

T ↓− (1, 1)→ (0, 1) 0 −∞ off → on off on→ off on

T ↓↓+ (0, 1)→ (0, 0) −|∆| 0 on off → on off on→ off

T ↓+ (1, 1)→ (1, 0) −∞ 0 off off → on on on→ off

T ↓↓− (1, 0)→ (0, 0) 0 −|∆| off → on on on→ off off

where V0 = Vout(0) denotes the initial condition and G(t) =∫ t
0

(C Rg(s))
−1ds.

Crucial for our model is choosing a suitable time evolution of Ri(t)
in the on- and off-mode, which must facilitate an analytic solution
of (2) while being reasonably close to the physical behavior of a
transistor. It turned out that it is sufficient to consider the very simple
Shichman-Hodges transistor model [14], which states a quadratic
dependence of the output current on the input voltage. Approximating
the latter by d

√
t− t0 in the operation range close to the threshold

voltage Vth, with d and t0 some fitting parameters, leads to the
continuous resistance model

Ron
i (t) =

αi
t− ton +Ri; t ≥ ton, (3)

R
off
i (t) = βi(t− toff ) +Ri; t ≥ toff , (4)

for some constant slope parameters αi [Ω s], βi [Ω/s], and on-
resistance Ri [Ω]; ton resp. toff represent the time when the
respective transistor is switched on resp. off.

In our first attempt, we used the above model for all transistors
in our circuit. Besides considerably complicating the analysis, it
eventually turned out that this leads to an infeasible model, however.
Intuitively, the reason is that the nMOS transistors are too weak to
dominate the case of falling output transitions (which they should),
no matter which α > 0 and β <∞ are chosen. Since the ideal switch
model of [13] (which corresponds to choosing α = 0 and β =∞) is
able to cover some MIS effects, except for the rising output transition
case, we started to conjecture that the crucial handle to fix this prob-
lem is to gradually switch on only the pMOS transistors according
to (3), and set α3 = α4 = 0 and β1 = β2 = β3 = β4 = ∞. And
indeed, our results prove that we were right.

For simplicity, we will subsequently use the notation R1 = RpA ,
R2 = RpB with the abbreviation 2R = RpA + RpB for the two
pMOS transistors T1 and T2, and R3 = RnA , R4 = RnB for the
two nMOS transistors T3 and T4.

Table I shows all possible state transitions and the corresponding
resistor time evolution mode switches. Double arrows in the mode
switch names indicate MIS-relevant modes, whereas + and − in-
dicate whether A switched before B or the other way around. For
instance, assume the system is in state (0, 0) for quite some time in
the past, i.e., A and B switched to 0 at time tA = tB = −∞. This
causes R1 and R2 to be in the on-mode, whereas R3 and R4 are in
the off-mode. Now assume that, at time tA = 0, A is switched to
1. This switches R1 resp. R3 to the off-mode resp. on-mode at time
t
off
1 = ton

3 = tA = 0. The corresponding mode switch is T ↑− and
reaches state (1, 0). Now assume that B is also switched to 1, at some
time tB = ∆ > 0. This causes R2 resp. R4 to switch to off-mode
resp. on-mode at time toff

2 = ton
4 = tB = ∆. The corresponding

mode switch is T ↑↑+ and reaches state (1, 1); note carefully that the
delay is ∆-dependent and hence MIS-relevant.
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Fig. 3: Comparison of resistance mode switching of a single transistor
in our model, in the ideal switch model of [13], and in the full state
model.

Our goal will be to analytically compute the output voltage
trajectories VMS

out (t) given by (2) for every mode switch MS listed in
Table I. Due to the particular modes of the resistors in each transition,
different expressions for G(t) and U(t) will be obtained. Table II
summarizes the relevant formulas for every mode switch.

It is apparent that changing the mode of a resistor upon a state
transition (e.g., switching from (4) to (3)) creates a non-continuous
jump of the resistance value (to∞ in our example), even for the two
serial transistors T1 and T2 where the continuous resistance model is
used. Relating our model (OM) to the ideal switch model (IM) and the
full-state model (FM), which assures continuous resistance changes,
will reveal that the differences are likely to be small, however.

In fact, recall that in the ideal switch model all mode switches
change the resistance value between R and ∞ in zero time. Never-
theless, [13] reveals that most MIS effects are accurately captured,
so discontinuous resistor values per se are not a problem here. And
indeed, (1) reveals that Vout(t) is not so much determined by the in-
stantaneous value of 1/Rg(t) but rather by its integral: Intuitively, the
unitless monotonically increasing function G(t) in (2) reflects how
often the average time constants τ = avg(τ(t)) = avg(C Rg(t))
has passed since t = 0. The first term of (2) hence denotes the decay
of the initial output value w.r.t. the average time constant τ . The
second term represents the current that could be sourced into C and
its respective decay. Note that G(s)−G(t) ∈ [−G(t), 0] is increasing
for s, meaning that the smaller s the more U(s) is reduced.

Consequently, a qualitative measure for the modeling accuracy is
the difference of the area under the single-transistor plots shown in
Fig. 3.Let A0 be the area in a time interval where the input is 0, like
the green segment, and A1 the area in a time interval where the input
is 1, like the red and the blue segment. We observe the following:

(i) A1
FM ≥ A1

OM = A1
IM implies that both our model and the

ideal switch model switch the output slower than the full-state
model in this case. Similarly, A0

IM ≥ A0
FM ≥ A0

OM reveals
that our model also switches the output slightly slower than the
full-state model, which in turn switches slower than the ideal
switch model.

(ii) The absolute differences of those areas is only weakly dependent
on α and decrease with increasing β.

As a consequence, one may expect that an appropriately parametrized
version of our model can provide a modeling accuracy comparable
to the considerably more complex full-state model.

It is worth mentioning that our model has only one state variable,
namely, Vout (due to the load capacitance C), whereas the ideal



TABLE II: Integrals I1(t), I2(t), I3(t) and U(t) for every possible mode switch; ∆ = tB − tA, and 2R = RpA +RpB .

Mode I1(t) =
∫ t
0

ds
R1(s)+R2(s)

I2(t) =
∫ t
0

ds
R3(s)

I3(t) =
∫ t
0

ds
R4(s)

U(t) = VDD
C(R1(t)+R2(t))

T ↑−
∫ t
0 (1/(β1s+ α2

s−∞ + 2R))ds
∫ t
0 (1/(α3

s
+RnA ))ds

∫ t
0 (1/(β4(s−∞) +RnB ))ds VDD

2RC(1+
β1t
2R

)

T ↑↑+

∫ t
0 (1/(β1(s+ ∆) + β2s+ 2R))ds

∫ t
0 (1/( α3

s+∆
+RnA ))ds

∫ t
0 (1/(α4

s
+RnB ))ds VDD

C((β1+β2)t+2R+β1∆)

T ↑+
∫ t
0 (1/( α1

s−∞ + β2s+ 2R))ds
∫ t
0 (1/(β3(s−∞) +RnA ))ds

∫ t
0 (1/(α4

s
+RnB ))ds VDD

2RC(1+
β2t
2R

)

T ↑↑−
∫ t
0 (1/(β1s+ β2(s+ ∆) + 2R))ds

∫ t
0 (1/(α3

s
+RnA ))ds

∫ t
0 (1/( α4

s+∆
+RnB ))ds VDD

C((β1+β2)t+2R+β2∆)

T ↓−
∫ t
0 (1/(α1

s
+ β2(s−∞) + 2R))ds

∫ t
0 (1/(β3s+RnA ))ds

∫ t
0 (1/( α4

s−∞ +RnB ))ds VDDt

Cβ2(t2+( 2R
β2
−∞)t+

α1
β2

)

T ↓↓+

∫ t
0 (1/( α1

s+∆
+ α2

s
+ 2R))ds

∫ t
0 (1/(β3(s+ ∆) +RnA ))ds

∫ t
0 (1/(β4s+RnB ))ds

VDDt(t+∆)

C(2Rt2+(α1+α2+2∆R)t+α2∆)

T ↓+
∫ t
0 (1/(α2

s
+ β1(s−∞) + 2R))ds

∫ t
0 (1/( α3

s−∞ +RnA ))ds
∫ t
0 (1/(β4s+RnB ))ds VDDt

Cβ1(t2+( 2R
β1
−∞)t+

α2
β1

)

T ↓↓−
∫ t
0 (1/(α1

s
+ α2
s+∆

+ 2R))ds
∫ t
0 (1/(β3s+RnA ))ds

∫ t
0 (1/(β4(s+ ∆) +RnB ))ds

VDDt(t+∆)

C(2Rt2+(α1+α2+2∆R)t+α1∆)

switch model of [13] also incorporates the voltage at the node
between the two pMOS transistors (due to a parasitic capacitance).
Since the charge stored in this location does affect the gate delay,
a MIS effect is caused in the cases of a falling input transitions
T ↓↓+ and T ↓↓− (recall Section II). At first sight, one might suspect
that ignoring this parasitic capacitance in our model could impair its
ability to capture these MIS effects. Our results in Section V reveal,
however, that this is not the case.

Finally, we want to stress that our model can be readily applied
to other gates as well. This is particularly true for the CMOS NAND
gate, which is obtained from the NOR gate in Fig. 2b by replacing
nMOS transistors with pMOS and vice versa, and swapping VDD and
GND. Of course, now the nMOS transistors are the serial ones (where
the continuous resistance models must be used). All that is needed to
make the results of our analysis matching is to invert the inputs, e.g.,
by replacing state (0, 1) by (1, 0) and to consider VDD −Vout(t) as
the output trajectory.

We are also confident that our principal modeling approach can
also be applied in the case of other gates like XOR (exclusive-or) and
AOI (and-or-inverter) in general, since they all involve just serial
transistors. In fact, it might even be possible to analyze MIS effects
in Muller C-gates, which is particularly interesting given applications
such as [12]. Working this out in detail is part of our current/future
work, however.

IV. ANALYTIC SOLUTIONS

In order to verify that the ODE model introduced in Section III
faithfully covers all the MIS effects described in Section II, we first
derive analytic expressions for the trajectories of VMS

out (t) for every
mode switch MS listed in Table I. Then, we determine the following
MIS delays for an arbitrary input separation time ∆ = tB−tA, which
can be directly compared to our analog simulation results in Fig. 1a
and Fig. 1b:

• Compute V
T
↑
−

out (∆), and use it as the initial value for obtaining

V
T
↑↑
+

out (t); the sought gate delay is the time until the latter crosses
the threshold voltage VDD/2.

• Compute V
T
↓
−

out (∆), and use it as the initial value for obtaining

V
T
↓↓
+

out (t); the sought gate delay is the time until the latter crosses
the threshold voltage VDD/2.

Fortunately, a closer look at Table I and Table II shows a symmetry
between the pairs of modes (T ↑−, T

↑
+), (T ↑↑+ , T ↑↑− ), (T ↓−, T

↓
+), and

(T ↓↓+ , T ↓↓− ). Therefore, it is sufficient to derive analytic expressions
for the case ∆ ≥ 0 only , i.e., to consider the pairs of modes
(T ↑−, T

↑↑
+ ) resp. (T ↓−, T

↓↓
+ ) listed above. The corresponding formulas

for ∆ < 0 can be obtained from those by exchanging α1 and α2 as
well as RnA and RnB , respectively.

A. Rising input transitions

In order to compute V
T
↑
−

out (t), consider the corresponding integrals
I1(t), I2(t), and I3(t), as well as U(t) in Table II. Since β1 = β2 =
∞ and α3 = α4 = 0, we obtain

I1(t) = I3(t) = U(t) = 0, I2(t) =
t

RnA
.

Since G(t) = (I1(t) + I2(t) + I3(t))/C, we get e±G(t) = e
±t

CRnA

and
∫ t

0
eG(t)U(t) = 0. With V ↑0 = V

T
↑
−

out (0) as our initial value, (2)
finally provides

V
T
↑
−

out (t) = V
T
↑
−

out (0)e
−t

CRnA . (5)

Similarly, for the mode T ↑↑+ , we obtain

I1(t) = U(t) = 0, I2(t) =
t

RnA
, I3(t) =

t

RnB
,

such that e±G(t) = e
±( 1

CRnA
+ 1
CRnB

)t
and

∫ t
0
eG(s)U(s)ds = 0.

Consequently, we obtain

V
T
↑↑
+

out (t) = V
T
↑
−

out (∆)e
−( 1

CRnA
+ 1
CRnB

)t
, (6)

where V
T
↑
−

out (∆) can be computed via (5).
Due to the symmetry mentioned before, we can immediately

conclude the following result for negative ∆:

V
T
↑↑
−

out (t) = V
T
↑
+

out (∆)e
−( 1

CRnA
+ 1
CRnB

)t
, (7)

where V
T
↑
+

out (∆) = V
T
↑
+

out (0)e
−|∆|
CRnB .

B. Falling input transitions

In this case, we first need to compute V
T
↓
−

out (t). Again plugging
β1 = β2 = ∞ and α3 = α4 = 0 in the corresponding expressions
in Table II provides

I1(t) = I2(t) = U(t) = 0, I3(t) =
t

RnB
.

With V ↓0 = V
T
↓
−

out (0) as our initial condition, (2) yields

V
T
↓
−

out (t) = V
T
↓
−

out (0)e
−t

CRnB . (8)

Now, turning our attention to V
T
↓↓
+

out (t) confronts us with a more
intricate case: Whereas I2(t) = I3(t) = 0 again, evaluating I1(t)
requires us to study the function

f(s) =
1

α1
s+∆

+ α2
s

+ 2R
, (9)



as

I1(t) =

∫ t

0

f(s)ds, G(t) = I1(t)/C, (10)∫ t

0

eG(s)U(s)ds =
VDD
C

∫ t

0

e
I1(s)
C f(s)ds. (11)

Computing the above integrals is complicated by the fact that f(s)
also involves the parameter ∆, which prohibits uniform closed-form
solutions of both (10) and (11). We hence need to determine accurate
approximations for f(s), which will be different for different ranges
of s and ∆, which will in turn depend on the unknown parameters
α1, α2 and R. Fortunately, a closer look at (9) reveals that piecewise
approximations can be built on the basis of (1) distinguishing different
ranges (cases) for ∆ w.r.t. the parameters α1, α2 and R, and (2)
splitting the integration interval [0, t] into certain subintervals, which
may depend on the particular case. Note that this splitting typically
also involves an additional free parameter ε = η∆ (for some η ∈
R), which takes care of values of s close to ∆. More specifically,
we came up with the following four cases and the corresponding
approximations for f(s) in the appropriate subintervals:
• Case 1: (0 ≤ ∆ < α2

2R
)

f(s) ≈


s
α2

0 ≤ s < ∆− ε
2s

α1+2α2
∆− ε ≤ s < ∆ + ε

s
α1+α2

∆ + ε ≤ s < α1+α2
2R

1
2R

α1+α2
2R

≤ s ≤ t

• Case 2: (α2
2R
≤ ∆ < α1+2α2

4R
)

f(s) ≈



s
α2

0 ≤ s < α2
2R

1
2R

α2
2R
≤ s < ∆− ε

2s
α1+2α2

∆− ε ≤ s < ∆ + ε
s

α1+α2
∆ + ε ≤ s < α1+α2

2R
1

2R
α1+α2

2R
≤ s ≤ t

• Case 3: (α1+2α2
4R

≤ ∆ < α1+α2
2R

)

f(s) ≈


s
α2

0 ≤ s < α2
2R

1
2R

α2
2R
≤ s < ∆ + ε

s
α1+α2

∆ + ε ≤ s < α1+α2
2R

1
2R

α1+α2
2R

≤ s ≤ t

• Case 4: (α1+α2
2R

≤ ∆ < t)

f(s) ≈

{
s
α2

0 ≤ s < α2
2R

1
2R

α2
2R
≤ s ≤ t

To explain how to determine these approximations, we elaborate
on how this is done for Case 1; similar arguments can be used to
justify the remaining Cases 2–4. (i) For the range 0 ≤ s < ∆ − ε,
which expresses the situation where the integration variable s is fairly
smaller than ∆, we observe s+ ∆ ≈ ∆, and therefore, α1

s+∆
≈ α1

∆
.

Assuming that the slope parameters α1 and α2 are approximately the
same, this leads us to α1

∆
+ α2

s
≈ α2

s
. Furthermore, since s < ∆ <

α2
2R

here, we get α2
s

+2R ≈ α2
s

and hence f(s) ≈ s
α2

as asserted. (ii)
For the range ∆−ε ≤ s < ∆+ε, where s is relatively close to ∆, we
can substitute ∆ by s, which leads to α1

s+∆
+ α2

s
≈ 2α1+α2

2s
. Besides,

since s ≈ ∆ < α2
2R

< α1+2α2
4R

, we get 2α1+α2
2s

+ 2R ≈ 2α1+α2
2s

,
which justifies the asserted approximation for f(s). (iii) Turning our
attention to the range ∆ + ε ≤ s < α1+α2

2R
, we obtain α1

s+∆
≈ α1

s

and hence α1
s+∆

+ α2
s
≈ α1+α2

s
. Since s < α1+α2

2R
, this leads to

α1+α2
s

+2R ≈ α1+α2
s

and hence to the asserted approximation. (iv)
Finally, for the remaining range α1+α2

2R
≤ s < t, the term 2R is

dominant in the denominator of f(s), hence f(s) ≈ 1
2R

.
It is worth pointing out that we had to split the range 0 ≤ s < ∆−ε

into two parts for Case 2 to improve the approximation accuracy,
whereas we could merge some ranges for Case 4. Whereas we did
not bother to determine analytic bounds for the error of the above
first-order Taylor approximations, given the very small absolut values
of ∆ and s, it is clear that it should be very small. This is also
confirmed by the model validation simulations in Section V.

The above approximations allow us to easily compute accurate
approximations for (10) and (11), and thus to determine the output

trajectory V
T
↓↓
+

out (t), for every choice of ∆. More specifically, we get
Ik(t) ≈ t

2R
+ ik for Case k ∈ {1, 2, 3, 4}, with

i1 =
(∆− ε)2

2α2
− (∆ + ε)2

2(α1 + α2)
+

4ε∆

α1 + 2α2
− α1 + α2

8R2
, (12)

i2 =
4R(∆− ε)− (α1 + 2α2)

8R2
− (∆ + ε)2

2(α1 + α2)
+

4ε∆

α1 + 2α2
, (13)

i3 =
4R(∆ + ε)− (α1 + 2α2)

8R2
− (∆ + ε)2

2(α1 + α2)
, (14)

i4 = − α2

8R2
, (15)

which do not depend on t. Furthermore,∫ t

0

eG(s)U(s)ds ≈ VDD
C
·

e
i1
C
( ∫ ∆−ε

0 s·e
s

2RC ds

α2
+

2(
∫ ∆+ε
∆−ε s·e

s
2RC ds)

α1+2α2
+

∫ α1+α2
2R

∆+ε s·e
s

2RC ds

α1+α2
+

∫ t
α1+α2

2R

e
s

2RC ds

2R

)
Case 1

e
i2
C
( ∫ α2

2R
0 s·e

s
2RC ds

α2
+

∫ ∆−ε
α2
2R

e
s

2RC ds

2R
+

2(
∫ ∆+ε
∆−ε s·e

s
2RC ds)

α1+2α2
+

∫ α1+α2
2R

∆+ε s·e
s

2RC ds

α1+α2
+

∫ t
α1+α2

2R

e
s

2RC ds

2R

)
Case 2

e
i3
C
( ∫ α2

2R
0 s·e

s
2RC ds

α2
+

∫ ∆+ε
α2
2R

e
s

2RC ds

2R
+

∫ α1+α2
2R

∆+ε s·e
s

2RC ds

α1+α2

+

∫ t
α1+α2

2R

e
s

2RC ds

2R

)
Case 3

e
i4
C
( ∫ α2

2R
0 s·e

s
2RC ds

α2
+

∫ t
α2
2R

e
s

2RC ds

2R

)
Case 4

= VDD · e
ik
C
(
e

t
2RC − γk

)
for Case k ∈ {1, 2, 3, 4}, where

γ1 =
4R2C

α1 + α2
e
α1+α2
4R2C − 4R2C

α2

−
(2R(∆− ε)− 4R2C

α2
− 4R(∆− ε)− 8R2C

α1 + 2α2

)
e

∆−ε
2RC

−
(4R(∆ + ε)− 8R2C

α1 + 2α2
− 2R(∆ + ε)− 4R2C

α1 + α2

)
e

∆+ε
2RC , (16)

γ2 =
4R2C

α1 + α2
e
α1+α2
4R2C −

(
1− 4R(∆− ε)− 8R2C

α1 + 2α2

)
e

∆−ε
2RC

−
(4R(∆ + ε)− 8R2C

α1 + 2α2
− 2R(∆ + ε)− 4R2C

α1 + α2

)
e

∆+ε
2RC

+
4R2C

α2

(
e

α2
4R2C − 1

)
, (17)



γ3 =
4R2C

α1 + α2
e
α1+α2
4R2C −

(
1− 2R(∆ + ε)− 4R2C

α1 + α2

)
e

∆+ε
2RC

+
4R2C

α2

(
e

α2
4R2C − 1

)
, (18)

γ4 =
4R2C

α2

(
e

α2
4R2C − 1

)
. (19)

Combining the above solutions for (10) and (11) according to (2)

provides an accurate expression for the output trajectory V
T
↓↓
+

out (t),
namely,

V
T
↓↓
+

out (t) ≈ V
T
↓
−

out (∆)e
−(2ikR+t)

2RC + VDD(1− γke−
t

2RC )

for Case k ∈ {1, 2, 3, 4}, where V
T
↓
−

out (∆) = V
T
↓
−

out (0)e
−∆

CRnB ,
i1, . . . , i4, γ1, . . . , γ4, are defined in (8), (12), ..., (19), respectively.
In addition, our symmetry immediately provides us with a trajectory
corresponding to the case of negative ∆:

V
T
↓↓
−

out (t) ≈ V
T
↓
+

out (∆)e
−(2i′kR+t)

2RC + VDD(1− γ′ke−
t

2RC ),

for Case k ∈ {1, 2, 3, 4}, where V
T
↓
+

out (∆) = V
T
↓
+

out (0)e
− |∆|
CRnA and

i′1, . . . , i
′
4, γ′1, . . . , γ′4 are obtained by substituting α1 by α2 and ∆

by |∆| in (12), ..., (19), respectively.

C. Single Input Switching

Whereas the main focus of our model is the proper modeling
of MIS effects, it of course also needs to handle the “simple”
single input switching case. This is done exactly as in the IDM
[2], by continuously switching between the trajectories of the modes
(0, 0) and (1, 0) (for input A) resp. (0, 0) and (0, 1) (for input B).
Fortunately, we can adapt the above trajectory formulas for the MIS
cases to also obtain the ones for the SIS cases. In fact, in the SIS
cases, ∆ just represents the time difference between the current and
the previous transition of the same input. For switching from (1, 0)

and (0, 0), for example, it suffices to replace the initial value V
T
↓
−

out (∆)

in V
T
↓↓
+

out (t) by the initial value V
T
↑
−

out (∆), which gives the output
voltage at the time the previous switch from (0, 0) to (1, 0).

V. PARAMETERIZATION AND MODELING MIS EFFECTS

Since the ultimate goal of our hybrid model is to develop a basis for
dynamic digital timing simulations, our main goal are explicit analytic
formulas for the input-to-output delay functions δ↓M (∆) and δ↑M (∆)
for both rising and falling output transitions. Moreover, we have to
answer the question how to determine the parameters α1, α2, C, R,
RnA , RnB , and η for a given technology. Such a parametrization
is of course necessary for checking whether and how well our new
model is capable of faithfully reproducing the MIS effects described
in Section II.

To accomplish the first task, by inverting the explicit formulas

obtained for the trajectories V
T
↑↑
+

out (t) and V
T
↑↑
−

out (t) resp. for V
T
↓↓
+

out (t)

and V
T
↓↓
−

out (t) obtained in the previous section, we obtain the exact
resp. approximate analytic expressions for δ↓M,+(∆) (for ∆ ≥ 0),
δ↓M,−(∆) (for ∆ < 0) and δ↑M,+(∆) (for ∆ ≥ 0), δ↑M,−(∆) (for
∆ < 0) in terms of the model’s parameters given in Theorem 1.

Theorem 1 (MIS Delay functions). For any −∞ ≤ ∆ ≤ ∞, the
MIS delay functions for falling and rising output transitions of our
model are given by:

δ↓M,+(∆) =

{
− ln(0.5)CRnARnB+∆RnB

RnA+RnB
+ ∆ 0 ≤ ∆ < − ln(0.5)CRnA

− ln(0.5)CRnA ∆ ≥ − ln(0.5)CRnA

δ↓M,−(∆) =

{
− ln(0.5)CRnARnB+|∆|RnA

RnA+RnB
+ |∆| |∆| < − ln(0.5)CRnB

− ln(0.5)CRnB |∆| ≥ − ln(0.5)CRnB

and, for Case k ∈ {1, 2, 3, 4},

δ↑M,+(∆) ≈ 2RC
(
ln(γk)− ln(0.5)

)
,

δ↑M,−(∆) ≈ 2RC
(
ln(γ′k)− ln(0.5)

)
.

Proof. We sketch how δ↓M,+(∆) is computed; the expression for
δ↓M,−(∆) is obtained analogously. Recall that falling output transi-
tions imply rising input transitions and vice versa. Given the trajectory

V
T
↑↑
+

out (t) in (6), we start out from V
T
↑
−

out (0) = VDD and need to
compute the time δ↓M,+(∆) when either (i) already the preceding

trajectory V
T
↑
−

out (t) or else (ii) V
T
↑↑
+

out (t) itself (which is started at time
∆) hits VDD/2. Note that this reflects the fact that already the first
rising input (at time 0) causes the output to switch to 0. Since all these
trajectories only involve a single exponential, they are easy to invert.
It turns out that case (i) occurs for values ∆ ≥ − ln(0.5)CRnA , case
(ii) for smaller ∆.

Similarly, for computing δ↑M,+(∆), we need to consider the

trajectory V
T
↓↓
+

out (t). Here, we have to start out from the initial value

V
T
↓
−

out (∆) = 0 and just need to compute the time δ↑M,+(∆) until

V
T
↓↓
+

out (t) hits VDD/2. This reflects the fact that it is only the second
falling input (at time ∆) that causes the output to switch to 1.

Whereas the specific initial values V
T
↑
−

out (0) = VDD and V
T
↓
−

out (0) =
0 used in Theorem 1 are sufficient for evaluating the MIS behavior of
our model, we need generalized expressions for the dynamic digital
timing simulation experiments in Section VI. In Theorem 2, we
therefore provide the delay functions for arbitrary initial values.

Theorem 2. [MIS and SIS delay functions for arbitray initial values]
For any −∞ ≤ ∆ ≤ ∞, the extended delay functions for falling and
rising output transitions of our model, when starting from a given
initial value Vout(0), are

δ↓EM,+(∆) =

{
− `CRnARnB+∆RnB

RnA+RnB
+ ∆ 0 ≤ ∆ < −`CRnA

−`CRnA ∆ ≥ −`CRnA

δ↑EM,+(∆) ≈ 2RC
(
ln(

2VDDγk − 2Vout(0)e
− ∆
CRnB e−

ik
C

VDD
)
)
,

where ` = ln
(
VDD/2Vout(0)

)
and Case k ∈ {1, 2, 3, 4}. δ↓EM,−(∆)

and δ↑EM,−(∆) can be easily obtained by our symmetry.

The delay functions given in Theorem 1 (that is, in Theorem 2) not
only facilitate fast dynamic timing analysis, but are also instrumental
for understanding which parameters affect the which delay value. In
fact, the formulas could even be used for explicit parametrization of
a given circuit when certain delay values are known.



A. Parameterization for 15 nm

Like in [13], in this subsection, we will fit our model to the
characteristic MIS delay values δ↓S(−∞), δ↓S(0), δ↓S(∞) according
to Fig. 1a and the corresponding values δ↑S(−∞), δ↑S(0), δ↑S(∞) in
Fig. 1b in Section II.

Interestingly, our first attempt to simultaneously fit all six delay
values for determining all parameters at once turned out to be naive
since impossible. To understand why this is the case, note that the on-
resistors of the two nMOS transistors RnA and RnB should roughly
be the same. Consequently, we obtain

δ↓M,+(∞)

δ↓M,+(0)
=
RnA +RnB

RnB
≈ 2.

Unfortunately, however, the desired ratio is δ
↓
S

(−∞)

δ
↓
S

(0)
≈ 38 ps

28 ps
, which

cannot fit these two values with reasonable choices for RnA andRnB .
As in [13], we fixed this problem by adding (that is, subtracting) a
suitably chosen pure delay δmin = 18 ps (foreseen in the original
IDM [2]), which just defers the switching to the new state upon an
input transition. This results in an effective ratio of 20 ps

10 ps
= 2, which

could finally be matched by least squares fitting. Of course, when
using our model in digital timing analysis, δmin must be added to
the computed delay values.

More specifically, starting out from some desired load capacitance
C,2 we first determined RnA and RnB by fitting δ↓M,−(−∞) (or
δ↓M,+(∞)) and δ↓M,+(0) to match δ↓S(−∞)−δmin (or δ↓S(∞)−δmin)
and δ↓S(0) − δmin. Once these parameter values had been obtained,
we fixed those and determined the remaining parameters R, α1,
α2 and η by fitting δ↑M,−(−∞), δ↑M,+(0) and δ↑M,+(∞) to match
δ↑S(−∞)−δmin, δ↑S(0)−δmin and δ↑S(∞)−δmin. Note that the same
δmin = 18 ps is used for both rising and falling output transitions.
The result of our parametrization for the circuit in Section II is shown
in Table III.

TABLE III: Model parameter values for the 15 nm CMOS NOR gate
used for producing Fig. 1a and Fig. 1b.

Parameters found by fitting the falling output transition case
RnA = 8.360562682200 kΩ RnB = 8.255562682200 kΩ C = 3.6331599443276 fF

Parameters found by fitting the rising output transition case
R = 6.6999626822002 kΩ α1 = 0.859 · 10−7 Ωs α2 = 0.268 · 10−7 Ωs η = 0.01

Utilizing the parameters in Table III, we can finally visualize the
delay predictions of our model. Fig. 4 shows the very good fit
of δ↓M (∆) for a falling output transition compared to the analog
simulation result presented in Fig. 1a. Similarly, Fig. 5 also shows
a good coverage of the MIS effect for rising output transitions
(δ↑M,±(∆)) compared to the actual delay observed in Fig. 1b. We
therefore conclude that our new hybrid model fully captures all the
MIS effects introduced in Section II, including the case of ∆ < 0
for rising output transitions where the model proposed in [13] fails.

As a final remark, we note that the modeling inaccuracies visible
in Fig. 5 are primarily caused by the errors introduced by our
approximate solutions of (10) and (11). The first one is the lack of
perfectly fitting the actual delay with the computed one for ∆ = 0,
which looks quite bad in the figure but actually causes a relative
error of about 0.95 % only. The other two are the small dent shapes
around ∆ ≈ ±7.64 ps, which are caused by the approximation error
at the ending boundary of the range in Case 3. It could easily be

2Note that we observed that our model scales well with C, i.e., a
parametrization starting out from a different C yields different parameters
but essentially the same delays.
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Fig. 4: Computed (δ↓M (∆)) and measured (δ↓S(∆)) MIS delays for
falling output transitions.

−60 −30 0 30 60
52

53

54

55

56

57

input separation ∆ [ps]

de
la

y
[p

s]

δ ↑M δ ↑S

Fig. 5: Computed (δ↑M (∆)) and measured (δ↑S(∆)) MIS delays for
rising output transitions.

circumvented by slightly moving the border between Case 3 and Case
4 to a smaller value, i.e., to α1+α2

2R
− ε for some ε > 0. Since the

induced error is marginal, we did not bother with further complicating
our analysis.

B. Other parameterizations

A crucial feature of any model is wide applicability. Ideally, our
hybrid delay model should be applicable to any CMOS technology,
for any supply voltage, temperature, age etc., in the sense that it
is possible to determine a parametrization that allows our model to
match the MIS delays of any given CMOS NOR implementation.
Overall, it is reasonable to conjecture that our model is applicable
whenever the Shichman-Hodges transistor model [14], i.e., (3) and
(4), reasonably applies. Whereas it is of course impossible for us
to prove such a claim, we can demonstrate that this is the case for
some quite different technology and operation conditions, namely the
UMC 65 nm technology with VDD = 1.2 V supply voltage and a
larger load capacitance C.3 The red dashed curves in Fig. 6a (falling
output) resp. Fig. 6b (rising output), which correspond to Fig. 4 resp.
Fig. 5, show the gate delays depending on the input separation time
∆ obtained via SPICE simulations.

3We note that we played with several different conditions and configura-
tions, which all confirmed that the parameters of our model can be easily
matched.
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Fig. 6: Computed (δ↑M (∆)) and measured (δ↑S(∆)) MIS delays for
65 nm technology.

Parametrizing our model for these 65 nm MIS delays turned out to
be remarkable easy: Exactly as for our 15 nm technology, by initially
fixing some value for the load capacitance C and trying to match
δ↓M,−(−∞) (or δ↓M,+(∞)) and δ↓M,+(0) with δ↓S(−∞) − δmin (or
δ↓S(∞) − δmin) and δ↓S(0) − δmin, we determined accurate values
for RnA and RnB . After fixing the latter, we obtained the values
of the remaining parameters by fitting the remaining delay values.
Note carefully, however, that we had to use a different pure delay

δmin = 10.8 ps here, since δ
↓
S

(−∞)

δ
↓
S

(0)
≈ 222 ps

116 ps
. Table IV provides the

resulting list of parameters. Not surprisingly, since the gate delay
is considerably higher than for our 15 nm data, we indeed face a
significantly larger value for the load capacitance C also in our model.

TABLE IV: Model parameter values for the 65 nm CMOS NOR gate
used for producing the red curves in Fig. 6.

Parameters found by fitting the falling output transition case
RnA = 8.409562682200 kΩ RnB = 8.285562682200 kΩ C = 30.6331599443276 fF

Parameters found by fitting the rising output transition case
R = 5.1916426822002 kΩ α1 = 0.959 · 10−7 Ωs α2 = 0.273 · 10−7 Ωs η = 0.01

Utilizing the parameters in Table IV, we finally obtained the blue
curves in Fig. 6a and Fig. 6b, which illustrate the computed delays
of our model for the 65 nm technology. It is apparent that they
match the real delays very well: We see an ideal fitting for the case
of falling output transition as well as for the case of rising output
transitions at marginal ∆ values. Moreover, considerably promising
is the negligible absolute error value of 0.3% for the mismatch
associated with ∆ = 0.

VI. MODELING ACCURACY EXPERIMENTS

In this section, we experimentally compare the modeling accuracy
of our new model to the ideal switch hybrid model [13], the IDM
and to classic inertial delays, using the publicly available Involution
Tool [5]. Albeit it performs dynamic digital timing simulation in
VHDL, it also supports delay models implemented in Python. We
hence implemented our model, that is, the delay functions given in
Theorem 2, in Python.

For our experimental evaluation, we used the same setup as
in [13], namely the 15 nm Nangate Open Cell Library featuring
FreePDK15TM FinFET models [15] (VDD = 0.8 V) that has also
been used in Section II. Based on a Verilog description of our
NOR gate, we performed optimization, placement and routing by
utilizing the Cadence tools Genus and Innovus (version 19.11). We
also extracted the parasitic networks from the final layout to obtain
SPICE models. These models allowed us to perform simulations
with Spectre (version 19.1), which are used to produce golden
reference digital signal traces, by recording their VDD/2 crossing
times. All simulations in our delay model used the final parameters
from Table III. For the ideal switch model and the IDM Exp-channel,
the parameters reported in [13] were used.

In order to quantify and compare the typical (average) modeling
accuracy of our competing delay models, we stimulated our NOR
circuit with randomly generated waveforms. Our experiments targeted
both fast (100/50) and slow (200/100) pulse trains on every input,
with (LOCAL) and without (GLOBAL) concurrent transitions. For
example, the configuration 100/50 - LOCAL of the Involution Tool
generates transitions independently on both input A and B, according
to a normal distribution with µ = 100 ps and σ = 50 ps. The
configuration 200/100 - GLOBAL generates transitions either on input
A or on B, with µ = 200 ps and σ = 100 ps. Each simulation run
consisted of 500 transitions and has been repeated 200 times.

We note that the simulation times (all in the few second-range)
for all our models turned out to be similar. More specifically, the
inertial delay model (which is natively implemented in ModelSim)
is around 33% faster than both the IDM model and the two hybrid
models in all our configurations. Simulation times in SPICE match
the ones of ModelSim in configurations like 100/50 - LOCAL, but
are as slow as our hybrid models in 5000/5 - GLOBAL, for example.
Since the Python implementations of our models are of course not
at all optimized for simulation performance, we assume that fully
engineered implementations would be substantially faster.

As our modeling accurracy comparison metric, we used the area
under the deviation trace, which is the absolute value of the dif-
ference between the SPICE trace and the trace generated by the
respective delay model integrated over time. However, since the
absolute values largely depend on the number of transitions, and are
therefore meaningless per se, we normalized them with respect to the
inertial delays, which is our baseline model. Consequently, lower bars
indicate less area under the deviation trace and hence better results.
Fig. 7 shows the results of our experiments. It is apparent that our
model outperforms the ideal switch hybrid model [13] in the case
of fast pulse trains, where the increased modelling accuracy of the
falling output MIS delay comes into effect: Around 5% is gained in
the case of 100/50 - LOCAL.

VII. CONCLUSIONS

We provided a novel hybrid ODE model for a NOR gate, which
faithfully covers all MIS effects. As a first-order model of dimension
1, it is even simpler than the immediate switch hybrid ODE model
proposed in [13], albeit it does not share its failure to model the MIS
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Fig. 7: Accuracy of inertial delay, Exp-Channel, ideal switch model
and our new model, compared to SPICE simulations of a NOR gate.

effect for rising output transitions. Thanks to its simplicity, it allows
to compute accurate approximation formulas for the gate delays,
which makes the model readily applicable in dynamic digital timing
analysis and facilitates easy model parametrization. An experimental
comparison of the modeling accuracy against alternative approaches
confirmed its superior performance. Part of our current/future work is
devoted to applying our modeling approach to other (more complex)
gates, like Muller C-gates and XOR gates.
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